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Abstract

Image resizing is a basic tool in image processing and in literature we have many
methods, based on different approaches, which are often specialized in only upscaling
or downscaling. In this paper, independently of the (reduced or enhanced) size we aim
to get, we approach the problem at a continuous scale where the underlying continuous
image is globally approximated by the tensor product Lagrange polynomial interpolat-
ing at a suitable grid of first kind Chebyshev zeros. This is a well–known approximation
tool that is widely used in many applicative fields, due to the optimal behavior of the
related Lebesgue constants. Here we show how Lagrange–Chebyshev interpolation can
be fruitfully applied also for resizing an arbitrary digital image in both downscaling and
upscaling. The performance of the proposed method has been tested in terms of the
standard SSIM and PSNR metrics. The results indicate that, in upscaling, it is almost
comparable with the classical Bicubic resizing method with slightly better metrics,
but in downscaling a much higher performance has been observed in comparison with
Bicubic and other recent methods too. Moreover, in downscaling cases with an odd
scale factor, we give an estimate of the mean squared error produced by our method
and prove it is theoretically null (hence PSNR equals to infinite and SSIM equals to
one) in absence of noise or initial artifacts on the input image.
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1. Introduction

In this paper, we deal with the problem of image resizing. This has been widely
investigated over the past decades and is still an active research area characterized by
many applications in different domains, including image transmission, satellite image
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analysis, gaming, remote sensing, etc. (see e.g. [8, 22, 25, 28, 50, 51]) In literature,
downscaling and upscaling are often considered separate problems (see e.g. [7, 30, 50]),
and most of the existing methods are specialized in only one direction, sometimes for a
limited range of scaling factors (see e.g. [13, 46]). The method we are going to introduce
works in both down and up scaling directions and for ”large” scaling factors as well.
It falls into the class of the interpolation methods and it is based on a non-standard
modeling of the image resizing problem.

In order to introduce the adopted model we premise that, from the mathematical
viewpoint, a continuous image I is a function f(x, y) of the spatial coordinates which,
without losing the generality, we can assume belonging to the open square A =]−1, 1[2.
Hence, its digital version I of n×m pixels is supposed to be made of the values that
f takes on a discrete grid of nodes Xn×m ⊂ A. Regarding such grid, it is generally
supposed that Xn×m = Xn ×Xm where we set

Xµ := {xµk : k = 1, . . . , µ} ⊂]− 1, 1[, ∀µ ∈ N. (1)

A typical and natural choice of the (univariate) system of nodes Xµ is to divide [−1, 1]
in (µ+ 1) equal parts and to take the µ internal equidistant nodes, i.e.

Xequ
µ =

{
−1 +

2k

µ+ 1
: k = 1, . . . , µ

}
. (2)

However, it is well known that equally spaced nodes are not the best choice for Lagrange
interpolation since they lead to exponentially growing Lebesgue constants, whereas
optimal Lebesgue constants (growing at the minimal projection rate) are provided by
the Chebyshev nodes of the first kind

xµk = cos

[
(2k − 1)π

2µ

]
, k = 1, . . . , µ, ∀µ ∈ N, (3)

(see e.g. [27, 45] for a short excursion on the topic).

Discrete polynomial approximation based on Chebyshev zeros is a pillar in approxima-
tion theory and practices. It has been widely studied and applied in several fields and
also recently, Chebyshev–like grids such as Xu points and Padua points have been intro-
duced to get optimal interpolation processes on the square (see e.g. [48, 49, 9, 11, 33]).
Nevertheless, to our knowledge, its usage in image processing has been mainly lim-
ited to particular cases, such as Magnetic Particle Imaging that is strictly related to
Lissajous curves generating the Padua points ( see e.g. [21, 18, 14]).

Indeed, at a first look, Chebyshev zeros may seem unsuitable for sampling an arbitrary
image since they are not equidistant on the segment ]−1, 1[ of each spatial coordinate,
but they are arc sine distributed, becoming denser at the endpoints ±1 (see Figure
1). Nevertheless, in our model, we transfer the sampling question from the segment
] − 1, 1[ to the semicircle of radius 1 centered at the axes origin. Thus, using the
standard setting t = arccos x, instead of the usual equidistant nodes on the segment,
our method takes the following equidistant nodes on the semicircle

tµk :=
(2k − 1)π

2µ
, k = 1, . . . , µ, µ ∈ N, (4)
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Figure 1: The first kind Chebyshev zeros of order µ = 15 (black stars) and their arccosine (red stars)

These nodes define the Chebyshev zeros xµk = cos tµk in (3) and the grid

Xn×m =
{

(xni , x
m
j ) : i = 1 : n, j = 1 : m

}
, n,m ∈ N (5)

which we actually choose to sample arbitrary (continuous) images I and to obtain
digital images of n×m pixels, for arbitrary n,m ∈ N.

According to this model, let I = f(Xn×m) be the digital image of n×m pixels, i.e.

Ii,j := f(xni , x
m
j ), i = 1 : n, j = 1 : m, (6)

and let I in be its more or less corrupted version really available as input data, say

I ini,j := f̃(xni , x
m
j ), i = 1 : n, j = 1 : m, (7)

where f̃ denotes a corrupted version of the continuous image. Starting from the data
I in, the resizing problem aims to find a good approximation of the resampled image
Ires consisting of the samples of f at the different (more or less dense) grid XN×M , i.e.

Iresk,h := f(xNk , x
M
h ), k = 1 : N, h = 1 : M. (8)

Hence, under our modeling, the resizing problem raises the following approximation
question: starting from the approximate values of f at the Chebyshev grid Xn×m, how
to approximate f at another (coarser in downscaling or finer in upscaling) Chebyshev
grid XN×M? The solution we propose relies on the global approximation of a function
by its bivariate Lagrange polynomial interpolating at the Chebyshev grid Xn×m.

