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Abstract

We consider a scenario involving computa-
tions over a massive dataset stored distribut-
edly across multiple workers, which is at the
core of distributed learning algorithms. We
propose Lagrange Coded Computing (LCC), a
new framework to simultaneously provide (1)
resiliency against stragglers that may prolong
computations; (2) security against Byzantine
(or malicious) workers that deliberately mod-
ify the computation for their benefit; and (3)
(information-theoretic) privacy of the dataset
amidst possible collusion of workers. LCC,
which leverages the well-known Lagrange poly-
nomial to create computation redundancy in
a novel coded form across workers, can be
applied to any computation scenario in which
the function of interest is an arbitrary multi-
variate polynomial of the input dataset, hence
covering many computations of interest in ma-
chine learning. LCC significantly generalizes
prior works to go beyond linear computations.
It also enables secure and private computing
in distributed settings, improving the compu-
tation and communication efficiency of the
state-of-the-art. Furthermore, we prove the
optimality of LCC by showing that it achieves
the optimal tradeoff between resiliency, secu-
rity, and privacy, i.e., in terms of tolerating
the maximum number of stragglers and ad-
versaries, and providing data privacy against
the maximum number of colluding workers.
Finally, we show via experiments on Amazon
EC2 that LCC speeds up the conventional
uncoded implementation of distributed least-
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squares linear regression by up to 13.43×,
and also achieves a 2.36×-12.65× speedup
over the state-of-the-art straggler mitigation
strategies.

1 Introduction

The massive size of modern datasets necessitates com-
putational tasks to be performed in a distributed fash-
ion, where the data is dispersed among many servers
that operate in parallel [Abadi et al., 2016]. As we
“scale out” computations across many servers, however,
several fundamental challenges arise. Cheap commod-
ity hardware tends to vary greatly in computation
time, and it has been demonstrated [Dean and Barroso,
2013, Li et al., 2014a, Yadwadkar et al., 2016] that a
small fraction of servers, referred to as stragglers, can
be 5 to 8 times slower than the average, thus creat-
ing significant delays in computations. Also, as we
distribute computations across many servers, massive
amounts data must be moved between them to execute
the computational tasks, often over many iterations
of a running algorithm, and this creates a substantial
bandwidth bottleneck [Li et al., 2014b]. Distributed
computing systems are also much more susceptible
to adversarial servers, making security and privacy a
major concern [Blanchard et al., 2017, Cramer et al.,
2015, Bogdanov et al., 2008].

We consider a general scenario in which the computa-
tion is carried out distributively across several workers,
and propose Lagrange Coded Computing (LCC), a new
framework to simultaneously provide

1. resiliency against straggler workers that may pro-
long computations;

2. security against Byzantine (or malicious, adversar-
ial) workers, with no computational restriction, that
deliberately send erroneous data in order to affect
the computation for their benefit; and

3. (information-theoretic) privacy of the dataset
amidst possible collusion of workers.
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Figure 1: An overview of the problem considered in this

paper, where the goal is to evaluate a not necessarily lin-

ear function f on a given dataset X = (X1, X2, . . . , XK)

using N workers. Each worker applies f on a possibly

coded version of the inputs (denoted by X̃i’s). By carefully

designing the coding strategy, the master can decode all

the required results from a subset of workers, in the pres-

ence of stragglers (workers s1, ..., sS) and Byzantine workers

(workers m1, ...,mA), while keeping the dataset private to

colluding workers (workers c1, ..., cT ).

LCC can be applied to any computation scenario in
which the function of interest is an arbitrary multi-
variate polynomial of the input dataset. This covers
many computations of interest in machine learning,
such as various gradient and loss-function computa-
tions in learning algorithms and tensor algebraic oper-
ations (e.g., low-rank tensor approximation). The key
idea of LCC is to encode the input dataset using the
well-known Lagrange polynomial, in order to create
computational redundancy in a novel coded form across
the workers. This redundancy can then be exploited
to provide resiliency to stragglers, security against ma-
licious servers, and privacy of the dataset.

Specifically, as illustrated in Fig. 1, using a master-
worker distributed computing architecture with N
workers, the goal is to compute f(Xi) for every Xi

in a large dataset X = (X1, X2, . . . , XK), where f is a
given multivariate polynomial with degree deg f . To
do so, N coded versions of the input dataset, denoted
by X̃1, X̃2, . . . , X̃N are created, and the workers then
compute f over the coded data, as if no coding is
taking place. For a given N and f , we say that the
tuple (S,A, T ) is achievable if there exists an encoding
and decoding scheme that can complete the computa-
tions in the presence of up to S stragglers, up to A
adversarial workers, whilst keeping the dataset private
against sets of up to T colluding workers.

