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Abstract

A numerical method for solving nonlinear Fredholm-Volterra integral
equations is presented. The method is based upon Lagrange functions
approximations. These functions together with the Gaussian quadrature
rule are then utilized to reduce the Fredholm-Volterra integral equations
to the solution of algebraic equations. Some examples are included to
demonstrate the validity and applicability of the technique.
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1 Introduction

Integral equations of the Hammerstein type have been one of the most impor-

tant domains of applications of the ideas and methods of nonlinear functional

analysis and in particular of the theory of nonlinear operators of monotone

type. Various applied problems arrising in mathematical physics, mechanics

and control theory leads to multivalued analogs of the Hammerstein integral

equations [4]. Several numerical methods for approximating the solution of lin-

ear and nonlinear integral equations and specially Fredholm-Volterra integral

equations are known [1-12]. The classical method of successive approximation

for Fredholm-Hammerstein integral equations was introduced in [10]. Brunner
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in [3] applied a collocation type method and Ordokhani in [9] applied ratio-

nalized Haar function to nonlinear Volterra-Fredholm-Hammerstein integral

equations. A variation of the Nystrom method was presented in [8]. A col-

location type method was developed in [7]. The asymptotic error expansion

of a collocation type method for Volterra-Hammerstein integral equations has

been considered in [6]. Yousefi in [12] applied Legendre wavelets to a special

type of nonlinear Volterra-Fredholm integral equations of the form

u(t) = f(t) + λ1

∫ t

0

K1(t, x)F (u(x))dx + λ2

∫ 1

0

K2(t, x)G(u(x))dx, 0 ≤ x, t ≤ 1,

(1)

Yalcinbas in [11] used Taylor polynomials for solving equation (1) with F (u) =

up and G(u) = uq. In this paper, we are concerned with the application of

Lagrange polynomials to approximate the solution of the nonlinear Fredholm-

Volterra integral equations of the form

u(t) = f(t) + λ1

∫ t

0

K1(t, x)φ1(x, u(x))dx + λ2

∫ 1

0

K2(t, x)φ2(x, u(x))dx, 0 ≤ x, t ≤ 1,

(2)

where f(t), and K1(t, x) and K2(t, x) are assumed to be in L2(R) on the

interval 0 ≤ x, t ≤ 1. We assume that Eq. (2) has a unique solution u to be

determined.

2 Integral and Function Approximation

In this paper, since we use Gaussian quadrature rule we approximate the in-

tegral of f on [−1, 1] as:

∫ 1

−1

f(x)dx ≈
k∑

j=0

wjf(xj), (3)

also, function u(t) defined over [0, 1) may be expanded as

u(t) �
n∑

i=0

uiLi(t), (4)

with ui = u(ti) and

Li(t) =
n∏

j=0,j �=i

(
t − xj

xi − xj
).
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with the property, Li(xj) = δij where δij is the Kronecker delta.

We can write (4) in the matrix form

u(t) � utL(t),

where, u = [u0, u1, . . . , un]
t and L(t) = [L0(t), L1(t), . . . , Ln(t)]t.

In this work we consider (3) with k = n.

3 Nonlinear Fredholm-Volterra integral equa-

tions of Hammerstein type

Now consider the nonlinear Fredholm-Volterra integral equations given in Eq.

(2). In order to use Lagrange functions, we first approximate u(t) as

u(t) � utL(t), (5)

equations (2) and (5) gives

utL(t) = f(t) + λ1

∫ t

0

K1(t, x)φ1(x,utL(x))dx + λ2

∫ 1

0

K2(t, x)φ2(x,utL(x))dx,

(6)

for simplicity we let

F1(t, x) = K1(t, x)φ1(x,utL(x)), F2(t, x) = K2(t, x)φ2(x,utL(x)).

Now by collocating transformed Eq. (6) at the n + 1 points t = xi, i =

0, 1, ..., n which are the same points of quadrature rule, we get

ui = f(xi) + λ1

∫ xi

0

F1(xi, x)dx + λ2

∫ 1

0

F2(xi, x)dx. (7)

In order to use the Gaussian quadrature rule for Eq. (7), we transfer the

intervals [0, xi] and [0, 1] into interval [−1, 1] by transformations

y1 =
2

xi

x − 1, y2 = 2x − 1.