This well–known interpolation polynomial can be easily deduced via tensor product
from the univariate case (see for instance [31, 32, 34, 35]) and fast algorithms can be
implemented for its computation ( see e.g. [33]). Moreover, we recall that wavelets
techniques can be applied to such kind of interpolation [20, 15, 16].

Hence, in order to get the resampled image, instead of f , we propose to sample a
suitable Lagrange interpolation polynomial at the new grid. More precisely, we use
the pixels of the input image I in to build the Lagrange-Chebyshev polynomial Ln,mf̃
interpolating f̃ at Xn×m and we get the output image of the desired N ×M size (here
denoted by Iout) by sampling Ln,mf̃ at the mesh XN×M .

To test the performance of such Lagrange–Chebyshev Interpolation (LCI) method we
have considered the usual SSIM (Structured Similarity Index Measurement) and PSNR
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(Peak Signal to Noise Ratio) metrics as computed by MatLab, and we have carried out
the experimentation on several kinds of images collected in 5 datasets, having different
characteristics on the size and the quality of the images, the variety of subjects, etc.

For an initial comparison, we focused on interpolation methods working as well in
both down and up scaling directions. In general, these methods find a resized image by
local or global interpolation of the continuous image f , using in some way the initial
n×m pixels, namely the more or less corrupted values of f at the grid of nodes Xn×m.
Typically, for such grid it is assumed the equidistant nodes model (2) and most of
the interpolation methods act locally on each pixel of the input image. This is the
case of the classical bicubic interpolation method BIC [19] implemented by the Matlab
built–in function imresize which we have used either in upscaling and downscaling to
get a first comparison.

By the extensive experimentation we carried out, we assess that the performance of
the LCI method is superior in downscaling (d-LCI method), while in upscaling (u-LCI
method) there are only slight differences and the two methods seem almost comparable.

Thus it seemed relevant to us to further investigate only the downscaling case by testing
d-LCI method in comparison with two other recent downscaling methods, here denoted
by DPID [47] and L0 [23], both of them not belonging to the family of interpolation
methods for downscaling. The effective better performance in downscaling has been
confirmed also in these cases, with an increasing gap as the downscaling factor increases.
Moreover, by running the public available Matlab code, we have observed that DPID
and L0 methods work only for integer scale factors n/N and m/M and they are not
always implementable for images with large sizes due to too long running times or too
much memory. On the contrary, LCI method keeps the runtimes contained and offers
high flexibility since it works in both downscaling and upscaling with non integer scale
factors too, being possible to specify the desired final size or the scale factor as input
parameters. We remark that similar nice features are shared by the Matlab function
imresize, but with lower performances in downscaling. Moreover, in downscaling, for
all odd scale factors, we state a theoretical estimate of the Mean Squared Error (MSE)
obtained by our d-LCI method arriving to prove that it is null if I in = I. Such a
theoretical result has been confirmed by our experimentation that also shows it does
not hold for imresize applied to the same input images.

The paper is organized as follows. For a simpler exposition of the idea behind the LCI
method, we first introduce the method for a monochrome image in Section 2 and then,
in Section 3, we expose it for RGB color images. Both monochrome and color cases are
considered in Section 4 where some advantages of our approach are discussed. Finally,
Section 5 consists of all the numerical experiments.

2. Re-sampling gray-level images

In the case of a monochrome image, I is represented at a continuous scale by a scalar
function f(x, y) whose values are the grey levels at the spatial coordinates (x, y) ∈ A.
Moreover, at a discrete scale, digital images of n × m pixels are matrices I ∈ Rn×m

whose elements are the samples of f at the discrete nodes set Xn×m defined in our model
by (5) and (3). Then, according to the notation introduced in the previous section, the
resizing problem of I (in upscaling or in downscaling, respectively) consists in finding
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a good approximation of the matrix Ires ∈ RN×M given by (8) starting from the matrix
(having a reduced or enlarged size, respectively) I in ∈ Rn×m defined as in (7) being f̃
a more or less corrupted version of f .

We approach such an approximation problem by using the following bivariate (tensor
product) Lagrange–Chebyshev polynomial based on the available data I in

Ln,mf̃(x, y) :=
n∑
i=1

m∑
j=1

f̃(xni , x
m
j )`ni (x)`mj (y), (x, y) ∈ A, (9)

where, for all µ ∈ N, `µk denotes the k−th fundamental Lagrange polynomial related
to the nodes system Xµ, namely

`µk(ξ) :=

µ∏
s = 1
s 6= k

ξ − xµs
xµk − x

µ
s
, ξ ∈ [−1, 1], , k = 1 : µ. (10)

It is well–known that the Lagrange–Chebyshev polynomial in (9) interpolates f̃ at the
grid Xn×m, i.e.

Ln,mf̃(xni , x
m
j ) = f̃(xni , x

m
j ) = I ini,j, i = 1 : n, j = 1 : m. (11)

The samples of such polynomial at the re-scaled grid XN×M constitute the approximate
resized image provided by the LCI method. Hence, the LCI method computes the
matrix Iout ∈ RN×M whose entries are the following

Ioutk,h := Ln,mf̃(xNk , x
M
h ), k = 1 : N, h = 1 : M. (12)

Introducing the Vandermonde-like matrices

V1 :=
[
`ni (xNk )

]
i,k
∈ Rn×N , V2 :=

[
`mj (xMh )

]
j,h
∈ Rm×M , (13)

by (9) and (12), the output matrix Iout can be computed from the input matrix I in

according to the following matrices identity

Iout = V T
1 I

inV2, (14)

Note that in case we have to resize a lot of images for the same fixed sizes, formula
(14) also allows working in parallel with pre-computed matrices Vi .

