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Lagrange's theorem for gyrogroups

and the Cauchy property

Teerapong Suksumran and Keng Wiboonton

Abstract. We prove a version of Lagrange's theorem for gyrogroups and use this result to prove

that gyrogroups of particular orders have the strong Cauchy property.

1. Introduction

Lagrange's theorem (that the order of any subgroup of a �nite group Γ divides
the order of Γ) is well known in group theory and has impact on several branches
of mathematics, especially �nite group theory, combinatorics, and number theory.
Lagrange's theorem proves useful for unraveling mathematical structures. For
instance, it is used to prove that any �nite �eld must have prime power order.
Certain classi�cation theorems of �nite groups arise as an application of Lagrange's
theorem [9, 10, 17]. Further, Fermat little's theorem and Euler's theorem may be
viewed as a consequence of this theorem. Also relevant are the orbit-stabilizer
theorem and the Cauchy-Frobenius lemma (or Burnside's lemma). A history of
Lagrange's theorem on groups can be found in [15].

In loop theory, the Lagrange property becomes a nontrivial issue. For example,
whether Lagrange's theorem holds for Moufang loops was an open problem in the
theory of Moufang loops for more than four decades [5, p. 43]. This problem
was answered in the a�rmative by Grishkov and Zavarnitsine [11]. In fact, not
every loop satis�es the Lagrange property as one can construct a loop of order �ve
containing a subloop of order two. Nevertheless, some loops satisfy the Lagrange
property.

Baumeister and Stein [1] proved a version of Lagrange's theorem for Bruck
loops by studying in detail the structure of a �nite Bruck loop. Foguel et al. [7]
proved that left Bol loops of odd order satisfy the strong Lagrange property. It
is, however, still an open problem whether or not Bol loops satisfy the Lagrange
property [6, p. 592]. In the same spirit, we focus on the Lagrange property for
gyrogroups or left Bol loops with the A`-property in the loop literature. In [18],
we proved that the order of an L-subgyrogroup of a �nite gyrogroup G divides the
order of G. In this paper, we extend this result by proving that the order of any
subgyrogroup of G divides the order of G, see Theorem 5.7.
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A gyrogroup is a group-like structure, introduced by Ungar, arising as an alge-
braic structure that the set of relativistically admissible vectors in R3 with Einstein
addition encodes [19]. The origin of a gyrogroup is described in [22, Chapter 1].
There are two prime examples of gyrogroups, namely the Einstein gyrogroup, which
consists of the relativistic ball in R3 with Einstein addition [19], and the Möbius
gyrogroup, which consists of the complex unit disk with Möbius addition [21].

In this paper, we prove that Lagrange's theorem holds for gyrogroups and apply
this result to show that �nite gyrogroups of particular orders have the Cauchy
property. Our results are strongly based on results by Foguel and Ungar [8] and
Baumeister and Stein [1]. For basic terminology and de�nitions in loop theory, we
refer the reader to [2, 12,14].

2. Gyrogroups

In this section, we summarize de�nitions and basic properties of gyrogroups. Much
of this section can be found in [20].

Let (G,⊕) be a magma. Denote the group of automorphisms of G with respect
to ⊕ by Aut (G,⊕).

De�nition 2.1 ([20]). A magma (G,⊕) is a gyrogroup if its binary operation
satis�es the following axioms:

(G1) ∃0 ∈ G∀a ∈ G, 0⊕ a = a; (left identity)

(G2) ∀a ∈ G∃b ∈ G, b⊕ a = 0; (left inverse)

(G3) ∀a, b ∈ G∃gyr[a, b] ∈ Aut (G,⊕)∀c ∈ G,

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c; (left gyroassociative law)

(G4) ∀a, b ∈ G, gyr[a, b] = gyr[a⊕ b, b]. (left loop property)

The following theorem gives a characterization of a gyrogroup.

