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LAGRANGE GEOMETRY ON TANGENT MANIFOLDS
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Lagrange geometry is the geometry of the tensor field defined by the fiberwise

Hessian of a nondegenerate Lagrangian function on the total space of a tangent

bundle. Finsler geometry is the geometrically most interesting case of Lagrange

geometry. In this paper, we study a generalization which consists of replacing the

tangent bundle by a general tangent manifold, and the Lagrangian by a family of

compatible, local, Lagrangian functions. We give several examples and find the co-

homological obstructions to globalization. Then, we extend the connections used

in Finsler and Lagrange geometry, while giving an index-free presentation of these

connections.

2000 Mathematics Subject Classification: 53C15, 53C60.

1. Preliminaries. Lagrange geometry [3, 6, 7] is the extension of Finsler ge-

ometry (e.g., [1]) to transversal “metrics” (nondegenerate quadratic forms) of

the vertical foliation (the foliation by fibers) of a tangent bundle, which are

defined as the Hessian of a nondegenerate Lagrangian function. In the present

paper, we study the generalization of Lagrange geometry to arbitrary tangent

manifolds [2]. The locally Lagrange-symplectic manifolds [12] are an impor-

tant particular case. In this section, we recall various facts about the geomet-

ric structures that we need for the generalization. Our framework is the C∞-

category, and we will use the Einstein summation convention, where conve-

nient.

First, a leafwise locally affine foliation is a foliation such that the leaves have

a given locally affine structure that varies smoothly with the leaf. In a different

formulation [10], if M is a manifold of dimension m = p+q, a p-dimensional

leafwise locally affine foliation � on M is defined by a maximal, differential,

affine atlas {Uα}, with local coordinates (xaα,y
u
α ) (a = 1, . . . ,q; u = 1, . . . ,p),

and transition functions of the local form

xaβ = x
a
β

(

xbα
)

, yuβ =

p
∑

v=1

Au(αβ)v
(

xbα
)

yvα +B
u
(αβ)

(

xbα
)

(1.1)

on Uα∩Uβ. Then, the leaves of � are locally defined by xa = const, and their

local parallelization is defined by the vector fields ∂/∂yu. Furthermore, if the

atlas that defines a leafwise locally affine foliation has a subatlas such that

Bu(αβ) = 0 for its transition functions, the foliation, with the structure defined
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by the subatlas, will be called a vector bundle-type foliation. Notice that, if one

such subatlas exists, similar ones are obtained by coordinate changes of the

local form

x̃aα = x̃
a
α

(

xbα
)

, ỹα =y
a
α+ξ

a
(αβ)

(

xbα
)

. (1.2)

For any foliation �, geometric objects of M that either project to the space

of leaves or, locally, are pullbacks of objects on the latter are said to be pro-

jectable or foliated [8, 9]. In particular, a foliated bundle is a bundle over M

with a locally trivializing atlas with foliated transition functions. The transver-

sal bundle ν� = TM/T� is foliated. Formulas (1.1) show that for a leafwise

locally affine foliation � the tangent bundles T� and TM are foliated bundles

as well. For a foliated bundle, we can define foliated cross sections. Notice that,

if � is a leafwise locally affine foliation, a vector field onM which is tangent to

� is foliated as a vector field, since it projects to 0, but it may not be a foliated

cross section of T�!

Furthermore, for a leafwise locally affine foliation, one also has leafwise af-

fine objects which have an affine character with respect to the locally affine

structure of the leaves. For instance, a leafwise locally affine function is a func-

tion f ∈ C∞(M) such that Yf is foliated for any local parallel vector field Y

along the leaves of �. With respect to the affine atlas, a leafwise locally affine

function has the local expression

f =

p
∑

u=1

αu
(

xa
)

yu+β
(

xa
)

. (1.3)

A leafwise locally affine k-form is a k-form λ such that i(Z)λ = 0 for all the

tangent vector fields Z of � and the Lie derivative LYλ is a foliated k-form for

all the parallel fields Y . Then, λ has an expression of the form (1.3) where αu,

β are foliated k-forms. A leafwise locally affine vector field is an infinitesimal

automorphism of the foliation and of the leafwise affine structure, and has the

local expression [10]

X =

q
∑

a=1

ξa
(

xb
) ∂

∂xa
+

p
∑

u=1





p
∑

v=1

λuv
(

xb
)

yv+µu
(

xb
)





∂

∂yu
. (1.4)

Any foliated vector bundle V → M produces a sheaf V of germs of differ-

entiable cross sections, and a sheaf Vpr of germs of foliated cross sections.

The corresponding cohomology spaces Hk(M,Vpr ) may be computed by a de

Rham type theorem [9]. Namely, let N� be a complementary (normal) distri-

bution of T� in TM . The decomposition TM = N�⊕T� yields a bigrading

of differential forms and tensor fields, and a decomposition of the exterior

differential as

d= d′(1,0)+d
′′
(0,1)+∂(2,−1). (1.5)
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The operator d′′ is the exterior differential along the leaves of �, it has square

zero and satisfies the Poincaré lemma. Accordingly,

0 �→ Vpr
⊆
��������������������������������������������→ Vpr ⊗ΦΩ

(0,0) d′′
�����������������������������������������������������������������������→ Vpr ⊗ΦΩ

(0,1) d′′
�����������������������������������������������������������������������→ ··· , (1.6)

where Ω denotes spaces of differential forms, Ω is the corresponding sheaf of

differentiable germs, and Φ is the sheaf of germs of foliated functions, is a fine

resolution of Vpr .

Furthermore, if � is leafwise locally affine, one also has the spaces Ak(M,�)

of leafwise locally affine k-forms and the corresponding sheaves of germs

Ak(M,�). These sheaves define interesting cohomology spaces, which may be

studied by means of the exact sequences [10]

0 �→Ω(k,0)pr
⊆
��������������������������������������������→Ak(M,�)

π
������������������������������������������������→Ω(k,0)pr ⊗ΦT

∗
�pr �→ 0, (1.7)

where, for f defined by (1.3), π(f)=αu⊗[dy
u], [dyu] being the projections

of dyu on T∗�.

It is important to recognize the vector bundle-type foliations among the

leafwise locally affine foliations. First, notice that a vector bundle-type foliation

possesses a global vector field which may be seen as the leafwise infinitesimal

homothety, namely,

E =

p
∑

u=1

yu
∂

∂yu
, (1.8)

called the Euler vector field. In the general leafwise locally affine case, (1.8) only

defines local vector fields Eα on each coordinate neighborhood Uα, and the dif-

ferences Eβ−Eα yield a cocycle and a cohomology class [E](�)∈H1(M,T�pr ),

called the linearity obstruction [10]. It follows easily that the leafwise locally

affine foliation � has a vector bundle-type structure if and only if [E](�) = 0

[10]. With a normal distribution N�, we may use the foliated version of de

Rham’s theorem, and [E](�) will be represented by the global T�-valued 1-

form obtained by gluing up the local forms {d′′Eα}. Accordingly, [E](�) = 0

if and only if there exists a global vector field E on M , which is tangent to the

leaves of � and such that for all α,

E|Uα = Eα+Qα, (1.9)

whereQα are projectable. E is defined up to the addition of a global, projectable

cross section of T�, and these vector fields E will be called Euler vector fields.