Moreover, it is well known that the fast computation of the matrices Vi can be achieved
by using, instead of (10), the following more convenient form of the fundamental La-
grange polynomial

`µk(cos t) =
2

µ

µ−1∑
r=0

′ cos

[
(2k − 1)rπ

2µ

]
cos [rt] , k = 1 : µ, t ∈ [0, π], (15)

where, as usual, the prime on the summation symbol means that the first addendum is
halved. Hence, by (15) we get that the matrices V1 and V2 can be computed by using
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fast cosine transform algorithms (see e.g. [37]) being

(V1)i,k = `ni (xNk ) =
2

n

n−1∑
r=0

′ cos

[
(2i− 1)rπ

2n

]
cos

[
(2k − 1)rπ

2N

]
, (16)

i = 1 : n, k = 1 : N,

(V2)j,h = `mj (xMh ) =
2

m

m−1∑
s=0

′ cos

[
(2j − 1)sπ

2m

]
cos

[
(2h− 1)sπ

2M

]
, (17)

j = 1 : m, h = 1 : M.

3. Re-sampling RGB color images

Now we are going to introduce the method for a general color image I. In this case,
behind I there is a vector function f : A → R3 whose components f = (fR, fG, fB)
represent I in the RGB color space. According to our model, the input image Iin and
the target resized image Ires are represented in the RGB space as the follows

Iin ∈ Rn×m×3, Iin ≡ (I inR , I
in
G , I

in
B )

Ires ∈ RN×M×3, Ires ≡ (IresR , IresG , IresB ),

where we assume that

(I inR )i,j = f̃R(xni , x
m
j ), (IresR )k,h = fR(xNk , x

M
h ),

(I inG )i,j = f̃G(xni , x
m
j ), (IresG )k,h = fG(xNk , x

M
h ),

(I inB )i,j = f̃B(xni , x
m
j ), (I inB )k,h = fB(xNk , x

M
h ).

(18)

holds for all [i, j] = [1 : n, 1 : m] and [k, h] = [1 : N, 1 : M ].

Thus, similarly to the monochrome case and with obvious meaning of the notation, we
start from

Iini,j = f̃(xni , x
m
j ) i = 1 : n, j = 1 : m, (19)

and approximate Ires by

Ioutk,h = Ln,mf̃(x
N
k , x

M
h ) k = 1 : N, h = 1 : M (20)

i.e., for k = 1 : N and h = 1 : M , we define

Ioutk,h =
(
Ln,mf̃R(xNk , x

M
h ), Ln,mf̃G(xNk , x

M
h ), Ln,mf̃B(xNk , x

M
h )
)
. (21)

Hence, by applying the same argument of the monochrome case, we get that the RGB
components of the output image Iout ≡ (IoutR , IoutG , IoutB ) are given by

Iout = (V T
1 I

in
R V2, V

T
1 I

in
G V2, V

T
1 I

in
B V2),

with V1, V2 defined in (16)–(17).
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4. Model analysis

For a general analysis of the error we get in approximating the target resized image
Ires = [f(xni , x

m
j )]i,j with the output image Iout = [ Ln,mf̃(x

N
h , x

M
k )]h,k produced by LCI

method, we refer the reader to the wide existing literature on the Lagrange interpolation
error estimates (see e.g. [27] and the references therein). In this paper, we are interested
to measure the performance of LCI method through some standard metrics usually used
in Image Processing (see e.g. [38] and the references therein). In particular, we focus
on the Mean Squared Error (MSE) defined as follows

MSE(Ires, Iout) =


1

MN
‖Ires − Iout‖2F , gray-level images,

1
3NM

{‖IresR − IoutR ‖2F + ‖IresG − IoutG ‖2F + ‖IresB − IoutB ‖2F} ,
RGB color images,

being ‖ · ‖F the Frobenius norm

‖A‖F :=

(
N∑
k=1

M∑
h=1

A2
k,h

) 1
2

, A = (Ak,h) ∈ RN×M .

Moreover, we consider the Peak Signal to Noise Ratio (PSNR) defined by the previous
MSE as follows

PSNR(Ires, Iout) = 20 log10

(
maxf√

MSE(Ires, Iout)

)
, (22)

with maxf = 255, since we use the representation by 8 bits per sample.

Finally, in our experiments we evaluate the Structured Similarity Index Measurement
(SSIM). For grey-level images it is defined as

SSIM(Ires, Iout) =
[2µ(Ires)µ(Iout) + c1] [2cov(Ires, Iout) + c2]

[µ2(Ires) + µ2(Iout) + c1] [σ2(Ires) + σ2(Iout) + c2]
, (23)

where µ(A), σ(A) and cov(A,B) indicate the average, variance and covariance, respec-
tively, of the matrices A,B, and c1, c2 are constants usually fixed as c1 = (0.01×L), c2 =
(0.03× L) with the dynamic range of the pixel values L = 255 for 8-bit images.

In the case of RGB color images, making the conversion to the color space YCbCr, the
SSIM is computed by the above definition applied to the intensity Y (luma) channel.

Based on the previous metrics, the results of wide experimentation will be reported in
the next section. In the sequel, we are going to underly two particular features of LCI
method.

A first aspect is related to the model choice which, for odd downscaling factors s :=
n/N = m/M > 1, leads to state the following

Proposition 4.1. Under the previously introduced notation, if there exists ` ∈ N s.t.
n = (2`− 1)N and m = (2`− 1)M hold, then we have

MSE(Ires, Iout) ≤ s2MSE(I, Iin), s := (2`− 1). (24)
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Moreover, if I = I in then we get the best results

MSE(Ires, Iout) = 0, and SSIM(Ires, Iout) = 1. (25)

Proof. Let’s give the proof in the case of a gray-level image since for RGB color images
the statement will easily follow by considering the single RGB components.