Our main result is that by carefully encoding the
dataset the proposed LCC achieves (S,A, T ) if (K +

T − 1) deg f +S+2A+1 ≤ N . The significance of this
result is that by one additional worker (i.e., increasing
N by 1) LCC can increase the resiliency to stragglers
by 1 or increase the robustness to malicious servers by
1/2, while maintaining the privacy constraint. Hence,
this result essentially extends the well-known optimal
scaling of error-correcting codes (i.e., adding one parity
can provide robustness against one erasure or 1/2 error
in optimal maximum distance separable codes) to the
distributed secure computing paradigm.

We prove the optimality of LCC by showing that it
achieves the optimal tradeoff between resiliency, se-
curity, and privacy. In other words, any computing
scheme (under certain complexity constrains on the
encoding and decoding designs) can achieve (S,A, T ) if
and only if (K +T − 1) deg f +S +2A+1 ≤ N .1 This
result further extends the scaling law in coding the-
ory to private computing, showing that any additional
worker enables data privacy against 1/degf additional
colluding workers.

Finally, we specialize our general theoretical guaran-
tees for LCC in the context of least-squares linear
regression, which is one of the elemental learning tasks,
and demonstrate its performance gain by optimally
suppressing stragglers. Leveraging the algebraic struc-
ture of gradient computations, several strategies have
been developed recently to exploit data and gradient
coding for straggler mitigation in the training process
(see, e.g., [Lee et al., 2018, Tandon et al., 2017, Maity
et al., 2018, Karakus et al., 2017, Li et al., 2017a]).
We implement LCC for regression on Amazon EC2
clusters, and empirically compare its performance with
the conventional uncoded approaches, and two state-of-
the-art straggler mitigation schemes: gradient coding
(GC) [Tandon et al., 2017, Halbawi et al., 2017, Raviv
et al., 2017, Ye and Abbe, 2018] and matrix-vector
multiplication (MVM) based approaches [Lee et al.,
2018, Maity et al., 2018]. Our experiment results
demonstrate that compared with the uncoded scheme,
LCC improves the run-time by 6.79×-13.43×. Com-
pared with the GC scheme, LCC improves the run-time
by 2.36×-4.29×. Compared with the MVM scheme,
LCC improves the run-time by 1.01×-12.65×.

Related works. There has recently been a surge of
interest on using coding theoretic approaches to al-
leviate key bottlenecks (e.g., stragglers, bandwidth,
and security) in distributed machine learning applica-
tions (e.g., [Lee et al., 2015, Li et al., 2015, Yu et al.,
2017a, Li et al., 2018a, Dutta et al., 2016, Yu et al.,
2017b, Tandon et al., 2017, Halbawi et al., 2017, Raviv

1More accurately, when N < Kdegf − 1, we prove that
the optimal tradeoff is instead given by K(S +2A+deg f ·
T + 1) ≤ N , which can be achieved by a variation of the
LCC scheme, as described in Appendix D.
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et al., 2017, Dutta et al., 2018, Nodehi and Maddah-Ali,
2018, Chen et al., 2018]). As we discuss in more detail
in Section 3.1, the proposed LCC scheme significantly
advances prior works in this area by 1) generalizing
coded computing to arbitrary multivariate polynomial
computations, which are of particular importance in
learning applications; 2) extending the application of
coded computing to secure and private computing;
3) reducing the computation/communication load in
distributed computing (and distributed learning) by
factors that scale with the problem size, without com-
promising security and privacy guarantees; and 4) en-
abling 2.36×-12.65× speedup over the state-of-the-art
in distributed least-squares linear regression in cloud
networks.

Securemultiparty computing (MPC) and secure/private
Machine Learning (e.g., [Ben-Or et al., 1988, Mohassel
and Zhang, 2017]) are also extensively studied topics
that address a problem setting similar to LCC. As we
elaborate in Section 3.1, compared with conventional
methods in this area (e.g., the celebrated BGW scheme
for secure/private MPC [Ben-Or et al., 1988]), LCC
achieves substantial reduction in the amount of random-
ness, storage overhead, and computation complexity.

2 Problem Formulation

We consider the problem of evaluating a multivari-
ate polynomial f : V → U over a dataset X =
(X1, . . . , XK),2 where V and U are vector spaces of
dimensions M and L, respectively, over the field F. We
assume a distributed computing environment with a
master and N workers (Figure 1), in which the goal is
to compute Y1 , f(X1), . . . , YK , f(XK). We denote
the total degree3 of the polynomial f by deg f .