The choice of an Euler vector field E is equivalent with the choice of the vector

bundle-type structure of the foliation.

We also recall the following result [10]: the vector bundle-type foliation �

on M is a vector bundle fibration M → N if and only if the leaves are simply

connected and the flat connections defined by the locally affine structure of

the leaves are complete.
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Example 1.1. On the torus Tp+q with the Euclidean coordinates (xa,yu)

defined up to translations

x̃a = xa+ha, ỹu =yu+ku, ha,ku ∈ Z, (1.10)

the foliation xa = const is leafwise locally affine and has the normal bundle

dyu = 0. The linearity obstruction [E] is represented by the form
∑q
u=1dy

u⊗

(∂/∂yu), which is notd′′-exact. Therefore, [E]≠ 0 and � is not a vector bundle-

type foliation.

Example 1.2. Consider the compact nilmanifoldM(1,p)= Γ(1,p)\H(1,p),

where

H(1,p)=























Idp X Z

0 1 y

0 0 1









|X, Z ∈Rp, y ∈R















(1.11)

is the generalized Heisenberg group, and Γ(1,p) is the subgroup of matrices

with integer entries. The manifold M(1,p) has an affine atlas with the transi-

tion functions

x̃i = xi+ai, ỹ =y+b, z̃i = zi+aiy+ci, (1.12)

where xi, zi (i= 1, . . . ,p) are the entries of X, Z , respectively, and ai, b, ci are

integers. Accordingly, the local equations xi = const, y = const define a leaf-

wise locally affine foliation � ofM which, in fact, is a fibration byp-dimensional

tori over a (p+1)-dimensional torus. The manifold M is parallelizable by the

global vector fields

∂

∂xi
,
∂

∂y
+

p
∑

i=1

xi
∂

∂zi
,
∂

∂zi
, (1.13)

and the global 1-forms

dxi,dzi−xidy,dy, (1.14)

and we see that

span







∂

∂xi
,
∂

∂y
+

p
∑

i=1

xi
∂

∂zi







(1.15)

may serve as a normal bundle of �. It follows that the linearity obstruction is

represented by

p
∑

i=1

(

dzi−xidy
)

⊗
∂

∂zi
, (1.16)

which is not d′′-exact. Therefore, � is not a vector bundle-type foliation.
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Example 1.3. Take the real Hopf manifold H(p+q) = Sp+q−1 × S1 seen as

(Rq×Rp\{0})/Gλ, where λ∈ (0,1) is constant and Gλ is the group

x̃a = λnxa, ỹu = λnyu, n∈ Z, (1.17)

where xa, yu are the natural coordinates of Rq and Rp , respectively. Then,

the local equations xa = const define a vector bundle-type foliation, which has

the global Euler field E =
∑q
u=1y

u(∂/∂yu). This example shows that compact

manifolds may have vector bundle-type foliations.

Example 1.4. Consider the manifold

M2n =
[(

R
n\{0}

)

×Rn
]

/Kλ, (1.18)

where λ∈ (0,1) and Kλ is the cyclic group generated by the transformation

x̃i = λxi, ỹi = λyi+(1−λ)
xi

√

∑n
j=1

(

xj
)2

(1.19)

(i= 1, . . . ,n). It is easy to check that the equality

E =

n
∑

i=1

yi
∂

∂yi
−

n
∑

i=1

xi
√

∑n
j=1

(

xj
)2

∂

∂yi
(1.20)

defines a global vector field onM , which has the property of the Euler field for

the foliation xi = const Therefore, the latter is a vector bundle-type foliation.

The change of coordinates

x′i = xi, y ′i =yi−
xi

√

∑n
j=1

(

xj
)2

(1.21)

provides a vector bundle-type atlas, and (1.19) becomes

x̃′i = λxi, ỹ ′i = λyi. (1.22)

This shows that M is the tangent bundle of the Hopf manifold Hn defined in

Example 1.3.

Now, we recall the basics of tangent manifolds [2]. An almost tangent struc-

ture on a manifold M is a tensor field S ∈ Γ End(TM) such that

S2 = 0, imS = kerS. (1.23)

In particular, the dimension of M must be even, say 2n, and rankS = n. Fur-

thermore, S is a tangent structure if it is integrable, that is, locally S looks

like the vertical twisting homomorphism of a tangent bundle. This means that



3246 IZU VAISMAN

there exists an atlas with local coordinate (xi,yi) (i= 1, . . . ,n) such that

S

(

∂

∂xi

)

=
∂

∂yi
, S

(

∂

∂yi

)

= 0. (1.24)

The integrability property is equivalent with the annulation of the Nijenhuis

tensor

�S(X,Y)= [SX,SY]−S[SX,Y]−S[X,SY]+S
2[X,Y]= 0. (1.25)

A pair (M,S), where S is a tangent structure, is called a tangent manifold.

On a tangent manifold (M,S), the distribution imS is integrable, and defines

the vertical foliation � with T� = imS. It is easy to see that the transition

functions of the local coordinates of (1.24) are of the local form (1.1) with

q = p =n and

Ai(αβ)j =
∂xiβ

∂x
j
α

. (1.26)

Therefore, � is a leafwise locally affine foliation, and the local parallel vector

fields along the leaves are the vector fields of the form SX, whereX is a foliated

vector field. In particular, a tangent manifold has local Euler fields Eα, and a

linearity obstruction [E] ∈ H1(M,T�pr ). If [E] = 0, the foliation � will be a

vector bundle-type foliation, and M has global Euler vector fields E defined

up to the addition of a foliated cross section of T�. Furthermore, if we fix

the vector-bundle type structure by fixing an Euler vector field E, the triple

(M,S,E) will be called a bundle-type tangent manifold.

Using the general result of [10], we see that a tangent manifold is a tan-

gent bundle if and only if it is a bundle-type tangent manifold and the vertical

foliation has simply connected, affinely complete leaves.

Example 1.5. The Hopf manifold H2n of Example 1.3 with q = p =n and S

defined by (1.24) is a compact, bundle-type, tangent manifold.

Example 1.6. The torus of Example 1.1 with q = p and S of (1.24) is a

compact, nonbundle-type, tangent manifold.

Example 1.7. The manifold M(1,p)× (R/Z), with the coordinates of Ex-

ample 1.2 and a new coordinate t on R, and with S defined by

S

(

∂

∂xi

)

=
∂

∂zi
, S

(

∂

∂y

)

=
∂

∂t
, S

(

∂

∂zi

)

= 0, S

(

∂

∂t

)

= 0 (1.27)
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is a compact, non bundle-type, tangent manifold. The linearity obstruction [E]

of this manifold is represented by

p
∑

i=1

(

dzi−xidy
)

⊗
∂

∂zi
+dt⊗

∂

∂t
, (1.28)

and [E]≠ 0.

Tangent bundles posses second order vector fields (semisprays in [6]), so

called because they may be locally expressed by a system of second order,

ordinary, differential equations. A priori, such vector fields may be defined on

any tangent manifold [13], namely, the vector field X ∈ ΓTM (Γ denotes the

space of global cross sections) is of the second order if SX|Uα −Eα is foliated

for all α. But this condition means that SX is a global Euler vector field, hence,

only the bundle-type tangent manifolds can have global second order vector

fields.