As a keynote of the proof, we observe that for any ` ∈ N, we have

n = (2`− 1)N =⇒ XN ⊂ Xn.

More precisely, setting s := (2`− 1), it is easy to check that

n = sN =⇒ xNk = xni with i =
s(2k − 1) + 1

2
, k = 1 : N, (26)

where we remark that for all k = 1 : N , the numerator s(2k − 1) + 1 is certainly even
since s is odd.

Consequently, we deduce (24) from (26) as follows

MSE(Ires, Iout) =
1

NM

N∑
k=1

M∑
h=1

[
f
(
xN
k , x

M
h

)
− Ln,mf̃

(
xN
k , x

M
h

)]2
=

1

NM

N∑
k=1

M∑
h=1

[
f
(
xns(2k−1)+1

2

, xms(2h−1)+1
2

)
−f̃
(
xns(2k−1)+1

2

, xms(2h−1)+1
2

)]2
≤ 1

NM

n∑
i=1

m∑
j=1

[
f
(
xni , x

m
j

)
− f̃

(
xni , x

m
j

)]2
= s2MSE(I, I in).

Moreover, in the case that I = I in, we have that Ln,mf = Ln,mf̃ and, due to the nesting
property XN×M ⊂ Xn×m, by (11), for any h = 1 : N and k = 1 : M , we get

Iouth,k = Ln,mf̃(xNh , x
M
k ) = Ln,mf(xNh , x

M
k ) = f(xNh , x

M
k ) = Iresh,k , (27)

that implies the first equation in (25). Finally, (27) also yields

2cov(Ires, Iout) = σ(Ires)2 + σ(Iout)2,

2µ(Ires)µ(Iout) = µ(Ires)2 + µ(Iout)2

which conclude the proof of (25). ♦
We remark that the previous proposition is a direct consequence of our choice of the
sampling model based on Chebyshev zeros (3), instead of the usual equally spaced
nodes (2).

Such choice (and more generally the choice of ”good” interpolation knots) allows to
use global interpolation processes that are not possible in the case of equally spaced
nodes. In fact, as second aspect, we aim to highlight the relevance of the choice of
good interpolation knots by showing the effects we have in the performance of global
Lagrange interpolation methods associated with the univariate nodes set Xequ

µ in (2).
The disastrous effects of the exponential growth of Lebesgue constants are visible in
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the next experiment concerning an image zooming ×2 from the size n×n with n = 256
to the size N ×N with N = 512. Figure 2 displays the images obtained starting from
the same input image (Fig.2, left) and using the Lagrange interpolation polynomial
based on equally spaced nodes Xequ

n ×Xequ
n (Fig.2, right) and on the Chebyshev grid

Xn×n (Fig.2, middle). The images we see are the samples of the previous Lagrange
polynomials at the respective (N ×N)–grid and we can check how the equally–spaced
sampling model (2) yields wrong results outside of a small region of the output image.

Figure 2: The well–known image Flowers taken from USC–SIPI [1] (left) upsampled at the double
scale by Lagrange interpolation at Chebyshev nodes (middle) and at equally spaced nodes (right)

5. Experimental results

In this section, we propose a selection of the extensive experimentation we carried on
to test the benefits of our procedure in downscaling (d-LCI method) and in upscaling
(u-LCI method), comparing our results with other resizing techniques.

5.1. Comparison methods

As already mentioned, we compare LCI with BIC provided by MatLab imresize with
’bicubic’ option where we recall that a new pixel is determined from a weighted aver-
age of the 16 closest pixels using an interpolating cubic convolution function satisfying
prescribed assumptions of smoothness on f to gain at least a cubic order of convergence
[19]. The comparison BIC–LCI regards either down and up resizing cases, giving as
input either the scale factor or the final size of the desired image. Note that we have
also tested the other different options of imresize (namely ’linear’ and ’nearest

neighborhood’) but for brevity, we do not report the results since they give no new
insight.

Moreover, to further investigate the performance in downscaling case, we compare d-
LCI with other two recent downscaling methods not belonging to the interpolation
method class. These methods are briefly indicated as DPID method (described in [47]
with the code available at [2] ) and L0 method (described in [23], with the code available
at [3]). To be fair, we remark that we forced DPID and L0 also in upscaling direction
for several scaling factors (the choice of the desired size is not allowed by DPID and
L0) but the results were very poor w.r.t. BIC and LCI and they have been not reported
here.

Finally, we point out that all the previous methods have run on the same PC with
Intel Core i7 3770K CPU @350GHz configuration.
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5.2. Datasets

Since the results of any method depend on the type of input image, we have conducted
the experimentation on different kinds of 8–bits images collected in five publicly avail-
able datasets, whose characteristics (acronym, number of images, range of their sizes)
are synthesized in Table 1.

Table 1: Datasets list
Dataset n. of Images Sizes
BSDS500 500 481× 321 or 321× 481
NASA 17 from 500×334 to 6394×3456
YAHOO 96 from 500×334 to 6394×3456
13US 13 from 241×400 to 400×310
URBAN100 100 from 1024×564 to 1024×1024

We point out that we have chosen the datasets in Table 1 since they are the same
considered in [47, 23] for DPID and L0 methods. In particular:

• BSDS500 dataset [26], available at [4], has been used for testing L0 in [23]. It
is sufficiently general and provides a large variety of images often employed for
testing many other methods with different image analysis tasks such as image
segmentation [29, 39, 40, 42]), color quantization [12, 41, 10, 43], etc.

• NASA Image Gallery [6] and YFCC100M (Yahoo Flickr Creative Commons 100
Million) [44] datasets (here briefly denoted by NASA and YAHOO, respectively)
are used by DPID in [47].