In this setting each worker has already stored a frac-
tion of the dataset prior to computation, in a possibly
coded manner. Specifically, for i ∈ [N ] (where [N ] ,
{1, . . . , N}), worker i stores X̃i , gi(X1, . . . , XK),
where gi is a (possibly random) function, refered to as
the encoding function of that worker. We restrict our
attention to linear encoding schemes4, which guarantee
low encoding complexity and simple implementation.

Each worker i ∈ [N ] computes Ỹi , f(X̃i) and returns
the result to the master. The master waits for a subset
of fastest workers and then decodes Y1, . . . , YK . This

2We focus on the non-trivial case where K > 0 and f is
not constant.

3The total degree of a polynomial f is the maximum
among all the total degrees of its monomials. When dis-
cussing finite F, we resort to the canonical representation
of polynomials, in which the individual degree within each
term is no more than (|F| − 1).

4A formal definition is provided in Section 5.

procedure must satisfy several additional requirements:

• Resiliency, i.e., robustness against stragglers. For-
mally, the master must be able to obtain the correct
values of Y1, . . . , YK even if up to S workers fail to
respond (or respond after the master executes the
decoding algorithm), where S is the resiliency pa-
rameter of the system. A scheme that guarantees
resiliency against S stragglers is called S-resilient.

• Security, i.e., robustness against adversaries. That
is, the master must be able to obtain correct val-
ues of Y1, . . . , YK even if up to A workers return
arbitrarily erroneous results, where A is the security
parameter of the system. A scheme that guarantees
security against A adversaries is called A-secure.

• Privacy, i.e., the workers must remain oblivious
to the content of the dataset, even if up to T of
them collude, where T is the privacy parameter of
the system. Formally, for every T ⊆ [N ] of size at
most T , we must have I(X; X̃T ) = 0, where I is
mutual information, X̃T represents the collection
of the encoded dataset stored at the workers in T ,
and X is seen as chosen uniformly at random.5 A
scheme which guarantees privacy against T colluding
workers is called T -private. 6

More concretely, given any subset of workers that re-
turn the computing results (denoted by K), the master
computes (Ŷ1, ..., ŶK) = hK({Ỹi}i∈K), where each hK is
a deterministic function (or is random but independent
of both the encoding functions and input data). We
refer to the hK’s as decoding functions.7 We say that
a scheme is S-resilient, A-secure, and T -private if the
master always returns the correct results (i.e., each
Yi = Ŷi), and all above requirements are satisfied.

Given the above framework, we aim to characterize the
region for (S,A, T ), such that an S-resilient, A-secure,
and T -private scheme can be found, given parameters
N , K, and function f , for any sufficiently large field F.

This framework encapsulates many computation tasks
of interest, including linear computation [Dutta et al.,
2016, Bitar et al., 2018, Karakus et al., 2017, Lee et al.,
2018, Wang et al., 2018], bilinear computation [Yu
et al., 2018], general tensor algebra [Renteln, 2013], and
gradient computation [Shalev-Shwartz and Ben-David,
2014], and many are not studied by state-of-the-art
coded computing frameworks.

5Equivalently, it requires that X̃T and X are indepen-
dent. Under this condition, the input data X still appears
uniformly random after the colluding workers learn X̃T ,
which guarantees the privacy.

6To guarantee that the privacy requirement is well de-
fined, we assume that F and V are finite whenever T > 0.

7Similar to encoding, we also require the decoding func-
tion to have low complexity. When there is no adversary
(A = 0), we restrict our attention to linear decoding schemes.
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3 Main Results and Prior Works

We now state our main results and discuss their connec-
tions with prior works. Our first theorem characterizes
the region for (S,A, T ) that LCC achieves (i.e., the
set of all feasible S-resilient, A-secure, and T -private
schemes via LCC as defined in the previos section).

Theorem 1. Given a number of workers N and
a dataset X = (X1, . . . , XK), LCC provides an S-
resilient, A-secure, and T -private scheme for comput-
ing {f(Xi)}Ki=1 for any polynomial f , as long as

(K + T − 1) deg f + S + 2A+ 1 ≤ N. (1)

Remark 1. To prove Theorem 1, we formally present
LCC in Section 4, which achieves the stated resiliency,
security, and privacy. The key idea is to encode the in-
put dataset using the well-known Lagrange polynomial.
In particular, encoding functions (i.e., gi’s) in LCC
amount to evaluations of a Lagrange polynomial of de-
gree K − 1 at N distinct points. Hence, computations
at the workers amount to evaluations of a composition
of that polynomial with the desired function f . There-
fore, inequality (1) may simply be seen as the number
of evaluations that are necessary and sufficient in order
to interpolate the composed polynomial, which is later
evaluated at a certain point to finalize the computation.
LCC also has a number of additional properties of in-
terest. First, the proposed encoding is identical for all
computations f , which allows pre-encoding of the data
without knowing the identity of the computing task
(i.e., universality). Second, decoding and encoding rely
on polynomial interpolation and evaluation, and hence
efficient off-the-shelf subroutines can be used.8

Remark 2. Besides the approach presented to achieve
Theorem 1, a variation of LCC can be used to achieve
any (S,A, T ) as long as K(S+2A+deg f ·T +1) ≤ N .
This scheme (presented in Appendix D) achieves an
improved region when N < Kdegf − 1 and T = 0,
where it recovers the uncoded repetition scheme. For
brevity, we refer the better of these two scheme as LCC
when presenting optimality results (i.e., Theorem 2).