It is important to point out that, just like on tangent bundles (e.g., [3, 6, 11]),

if (M,S,E) is a bundle-type tangent manifold and X is a second order vector

field on M , the Lie derivative F = LXS defines an almost product structure on

M (F2 = Id), with the associated projectors

V =
1

2
(Id+F), H =

1

2
(Id−F), (1.29)

such that imV = T� and imH is a normal distribution N� of the vertical

foliation �.

Finally, we give the following definition.

Definition 1.8. A vector field X on a tangent manifold (M,S) is a tangen-

tial infinitesimal automorphism if LXS = 0 (L denotes the Lie derivative).

Obviously, a tangential infinitesimal automorphismX preserves the foliation

� and its leafwise affine structure. Therefore, X is a leafwise affine vector field

with respect to �. Furthermore, in the bundle-type case, if E is an Euler vector

field, [X,E] is a foliated cross section of T�.

2. Locally Lagrange spaces. Lagrange geometry is motivated by physics

and, essentially, it is the study of geometric objects and constructions that

are transversal to the vertical foliation of a tangent bundle and are associated

with a Lagrangian (a name taken from Lagrangian mechanics), that is, a func-

tion on the total space of the tangent bundle. (See [6] and the d-objects defined

there.) Here, we use the same approach for a general tangent manifold (M,S),

and we refer to functions onM as global Lagrangians and to functions on open

subsets as local Lagrangians.
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If � is a Lagrangian, the derivatives in the vertical directions yield symmetric

tensor fields of M defined by

(

Hess(k)�
)

x

(

X1, . . . ,Xk
)

=
(

SX̃k
)

···
(

SX̃1

)

�|x , x ∈M, Xi ∈ TxM, (2.1)

where X̃i (i= 1, . . . ,k) are extensions of Xi to local, �-foliated, vector fields on

M . (Of course, the result does not depend on the choice of the extensions X̃i.)

Hess(k)� is called the k-Hessian of �. Notice that definition (2.1) may also be

replaced by the recurrence formula

(

Hess(k)�
)

x

(

X̃1, . . . , X̃k
)

=
[

LSX̃k
(

Hess(k−1)�
)]

x

(

X̃1, . . . , X̃k−1

)

, (2.2)

where the arguments are foliated vector fields.

It is worthwhile to notice the following general property.

Proposition 2.1. For any function �∈ C∞(M), any tangential infinitesimal

automorphism X of the tangent manifold (M,S), and any k= 1,2, . . . , one has

Hess(k)(X�)= LX
(

Hess(k)�
)

. (2.3)

Proof. Proceed by induction on k, while evaluating the Hessian of X� on

foliated arguments and using the recurrence formula (2.2).

For k= 1, we get a 1-form, say θ�, and for k= 2, we get the usual Hessian of

� with respect to the affine vertical coordinates yi (see Section 1), hereafter to

be denoted by either Hess� or g�. Obviously, g� vanishes whenever one of the

arguments is vertical, hence, it yields a well-defined cross section of the sym-

metric tensor product ⊙2ν∗� (ν� = TM/T�), which we continue to denote

by g�. If g� is nondegenerate on the transversal bundle ν�, the Lagrangian �

is said to be regular and g� is called a (local) Lagrangian metric. We note that

if the domain of � is connected, the regularity of � also implies that g� is of

a constant signature. With respect to the local coordinates of (1.24), one has

θ� =
∂�

∂yi
dxi, g� =

1

2

∂2�

∂yi∂yj
dxi⊙dxj . (2.4)

In Lagrangian mechanics, one also defines another geometric object related

to a Lagrangian, namely, the differential 2-form

ω� = dθ� =
∂2�

∂xi∂yj
dxi∧dxj+

∂2�

∂yi∂yj
dyi∧dxj . (2.5)

If � is a regular Lagrangian, ω� is a symplectic form, called the Lagrangian

symplectic form.

In [12, 13], we studied particular symplectic forms Ω on a tangent manifold

(M,S) that are compatible with the tangent structure S in the sense that

Ω(X,SY)=Ω(Y ,SX). (2.6)
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If this happens,Ω is called a locally Lagrangian-symplectic form since the com-

patibility property is equivalent with the existence of an open covering M =

∪Uα, and of local regular Lagrangian functions �α on Uα such thatΩ|Uα =ω�α

for all α. On the intersections Uα∩Uβ, the local Lagrangians satisfy a compat-

ibility relation of the form

�β−�α = a
(

ϕ(αβ)

)

+b(αβ), (2.7)

whereϕ(αβ) is a closed, foliated 1-form, b(αβ) is a foliated function, anda(ϕ)=

ϕiy
i where the local coordinates and components are taken either in Uα or

in Uβ. Furthermore, if it is possible to find a compatible (in the sense of (2.7))

global Lagrangian �, Ω is a global Lagrangian symplectic form. Conditions for

the existence of a global Lagrangian were given in [12, 13]. In particular, a

globally Lagrangian-symplectic manifold M2n cannot be compact since it has

the exact volume form ωn
�.

Following the same idea, we give a new definition.

Definition 2.2. Let (M2n,S) be a tangent manifold, andg ∈ Γ⊙2ν∗� a non-

degenerate tensor field. Then g is a locally Lagrangian metric (structure) onM

if there exists an open covering M = ∪Uα with local regular Lagrangian func-

tions �α on Uα such that g|Uα = g�α = Hess�α for all α. The triple (M,S,g)

will be called a locally Lagrange space or manifold.

It is easy to see that the local Lagrangians �α of a locally Lagrange space

must again satisfy the compatibility relations (2.7), where the 1-forms ϕ(αβ)

may not be closed. In particular, we see that a locally Lagrangian-symplectic

manifold is a locally Lagrange space with the metric defined by [12]

g
(

[X],[Y]
)

=Ω(SX,Y), (2.8)

where X,Y ∈ ΓTM and [X], [Y] are the corresponding projections on ν�. Fur-

thermore, if there exists a global Lagrangian � that is related by (2.7) with the

local Lagrangians of the structure, (M,S,g,�)will be a globally Lagrange space.

A globally Lagrange space also is a globally Lagrangian-symplectic manifold,

hence, it cannot be compact.

We can give a global characterization of the locally Lagrange metrics. First,

we notice that the bundles ⊗kν∗� of covariant tensors transversal to the ver-

tical foliation � of a tangent manifold (M,S) may also be seen as the bundles

of covariant tensors on M that vanish if evaluated on arguments one of which

belongs to imS. (This holds because ν∗� ⊆ T∗M). In particular, a transversal

metric g of � may be seen as a symmetric 2-covariant tensor field g onM which

is annihilated by imS. With g, one associates a 3-covariant tensor, called the

derivative or Cartan tensor [1, 6, 7] defined by

Cx(X,Y ,Z)=
(

LSX̃g
)

x(Y ,Z), x ∈M, X,Y ,Z ∈ TxM, (2.9)
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where X̃ is a foliated extension of X. Obviously, C ∈ Γ⊗3ν∗�. Then, we get the

following proposition.

Proposition 2.3. The transversal metric g of the vertical foliation � of a

tangent manifold (M,S) is a locally Lagrange metric if and only if the tensor

field C is totally symmetric.