• 13US [36] contains natural images, available at [5] and originally taken from the
MSRA Salient Object Database [24]. It is another dataset used in [47].

• URBAN100 dataset [17], concerning urban scenes with images having one di-
mension equal to 1024, is commonly used to evaluate the performance of super-
resolution models. It is used as test images for L0 in [23].

All the previous datasets have been considered for either up and down scaling.

We remark that in all the performed experiments the input images are not available
from the datasets. Hence, following a typical approach in image quantitative evalua-
tion, we fix all the images from the datasets as target images (i.e. Ires in our notation)
and we apply BIC to generate the input image (namely I in) common to all methods.
More precisely, to run [×s] upscaling methods ([: s] downscaling methods, resp.) we
generate the input image I in by applying BIC to Ires in the opposite [: s] ([×s], resp.)
scaling direction.
Note that, according to such procedure, in testing [×s] upscaling methods we may find
that Ires does not have both the dimensions N and M that are divisible for s. In this
case, in order to generate I in we use imresize with the size option, requiring n = bN

s
c

and m = bM
s
c. Moreover, once obtained I in, both BIC and u-LCI run by specifying

again the size N ×M instead of the scaling factor.
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5.3. Visual comparison

As first experiment, we focus on the visual comparison of some original images chosen
in the previous datasets with the output images produced by the methods in Subsection
5.1. Such images are given in Figure 3 for upscaling and in Figure 4 for downscaling.

Figure 3: Examples of upscaling performance results at the scale factor 2 (top), at the scale factor 3
(middle), at the scale factor 4 (bottom).

In both the figures at the first column we show the target images and at the successive
columns we display the resized images obtained as the output of the considered meth-
ods. Moreover, the first, second and third row of both the figures correspond to the
scaling factors 2, 3 and 4, respectively. In all the cases the images have been reported
with evidence of some magnified regions of interest (ROI).

From the qualitative point of view, by inspecting Figures 3 and 4, we can deduce that
in terms of visual quality LCI has a good performance, also with respect to the chosen
comparing methods. It preserves the visual structure of the object without losing image
details, the local contrast, and the luminance of the input image, by generating resized
images close to the target ones. Ringing and over smoothing artifacts are limited and
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Figure 4: Examples of downscaling performance results at the scale factor 2 (top), at the scale factor
3 (middle), at the scale factor 4 (bottom).

the resized images seem fair, sufficiently not blurred, and with well-balanced colors.

5.4. Quantitative comparison: average results

For each dataset selected in Subsection 5.2, we computed the averages of the PSNR and
SSIM values achieved by LCI and by the comparison methods described in Subsection
5.1, for the scaling factors 2, 3, 4. The results are displayed in Table 2 for upscaling
and in Table 3 for downscaling, reporting in both the tables also the averages of the
required CPU times.

As announced in the introduction, from Table 2 we see that the values attained by
u-LCI are only slightly better than those achieved by BIC, and the execution time of
u-LCI is a little bit greater than BIC. Of course, as the scale factor increases, both
PSNR and SSIM decrease in all the upscaling methods. Moreover, the gaps between
BIC and u-LCI in both the metrics are maintained also for large size images.

On the contrary, in downscaling, by inspecting Table 3 we observe that the performance
provided by d-LCI is much better than those achieved by the other methods for both
the metrics. In particular, when the downscaling factor is 3 the theoretical results
claimed in Proposition 4.1 are confirmed. Moreover, looking at the even downscaling
factors 2, 4 the improvement by d-LCI seems to increase as the scale factor increases
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Table 2: Average results in upscaling.
x2 x3 x4

PSNR SSIM T PSNR SSIM T PSNR SSIM T
BSDS500

BIC 26,341 0,886 0,003 24,821 0,837 0,002 22,251 0,701 0,003
u-LCI 26,381 0,888 0,014 24,868 0,839 0,010 22,446 0,769 0,008

NASA
BIC 34,806 0,958 0,091 31,205 0,924 0,074 29,808 0,907 0,071

u-LCI 35,412 0,960 1,357 31,542 0,924 0,839 30,183 0,908 0,634
YAHOO

BIC 33,391 0,953 0,056 29,754 0,913 0,055 28,741 0,891 0,051
u-LCI 33,900 0,955 0,812 29,956 0,914 0,567 28,986 0,891 0,459

URBAN100
BIC 25,433 0,882 0,009 21,306 0,755 0,008 21,703 0,741 0,008

u-LCI 25,896 0,886 0,064 21,325 0,754 0,051 21,919 0,793 0,059
13US
BIC 24,116 0,861 0,002 20,754 0,734 0,002 20,545 0,710 0,002

u-LCI 24,486 0,868 0,012 20,780 0,738 0,010 20,656 0,713 0,009

Table 3: Average results in downscaling
:2 :3 :4

PSNR SSIM T PSNR SSIM T PSNR SSIM T
BSDS500

BIC 38,872 0,993 0,006 39,253 0,993 0,009 39,183 0,993 0,017
DPID 41,745 0,996 7,696 41,827 0,996 12,246 41,206 0,996 18,615

L0 29,317 0,961 3,647 32,873 0,971 8,020 34,174 0,971 14,295
d-LCI 53,732 1,000 0,057 Inf 1,000 0,091 55,889 1,000 0,137

NASA
BIC 45,969 0,995 0,229 47,114 0,996 0,325 46,973 0,996 0,639

DPID 47,675 0,998 448,023 47,657 0,998 731,498 47,112 0,997 1.098,113
L0 34,754 0,972 208,574 37,285 0,979 617,386 oom oom oom

d-LCI 54,265 0,999 6,614 Inf 1,000 13,317 57,491 1,000 22,859
YAHOO

BIC 44,757 0,996 0,155 45,858 0,997 0,219 45,682 0,996 0,422
DPID 46,743 0,998 291,685 46,948 0,998 479,638 46,421 0,998 714,908