Remark 3. Note that LHS of inequality (1) is inde-
pendent of the number of workers N , hence the key
property of LCC is that adding 1 worker can increase its
resilience to stragglers by 1 or its security to malicious
servers by 1/2, while keeping the privacy constraint
T the same. Note that using an uncoded replication
based approach, to increase the resiliency to stragglers
by 1, one needs to essentially repeat each computation
once more (i.e., requiring K more machines as op-
posed to 1 machine in LCC). This result essentially ex-
tends the well-known optimal scaling of error-correcting

8A more detailed discussion on the coding complexities
of LCC can be found in Appendix B.

codes (i.e., adding one parity can provide robustness
against one erasure or 1/2 error in optimal maximum
distance separable codes) to the distributed computing
paradigm.

Our next theorem demonstrates the optimality of LCC.

Theorem 2. LCC achieves the optimal trade-off be-
tween resiliency, security, and privacy (i.e., achieving
the largest region of (S,A,T)) for any multilinear func-
tion f among all computing schemes that uses linear
encoding, for all problem scenarios. Moreover, when
focusing on the case where no security constraint is im-
posed, LCC is optimal for any polynomial f among all
schemes with additional constraints of linear decoding
and sufficiently large (or zero) characteristic of F.

Remark 4. Theorem 2 is proved in Section 5. The main
proof idea is to show that any computing strategy that
outperforms LCC would violate the decodability re-
quirement, by finding two instances of the computation
process where the same intermediate computing results
correspond to different output values.

Remark 5. In addition to the result we show in Theo-
rem 2, we can also prove that LCC achieves optimality
in terms of the amount of randomness used in data en-
coding. Specifically, we show in Appendix I that LCC
requires injecting the minimum amount of random-
ness, among all computing schemes that universally
achieve the same resiliency-security-privacy tradeoff for
all linear functions f .

We conclude this section by discussing several lines of
related work in the literature and contrasting them
with LCC.

3.1 LCC vs. Prior Works

The study of coding theoretic techniques for acceler-
ating large scale distributed tasks (a.k.a. coded com-
puting) was initiated in [Lee et al., 2015, Li et al.,
2015, Li et al., 2018a]. Following works focused largely
on matrix-vector and matrix-matrix multiplication
(e.g., [Dutta et al., 2016, Yu et al., 2017b, Dutta et al.,
2018, Yu et al., 2018]), gradient computation in gradi-
ent descent algorithms (e.g., [Tandon et al., 2017, Ra-
viv et al., 2017, Li et al., 2017a]), communication re-
duction via coding (e.g., [Li et al., 2017b, Ezzeldin
et al., 2017, Prakash et al., 2018, Konstantinidis and
Ramamoorthy, 2018]), and secure and private comput-
ing (e.g., [Nodehi and Maddah-Ali, 2018, Chen et al.,
2018]).

LCC recovers several previously studied results as spe-
cial cases. For example, setting f to be the identity
function and V = U reduces to the well-studied case of
distributed storage, in which Theorem 1 is well known
(e.g., the Singleton bound [Roth, 2006, Thm. 4.1]).
Further, f can correspond to matrix-vector and matrix-
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matrix multiplication, in which the special cases of
Theorem 1 are known as well [Lee et al., 2018, Yu
et al., 2018].

More importantly, LCC improves and generalizes these
works on coded computing in a few aspects: Generality–
LCC significantly generalizes prior works to go beyond
linear and bilinear computations that have so far been
the main focus in this area, and can be applied to arbi-
trary multivariate polynomial computations that arise
in machine learning applications. In fact, many specific
computations considered in the past can be seen as
special cases of polynomial computation. This includes
matrix-vector multiplication, matrix-matrix multipli-
cation, and gradient computation whenever the loss
function at hand is a polynomial, or is approximated
by one. Universality–once the data has been coded,
any polynomial up to a certain degree can be computed
distributedly via LCC. In other words, data encoding
of LCC can be universally used for any polynomial
computation. This is in stark contrast to previous task
specific coding techniques in the literature. Further-
more, workers apply the same computation as if no
coding took place; a feature that reduces computational
costs, and prevents ordinary servers from carrying the
burden of outliers. Security and Privacy–other than
a handful of works discussed above, straggler mitiga-
tion (i.e., resiliency) has been the primary focus of the
coded computing literature. This work extends the
application of coded computing to secure and private
computing for general polynomial computations.