Proof. Since

Cijk = C

(

∂

∂xi
,
∂

∂xj
,
∂

∂xk

)

=
∂gjk

∂yi
, (2.10)

the symmetry of C is equivalent with the existence of the required local La-

grangians �.

We give a number of examples of locally Lagrange manifolds.

Example 2.4. Consider the torus of Example 1.6. Then

�=
1

2

n
∑

i=1

(

yi
)2

(2.11)

define compatible local Lagrangians with the corresponding Lagrange metric
∑n
i=1(dx

i)2. (Notice also the existence of the locally Lagrange symplectic form

Ω =
∑n
i=1dx

i∧dyi.)

Example 2.5. Consider the tangent manifold M(1,p)× (R/Z) of Example

1.7, with the tangent structure defined by (1.27). The �-transversal metric

p
∑

i=1

(

dxi
)2
+(dy)2 (2.12)

is the Lagrange metric of the local compatible Lagrangians

1

2





p
∑

i=1

(

zi
)2
+t2



. (2.13)

(In this example the forms ϕ(αβ) of (2.7) are not closed.)

Examples 2.4 and 2.5 are interesting because the manifolds involved are

compact manifolds.

Example 2.6. The manifold M2n of Example 1.4 is diffeomorphic with the

tangent bundle THn. With the coordinates (x′i,y ′i) (see Example 1.4), we see

that the function

�=

∑n
i=1

(

y ′i
)2

2
∑n
i=1

(

x′i
)2

(2.14)

is a global, regular Lagrangian, and it produces a positive definite Lagrange

metric.
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Example 2.7. Consider the Hopf manifoldH2n of Example 1.5 with the tan-

gent structure (1.24), and define the local compatible Lagrangians

�=
1

2
lnρ, ρ =

n
∑

i=1

[

(

xi
)2
+
(

yi
)2
]

. (2.15)

An easy computation yields

∂2�

∂yi∂yj
=−

1

ρ2

(

2yiyj−ρδij
)

. (2.16)

The determinant of the Hessian (2.16) can be easily computed as a character-

istic polynomial, and we get

det

(

∂2�

∂yi∂yj

)

=

∑n
i=1

[

(

xi
)2
−
(

yi
)2
]

{

∑n
i=1

[

(

xi
)2
+
(

yi
)2
]}n+1

. (2.17)

Now, the local equation

n
∑

i=1

(

xi
)2
=

n
∑

i=1

(

yi
)2

(2.18)

defines a global hypersurface Σ of H2n, and (2.16) provides a locally Lagrange

metric structure on H2n\Σ.

Example 2.8. On any tangent manifold (M,S), any nondegenerate, foliated,

transversal metric g of the vertical foliation (if such a metric exists [8]) is locally

Lagrange. Indeed, this kind of metric is characterized by C = 0, and the result

follows from Proposition 2.3.

A natural question implied by Definition 2.2 is: assume that (M,S,g,�α) is

a locally Lagrange space; what are the conditions that ensure the existence of

a global compatible, regular Lagrangian?

The compatibility relations (2.7) endow M with an A0-valued 1-cocycle de-

fined by any of the members of (2.7), hence, with a cohomology class � ∈

H1(M,A0), which we call the total Lagrangian obstruction. It is obvious that

� = 0 if and only if the manifold M with the indicated structure is a globally

Lagrange space.

Furthermore, the total Lagrangian obstruction may be decomposed into two

components determined by the exact sequence (1.7) with k = 0, which in our

case becomes

0 �→ Φ
⊆
��������������������������������������������→A0(M,�)

π ′
�����������������������������������������������������������������→Ω(1,0)pr �→ 0, (2.19)

where π ′ is the composition of the projection π of (1.7) by S.
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It is easy to see that the connecting homomorphism of the exact cohomol-

ogy sequence of (2.19) is zero in dimension 0. Accordingly, we get the exact

sequence

0 �→H1(M,Φ)
ι∗
������������������������������������������������������������→H1

(

M,A0
) π∗
�������������������������������������������������������������������������������→H1

(

M,Ω(1,0)pr

) ∂
������������������������������������→H2(M,Φ) �→ ··· ,

(2.20)

where ι∗,π∗ are induced by the inclusion and the homomorphismπ ′ of (2.19).

Accordingly, we get the cohomology class �1 =π
∗(�)∈H1(M,Ω(1,0)pr ), and we

call it the first Lagrangian obstruction. The annulation �1 = 0 is a necessary

condition for M to be a globally Lagrange space. Furthermore, if �1 = 0, the

exact sequence (2.20) tells us that there exists a unique cohomology class �2 ∈

H1(M,Φ) such that � = ι∗(�2). We call �2 the second Lagrangian obstruction

of the given structure, and � = 0 if and only if �1 = 0 and �2 = 0.

We summarize the previous analysis in the following proposition.

Proposition 2.9. The locally Lagrange space (M,S,g,�α) is a globally La-

grange space if and only if both the first and the second Lagrangian obstructions

exist and are equal to zero.

Assume that a choice of a normal bundle N� has been made. Then we can

use the de Rham theorem associated with the relevant resolution (1.6) in order

to get a representation of the Lagrangian obstructions. The definition of �1

shows that the first Lagrangian obstruction is represented by the cocycle {θ�β
−

θ�α}. Accordingly, �1 may be seen as the d′′-cohomology class of the global

formΘ of type (1,1) defined by gluing up the local forms {d′′θ�α}. If we follow

the notation of [9] and take bases

N�= span

{

Xi =
∂

∂xi
−t

j
i

∂

∂yj

}

, T�= span

{

Yi =
∂

∂yi

}

, (2.21)

with the dual cobases

N∗�= ann(T�)= span
{

dxi
}

,

T∗�= ann(N�)= span
{

ϑi = dyi+tijdx
j
}

,
(2.22)

where tij(x
i,yi) are local functions, we get

Θ=
∂2�α

∂yi∂yj
ϑi∧dxj . (2.23)

The result may be written as the following proposition.

Proposition 2.10. Let (M,S,g,�α) be a locally Lagrange space. Then, each

choice of a normal bundleN� defines an almost symplectic structure ofM , given

by the nondegenerate d′′-closed 2-form Θ. The first Lagrangian obstruction �1

vanishes if and only if the form Θ is d′′-exact.
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Corollary 2.11. A compact, connected, bundle-type, tangent manifold M ,

with the Euler vector field E has no locally Lagrange metricg such that LEg = sg,

where s is a function such that, ∀x ∈M , s(x)≠−1.

Proof. Essentially, the hypothesis on E means E cannot be a conformal

infinitesimal automorphism of g. From (2.23), we get

Ψ =
1

n!
Θ
n = (−1)n(n+1)/2 det

(

∂2�α

∂yi∂yj

)

·dx1∧···∧dxn∧dy1∧···∧dyn,

(2.24)

LEΨ = (−1)n(n+1)/2

[

Edet

(

∂2�α

∂yi∂yj

)

+ndet

(

∂2�α

∂yi∂yj

)]

·dx1∧···∧dxn∧dy1∧···∧dyn,

(2.25)

where the local coordinates belong to an affine atlas such that E =yi(∂/∂yi).

If M is compact,
∫

M LEΨ = 0, and the coefficient of the right-hand side of (2.25)

cannot have a fixed sign. But the latter property holds under the hypothesis of

the corollary.