Theorem 2.2 ([8]). Suppose that (G,⊕) is a magma. Then (G,⊕) is a gyrogroup
if and only if (G,⊕) satis�es the following properties:

(g1) ∃0 ∈ G∀a ∈ G, 0⊕ a = a and a⊕ 0 = a; (two-sided identity)

(g2) ∀a ∈ G∃b ∈ G, b⊕ a = 0 and a⊕ b = 0. (two-sided inverse)
For a, b, c ∈ G, de�ne

gyr[a, b]c = 	(a⊕ b)⊕ (a⊕ (b⊕ c)), (gyrator identity)

then

(g3) gyr[a, b] ∈ Aut (G,⊕); (gyroautomorphism)
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(g3a) a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c; (left gyroassociative law)

(g3b) (a⊕ b)⊕ c = a⊕ (b⊕ gyr[b, a]c); (right gyroassociative law)

(g4a) gyr[a, b] = gyr[a⊕ b, b]; (left loop property)

(g4b) gyr[a, b] = gyr[a, b⊕ a]. (right loop property)

De�nition 2.3 ([20]). A gyrogroup G having the additional property that

a⊕ b = gyr[a, b](b⊕ a) (gyrocommutative law)

for all a, b ∈ G is called a gyrocommutative gyrogroup.

The gyrogroup cooperation, �, is de�ned by the equation

a� b = a⊕ gyr[a,	b]b, a, b ∈ G. (1)

Theorem 2.4 ([20]). Let G be a gyrogroup and let a, b ∈ G. The unique solution
of the equation a ⊕ x = b in G for the unknown x is x = 	a ⊕ b, and the unique
solution of the equation x⊕ a = b in G for the unknown x is x = b� (	a).

By Theorem 2.4, the following cancellation laws hold in gyrogroups.

Theorem 2.5 ([20]). Let G be a gyrogroup. For all a, b, c ∈ G,

(1) a⊕ b = a⊕ c implies b = c; (general left cancellation law)

(2) 	a⊕ (a⊕ b) = b; (left cancellation law)

(3) (b	 a)� a = b; (right cancellation law I)

(4) (b� (	a))⊕ a = b. (right cancellation law II)

Let G be a gyrogroup. For a ∈ G, the left gyrotranslation by a, La : x 7→ a⊕ x,
and the right gyrotranslation by a, Ra : x 7→ x⊕a, are permutations of G. Further,
one has the following composition law

La ◦ Lb = La⊕b ◦ gyr[a, b]. (2)

From this it can be proved that every gyrogroup forms a left Bol loop with the
A`-property, where the gyroautomorphisms correspond to left inner mappings or
precession maps. In fact, gyrogroups and left Bol loops with the A`-property are
equivalent, see for instance [16].
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3. Subgyrogroups

Let G be a gyrogroup. A nonempty subset H of G is called a subgyrogroup if it is
a gyrogroup under the operation inherited from G and the restriction of gyr[a, b]
to H becomes an automorphism of H for all a, b ∈ H. If H is a subgyrogroup
of G, we write H 6 G. We have the following subgyrogroup criterion, as in the
group case.

Proposition 3.1 ([18]). A nonempty subset H of G is a subgyrogroup if and only
if (1) a ∈ H implies 	a ∈ H and (2) a, b ∈ H implies a⊕ b ∈ H.

Subgyrogroups that arise as groups under gyrogroup operation are of great
importance in the study of gyrogroups.

De�nition 3.2 ([8]). A nonempty subset X of a gyrogroup (G,⊕) is a subgroup
if it is a group under the restriction of ⊕ to X.

The following proposition shows that any subgroup of a gyrogroup is simply a
subgyrogroup with trivial gyroautomorphisms.

Proposition 3.3. A nonempty subset X of a gyrogroup G is a subgroup if and
only if it is a subgyrogroup of G and gyr[a, b]

∣∣
X

= idX for all a, b ∈ X.

Just as in group theory, we obtain the following results.

Proposition 3.4. Let G be a gyrogroup and let H be a nonempty collection of

subgyrogroups of G. Then the intersection
⋂

H∈H
H forms a subgyrogroup of G.

Proof. This follows directly from the subgyrogroup criterion.

Proposition 3.5. Let A be a nonempty subset of a gyrogroup G. There exists a
unique subgyrogroup of G, denoted by 〈A〉, such that

(1) A ⊆ 〈A〉 and

(2) if H 6 G and A ⊆ H, then 〈A〉 ⊆ H.

Proof. Set H = {H : H 6 G and A ⊆ H}. Then 〈A〉 :=
⋂

H∈H
H is a subgyrogroup

of G satisfying the two conditions. The uniqueness follows from condition (2).

The subgyrogroup generated by one-element set {a} is called the cyclic subgyro-
group generated by a, which will be denoted by 〈a〉. Next, we will give an explicit
description of 〈a〉.

