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Abstract Sediment particles transported as bed load undergo alternating periods of motion and rest,
particularly at weak flow intensity. Bed load transport can be investigated by either following the
motion of individual particles (Lagrangian approach) or observing the phenomenon at prescribed
locations (Eulerian approach). In this paper, the Lagrangian and Eulerian descriptions are merged into a
unifying framework that includes definitions for quantities used to describe the kinematics of particle
motion, as well as the relationships among these quantities. The alternation of motion and rest is
represented by two complementary descriptions: (i) proportion of motion, indicating either the relative
time spent in motion by an individual particle or the relative number of moving particles; (ii) persistence of
motion, indicating the extent to which the process consists of relatively few long periods of motion or of
many short ones. The framework only involves first moments of the key quantities. The conceptual
developments are tested against results from an experiment with weak bed load transport, demonstrating
the soundness of the approach. From an operational point of view, a Lagrangian observation is difficult to
perform, since the particle motion is usually investigated for finite spatial domains (e.g., a measurement
window within a laboratory or natural reach). Strategies to overcome such limitations are described,
suggesting the possibility of obtaining unbiased mean values for Lagrangian descriptors. The proposed
framework can be used in any study aimed at parameterizing the kinematic properties of bed load
particles as functions of the hydrodynamic conditions.

1. Introduction

Lagrangian and/or Eulerian approaches can be used for the observation of motion. The former approach fol-
lows objects as they move, while the latter explores the process dynamics at prescribed locations. In the con-
text of bed load sediment transport the two approaches correspond to following the trajectories of solid
particles (e.g., Ancey et al., 2002; Campagnol et al., 2013; Fathel et al., 2015; Heays et al., 2014; Lajeunesse
et al., 2010) and to characterizing the sediment transport properties at some place (e.g., Böhm et al., 2004;
Garcia et al., 2007; Nelson et al., 1995; Radice et al., 2010, 2013), respectively. Typically, the Lagrangian
approach is mostly used when dispersion of tracer particles comes into play (e.g., Campagnol et al., 2015;
Fan et al., 2016; Fathel et al., 2016; Hassan et al., 2013; Lisle et al., 1998; Martin et al., 2012; Nikora et al.,
2001, 2002), whereas the Eulerian approach is employed for the investigation of sediment fluxes (e.g.,
Ancey & Heyman, 2014; Ballio et al., 2014; Cohen et al., 2010; Frey et al., 2003; Furbish, Haff, et al., 2012;
Radice, 2009; Singh et al., 2009; Turowski, 2010).

The two approaches complement each other because they provide alternative descriptions of the process.
For example, let one consider the sediment transport rate: it has been expressed in a fully Eulerian form as
proportional to a bed load sediment concentration and a sediment velocity, or in a Lagrangian-Eulerian form
as proportional to an Eulerian entrainment rate and a Lagrangian hop length (e.g., Garcia, 2008). Conditions
of equivalence for the two expressions have been discussed in the literature from a variety of perspectives
and under different restricting conditions (e.g., Ancey et al., 2006; Blom & Parker, 2004; Furbish, Roseberry,
et al., 2012).

More generally, the identification of conceptual links between the Lagrangian and Eulerian approaches to
bed load transport has been important for analyzing the complexity of processes in sediment mechanics
since the pioneering work of Einstein (1937). Recent studies on this topic (e.g., Ancey & Heyman, 2014;
Ancey et al., 2008; Furbish, Roseberry, et al., 2012; Ganti et al., 2009; Niño & Garcia, 1998; Voepel et al.,
2013) have made extensive use of mathematical and/or statistical approaches to describe the richness of
the sediment transport process.
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From an operational point of view, measurements of Lagrangian and Eulerian indicators of particle motion
pose several key issues. In both approaches, the mass of the particle can be concentrated into an infinitesimal
volume or distributed within a finite volume (e.g., Ancey et al., 2008; Ballio et al., 2014; Berzi et al., 2015;
Campagnol et al., 2012; Charru et al., 2004; Fan et al., 2014; Kempe & Fröhlich, 2012; Wu & Chou, 2003).
Furthermore, Eulerian variables are typically (though not necessarily) defined over a control volume and a
time scale: for example, an entrainment rate can be operationally determined by assessing if one or more
particles have been entrained from a certain area within a certain time interval (e.g., Cao, 1997; Hosseini
Sadabadi et al., 2016a; Van Rijn, 1984). The requirement of a control volume and time scale for the measure-
ment entails determining the scaling properties of the various quantities (e.g., Bunte & Abt, 2005; Campagnol
et al., 2012; Radice et al., 2009; Singh et al., 2009). Moreover, measurements are always performedwithin finite
domains (in both space and time). These domains are larger than the measurement scales presented above
(e.g., experiment duration is larger than a time interval used for measurement; analogously, the length of an
investigated reach is larger than control volumes used to measure any quantity within the same reach).
Experimental results can, however, depend on the extent of these finite domains. In this regard, the most
appropriate experimental conditions to correctly identify Lagrangian properties (that should not depend
on spatial and temporal constraints) are far from ascertained (e.g., Fathel et al., 2015). In principle, linking
the Eulerian and Lagrangian approaches can help overcome operational limitations for measurement of
Lagrangian quantities.