For instance, the Hopf manifold Hn has no locally Lagrange metric with

homogeneous with respect to the coordinates (yi) Lagrangians �α. Indeed,

homogeneity of degree s ≠ −1 is impossible because of Corollary 2.11, and

homogeneity of degree −1 contradicts the transition relations (2.7).

Remark 2.12. Because of Corollary 2.11, we conjecture that a compact,

bundle-type, tangent manifold cannot have a locally Lagrange metric.

Proposition 2.13. The first Lagrangian obstruction of a locally Lagrange

metric structure of M with the local Lagrangians {�α} vanishes if and only if

there exists a subordinated structure {�̃α} such that the 1-forms θ�̃α
glue up

to a global 1-form. This subordinated structure defines a locally Lagrangian-

symplectic structure on the manifold M . Furthermore, in this case the second

Lagrangian obstruction �2 is represented by the global d′′-closed form κ of type

(0,1) defined by gluing up the local forms {d′′�̃α}.

Proof. Under the hypothesis, there exists a global form λ of type (1,0)

such thatΘ= d′′θ�α = d
′′λ, therefore, θ�α = λ|Uα+ξα, with some local foliated

1-forms ξα = ξα,i(x
j)dxi. Accordingly, we get

∂
(

�β−�α

)

∂yi
= ξβ,i−ξα,i, (2.26)

whence

�β−�α = a
(

ξβ−ξα
)

+b(αβ), (2.27)

where a has the same meaning as in (2.7) and b(αβ) are foliated functions.
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Now, if we define

�̃α =�α−a
(

ξα
)

, (2.28)

we are done. The last assertion follows from the definition of �2.

Corollary 2.14. The locally Lagrange metric of Proposition 2.13 is defined

by a global Lagrangian if and only if κ = d′′k for a function k∈ C∞(M).

In order to give an application of this result we recall the following lemma.

Lemma 2.15. For the vertical foliation � of a tangent bundle TN, one has

Hk(TN,Φ)= 0 for any k > 0.

Proof. Use a normal bundle N�, and let λ be a d′′-closed form of type

(p,q) on TN. Since the fibers of TN are contractible, if N =∪Uα is a covering

by small enough, TN-trivializing neighborhoods, we have λ|p−1(Uα) = d
′′µα

(p : TN → N) for some local forms µα of type (p,q−1). The local forms µα

can be glued up to a global form µ by means of the pullback to TN of a partition

of unity onN, that is, by means of foliated functions. Accordingly, we will have

λ= d′′µ.

From Corollary 2.14 and Lemma 2.15, we get the following proposition.

Proposition 2.16. Any locally Lagrange metric of a tangent bundle TN is

a globally Lagrange metric.

Remark 2.17. Propositions 2.3 and 2.16 imply that, in the case of a tangent

bundle M = TN, the symmetry of C is a necessary and sufficient condition for

g to be a global Lagrangian metric. It was well known that this condition is

necessary [6]. On the other hand, the metrics of [6] are usually differentiable

only on the complement of the zero section of TN, where Proposition 2.16

does not hold, hence, the condition is not a sufficient one.

We also mention the inclusion σ : Z(1,0)pr →Ω(1,0)pr , where Z denotes spaces of

closed forms and the obvious following proposition.

Proposition 2.18. The locally Lagrange metric structure defined by {�α} is

reducible to a locally Lagrangian-symplectic structure if and only if �1 ∈ imσ∗,

where σ∗ is induced by σ in cohomology.

Other important notions are defined by the following definition.

Definition 2.19. Let (M,S,g) be a locally Lagrange space, and letX ∈ ΓTM .

Then: (i) X is a Lagrange infinitesimal automorphism if LXg = 0, where g is

seen as a 2-covariant tensor field onM ; (ii) X is a strong Lagrange infinitesimal

automorphism if it is a Lagrange and a tangential infinitesimal automorphism

of (M,S), simultaneously.
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Notice that

(

LXg
)

(Y ,SZ)=−g
(

Y ,[X,SZ]
)

(X,Y ,Z ∈ ΓTM). (2.29)

From (2.29) and the nondegeneracy of g on ν�, it follows that a Lagrange infini-

tesimal automorphism is necessarily a �-projectable vector field. But it may not

be leafwise locally affine. Indeed, if g is a foliated metric of ν� (Example 2.8),

every tangent vector field of � is a Lagrange infinitesimal automorphism even

if it is not leafwise locally affine.

We finish this section by considering a more general structure.

Definition 2.20. Let (M,S) be a tangent manifold. A locally conformal La-

grange structure onM is a maximal open coveringM =∪Uα with local regular

Lagrangians �α such that, over the intersections Uα∩Uβ, the local Lagrangian

metrics satisfy a relation of the form

g�β
= f(αβ)g�α , (2.30)

where f(αβ) > 0 are foliated functions. A tangent manifold endowed with this

type of structure is a locally conformal Lagrange space or manifold.

Clearly, condition (2.30) is equivalent with the transition relations

�β = f(αβ)�α+a
(

ϕ(αβ)

)

+b(αβ), (2.31)

where the last two terms are like in (2.7). On the other hand, {lnf(αβ)} is a

Φ-valued 1-cocycle, and may be written as lnf(αβ) = ψβ−ψα, where ψα is a

differentiable function on Uα (which may be assumed projectable only if the

cocycle is a coboundary). Accordingly, the formula

g|Uα = e
−ψαg�α (2.32)

defines a global transversal metric of the vertical foliation which is locally con-

formal with local Lagrange metrics. As a matter of fact, we have the following

proposition.

Proposition 2.21. Let (M2n,S) be a tangent manifold, and let n> 1. Then,

M is locally conformal Lagrange if and only ifM has a global transversal metric

g of the vertical foliation which is locally conformal with local Lagrange metrics.

Proof. We still have to prove that the existence of the metric g that satis-

fies (2.32) implies (2.30), which is clear, except for the fact that the functions

f(αβ) = e
ψβ−ψα are projectable. This follows from the Lagrangian character of
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the metrics g�α . Indeed, with the usual local coordinates (xi,yi), the symme-

try of the derivative tensors C of g�α , g�β
implies

∂f(αβ)

∂yk
(

g�α

)

ij =
∂f(αβ)

∂yi
(

g�α

)

kj , (2.33)

and a contraction by (g�α)
ij yields ∂f(αβ)/∂y

k = 0.

The cohomology class η = [lnf(αβ)] ∈ H
1(M,Φ) will be called the comple-

mentary class of the metric g, and the locally conformal Lagrange metric g is

a locally Lagrange metric if and only if η= 0. Indeed, if η= 0, we may assume

that the functions ψα are foliated and the derivative tensor C of g = e−ψαg�α

is completely symmetric.

Furthermore, using a normal bundle N� and the leafwise version of the de

Rham theorem, the complementary class may be seen as the d′′-cohomology

class of the global, d′′-closed complementary form τ obtained by gluing up

the local forms {d′′ψα}. In particular, Lemma 2.15 and Proposition 2.16 imply

that any locally conformal Lagrange metric g of a tangent bundle must be a

locally, therefore, a globally Lagrange metric.