Let G be a gyrogroup and let a ∈ G. De�ne recursively the following notation:

0 · a = 0, m · a = a⊕ ((m− 1) · a), m > 1, m · a = (−m) · (	a), m < 0. (3)

We also de�ne the right counterparts:

a · 0 = 0, a ·m = (a · (m− 1))⊕ a, m > 1, a ·m = (	a) · (−m), m < 0. (4)
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Lemma 3.6. Let G be a gyrogroup. For any element a of G,

gyr[a ·m, a] = gyr[m · a, a] = gyr[a,m · a] = gyr[a, a ·m] = idG

for all m ∈ Z.

Proof. By induction, gyr[a, a ·m] = idG and gyr[a ·m, a] = idG for all a ∈ G and
all m > 0. By the right gyroassociative law, a · m = m · a for all m ∈ Z. If
m < 0, the left and right loop properties and the left cancellation law together
imply gyr[a, a ·m] = idG.

By induction,
(m · a)⊕ (k · a) = (m+ k) · a (5)

for all m, k > 0. In fact, we have the following proposition.

Proposition 3.7. Let a be an element of a gyrogroup. For all m, k ∈ Z,

(m · a)⊕ (k · a) = (m+ k) · a.

Proof. The proof is routine, using (5) and induction.

Theorem 3.8. Let G be a gyrogroup and let a ∈ G. Then 〈a〉 = {m · a : m ∈ Z}.
In particular, 〈a〉 forms a subgroup of G.

Proof. Set H = {m · a : m ∈ Z}. For all m,n ∈ Z, Proposition 3.7 implies that
	(m · a) = (−m) · a ∈ H and (m · a) ⊕ (k · a) = (m + k) · a ∈ H. This proves
H 6 G. Since a ∈ H, we have 〈a〉 ⊆ H by the minimality of 〈a〉. By the closure
property of subgyrogroups, H ⊆ 〈a〉 and so equality holds.

Note that (m ·a)⊕ [(n ·a)⊕ (k ·a)] = (m+n+k) ·a = [(m ·a)⊕ (n ·a)]⊕ (k ·a)
for all m,n, k ∈ Z. Thus, gyr[m · a, n · a]

∣∣
〈a〉 = id〈a〉 for all m,n ∈ Z and hence 〈a〉

forms a subgroup of G by Proposition 3.3.

Theorem 3.8 suggests us to de�ne the order of an element in a gyrogroup as
follows.

De�nition 3.9. Let G be a gyrogroup and let a ∈ G. The order of a, denoted
by |a|, is de�ned to be the cardinality of 〈a〉 if 〈a〉 is �nite. In this case, we will
write |a| <∞. If 〈a〉 is in�nite, the order of a is de�ned to be in�nity, and we will
write |a| =∞.

Proposition 3.10. Let G be a gyrogroup and let a ∈ G. For all m,n ∈ Z,

gyr[m · a, n · a] = idG.

Proof. By induction, Lm·a = Lm
a for all a ∈ G and all m ∈ Z. Since L−1a = L	a,

we have from (2) that

gyr[m · a, n · a] = L−(m+n)·a ◦ Lm·a ◦ Ln·a = L−(m+n)
a ◦ Lm

a ◦ Ln
a = idG

for all m,n ∈ Z.
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In light of the proof of Proposition 3.10, gyrogroups are left power alternative.
Further, the following proposition implies that gyrogroups are power associative.

Proposition 3.11. If a is an element of a gyrogroup, then 〈a〉 forms a cyclic
group with generator a under gyrogroup operation.

Proof. By Theorem 3.8, 〈a〉 is a group under gyrogroup operation. By induction,
m · a = am for all m > 0, where the notation am is used as in group theory. If
m < 0, one obtains similarly that m · a = am. Hence, 〈a〉 forms a cyclic group
with generator a.

Corollary 3.12. Any gyrogroup generated by one element is a cyclic group.

Because the group order of a and the gyrogroup order of a are the same, we
obtain the following results.

Proposition 3.13. Let G be a gyrogroup and let a ∈ G.

(1) If |a| <∞, then |a| is the smallest positive integer such that |a| · a = 0.

(2) If |a| =∞, then m · a 6= 0 for all m 6= 0 and m · a 6= k · a for all m 6= k in Z.

Corollary 3.14. Let a be an element of a gyrogroup. If |a| = n <∞, then

〈a〉 = {0 · a, 1 · a, . . . , (n− 1) · a}.

Corollary 3.15. Let a be an element of a gyrogroup and let m ∈ Z \ {0}.