Providing security and privacy formultiparty computing
(MPC) and Machine Learning systems is an extensively
studied topic which addresses a problem setting sim-
ilar to LCC. To illustrate the significant role of LCC
in secure and private computing, let us consider the
celebrated BGW MPC scheme [Ben-Or et al., 1988]. 9

Given inputs {Xi}Ki=1, BGW first uses Shamir’s scheme
[Shamir, 1979] to encode the dataset in a privacy-
preserving manner as Pi(z) = Xi+Zi,1z+ . . .+Zi,T z

T

for every i ∈ [K], where Zi,j ’s are i.i.d uniformly ran-
dom variables and T is the number of colluding workers
that should be tolerated. The key distinction between
the data encoding of BGW scheme and LCC is that we
instead use Lagrange polynomials to encode the data.
This results in significant reduction in the amount of
randomness needed in data encoding (BGW needs KT
zi,j ’s while as we describe in the next section, LCC
only needs T amount of randomness).

The BGW scheme will then store {Pi(αℓ)}i∈[K] to

9Conventionally, the BGW scheme operates in a multi-
round fashion, requiring significantly more communication
overhead than one-shot approaches. For simplicity of com-
parison, we present a modified one-shot version of BGW.

BGW LCC
Complexity
per worker K 1
Frac. data
per worker 1 1/K
Randomness KT T
Min. num.
of workers deg(f)(T + 1) deg(f)(K + T − 1) + 1

Table 1: Comparison between BGW based designs and
LCC. The computational complexity is normalized by
that of evaluating f ; randomness, which refers to the
number of random entries used in encoding functions,
is normalized by the length of Xi.

worker ℓ for every ℓ ∈ [N ], given some distinct val-
ues α1, . . . , αN . The computation is then carried out
by evaluating f over all stored coded data at the nodes.
In the LCC scheme, on the other hand, each worker ℓ
only needs to store one encoded data (X̃ℓ) and compute
f(X̃ℓ). This gives rise to the second key advantage of
LCC, which is a factor of K in storage overhead and
computation complexity at each worker.

After computation, each worker ℓ in the BGW scheme
has essentially evaluated the polynomials {f(Pi(z))}Ki=1

at z = αℓ, whose degree is at most deg(f) · T . Hence,
if no straggler or adversary appears (i.e, S = A = 0),
the master can recover all required results f(Pi(0))’s,
through polynomial interpolation, as long as N ≥
deg(f) · T + 1 workers participated in the computa-
tion10. Note that under the same condition, LCC
scheme requires N ≥ deg(f) · (K + T − 1) + 1 num-
ber of workers, which is larger than that of the BGW
scheme.

Hence, in overall comparison with the BGW scheme,
LCC results in a factor of K reduction in the amount of
randomness, storage overhead, and computation com-
plexity, while requiring more workers to guarantee the
same level of privacy. This is summarized in Table 1.11

Recently, [Nodehi and Maddah-Ali, 2018] has also com-
bined ideas from the BGW scheme and [Yu et al.,
2017b] to form polynomial sharing, a private coded
computation scheme for arbitrary matrix polynomials.
However, polynomial sharing inherits the undesired
BGW property of performing a communication round
for every bilinear operation in the polynomial; a fea-

10It is also possible to use the conventional multi-round
BGW, which only requires N ≥ 2T + 1 workers to ensure
T -privacy. However, multiple rounds of computation and
communication (Ω(log deg(f)) rounds) are needed, which
further increases its communication overhead.

11A BGW scheme was also proposed in [Ben-Or et al.,
1988] for secure MPC, however for a substantially different
setting. Similarly, a comparison can be made by adapting
it to our setting, leading to similar results, which we omit
for brevity.
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ture that drastically increases communication overhead,
and is circumvented by the one-shot approach of LCC.
DRACO [Chen et al., 2018] is also recently proposed
as a secure computation scheme for gradients. Yet,
DRACO employs a blackbox approach, i.e., the result-
ing gradients are encoded rather than the data itself,
and the inherent algebraic structure of the gradients is
ignored. For this approach, [Chen et al., 2018] shows
that a 2A+ 1 multiplicative factor of redundant com-
putations is necessary. In LCC however, the blackbox
approach is disregarded in favor of an algebraic one,
and consequently, a 2A additive factor suffices.