Example 2.22. Consider the Hopf manifold H2n of Example 1.5. The local

functions
∑n
i=1(y

i)2 define a locally conformal Lagrange structure onH2n, and

g =

∑n
i=1

(

yi
)2

∑n
i=1

[

(

xi
)2
+
(

yi
)2
] (2.34)

is a corresponding global metric, which, with the previously used notation,

corresponds to

ψα = ln







n
∑

i=1

[

(

xi
)2
+
(

yi
)2
]







. (2.35)

The corresponding complementary form is

τ =
2
∑n
i=1y

idyi
∑n
i=1

[

(

xi
)2
+
(

yi
)2
] . (2.36)

Proposition 2.23. Let (M,S) be a tangent manifold andg a global transver-

sal metric of the vertical foliation � of S. Then, g is locally conformal Lagrange

if and only if there exists a d′′-closed form τ of type (0,1) such that the ten-

sor C̃ = C − (τ ◦S)⊗g, where C is the derivative tensor of g, is a completely

symmetric tensor.

Proof. Define g̃ = e−ψαg, where τ|Uα = d
′′ψα for a covering M = ∪Uα.

Then, e−ψα C̃ is the derivative tensor of g̃, and the result follows from Proposi-

tion 2.3.
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3. Transversal Riemannian geometry. The aim of this section is to give

an index-free presentation of the connections used in Finsler and Lagrange

geometry [1, 6, 7], while also extending these connections to tangent manifolds.

Let (M,S) be a tangent manifold and g a metric of the transversal bundle of

the vertical foliation � (T�= imS). (The metrics which we consider are nonde-

generate, but may be indefinite.) We do not get many interesting differential-

geometric objects on M , unless we fix a normal bundle N�, also called the

horizontal bundle, that is, we decompose

TM =N�⊕T�. (3.1)

We will say that N� is a normalization and (M,S,N�) is a normalized tangent

manifold. Where necessary, we will use the local bases (2.21) and (2.22). The

projections on the two terms of (3.1) will be denoted by pN , pT , respectively,

and P = pN−pT is an almost product structure tensor that has the horizontal

and vertical distribution as ±1-eigendistributions, respectively.

For a normalized tangent manifold, the following facts are well known: (i)

S|N� is an isomorphism Q : N� → T�, (ii) S = Q⊕0, (iii) S′ = 0⊕Q−1 is an

almost tangent structure, (iv) F = S′ + S is an almost product structure, (v)

J = S′−S is an almost complex structure on M .

On a normalized tangent manifold (M,S,N�), a pseudo-Riemannian metric

γ is said to be a compatible metric if the subbundles T�, N� are orthogonal

with respect to γ and

γ(SX,SY)= γ(X,Y), ∀X,Y ∈ ΓN�. (3.2)

It is easy to see that these conditions imply the compatibility of γ with the

structures J and F , that is,

γ(JX,JY)= γ(X,Y), γ(FX,FY)= γ(X,Y), ∀X,Y ∈ ΓTM. (3.3)

Furthermore, if (M,S) is a tangent manifold and γ is a pseudo-Riemannian

metric on M , we will say that γ is compatible with the tangent structure S if

the γ-orthogonal bundle N� of imS is a normalization, and γ is compatible

for the normalized tangent manifold (M,S,N�).

The following result is obvious.

Proposition 3.1. On a normalized, tangent manifold, any transversal met-

ric g of the vertical foliation defines a unique compatible metric γ such that

γ|N� = g.

In what follows, we will refer to the metric γ as the canonical extension of the

transversal metric g. On the other hand, a pseudo-Riemannian metric γ of a

tangent manifold (M,S) which is the canonical extension of a locally Lagrange

metric g will be called a locally Lagrange-Riemann metric. This means that the

restriction of γ to the γ-orthogonal subbundle N� of the vertical foliation �
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of S is a locally Lagrange metric g = g�α and γ is compatible with (M,S,N�).

Then, (M,S,γ)will be called a locally Lagrange-Riemann manifold. Notice that,

since the induced metric ofN� is nondegenerate,N� is a normalization of the

vertical foliation and the compatibility condition of the definition makes sense.

Thus, any normalized locally Lagrange space with the canonical extension γ of

the Lagrange metric g is a locally Lagrange-Riemann manifold, and conversely.

Example 3.2. The Euclidean metric
∑n
i=1[(dx

i)2 + (dyi)2] is the canon-

ical extension of the locally Lagrange metric defined in Example 2.4 on the

torus T2n.

Example 3.3. The metric

n
∑

i=1

(

dxi
)2
+(dy)2+

n
∑

i=1

(

dzi−xidy
)2
+(dt)2 (3.4)

is the canonical extension of the locally Lagrange metric defined in Example 2.5

on M(1,p)×(R/Z).

Now, let (M,S,N�,g) be a normalized tangent manifold with a transversal

metric of the vertical foliation � and let ∇ be the Levi-Civita connection of the

canonical extension γ of g.

We are going to define a general connection that includes the connections

used in Finsler and Lagrange geometry [1, 6, 7] as particular cases determined

by specific normalizations. This will be the so-called second canonical con-

nection D of a foliated, pseudo-Riemannian manifold (M,γ), defined by the

following conditions [9]: (i) N� and T� are parallel, (ii) the restrictions of the

metric to N� and T� are preserved by parallel translations along curves that

are tangent to N�, T�, respectively, (iii) the �-normal, respectively �-tangent,

component of the torsion TD(X,Y) vanishes if one of the arguments is normal,

respectively tangent, to �. This connection is given by

DZ1Z2 = pN∇Z1Z2, DY1Y2 = pT∇Y1Y2,

DY1Z2 = pN
[

Y1,Z2

]

, DZ1Y2 = pT
[

Z1,Y2

]

,
(3.5)

where Y1,Y2 ∈ ΓT� and Z1,Z2 ∈ ΓN�. We will say that D is the canonical con-

nection, and the connection induced by D in the normal bundle N�, or, equiv-

alently, in the transversal bundle ν� = TM/T�, will be called the canonical

transversal connection. The canonical, transversal connection is a Bott (basic)

connection [8]. The total torsion of the connection D is not zero, namely, one

has

TD(X,Y)=−pT
[

pNX,pNY
]

, ∀X,Y ∈ ΓTM. (3.6)
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Proposition 3.4. Let (M,S,g) be a locally Lagrange manifold, and γ the

canonical extension of g. Then, the derivative tensor field of g has the following

expressions:

C(X,Y ,Z)=
(

DSXg
)

(Y ,Z)=
(

DSXγ
)

(Y ,Z)

= γ
(

∇Y (SX),Z
)

+γ
(

Y ,∇Z(SX)
)

,
(3.7)

where X,Y ,Z ∈ ΓN�.

Proof. Of course, in (3.7), g is seen as a 2-covariant tensor field on M (see

Section 2). First, we refer to the first two equalities in (3.7). These are point-

wise relations, hence, it will be enough to prove these equalities for foliated

cross sections of the normal bundle N�. Indeed, a tangent vector at a point

can always be extended to a projectable vector field on a neighborhood of that

point. But in this case, the first and second equalities are straightforward con-

sequences of the definitions of the tensor field C and of the connection D.

Then, since ∇ has no torsion, (3.5) implies

DSXY =∇SXY −pT∇SXY −pN∇Y (SX), (3.8)

and, also using ∇γ = 0, we get the required result.

The first two expressions of C actually hold for any vector fields X,Y ,Z ∈

ΓTM .