The aim of this paper is to explore the links between Lagrangian and Eulerian kinematic variables. The
problem is well resolved in the classic continuum framework, where (Lagrangian) velocities of infinitesimal
units of mass are linked to the (Eulerian) velocity field. In sediment transport problems, the classic
approach may fail for weak transport conditions or when relatively high time and space resolutions are
required. In such cases, the process may not be treatable as a mathematical continuum because variables
become highly irregular (e.g., Ancey, 2010; Ballio et al., 2014; Böhm et al., 2004; Coleman & Nikora, 2009;
Fathel et al., 2015; Lisle et al., 1998). More specifically, conceptualizations of sediment mechanics at the
particle scale require taking into account process intermittency, which we identify with the alternation
of motion and rest periods resulting from entrainment and disentrainment events (in other words, the
term “intermittent” is used here for quantities with values that alternate between zero, during some time
intervals, and nonzero, during others).

Studies of sediment mechanics do not rely solely on the time series of (Lagrangian or Eulerian) sediment
velocities. A variety of derived variables are also used to describe the complexity of sediment kinematics
(examples of these variables are hop lengths and time intervals, concentrations of moving particles, time-
and space-averaged grain velocities, sediment pickup and deposition rates, and solid fluxes). Such derived
variables represent fundamental information about sediment kinematics (how many particles are in motion
and how quickly they move) that, while expressed in different ways, may be correlated with one another.

The research question of this paper, therefore, can be formulated as follows: how can one derive a set of
quantities, involved in Lagrangian or Eulerian models for sediment transport, from the kinematics of
individual grains and provide a unifying framework linking the two (Lagrangian and Eulerian) approaches?
This sort of framework is important for two reasons. First, the framework supports interpretation and
comparison of different expressions for sediment kinematics due to the choice of different combinations
of variables. Second, the framework supports experimental investigation of sediment transport processes
because variables that cannot be directly measured may be estimated indirectly through their links with
other variables.

To answer the above research question, we propose a consistent kinematic framework where: (i) restrictive
hypotheses are kept to a minimum; (ii) links are defined for deterministic variables (instantaneous and/or
time averaged); (iii) only first moments of the quantities are considered; and (iv) all the parameters commonly
used in sediment transport studies are considered, as well as their mutual relationships.

To the best of our knowledge, the existing literature proposes relatively few solutions to this problem, and
none of them has the characteristics of the one presented here. Recent approaches (e.g., Ancey & Heyman,
2014; Ancey et al., 2006; Fan et al., 2014; Furbish, Roseberry, & Schmeeckle, 2012; Lajeunesse et al., 2010)
are devoted to the definition of the stochastic properties of some variables and, with respect to the present
work, account for more statistical moments of fewer quantities.

Journal of Geophysical Research: Earth Surface 10.1002/2016JF004087

BALLIO ET AL. 385



The paper is organized as follows: section 2 specifies the general framework of the approach by defining the
fundamental variables and operators. Sections 3 and 4 present derivations of averaged quantities. In particu-
lar, various tools are employed in order to account for the intermittency of the sediment transport process,
which is here a synonym for the alternation between states of particle motion and rest. An application of
the framework to analyzing experimental data is conducted in section 5, where a method is also described
to appropriately compute Lagrangian quantities (Lagrangian proportion of motion and hop properties) from
an observation over a finite domain. A discussion of critical issues and the major conclusions are provided in
the subsequent sections.

2. Conceptual Framework

We consider identical grains transported as one-dimensional bed load. These grains represent an arbitrary
sample from the population of all the sediment involved in the process as, for example, a given grain size
class, or a tracer. For simplicity, grains are assumed to move only in the positive x direction.