L0 33,913 0,974 133,190 oom oom oom oom oom oom
d-LCI 54,067 0,999 4,698 Inf 1,000 8,279 57,223 1,000 13,898

URBAN00
BIC 35,661 0,989 0,027 36,010 0,990 0,041 35,940 0,989 0,068

DPID 39,178 0,996 37,592 39,178 0,996 60,834 38,702 0,995 93,996
L0 26,718 0,951 13,267 31,061 0,969 28,845 33,571 0,973 50,312

d-LCI 52,613 0,999 0,234 Inf 1,000 0,416 55,452 1,000 0,618
13US
BIC 35,129 0,990 0,005 35,469 0,991 0,009 35,397 0,991 0,013

DPID 38,061 0,996 5,593 38,326 0,996 8,905 37,707 0,995 13,819
L0 25,521 0,949 2,572 30,231 0,972 5,706 32,929 0,979 9,939

d-LCI 52,813 1,000 0,042 Inf 1,000 0,073 55,374 1,000 0,108

while BIC seems to be affect by saturation, with an increasing gap between d-LCI and
the remaining methods.

About the CPU time, except for BIC, d-LCI is faster than the other methods that, in
case of very large images, need very long computational time (see the results for NASA
and YAHOO datasets that include target images of size 6394× 3456, i.e. input images
with size 25576 × 13824 in case of downscaling factor equals to 4) and in some cases,
wherever we see oom (which means out of memory), the available code of L0 does not
arrive to produce any result.

5.5. Quantitative comparison: some pointwise results

Here we focus on each single image from the smaller datasets of Table 1 , namely we
consider 13US dataset in downscaling, with target images of small size displayed in
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Figure 5, and NASA dataset in upscaling, with target images of large size displayed in
Figure 6.

Figure 5: 13US dataset image: [U1 -U13] from left to right and from top to bottom .

Figure 6: NASA dataset images: [N1, N2, N3, N5, N6, N7, N8, N9, N10, N11, N12, N13, N14, N15,
N16, N17, N19] from left to right and from top to bottom .

The PSNR values achieved for every single image have been plotted in Figure 7 for
NASA dataset with upscaling factor 2, 4, 8, 16, and in Figure 8 for 13US dataset with
downscaling factor 6, 18, 30.

On the same datasets, more detailed results are given in Tables 4–6 reporting in the
first columns the name and the size of all the images from 13US and NASA.

In particular, Table 4 contains the detailed upscaling results on the NASA dataset, for
the scaling factors s ∈ {2, 4, 8, 16} while Tables 5-6 concern the downscaling results
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Figure 7: Pointwise PSNR for the NASA set for scale factors s=2,4,8,16

Figure 8: Pointwise PSNR values for the set 13US, with scale factors s=6 (top), s=18 (middle), s=30
(down)