Corollary 3.5. The canonical extension γ of a transversal metric g is a lo-

cally Lagrange-Riemann metric if and only if one of the following two equivalent

relations holds:

(

DSXγ
)

(Y ,Z)=
(

DSYγ
)

(X,Z),

γ
(

∇Y (SX),Z
)

+γ
(

Y ,∇Z(SX)
)

= γ
(

∇X(SY),Z
)

+γ
(

X,∇Z(SY)
)

,
(3.9)

where X,Y ,Z ∈ ΓN�.

Corollary 3.6. On a tangent manifold, if γ is a compatible pseudo-

Riemannian metric such that ∇S = 0, then γ is a projectable, locally Lagrange-

Riemann metric.

Proof. If ∇S = 0, the third equality (3.7) yields C = 0, which is the charac-

terization of this type of metrics.

Now, we consider the curvature ofD. The curvature is a tensor and it suffices

to evaluate it pointwisely. For this reason, whenever we need an evaluation of

the curvature (as well as of any other tensor) that involves vector fields, it will

suffice to make that evaluation on �-projectable vector fields.
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Proposition 3.7. The curvature RD of the canonical connection has the

following properties:

RD(SX,SY)Z = 0, (3.10)

RD(SX,Y)Z = pN
[

SX,DYZ
]

, (3.11)

RD(X,Y)(SZ)=−DSZ
(

pT [X,Y]
)

, (3.12)

RD(SX,Y)Z = RD(SX,Z)Y , (3.13)

for any foliated vector fields X,Y ,Z ∈ ΓN�. Moreover, formulas (3.10), (3.12),

and (3.13) hold for any arguments X,Y ,Z ∈ ΓN�.

Proof. Equality (3.10) is in agreement with the fact thatD is a Bott connec-

tion [8]. Formulas (3.10), (3.11), and (3.12) follow from (3.5) and (3.6). Formula

(3.13) is a consequence of (3.11). In the computation, one will take into account

the fact that for any foliated vector fieldX ∈ ΓTM and any vector field Y ∈ ΓT�

one has [X,Y]∈ ΓT� [8].

Proposition 3.8. For the canonical connection D, the first Bianchi identity

is equivalent to the following equalities:

∑

Cycl(X,Y ,Z)

RD(SX,SY)(SZ)= 0, (3.14)

RD(SX,Z)SY = RD(SY ,Z)SX, (3.15)
∑

Cycl(X,Y ,Z)

RD(X,Y)Z = 0, (3.16)

where X,Y ,Z ∈ ΓN�.

Proof. Write down the general expression of the Bianchi identity of a linear

connection with torsion (e.g., [4, 5]) for arguments tangent and normal to �.

Then, compute using (3.5), (3.6), and projectable vector fields as arguments.

The fourth relation included in the Bianchi identity reduces to (3.12).

Proposition 3.9. For the canonical connection D, the second Bianchi iden-

tity is equivalent to the following equalities, where X,Y ,Z ∈ ΓN�,

∑

Cycl(X,Y ,Z)

(

DSXRD
)

(SY ,SZ)= 0, (3.17)

(

DSXRD
)

(SY ,Z)−
(

DSYRD
)

(SX,Z)=
(

DZRD
)

(SX,SY), (3.18)
(

DXRD
)

(Y ,SZ)−
(

DYRD
)

(X,SZ)+
(

DSZRD
)

(X,Y)= RD
(

pT [X,Y],SZ
)

,

(3.19)
∑

Cycl(X,Y ,Z)

(

DXRD
)

(Y ,Z)=
∑

Cycl(X,Y ,Z)

RD
(

pT [X,Y],Z
)

. (3.20)

Proof. This is just a rewriting of the classical second Bianchi identity [4, 5]

that uses (3.6).
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Like Riemannian geometry, we also define a covariant curvature tensor

RD(X,Y ,Z,U)= γ
(

RD(Z,U)Y ,X
)

, X,Y ,Z,U ∈ ΓTM. (3.21)

In particular, we have the following proposition.

Proposition 3.10.

RD(U,Z,SX,Y)= g
([

SX,DYZ
]

,U
)

= (SX)
(

g
(

DYZ,U
))

−C
(

X,DYZ,U
)

,
(3.22)

where the arguments are foliated vector fields in ΓN�, and g is seen as a tensor

on M .

Formula (3.16) yields the Bianchi identity

∑

Cycl(X,Y ,Z)

RD(U,X,Y ,Z)= 0, ∀X,Y ,Z ∈ ΓN�. (3.23)

But the other Riemannian symmetries may not hold. Indeed, we have

Proposition 3.11. For any arguments X,Y ,Z,U ∈ ΓN�,

RD(X,Y ,Z,U)+RD(Y ,X,Z,U)=
(

DpT [Z,U]γ
)

(X,Y)

= C
(

S′pT [Z,U],X,Y
)

.
(3.24)

Proof. Express the equality

(

ZU−UZ−[Z,U]
)(

γ(X,Y)
)

= 0 (3.25)

for normal foliated arguments, and use the transversal metric character of the

canonical connection D and Proposition 3.4.

Proposition 3.12. For any arguments X,Y ,Z,U ∈ ΓN�,

RD(X,Y ,Z,U)−RD(Z,U,X,Y)

=
1

2

{

C
(

S′pT [Z,U],X,Y
)

−C
(

S′pT [X,Y],Z,U
)}

.
(3.26)

Proof. Same proof as for [4, Proposition 1.1, Chapter V].

The other first and second Bianchi identities may also be expressed in a

covariant form. From (3.21), we get

(

DFRD
)

(A,B,C,E)= γ
((

DFRD
)

(C,E)B,A
)

+
(

DFγ
)(

RD(C,E)B,A
)

, (3.27)

where (A,B,C,E,F ∈ ΓTM). Accordingly, (3.19) yields

(

DSZRD
)

(V ,U,X,Y)+
(

DXRD
)

(V ,U,Y ,SZ)−
(

DYRD
)

(V ,U,X,SZ)

=
(

DSZγ
)(

RD(X,Y)U,V
)

−
(

DXγ
)(

pN
[

SZ,DYU
]

,V
)

+
(

DYγ
)(

pN
[

SZ,DXU
]

,V
)

,

(3.28)
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(3.20) yields

∑

Cycl(X,Y ,Z)

(

DXRD
)

(V ,U,Y ,Z)

=
∑

Cycl(X,Y ,Z)

RD
(

V,U,pT [X,Y],Z
)

−
∑

Cycl(X,Y ,Z)

(

DXγ
)(

RD(Y ,Z)U,V
)

,
(3.29)

where X,Y ,Z,U,V ∈ ΓN�, and so on.

Example 3.13. On the torus T2n with the metric of Example 3.2, the usual

flat connection is both the Levi-Civita connection and the canonical connection

D, and it has zero curvature. On the manifold M(1,p)×(R/Z) with the metric

of Example 3.3, the connection that parallelizes the orthonormal basis shown

by the expression of the metric is not the Levi-Civita connection, since it has

torsion, but it follows easily that it has the characteristic properties of the

canonical connection D. Accordingly, we are in the case of a locally Lagrange-

Riemann manifold with a vanishing curvature RD and a nonvanishing torsion

TD .