The Lagrangian description of bed load is based on the kinematics of individual particles. Values of involved
quantities, such as the number of particles or their velocity, are then integrated/averaged in space for the
Eulerian description over a control volume. The higher the number of particles present in the control volume,
the smoother the temporal variations of quantities obtained.

Definitions presented in this paper do not require an assumption of a large number of particles involved.
They allow taking into account the rarefied transport conditions that often occur in both natural and
experimental settings. However, a large number of particles in the control volume is typically necessary for
the quantities obtained by integration/averaging over this volume to be physically meaningful.

As noted above, bed load sediment transport is an intermittent process. Therefore, twomain states of motion
and stillness must be appropriately accounted for. In this study, many kinematic descriptors will be defined
considering only the moving particles. The following main concepts will be introduced:

1. Proportion of motion (section 3), indicating the relative occurrence of motion and stillness, thus furnishing
“large-scale” information about particle activity. Proportion of motion can be defined for a single particle
(time the particle spent in motion relative to the entire observation time) or for a set of particles (relative
number of moving particles within a sample).

2. Persistence of motion (section 4), indicating if the process consists of many short events or a few longer
ones. This concept can be applied to single or multiple particles.

Summarizing the above considerations, the manuscript will be articulated by using two conceptual axes, one
related to the reference frame (Lagrangian or Eulerian) and one to the description of intermittency (by pro-
portion or persistence of motion). Four combinations will thus be explored, as well as the relationships
among them.

2.1. Lagrangian Description

An individual particle is denoted with i and the total number of particles in the sample is N. The streamwise
position of a particle at any time t (Figure 1a) is denoted with x(i,t). For the ith particle, one can identify a
succession of alternating periods of movement and rest. A single period of motion and the following period
of rest (Figure 1b) form an “event.” J(i) indicates the total number of events in the history of the particle. The
duration of the jth event for the ith particle is Δt(i,j), and it can be further split into durations of motion and
stillness (rest), Δtm(i,j), and Δtr(i,j), respectively. Similarly, Δx(i,j) represents the displacement of a particle i
during an event j, which is often referred to as “hop length.”

At any instant a particle i may or may not be in a state of motion. Therefore, it is convenient to introduce a
“clipping function” Mm to quantify the state of motion of the ith particle as

Mm i; tð Þ ¼ 1 if particle is moving

0 if particle is not moving

�
(1)

The clipping function Mm can be expressed as
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Mm i; tð Þ ¼
X

j
H t � te i; jð Þð Þ � H t � td i; jð Þ� �� �

; (2)

where te(i,j) and td(i,j) identify the instants of entrainment (pickup) and disentrainment (deposition), respec-
tively, for an event j, and H() is the Heaviside step function. An example of a temporal evolution of Mm is
shown in Figure 1c. The time derivative of Mm(i,t) is

dMm i; tð Þ
dt

¼
X

j
δ t � te i; jð Þð Þ �

X
j
δ t � td i; jð Þ� � ¼ e i; tð Þ � d i; tð Þ; (3)

where δ is a Dirac delta function that can be used to define e(i,t) and d(i,t) (i.e., entrainment and disentrain-
ment functions, respectively) for the particle.

The distinction between the states of stillness andmotion identifies whether a grain belongs to the static bed
or to the transport layer, thus defining two subsamples of particles. Due to this simplified description of the
states of motion, transitions from the one state to the other one (entrainment and disentrainment) imply
finite variations of extensive quantities (e.g., number of particles and corresponding total volume or mass)
pertaining to each subsample within infinitesimal times. Time series of these extensive quantities are
thus discontinuous.

Figure 1. Conceptual description of an ith particle path by its (a) position x, (b) velocity u, and (c) clipping function for
motion Mm. Properties of a jth event (time of motion and rest, total duration, displacement length, instants of
entrainment and disentrainment) are sketched. The long dashed lines mark an Eulerian observation window.
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2.2. Eulerian Description