(1) If |a| =∞, then |m · a| =∞.

(2) If |a| <∞, then |m · a| = |a|
gcd (|a|,m)

.

4. Gyrogroup homomorphisms

A gyrogroup homomorphism is a map between gyrogroups that preserves the
gyrogroup operations. A bijective gyrogroup homomorphism is called a gyrogroup
isomorphism. We say that gyrogroups G and H are isomorphic, written G ∼= H,
if there exists a gyrogroup isomorphism from G to H.

Suppose that ϕ : G → H is a gyrogroup homomorphism. The kernel of ϕ is
de�ned to be the inverse image of the trivial subgyrogroup {0} under ϕ. Since
kerϕ is invariant under all the gyroautomorphisms of G, the operation

(a⊕ kerϕ)⊕ (b⊕ kerϕ) := (a⊕ b)⊕ kerϕ, a, b ∈ G, (6)

is independent of the choice of representatives for the left cosets. The system
(G/ kerϕ,⊕) forms a gyrogroup, called a quotient gyrogroup. This results in the
�rst isomorphism theorem for gyrogroups.
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Theorem 4.1 ([18], The First Isomorphism Theorem). If ϕ is a gyrogroup
homomorphism of G, then G/ kerϕ ∼= ϕ(G) as gyrogroups.

A subgyrogroup N of a gyrogroup G is normal in G, denoted by N E G,
if it is the kernel of a gyrogroup homomorphism of G. By Theorem 4.1, every
normal subgyrogroup N gives rise to the quotient gyrogroup G/N , along with the
canonical projection Π: a 7→ a⊕N .

We state the second isomorphism theorem for gyrogroups for easy reference;
its proof can be found in [18].

Theorem 4.2 (The Second Isomorphism Theorem). Let G be a gyrogroup
and let A,B 6 G. If BEG, then A⊕B 6 G, A∩BEA, and (A⊕B)/B ∼= A/(A∩B)
as gyrogroups.

5. The Lagrange property

Throughout this section, all gyrogroups are �nite. A version of the Lagrange
property for loops can be found in [5]. In terms of gyrogroups, the Lagrange
property can be restated as follows.

De�nition 5.1. A gyrogroup G is said to have the Lagrange property if for each
subgyrogroup H of G, the order of H divides the order of G.

A version of the following proposition for loops was proved by Bruck in [2].
As the �rst isomorphism theorem and the second isomorphism theorem hold for
gyrogroups, we also have the following proposition:

Proposition 5.2. Let H be a subgyrogroup of a gyrogroup G and let B be a normal
subgyrogroup of H. If B and H/B have the Lagrange property, then so has H.

Corollary 5.3. Let N be a normal subgyrogroup of a gyrogroup G. If N and G/N
have the Lagrange property, then so has G.

Proof. Taking H = G in the proposition, the corollary follows.

Proposition 5.4. Let X be a subgroup of a gyrogroup G. If H 6 X, then |H|
divides |X|. In other words, every subgroup of G has the Lagrange property.

Proof. Suppose that H 6 X. Since gyr[a, b]
∣∣
H

= idH for all a, b ∈ H, H forms a
subgroup of G. By de�nition, X forms a group and H becomes a subgroup of X.
By Lagrange's theorem for groups, |H| divides |X|.

Lagrange's theorem holds for all gyrocommutative gyrogroups, as shown by
Baumeister and Stein in [1, Theorem 3] in the language of Bruck loops.

Theorem 5.5. In a gyrocommutative gyrogroup G, if H 6 G, then |H| divides
|G|. In other words, every gyrocommutative gyrogroup has the Lagrange property.
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Proof. Let G be a gyrocommutative gyrogroup and let H 6 G. Then G is a Bruck
loop and H becomes a subloop of G. By Theorem 3 of [1], |H| divides |G|, which
completes the proof.

The next theorem, due to Foguel and Ungar, enables us to extend Lagrange's
theorem to all �nite gyrogroups.

Theorem 5.6 ([8], Theorem 4.11). If G is a gyrogroup, then G has a normal
subgroup N such that G/N is a gyrocommutative gyrogroup.

Theorem 5.7 (Lagrange's Theorem). If H is a subgyrogroup of a gyrogroup
G, then |H| divides |G|. That is, every gyrogroup has the Lagrange property.