Proposition 3.14. The Ricci curvature tensor ρD of the connection D is

given by the equalities

ρD(SX,SY)=

n
∑

i=1

〈

ϑi,RD

(

∂

∂yi
,SX

)

SY

〉

, (3.30)

ρD(SX,Y)=

n
∑

i=1

〈

dxi,pN
[

DXiY ,SX
]〉

, (3.31)

ρD(X,Y)= tr
[

Z � �→ RD(Z,X)Y
]

=

n
∑

i=1

〈

dxi,RD
(

Xi,X
)

Y
〉

,
(3.32)

where X,Y ,Z ∈ ΓN�, and in (3.31) Y is projectable.

Proof. The definition of the Ricci tensor of a linear connection (e.g., [4]),

and the use of the bases (2.21) and (2.22) yield

ρD(X,Y)=

n
∑

i=1

〈

dxi,RD
(

Xi,X
)

Y
〉

+

n
∑

i=1

〈

ϑi,RD

(

∂

∂yi
,X

)

Y

〉

. (3.33)

Then, the results follow from (3.5) and (3.11).

Remark 3.15. In view of (3.32), we may speak of κD = trρD on N�, and call

it the transversal scalar curvature.

In the case of a normalized, bundle-type, and tangent manifold (M,S,E,N�),

with a compatible metric γ (E is the Euler vector field), the curvature has some

more interesting features, which were studied previously in Finsler geometry

[1]. These features follow from the following lemma.
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Lemma 3.16. For any Z ∈ ΓN�,

DSZ(S
′E)= Z. (3.34)

Proof. The tensor S′ is the tensor defined at the beginning of this section,

and with local bundle-type coordinates (xi,yi)ni=1 and bases (2.21), we have

SZ = ξi
(

xj ,yj
) ∂

∂yi
, S′E =yiXi. (3.35)

Now, (3.34) follows from (3.5).

Using Lemma 3.16 one can prove the following proposition.

Proposition 3.17. The curvature operator RD(X,Y)|N� (X,Y ∈ ΓN�) is

determined by its action on S′E and by RD(V ,SW)|N�, where V,W ∈ ΓN�.

Proof. Denote

r(X,Y)= RD(X,Y)S
′E. (3.36)

The covariant derivative of this tensor contains a term, which, in view of (3.34),

is equal to RD(X,Y)Z , and we get

RD(X,Y)Z =DSZ
(

r(X,Y)
)

−r
(

DSZX,Y
)

−r
(

X,DSZY
)

−
(

DSZRD
)

(X,Y)S′E.

(3.37)

Now, if the last term of (3.37) is expressed by means of the Bianchi identity

(3.19), one gets an expression of RD(X,Y)Z in terms of r and RD(V ,SW)|N�

for various arguments V , W .

Notice that, by (3.11), the computation of RD(V ,SW)|N� on normal argu-

ments requires only a first order covariant derivative.

From Proposition 3.17, we also see that the curvature values RD(U,Z,X,Y)

(X,Y ,Z,U ∈ ΓN�) are determined by the values RD(U,S
′E,X,Y) and of RD(U,

V ,W,SK) for convenient normal arguments. Therefore, it should be interesting

to study manifolds, where RD(U,S
′E,X,Y) has a simple expression. If we fix a

direction span{U} and a 2-dimensional plane σ = span{X,Y} (U,X,Y ∈ ΓN�),

the formula

kU(σ)=
RD(U,S

′E,X,Y)

γ(S′E,X)γ(U,Y)−γ(S′E,Y)γ(U,X)
(3.38)

defines an invariant, which we will call the U -sectional curvature of σ . The

invariant kU(σ) is independent of U if and only if

RD(X,Y)S
′E = k(σ)

[

γ(S′E,X)Y −γ(S′E,Y)X
]

, (3.39)
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where k(σ) is a function of the point ofM and the plane σ only. Furthermore,

if k(σ) = f(x), x ∈M , that is, k(σ) is pointwise constant, (3.39) is a natural

simple expression of the transversal curvature tensor.

On the other hand, we can generalize the notion of flag curvature, which

is an important invariant in Finsler geometry [1]. Namely, a flag φ at a point

x ∈M is a 2-dimensional plane φ⊆ TxM which contains the vector Ex . Such a

flag is φ= span{Ex ,Xx}, where Xx ∈Nx� is defined up to a scalar factor, and

following [1], the flag curvature is defined by

k(φ)= k(X)=
RD(X,S

′E,X,S′E)

g(S′E,S′E)g(X,X)−g2(S′E,X)
. (3.40)

If g is not positive definite, the flag curvature may take infinite values.

Proposition 3.18. The flag curvature k is pointwise constant if and only if

RD(X,S
′E,Y ,S′E)= f

[

g(S′E,S′E)g(X,Y)−g(S′E,X)g(S′E,Y)
]

, (3.41)

where f ∈ C∞(M). If the U -sectional curvature is independent of U and point-

wise constant, the flag curvature is pointwise constant too.

Proof. For the first assertion, use k(X + Y) = k(X) = k(Y). The second

follows because, if k(σ)= f(x), (3.39) implies

RD(U,S
′E,X,Y)= f(x)

[

γ(S′E,X)γ(Y ,U)−γ(S′E,Y)γ(X,U)
]

, (3.42)

which reduces to (3.41) for Y = S′E.

Remark 3.19. The curvature RD has more interesting properties in the case

of a bundle-type, locally Lagrange manifold such that the metric tensor g is

homogeneous of degree zero with respect to the coordinates yi. The invariant

characterization of this situation is that the derivative tensor C is symmetric,

and such that

i(S′E)C = 0. (3.43)

Indeed, in this case, formulas (3.24) and (3.26) yield simpler symmetry proper-

ties if one of the arguments is S′E. The Finsler metrics satisfy the homogeneity

condition (3.43).

Remark 3.20. On a locally Lagrange-Riemann manifold (M,S,γ) there exist

other geometrically interesting connections as well. One such connection is

∇′XY = pN
(

∇X
(

pNY
))

+pT
(

∇X
(

pTY
))

. (3.44)

The connection ∇′ preserves the vertical and horizontal distributions and the

metric, but has a nonzero torsion. Then, we have the connections CD, C∇′,

which can be defined by using formulas (3.5) and (3.44) with the Levi-Civita
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connection ∇ replaced by the Chern connection C∇, that is, the γ-metric, J-

preserving connection that has a torsion with no component of J-type (1,1)

(J = S′−S) [4, 5].

We finish by recalling the well-known fact [3, 6, 7] that global Finsler and

Lagrange structures of tangent bundles have an invariant normalization. This

normalization may be defined as follows.

Let � be the global Lagrangian function. Then the energy function

�� = E�−� (3.45)

has a Hamiltonian vector field X� defined by

i
(

X�

)

ω� =−d��, (3.46)

where ω� is the Lagrangian symplectic form (2.5), which turns out to be a

second order vector field. Accordingly, LX�
S is an almost product structure

on M (see Section 1), and N�� = imH, with H defined by (1.29) is a canonical

normal bundle of �.

A locally Lagrangian structure {�α} on a bundle-type tangent manifold (M,S,

E) defines a global function (second order energy)

�
′ = E2

�α−E�α, (3.47)

but, generally, it has no global Hamiltonian vector field, and, even if such a

field exists, is may not be a second order vector field.
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