A control volume for the Eulerian description may be chosen as a prism
with vertical edges; relevant boundaries for sediment fluxes will be ver-
tical surfaces. For simplicity, we now project the control volume onto a
horizontal surface, thus transforming it into an area and its boundaries
into lines. Bearing this in mind, consider a reference plan area A extend-
ing between two x-locations, x1 and x2 = x1 + L (Figure 2a) and having a
certain width B. When a moving particle with volume w crosses the
boundaries of A, the solid volume pertaining to A, wA, changes
(Figure 2b). This change can be described in two ways, depending on
the conceptual model of the particle. If one considers a particle of a
finite size (a distributed particle), the variation of the solid volume per-
taining to A, ΔwA, grows continuously until it reaches w (i.e., until the
whole particle has entered A; this is depicted by the thick dashed line in
Figure 2b). Alternatively, all the properties of the particle (mass, volume,
velocity, …) may be attributed to its center of mass (concentrated
properties), so that the particle itself is considered infinitely small. The
latter choice is simpler because it avoids having to account for the par-
tial contribution of the particle’s properties to the Eulerian values over
A. For example, the whole volume of the particle, w, is added instanta-
neously to the solid volume pertaining to A, at the moment when the

particle center crosses the upstream boundary of A. This in turn generates discontinuities in the time series
whenever the center of mass crosses either boundary of A (solid lines in Figure 2b). In this paper, we adopt
the latter approach, where all the properties of a particle are attributed to its center of mass.

To identify whether a particle i is within the reference area A, an Eulerian clipping function is defined as

MA i; tð Þ ¼ 1 if particle is withinA at time t

0 if particle is not withinA at time t

�
: (4)

The total number of particles within A at time t is expressed as

NA tð Þ ¼
XN
i¼1

MA i; tð Þ; (5)

and the number of particles within A that are in motion at time t as

Nm
A tð Þ ¼

XN
i¼1

MA i; tð Þ Mm i; tð Þ ¼
XNA tð Þ

i¼1

Mm i; tð Þ: (6)

In analogy with equation (6) we can also define the number of particles at rest within A at time t as

Nr
A tð Þ ¼

XN
i¼1

MA i; tð Þ 1�Mm i; tð Þð Þ ¼
XNA tð Þ

i¼1

1�Mm i; tð Þð Þ: (7)

For the Eulerian description it is also useful to express the volumetric sediment flux through a target trans-
verse line located at x = x0. This can be done by following the motion of a single grain as it approaches
the target (with ui > 0). The time at which this grain arrives at the target line is denoted with t0(i). The volu-
metric sediment flux through the target surface is expressed by including the contribution of each grain. For
any ith grain to contribute to the total volume that passes through the target during a short period dt, its arri-
val time t0(i) must be within this interval, (i.e., t ≤ t0(i) ≤ t + dt). The total volume of all the particles satisfying
this condition is expressed as

dV ¼ w
XN
i¼1

H t þ dt � t0 ið Þð Þ �
XN
i¼1

H t � t0 ið Þð Þ
" #

¼ w
XN
i¼1

dH t � t0 ið Þð Þ ¼ w
XN
i¼1

δ t � t0 ið Þð Þdt; (8)

Figure 2. (a) Sketch of a particle moving through the reference plan area of the
bed (bounded by x1 and x2); (b) the variation of the solid volume pertaining to
the area, ΔwA, is depicted in two different scenarios of a distributed (finite)
particle (thick dashed line) and a concentrated (infinitely small) particle (thick
solid line).
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where w is again the particle volume. The first term within square brackets is the number of particles beyond
the line at t + dt, while the second is the number of particles already beyond the line at t. The instantaneous
discharge, therefore, is equal to

Q ¼ dV
dt

¼ w
XN
i¼1

δ t � t0 ið Þð Þ ¼ w
XN
i¼1

u i; tð Þδ x i; tð Þ � x0ð Þ (9)

The instantaneous sediment discharge is represented by delta functions and, therefore, is discontinuous in
time, like the entrainment and disentrainment functions defined by equation (3). In this case, the discontinu-
ity is due to considering concentrated particles, while considering particles with a finite volume would have
led to a continuous time series of Q as was comparatively shown, for example, by Campagnol et al. (2012).

2.3. Averaging Options

Considering the sparseness in space and intermittency in time of sediment motion, first moments of
Lagrangian and Eulerian descriptors of sediment motion can be obtained through various forms of
averaging. The following averaging options are considered here, in which θ indicates any general quantity.

Time averaging provides integrated properties, smoothing temporal fluctuations:

θ ¼ 1
T

∫
tþT

t
θ tð Þdt: (10)

It should be noted that the quantity θ in equation (10) may be a property of a single grain or of a set of grains.

Sample averaging yields quantities that are averaged over a set of individual particles:

θf g ¼ 1
N

XN
i¼1

θ ið Þ; (11)

θf gA ¼ 1
NA

XNA

i¼1

θ ið Þ: (12)

One should consider that sample averaging by equation (11) is a fully Lagrangian operator, while averaging
by equation (12) includes a dependency on A and is thus a mixed Lagrangian/Eulerian operator.