LCC has also been recently applied to several applica-
tions in which security and privacy in computations
are critical. For example, in [Li et al., 2018b], LCC has
been applied to enable a scalable and secure approach
to sharding in blockchain systems. Also, in [So et al.,
2019], a privacy-preserving approach for machine learn-
ing has been developed that leverages LCC to provides
substantial speedups over cyrptographic approaches
that relay on MPC.

4 Lagrange Coded Computing

In this Section we prove Theorem 1 by presenting
LCC and characterizing the region for (S,A, T ) that it
achieves.12 We start with an example to illustrate the
key components of LCC.

4.1 Illustrating Example

Consider the function f(Xi) = X2
i , where input Xi’s

are
√
M ×

√
M square matrices for some square inte-

ger M . We demonstrate LCC in the scenario where
the input data X is partitioned into K = 2 batches X1

and X2, and the computing system has N = 8 workers.
In addition, the suggested scheme is 1-resilient, 1-secure,
and 1-private (i.e., achieves (S,A, T ) = (1, 1, 1)).

The gist of LCC is picking a uniformly random ma-
trix Z, and encoding (X1, X2, Z) using a Lagrange
interpolation polynomial:13

u(z) ,X1 ·
(z − 2)(z − 3)

(1− 2)(1− 3)
+X2 ·

(z − 1)(z − 3)

(2− 1)(2− 3)
+

Z · (z − 1)(z − 2)

(3− 1)(3− 2)
.

We then fix distinct {αi}8i=1 in F such that {αi}8i=1 ∩
[2] = ∅, and let workers 1, . . . , 8 store u(α1), . . . , u(α8).

First, note that for every j ∈ [8], worker j sees X̃j , a
linear combination of X1 and X2 that is masked by
addition of λ · Z for some nonzero λ ∈ F11; since Z

12For an algorithmic illustration, see Appendix A.
13Assume that F is a finite field with 11 elements.

is uniformly random, this guarantees perfect privacy
for T = 1. Next, note that worker j computes f(X̃j) =
f(u(αj)), which is an evaluation of the composition
polynomial f(u(z)), whose degree is at most 4, at αj .

Normally, a polynomial of degree 4 can be interpolated
from 5 evaluations at distinct points. However, the
presence of A = 1 adversary and S = 1 straggler re-
quires the master to employ a Reed-Solomon decoder,
and have three additional evaluations at distinct points
(in general, two additional evaluations for every adver-
sary and one for every straggler). Finally, after decod-
ing polynomial f(u(z)), the master can obtain f(X1)
and f(X2) by evaluating it at z = 1 and z = 2.

4.2 General Description

Similar to Subsection 4.1, we select any K + T distinct
elements β1, . . . , βK+T from F, and find a polynomial
u : F → V of degree at most K + T − 1 such that
u(βi) = Xi for any i ∈ [K], and u(βi) = Zi for i ∈
{K+1, . . . ,K+T}, where all Zi’s are chosen uniformly
at random from V. This is simply accomplished by
letting u be the Lagrange interpolation polynomial

u(z) ,
∑

j∈[K]

Xj ·
∏

k∈[K+T ]\{j}

z − βk

βj − βk

+

K+T∑

j=K+1

Zj ·
∏

k∈[K+T ]\{j}

z − βk

βj − βk

.

We then select N distinct elements {αi}i∈[N ] from F

such that {αi}i∈[N ] ∩ {βj}j∈[K] = ∅ (this requirement

is alleviated if T = 0), and let X̃i = u(αi) for any
i ∈ [N ]. That is, the input variables are encoded as

X̃i=u(αi)=(X1, . . . , XK , ZK+1, . . . , ZK+T ) · Ui, (2)

where U ∈ F
(K+T )×N
q is the encoding matrix Ui,j ,∏

ℓ∈[K+T ]\{i}
αj−βℓ

βi−βℓ
, and Ui is its i’th column.14

Following the above encoding, each worker i applies f
on X̃i and sends the result back to the master. Hence,
the master obtains N − S evaluations, at most A of
which are incorrect, of the polynomial f(u(z)). Since
deg(f(u(z))) ≤ deg(f) · (K + T − 1), and N ≥ (K +
T − 1) deg(f) + S + 2A + 1, the master can obtain
all coefficients of f(u(z)) by applying Reed-Solomon
decoding. Having this polynomial, the master evaluates
it at βi for every i ∈ [K] to obtain f(u(βi)) = f(Xi),
and hence we have shown that the above scheme is
S-resilient and A-secure.