Proof. Let G be a gyrogroup. By Theorem 5.6, G has a normal subgroup N such
that G/N is gyrocommutative. Because N = ker Π, where Π: G → G/N is the
canonical projection, N is a normal subgyrogroup of G. By Proposition 5.4 and
Theorem 5.5, N and G/N have the Lagrange property. By Corollary 5.3, G has
the Lagrange property.

6. Applications

In this section, we provide some applications of Lagrange's theorem. Throughout
this section, all gyrogroups are �nite.

Proposition 6.1. Let G be a gyrogroup and let a ∈ G. Then |a| divides |G|. In
particular, |G| · a = 0.

Proof. By de�nition, |a| = |〈a〉|. By Lagrange's theorem, |a| divides |G|. Write
|G| = |a|k with k ∈ N, so |G| · a = (|a|k) · a = |a| · a⊕ · · · ⊕ |a| · a︸ ︷︷ ︸

k copies

= 0.

Although we know that a left Bol loop of prime order is a cyclic group by a
result of Burn [3, Corollary 2], we present the following theorem as an application
of Lagrange's theorem.

Theorem 6.2. If G is a gyrogroup of prime order p, then G is a cyclic group of
order p under gyrogroup operation.

Proof. Let a be a nonidentity element of G. Then |a| 6= 1 and |a| divides p. It
follows that |a| = p, which implies G = 〈a〉 since G is �nite. By Proposition 3.11,
〈a〉 is a cyclic group of order p, which completes the proof.
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The Cauchy property

In the loop literature, it is known that left Bol loops of odd order satisfy the
Cauchy property [7, Theorem 6.2]. However, Bol loops fail to satisfy the Cauchy
property as Nagy proves the existence of a simple right Bol loop of exponent 2 and
of order 96 [13, Corollary 3.7]. This also implies that gyrogroups fail to satisfy
the Cauchy property since any Bol loop of exponent 2 is necessarily a Bruck loop,
hence a gyrocommutative gyrogroup.

In this subsection, we apply Lagrange's theorem and results from loop theory
to establish that some �nite gyrogroups satisfy the Cauchy property.

De�nition 6.3 (The Weak Cauchy Property, WCP). A �nite gyrogroup G
is said to have the weak Cauchy property if for every prime p dividing |G|, G has
an element of order p.

De�nition 6.4 (The Strong Cauchy Property, SCP). A �nite gyrogroup
G is said to have the strong Cauchy property if every subgyrogroup of G has the
weak Cauchy property.

The Cauchy property is an invariant property of gyrogroups, as shown in the
following proposition.

Proposition 6.5. Let G and H be gyrogroups and let φ : G → H be a gyrogroup
isomorphism.

(1) If G has the weak Cauchy property, then so has H.

(2) If G has the strong Cauchy property, then so has H.

Proof. (1) It su�ces to prove that |φ(a)| = |a| for all a ∈ G. By induction,
φ(n · a) = n · φ(a) for all a ∈ G and all n ∈ N. Let a ∈ G. Since |a| · a = 0, we
have |a| · φ(a) = φ(|a| · a) = φ(0) = 0. If there were a positive integer m < |a| for
which m · φ(a) = 0, then we would have φ(m · a) = 0 and would have m · a = 0,
contradicting the minimality of |a|. Hence, |a| is the smallest positive integer such
that |a| · φ(a) = 0, which implies |φ(a)| = |a| by Proposition 3.13 (1).

(2) Let B 6 H. Set A = φ−1(B). Then A 6 G and A has the WCP. Since φ
∣∣
A

is a gyrogroup isomorphism from A onto B, B has the WCP by Item 1.

Corollary 6.6. Let G and H be gyrogroups. If G ∼= H, then G has the weak
(resp. strong) Cauchy property if and only if H has the weak (resp. strong)
Cauchy property.

Theorem 6.7. Let H be a subgyrogroup of a gyrogroup G and let B be a normal
subgyrogroup of H.

(1) If B and H/B have the weak Cauchy property, then so has H.

(2) If B and H/B have the strong Cauchy property, then so has H.