15



Table 4: Pointwise results on NASA dataset in upscaling
x2 x4 x8 x16

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
N1 4928×3280

BIC 37,472 0,945 33,453 0,892 29,828 0,858 26,795 0,833
u-LCI 37,903 0,950 33,856 0,892 30,133 0,855 26,999 0,831

N2 3072×2304
BIC 44,235 0,986 37,820 0,952 32,417 0,888 29,065 0,840

u-LCI 45,203 0,988 38,621 0,957 32,943 0,894 29,183 0,840
N3 2048×1536

BIC 35,708 0,963 30,845 0,919 27,474 0,874 24,593 0,830
u-LCI 36,552 0,965 31,136 0,916 27,731 0,865 24,850 0,808

N5 2701×3665
BIC 31,743 0,987 25,444 0,960 22,262 0,932 20,388 0,913

u-LCI 33,077 0,989 25,792 0,962 22,426 0,933 20,487 0,913
N6 1836×3264

BIC 33,011 0,986 28,291 0,965 24,250 0,927 21,677 0,886
u-LCI 33,443 0,986 28,779 0,961 24,614 0,908 21,784 0,850

N7 1600×1200
BIC 29,939 0,886 25,087 0,670 23,364 0,567 22,627 0,545

u-LCI 30,981 0,905 25,409 0,684 23,542 0,569 22,683 0,546
N8 3008×2000

BIC 32,298 0,987 29,295 0,974 26,346 0,956 23,345 0,932
u-LCI 32,577 0,988 29,594 0,976 26,619 0,958 23,508 0,933

N9 5430×3520
BIC 35,440 0,985 28,707 0.945 24,336 0,883 22,494 0,846

u-LCI 36,116 0,986 30,735 0,955 26,121 0,899 22,712 0,845
N10 3264×2448

BIC 35,758 0,973 28,875 0,916 24,213 0,837 20,914 0,767
u-LCI 37,047 0,977 29,531 0,920 24,529 0,838 21,187 0,768

N11 4368×2326
BIC 36,525 0,982 30,149 0,955 24,649 0,906 20,966 0,849

u-LCI 37,461 0,981 30,986 0,951 24,918 0,897 21,193 0,846
N12 3504×2336

BIC 40,471 0,989 32,786 0,951 27,777 0,888 25,116 0,850
u-LCI 41,889 0,991 35,581 0,956 27,982 0,890 25,191 0,851

N13 1200×1600
BIC 24,145 0,746 22,370 0,603 21,838 0,530 21,555 0,483

u-LCI 24,316 0,730 22,390 0,592 21,852 0,529 21,579 0,486
N14 3456×5184

BIC 45,041 0,992 40,137 0,986 35,808 0,978 31,982 0,967
u-LCI 45,539 0,992 40,907 0,986 36,531 0,978 32,407 0,966

N15 3072×2048
BIC 34,457 0,990 29,574 0,967 26,731 0,941 24,886 0,920

u-LCI 35,427 0,991 29,872 0,968 26,883 0,940 24,976 0,919
N16 5501×3095

BIC 47,929 0,993 40,846 0,982 34,304 0,961 29,760 0,940
u-LCI 48,691 0,994 42,202 0,983 35,029 0,961 30,027 0,939

N17 2048×1363
BIC 30,892 0,980 27,028 0,954 24,688 0,927 22,895 0,899

u-LCI 31,380 0,981 27,219 0,954 24,834 0,927 21,044 0,877
N19 3039×4559

BIC 34,581 0,977 27,048 0,884 21,873 0,718 18,910 0,615
u-LCI 35,844 0,981 27,881 0,896 22,178 0,723 19,077 0,617
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Table 5: Pointwise results on 13US dataset in downscaling
:3 :6 :9 :18

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
US1 300×400

BIC 38,625 0,996 38,573 0,996 38,583 0,996 38,584 0,996
DPID 40,846 0,997 39,580 0,997 39,160 0,996 38,764 0,996

L0 27,994 0,949 35,405 0,983 35,138 0,986 36,183 0,991
d-LCI Inf 1,000 58,265 1,000 Inf 1,000 65,394 1,000

US2 400×300
BIC 33,348 0,987 33,298 0,987 33,303 0,987 33,302 0,987

DPID 36,428 0,994 35,217 0,992 34,823 0,992 34,450 0,991
L0 29,184 0,963 31,289 0,967 30,647 0,968 31,394 0,977

d-LCI Inf 1,000 55,418 1,000 Inf 1,000 60,956 1,000
US3 300×400

BIC 43,820 0,999 43,754 0,999 43,774 0,999 43,786 0,999
DPID 44,853 0,999 43,589 0,999 43,162 0,999 42,751 0,999

L0 34,756 0,992 37,140 0,995 38,087 0,996 40,237 0,998
d-LCI Inf 1,000 58,958 1,000 Inf 1,000 68,436 1,000

US4 300×400
BIC 40,673 0,996 40,623 0,996 40,631 0,996 40,633 0,996

DPID 42,066 0,998 40,699 0,997 40,236 0,997 39,794 0,996
L0 32,944 0,973 35,973 0,981 36,453 0,986 37,836 0,992

d-LCI Inf 1,000 58,958 1,000 Inf 1,000 66,386 1,000
US5 400×300

BIC 30,357 0,979 30,307 0,979 30,311 0,979 30,311 0,979
DPID 33,492 0,991 32,471 0,989 32,133 0,988 31,813 0,987

L0 26,807 0,962 30,944 0,973 28,911 0,963 28,551 0,965
d-LCI Inf 1,000 55,257 1,000 Inf 1,000 59,065 1,000

US6 300×400
BIC 29,718 0,978 29,659 0,978 29,633 0,978 29,663 0,978

DPID 32,578 0,990 31,486 0,988 31,111 0,987 30,752 0,985
L0 25,322 0,959 30,666 0,966 28,724 0,958 28,022 0,962

d-LCI Inf 1,000 54,273 1,000 Inf 1,000 58,321 1,000
US7 273×400

BIC 40,559 0,995 40,513 0,995 40,521 0,995 40,522 0,995
DPID 43,135 0,997 41,717 0,996 41,232 0,996 40,771 0,996

L0 31,832 0,949 34,364 0,964 35,604 0,975 37,697 0,987
d-LCI Inf 1,000 57,639 1,000 Inf 1,000 66,113 1,000

US8 322×400
BIC 31,857 0,989 31,802 0,989 31,808 0,989 31,808 0,989

DPID 36,382 0,996 34,979 0,994 34,601 0,994 34,239 0,993
L0 29,562 0,974 33,051 0,977 32,378 0,980 31,828 0,985

d-LCI Inf 1,000 55,880 1,000 Inf 1,000 62,394 1,000
US9 322×400

BIC 28,407 0,984 28,350 0,984 28,536 0,984 28,354 0,984
DPID 32,542 0,994 31,504 0,993 34,601 0,992 30,393 0,992

L0 29,562 0,974 29,504 0,985 27,361 0,980 27,214 0,979
d-LCI Inf 1,000 53,879 1,000 Inf 1,000 57,877 1,000

US10 400×307
BIC 35,220 0,992 35,168 0,992 35,172 0,992 35,173 0,992

DPID 38,947 0,997 37,406 0,996 36,929 0,995 36,494 0,995
L0 31,031 0,984 33,760 0,986 33,227 0,985 33,744 0,988

d-LCI Inf 1,000 57,131 1,000 Inf 1,000 62,986 1,000
US11 400×241

BIC 34,599 0,995 34,528 0,995 34,536 0,995 34,535 0,995
DPID 37,345 0,998 35,950 0,997 35,432 0,997 34,937 0,996

L0 27,631 0,976 34,346 0,986 34,143 0,989 33,189 0,992
d-LCI Inf 1,000 57,147 1,000 Inf 1,000 62,744 61,000

US12 400×266
BIC 35,698 0,993 35,639 0,993 035,645 0,993 35,647 0,993

DPID 38,626 0,997 37,345 0,996 36,898 0,995 36,471 0,995
L0 29,883 0,972 32,902 0,978 33,091 0,982 33,776 0,987

d-LCI Inf 1,000 55,801 1,000 Inf 1,000 62,744 1,000
US13 310×400

BIC 38,220 0,996 38,166 0,996 38,173 0,996 38,177 0,996
DPID 41,001 0,998 39,707 0,997 39,276 0,997 38,861 0,997

L0 31,593 0,982 35,761 0,989 35,898 0,991 36,263 0,993
d-LCI Inf 1,000 57,905 1,000 Inf 1,000 65,535 1,000
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Table 6: Performance results on 13US dataset for high downscaling
:20 :21 :27 :30 :33