So, Eq. (7) may then be restated as

ui = f(xi) + λ1
xi

2

∫ 1

−1

F1

(
xi,

xi

2
(y1 + 1)

)
dy1 +

λ2

2

∫ 1

−1

F2

(
xi,

1

2
(y2 + 1)

)
dy2,

(8)
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now by using Gaussian quadrature rule, Eq. (8) may be approximated as

ui ≈ f(xi) + λ1
xi

2

n1∑
r=0

w1rF1

(
xi,

xi

2
(y1r + 1)

)
+

λ2

2

n2∑
r=0

w2rF2

(
xi,

1

2
(y2r + 1)

)
,

(9)

for i = 0, 1, ..., n.

The system (9) including n + 1 nonlinear equations which can be solved by

usual iterative method such as Newton’s method.

4 Illustrative examples

In this section we consider some nonlinear Fredholm and Volterra integral

equations and also Hammerstein Fredholm-Volterra integral equations. For

comparision the results, we choose the examples from [2] which have solved by

Chebyshev approximation method.

5 Numerical Examples

Example 1:

u(t) = t3 − (6 − 2e)et +

∫ 1

0

e(t+x)u(x)dx, 0 ≤ t < 1,

with exact solution u(t) = t3.

Example 2:

u(t) = 2 cos(t)−2+3

∫ t

0

sin(t−x)(u(x))2dx+
6

7 − 6 cos(1)

∫ 1

0

(1−x) cos2(t)(x+u(x))dx,

0 ≤ t < 1, with exact solution u(t) = cos(t).

Example 3:

u(t) = et + 1 −
∫ 1

0

(t + x)eu(x)dx =, 0 ≤ t < 1,

with exact solution u(t) = t.
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Example 4:

u(t) = et − 1

3
e3t +

1

3
+

∫ t

0

(u(x))3dx, 0 ≤ t < 1,

with exact solution u(t) = et.

Table 1-3 shows the computed error ‖e‖ = ‖u(t)− un(t)‖ for the examples

1-3 by introduced method in [2] and presented method with n = 4.

Table 1
t approximated by the method

introduced in [2](n=4)

approximated by presented

method(n=4)

0.0 0.001 × 10−4 3.003 × 10−9

0.2 0.156 × 10−2 5.500 × 10−9

0.4 0.349 × 10−2 7.650 × 10−9

0.6 0.567 × 10−2 8.300 × 10−9

0.8 0.797 × 10−2 5.600 × 10−9

1.0 0.010 × 10−2 2.100 × 10−9

Table 2
t approximated by the method

introduced in [2](n=5)

approximated by presented

method(n=4)

0.0 0.306 × 10−3 0.468 × 10−4

0.1 0.305 × 10−3 0.443 × 10−4

0.2 0.304 × 10−3 0.387 × 10−4

0.3 0.311 × 10−3 0.349 × 10−4

0.4 0.336 × 10−3 0.394 × 10−4

0.5 0.391 × 10−3 0.578 × 10−4

0.6 0.485 × 10−3 0.913 × 10−4

0.7 0.620 × 10−3 0.132 × 10−3

0.8 0.785 × 10−3 0.161 × 10−3

0.9 0.953 × 10−3 0.135 × 10−3

1.0 0.107 × 10−3 0.142 × 10−3
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Table 3
t approximated by the method

introduced in [2](n=7)

approximated by presented

method(n=4)

0.0 0.258 × 10−5 2.340 × 10−9

0.2 0.735 × 10−5 3.200 × 10−9

0.4 0.793 × 10−5 3.700 × 10−9

0.6 0.255 × 10−5 4.100 × 10−9

0.8 0.398 × 10−5 5.000 × 10−9

1.0 0.264 × 10−5 4.800 × 10−9

Table 4 shows the computed errors for example 4 by the presented method

with n = 4, 5.

Table 4
t approximated by presented

method(n=4)

approximated by presented

method(n=5)

0.0 0.0 0.0

0.1 0.432 × 10−4 0.799 × 10−5

0.2 0.319 × 10−4 0.783 × 10−5

0.3 0.468 × 10−4 0.474 × 10−5

0.4 0.304 × 10−3 0.119 × 10−5

0.5 0.304 × 10−3 0.846 × 10−5

0.6 0.313 × 10−3 0.134 × 10−4

0.7 0.244 × 10−3 0.947 × 10−4

0.8 0.836 × 10−3 0.140 × 10−4

0.9 0.264 × 10−3 0.135 × 10−4

1.0 0.953 × 10−3 0.730 × 10−4

6 Conclusion

The aim of presented work is to develop an efficient method for solving the

nonlinear Fredholm-Volterra integral equations. As shown the method reduced

to solving nonlinear system of algebraic equations. Illustrative examples are

selected from [2]. Comparing the results states that more accuracy of the

presented technique is obtained.
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