As for the T -privacy guarantee of the above scheme,
our proof relies on the fact that the bottom T × N

14By selecting the values of αi’s differently, we can recover
the uncoded repetition scheme, see Appendix D.
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submatrix U bottom of U is an MDS matrix (i.e., ev-
ery T × T submatrix of U bottom is invertible, see
Lemma 2 in the supplementary material). Hence, for
a colluding set of workers T ⊆ [N ] of size T , their
encoded data X̃T satisfies X̃T = XU top

T + ZU bottom
T ,

where Z , (ZK+1, . . . , ZK+T ), and U top
T ∈ F

K×T
q ,

U bottom
T ∈ F

T×T
q are the top and bottom submatri-

ces which correspond to the columns in U that are
indexed by T . Now, the fact that any U bottom

T is in-
vertible implies that the random padding added for
these colluding workers is uniformly random, which
completely masks the coded data XU top

T . This directly
guarantees T -privacy.

5 Optimality of LCC

In this section, we provide a layout for the proof
of optimality for LCC (i.e., Theorem 2). Formally,
we define that a linear encoding function is one that
computes a linear combination of the input variables
(and possibly a list of independent uniformly random
keys when privacy is taken into account15); while a
linear decoding function computes a linear combina-
tion of workers’ output. We essentially need to prove
that (a) given any multilinear f , any linear encoding
scheme that achieves any (S,A, T ) requires at least
N ≥ (K + T − 1) deg f + S + 2A + 1 workers when
T > 0 or N ≥ Kdeg f − 1, and N ≥ K(S + 2A + 1)
workers in other cases; (b) for a general polynomial
f , any scheme that uses linear encoding and decoding
requires at least the same number of workers, if the
characteristic of F is 0 or greater than deg f .

The proof rely on the following key lemma, which
characterizes the recovery threshold of any encoding
scheme, defined as the minimum number of workers
that the master needs to wait to guarantee decodability.

Lemma 1. Given any multilinear f , the recovery
threshold of any valid linear encoding scheme, denoted
by R, satisfies

R ≥RLCC(N,K, f) ,

min{(K − 1) deg f + 1, N − ⌊N/K⌋+ 1}. (3)

Moreover, if the encoding scheme is T private, we have
R ≥ RLCC(N,K, f) + T · deg f .

The proof of Lemma 1 can be found in Appendix E,
by constructing instances of the computation process
for any assumed scheme that achieves smaller recovery
threshold, and proving that such scheme fails to achieve
decodability in these instances. Intuitively, note that
the recovery threshold is exactly the difference between

15This is well defined as we assumed that V is finite when
T > 0.

N and the number of stragglers that can be toler-
ated, inequality (3) in fact proves that LCC (described
in Section 4 and Appendix G) achieves the optimum
resiliency, as it exactly achieves the stated recovery
threshold. Similarly, one can verify that Lemma 1 es-
sentially states that LCC achieves the optimal tradeoff
between resiliency and privacy.

Assuming the correctness of Lemma 1, the two parts of
Theorem 2 can be proved as follows. To prove part (a)
of the converses, we need to extend Lemma 1 to also
take adversaries into account. This is achieved by using
an extended concept of Hamming distance, defined
in [Yu et al., 2018] for coded computing. Part (b)
requires generalizing Lemma 1 to arbitrary polynomial
functions, which is proved by showing that for any f
that achieves any (S, T ) pair, there exists a multilinear
function with the same degree for which a computation
scheme can be found to achieves the same requirement.
The detailed proofs can be found in Appendices F and
G respectively.

6 Application to Linear Regression

and Experiments on AWS EC2

In this section we demonstrate a practical application
of LCC in accelerating distributed linear regression,
whose gradient computation is a quadratic function
of the input dataset, hence matching well the LCC
framework. We also experimentally demonstrate its
performance gain over state of the arts via experiments
on AWS EC2 clusters.

Applying LCC for linear regression. Given a fea-
ture matrix X ∈ R

m×d containing m data points of d
features, and a label vector y ∈ R

m, a linear regres-
sion problem aims to find the weight vector w ∈ R

d

that minimizes the loss ||Xw − y||2. Gradient descent
(GD) solves this problem by iteratively moving the
weight along the negative gradient direction, which is
in iteration-t computed as 2X⊤(Xw(t) − y).

To run GD distributedly over a system comprising a
master node and n worker nodes, we first partition
X = [X1 · · ·Xn]

⊤ into n sub-matrices. Each worker
stores r coded sub-matrices generated from linearly
combining Xjs, for some parameter 1 ≤ r ≤ n. Given
the current weight w, each worker performs computa-
tion using its local storage, and sends the result to the
master. Master recovers X⊤Xw =

∑n

j=1 XjX
⊤
j w

using the results from a subset of fastest workers.16 To
measure performance of any linear regression scheme,
we consider the metric recovery threshold (denoted by

16Since the value of X⊤y does not vary across iterations,
it only needs to be computed once. We assume that it is
available at the master for weight updates.
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R), defined as the minimum number of workers the
master needs to wait for, to guarantee decodability
(i.e., tolerating the remaining stragglers).