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
US1 300×400

BIC 38,583 0,996 38,585 0,996 38,586 0,996 38,585 0,996 38,584 0,996
d-LCI 66,485 1,000 Inf 1,000 Inf 1,000 70,845 1,000 Inf 1,000

US2 400×300
BIC 33,302 0,987 33,302 0,987 33,302 0,987 33,303 0,987 33,303 0,987

d-LCI 66,347 1,000 Inf 1,000 Inf 66,092 1,000 1,000 Inf 1,000
US3 300×400

BIC 43,786 0,999 43,787 0,999 43,786 0,999 43,788 0,999 43,784 0,999
d-LCI 69,721 1,000 Inf 1,000 Inf 1,000 74,415 1,000 Inf 1,000

US4 300×400
BIC 40,633 0,996 40,634 0,996 40,636 0,996 49,636 0,996 49,635 0,996

d-LCI 68,054 1,000 Inf 1,000 Inf 1,000 71,936 1,000 Inf 1,000
US5 400×300

BIC 30,311 0,979 30,311 0,979 30,311 0,979 30,311 0,979 30,311 0,979
d-LCI 59,853 1,000 Inf 1,000 Inf 1,000 63,768 1,000 Inf 1,000

US6 300×400
BIC 30,311 0,979 29,663 0,978 29,664 0,978 29,663 0,978 29,663 0,978

d-LCI 59,135 1,000 Inf 1,000 Inf 1,000 62,833 1,000 Inf 1,000
US7 273×400

BIC 40,524 0,995 40,521 0,995 40,524 0,995 40,536 0,995 40,520 0,995
d-LCI 67,318 1,000 Inf 1,000 Inf 1,000 72,151 1,000 Inf 1,000

US8 322×400
BIC 31,808 0,989 31,807 0,989 31,807 0,989 31,807 0,995 31,806 0,989

d-LCI 63,539 1,000 Inf 1,000 Inf 1,000 67,653 1,000 Inf 1,000
US9 322×400

BIC 28,354 0,984 28,355 0,984 28,354 0,984 28,355 0,984 28,355 0,984
d-LCI 58,651 1,000 Inf 1,000 Inf 1,000 62,536 1,000 Inf 1,000

US10 400×307
BIC 35,174 0,992 35,172 0,992 35,174 0,992 35,175 0,992 35,175 0,992

d-LCI 63,924 1,000 Inf 1,000 Inf 1,000 67,994 1,000 Inf 1,000
US11 400×241

BIC 34,535 0,995 34,535 0,995 34,534 0,995 34,534 0,995 34,535 0,995
d-LCI 63,445 1,000 Inf 1,000 Inf 1,000 67,442 1,000 Inf 1,000

US12 400×266
BIC 35,647 0,993 35,646 0,993 35,645 0,993 35,646 0,993 35,648 0,993

d-LCI 63,760 1,000 Inf 1,000 Inf 1,000 67,127 1,000 Inf 1,000
US13 310×400

BIC 38,175 0,996 38,175 0,996 38,174 0,996 38,175 0,996 38,175 0,996
d-LCI 66,347 1,000 Inf 1,000 Inf 1,000 70,960 1,000 Inf 1,000
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obtained on 13US dataset for the scaling factors s ∈ {3, 6, 9, 18} (Table 5) and for the
larger factors s ∈ {20, 21, 27, 30, 33} (Table 6).

According to the average results, the pointwise ones corroborate the global trend. In
particular, Table 5 confirms that in downscaling d-LCI is the method allowing the
largest PSNR and SSIM, and that the method requiring the least computation time is
BIC, followed by d-LCI which is faster than DPID and L0. Also, note that the scaling
factors chosen in Table 5 are all multiple of three but, according to Proposition 4.1 we
can see the differnce between the odd and even downscaling factors. Moreover, we can
affirm that d-LCI works fine also for large downscaling factors as reported in Table 6
where the target images in 13US have been zoomed in up to 33 times, getting input
images whose size goes up to 13200×10230. We point out that in Table 6 the results
for DPID and L0 methods are missing because the publicly available MatLab codes
don’t work for so large scale factors. Moreover, if s ∈ {21, 27, 33} then, in accordance
with Proposition 4.1, PSNR and SSIM again reach the limit values Infinite and 1,
respectively, by d-LCI while the same does not hold for BIC applied to the same input
images.

6. Conclusions

In the context of interpolation methods for image resizing, we present the Lagrange–
Chebyshev Interpolation (LCI) method. It is based on a non standard mathemati-
cal modeling that leads to the application of such an optimal Lagrange interpolation
process to globally approximate the image at a continuous scale. One of the main
advantages of LCI method is its high flexibility of working in both the scaling direc-
tions, either setting a scale factor or giving a particular final size. Comparisons with
other resizing procedures have been reported on 5 different common datasets made
of 726 images in total. The numerical experience in upscaling shows a performance
comparable with the bicubic interpolation method, while in downscaling a much bet-
ter performance is obtained with respect to all the considered comparison methods.
Moreover, in downscaling cases with odd scale factors, we estimate the Mean Square
Error (MSE) of our procedure in terms of the initial errors present in the data and we
prove that it is null in absence of noise or artifacts in the input image. We wonder
whether further improvements can be achieved employing wavelets technique or finer
approximation polynomials. These will be the subjects of further investigations.

Code and supplementary materials

The code and the supplementary materials are openly available (to appear at a GitHub
link).
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