292 T. Suksumran and K. Wiboonton

Proof. (1) Suppose that p is a prime dividing |H|. Since |H| = [H : B]|B|, p divides
|H/B| or |B|. If p divides |B|, then B has an element of order p and we are done.
We may therefore assume that p - |B|. Hence, p divides |H/B|. By assumption,
H/B has an element of order p, say a⊕B. By induction, n · (a⊕B) = (n · a)⊕B
for all n > 0. Hence, by Proposition 3.13 (1), p is the smallest positive integer
such that p · a ∈ B. In particular, a 6∈ B. Note that gcd (|a|, p) = 1 or p. If

gcd (|a|, p) = 1 were true, we would have |p · a| =
|a|

gcd (|a|, p)
= |a|, and would

have a ∈ 〈a〉 = 〈p · a〉 6 B, a contradiction. Hence, gcd (|a|, p) = p, which implies

p divides |a|. Write |a| = mp. Then |m · a| = |a|
gcd (|a|,m)

= p, which �nishes the

proof of (1).
(2) Suppose that B and H/B have the SCP. Let A 6 H. By assumption,

A ∩ B has the WCP. Since A ⊕ B/B 6 H/B, A ⊕ B/B has the WCP. Since
A/A ∩B ∼= A⊕B/B, A/A ∩B has the WCP. By Item 1, A has the WCP.

Corollary 6.8. Let N be a normal subgyrogroup of a gyrogroup G. If N and G/N
have the weak (strong) Cauchy property, then so has G.

Consider a gyrogroup G of order pq, where p and q are primes. If pq is odd, by
a result of Foguel, Kinyon, and Phillips [7, Theorem 6.2], G has the weak Cauchy
property. Since any subgyrogroup of G is of order 1, p, q or pq, every subgyrogroup
of G has the weak Cauchy property as well. This implies that G has the strong
Cauchy property. If pq is even, at least one of p or q must be 2. Hence, G is of
order 2p̃, where p̃ is a prime. By a result of Burn [3, Theorem 4], G is a group,
hence has the strong Cauchy property. This proves the following theorem.

Theorem 6.9 (Cauchy's Theorem). Let p and q be primes. Every gyrogroup
of order pq has the strong Cauchy property.

Theorem 6.10. Let p and q be primes and let G be a gyrogroup of order pq. If
p = q, then G is a group. If p 6= q, then G is generated by two elements; one has
order p and the other has order q.

Proof. In the case p = q, G is a left Bol loop of order p2, hence must be a group
by Burn's result [3, Theorem 5].

Suppose that p 6= q. Let a and b be elements of order p and q, respectively.
By Lagrange's theorem, 〈a〉 ∩ 〈b〉 = {0}. For all m,n, s, t ∈ Z, if (m · a)⊕ (n · b) =
(s · a)⊕ (t · b), then 	(s⊕ a)⊕ (m · a) = (t · b)� (	(n · b)) = (t · b)	 (n · b) belongs
to 〈a〉∩ 〈b〉. Hence, 	(s⊕a)⊕ (m ·a) = 0 and (t · b)	 (n · b) = 0 and so m ·a = s ·a
and n · b = t · b. This proves {(m · a)⊕ (n · b) : 0 ≤ m < p, 0 ≤ n < q} contains pq
distinct elements of G. Since G is �nite, it follows that

G = {(m · a)⊕ (n · b) : 0 ≤ m < p, 0 ≤ n < q} = 〈a, b〉.

In general, gyrogroups of order pq, where p and q are distinct primes not equal
to 2, need not be groups. This is a situation where gyrogroups are di�erent from
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Moufang loops. As Moufang loops are diassociative, every Moufang loop generated
by two elements must be a group. This implies that Moufang loops of order pq
are groups [4, Proposition 3].

Let G be a �nite nongyrocommutative gyrogroup. By Theorem 5.6, G has a
normal subgroup N such that G/N is gyrocommutative. Because G is nongyro-
commutative, we have N is nontrivial, since otherwise Π: G → G/N would be a
gyrogroup isomorphism and G and G/N would be isomorphic gyrogroups. From
this we can deduce the following results.

Theorem 6.11. Let p be a prime. Every nongyrocommutative gyrogroup of order
p3 has the strong Cauchy property.

Proof. Let G be a nongyrocommutative gyrogroup of order p3. As noted above,
G has a nontrivial normal subgroup N . By Lagrange's theorem, |N | = p, p2 or
p3. If |N | = p3, then G = N is a group, hence has the SCP. If |N | ∈ {p, p2}, then
|N | ∈ {p, p2}. In any case, N and G/N form groups. Hence, N and G/N have
the SCP and by Corollary 6.8, G has the SCP.

Theorem 6.12. Let p, q and r be primes. Every nongyrocommutative gyrogroup
of order pqr has the strong Cauchy property.

Proof. The proof follows the same steps as in the proof of Theorem 6.11.
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