We cast this gradient computation to the computing
model in Section 2, by grouping the sub-matrices into
K=⌈n

r
⌉ blocks such that X = [X̄1 · · · X̄K ]⊤. Then

computing XX⊤w reduces to computing the sum of a
degree-2 polynomial f(X̄k) = X̄kX̄

⊤
k w, evaluated over

X̄1, . . . , X̄K . Now, we can use LCC to decide on the
coded storage as in (2), and achieve a recovery threshold
of RLCC = 2(K − 1) + 1 = 2⌈n

r
⌉ − 1 (Theorem 1).17

Comparisons with state of the arts. The conven-
tional uncoded scheme picks r = 1, and has each worker
j compute XjX

⊤
j w. Master needs result from each

work, yielding a recovery threshold of Runcoded = n.
By redundantly storing/processing r > 1 uncoded sub-
matrices at each worker, the “gradient coding” (GC)
methods [Tandon et al., 2017, Halbawi et al., 2017, Ra-
viv et al., 2017] code across partial gradients computed
from uncoded data, and reduce the recovery threshold
to RGC = n − r + 1. An alternative “matrix-vector
multiplication based” (MVM) approach [Lee et al.,
2015] requires two rounds of computation. In the first
round, an intermediate vector z = Xw is computed
distributedly, which is re-distributed to the workers in
the second round for them to collaboratively compute
X⊤z. Each worker stores coded data generated us-
ing MDS codes from X and X⊤ respectively. MVM
achieves a recovery threshold of RMVM = ⌈ 2n

r
⌉ in each

round, when the storage is evenly split between rounds.

Compared with GC, LCC codes directly on data, and re-
duces the recovery threshold by about r/2 times. While
the amount of computation and communication at each
worker is the same for GC and LCC, LCC is expected
to finish much faster due to its much smaller recov-
ery threshold. Compared with MVM, LCC achieves
a smaller recovery threshold than that in each round
of MVM (assuming even storage split). While each
MVM worker performs less computation in each itera-
tion, it sends two vectors whose sizes are respectively
proportional to m and d, whereas each LCC worker
only sends one dimension-d vector.

We run linear regression on AWS EC2 using Nesterov’s
accelerated gradient descent, where all nodes are imple-
mented on t2.micro instances. We generate synthetic
datasets of m data points, by 1) randomly sampling
a true weight w∗, 2) randomly sampling each input
xi of d features and computing its output yi = x⊤

i w
∗.

For each dataset, we run GD for 100 iterations over
n = 40 workers. We consider different dimensions of
input matrix X as listed in the following scenarios.

17This recovery threshold is also optimum within a factor
of 2, as we proved in Appendix J.
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Figure 2: Run-time comparison of LCC with other three

schemes: conventional uncoded, GC, and MVM.

• Scenario 1 & 2: (m, d) = (8000, 7000).

• Scenario 3: (m, d) = (160000, 500).

We let the system run with naturally occurring strag-
glers in scenario 1. To mimic the effect of slow/failed
workers, we artificially introduce stragglers in scenarios
2 and 3, by imposing a 0.5 seconds delay on each worker
with probability 5% in each iteration.

To implement LCC, we set the βi parameters to 1, ..., n
r
,

and the αi parameters to 0, . . . , n − 1. To avoid nu-
merical instability due to large entries of the decoding
matrix, we can embed input data into a large finite
field, and apply LCC in it with exact computations.
However in all of our experiments the gradients are
calculated correctly without carrying out this step.

Results. For GC and LCC, we optimize the total run-
time over r subject to local memory size. For MVM, we
further optimize the run-time over the storage assigned
between two rounds of matrix-vector multiplications.
We plot the measured run-times in Figure 2, and list
the detailed breakdowns of all scenarios in Appendix K.

We draw the following conclusions from experiments.

• LCC achieves the least run-time in all scenarios. In
particular, LCC speeds up the uncoded scheme by
6.79×-13.43×, the GC scheme by 2.36-4.29×, and
the MVM scheme by 1.01-12.65×.

• In scenarios 1 & 2 where the number of inputs m is
close to the number of features d, LCC achieves a sim-
ilar performance as MVM. However, when we have
much more data points in scenario 3, LCC finishes
substantially faster than MVM by as much as 12.65×.
The main reason for this subpar performance is that
MVM requires large amounts of data transfer from
workers to the master in the first round and from
master to workers in the second round (both are
proportional to m). However, the amount of commu-
nication from each worker or master is proportional
to d for all other schemes, which is much smaller
than m in scenario 3.
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