Finally, expected values will be associated with averaging in the space of realizations (e.g., experiment repeti-
tions) and will be denoted with square brackets, [θ].

The above definitions consider any quantity as a function of time t, a particle i, and a realization. A further
averaging option is here defined, since at any time t a particle experiences its jth motion event (see again
Figure 1). Event averaging provides an alternative to equation (10), yielding properties of particle hops (or
of rest terms as their counterparts):

θh i ¼ 1
J

XJ

j¼1

θ jð Þ; (13)

recalling that J is the number of observed events for the particle. The averaging option (13) is limited to
Lagrangian quantities, as it considers a succession of particle motion events.

In ideal (uniform, stationary, and ergodic) conditions, andwhen the spatial and temporal windows and the size
of ensembles are sufficiently large, corresponding averaging options produce identical statistics (e.g., Von
Plato, 1991). However, experimental conditions always impose operational limitations (small averaging area,
short observation time) and, therefore, can result in biased average values. In such conditions, temporal and
sample averaging may be used to complement each other (e.g., by applying them successively) and, hence,
produce estimates of mean values better than either of them would produce on its own. In what follows,
temporal and sample averaging will be considered together, jointly representing the general population.

3. Proportion of Motion

This section explores global quantities that describe the relative importance of the states of motion and rest.
By way of introduction, Figure 3 shows a conceptual description of motion for a set of N concentrated
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particles observed during a period T, and within a reference plan area A. Motion is indicated with blue color,
while the beige color indicates rest. Figure 3a shows the particle locations at three time instants, as well as
the boundaries of the area A. Figure 3b shows the state of motion for all particles throughout T, and a thick
black line encloses the period that the particle spent within A. These diagrams are used as visual aids for
definition of various Lagrangian and Eulerian quantities presented in sections 3.1 and 3.2, respectively,
and sketched in Figures 3c and 3d. These are further developed in section 3.3, which analyzes the
average sediment discharge.

3.1. Lagrangian Description of Movement for a Group of Particles

A Lagrangian perspective means that an observer follows a particle i or a group of particles (with i = 1, 2,..., N)
as they move (for example, the group of N = 5 particles shown in Figure 3a). We are interested in comparing
the total duration of motion and rest periods of such a group of particles during an observation period of
duration T (t1 < t ≤ t1 + T). The time that a particle i spends in motion during this period is equal to

Tm ið Þ ¼ ∫
t1þT

t1
Mm i; tð Þdt: (14)

Figure 3. Conceptual description of motion for a sample of N particles (1 ≤ i ≤ N) observed during the period
t1 = 0 ≤ t ≤ t2 = t1 + T, and above a plan area, A. (a) The particles at three time instances marked with dashed vertical
lines in (b) and (d). The moving particles are colored blue and those at rest are beige. The boundaries of the area A are
shown as thick black lines; (b) state of motion for all particles i throughout the observation period T: blue sections indicate
motion and beige means rest; the thick black line encloses the period that the particle spent within the area A; (c) relative
duration (with respect to T) of the state of motion, for each particle, φT

m(i) (blue symbols), and for particles within
A, φTA

m(i) (black symbols); (d) relative number of particles in motion within the whole sample N, φN
m(t) (blue line), and

within the area A, φA
m(t) (black line), versus time.
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The motion time Tm(i) can be visualized in Figure 3b as the total length of the blue sections in the row plotted
against particle i. The corresponding relative time spent in motion, φT

m(i), (equal to the time spent in motion
divided by the total observation time) can be defined as

φmT ið Þ ¼ Tm ið Þ
T

¼ Mm i; tð Þ: (15)

This relative time of motion was mentioned, for example, in Papanicolaou et al. (2002) and Ancey et al. (2006).
A sketch of φT

m for all particles is shown in Figure 3c with blue symbols. An analogous quantity φTA
m(i), shown

with black symbols in the same diagram, indicates the relative time that particle i spends in motion while it is
within the reference area A; this mixed Lagrangian-Eulerian quantity will be defined in section 5.

On the other hand, for a group of N particles we can also define an instantaneous relative number of particles
in motion, φN

m(t) (equal to the number of moving particles divided by the total number of observed
particles) as

φmN tð Þ ¼ Nm tð Þ
N

¼
PN
i¼1

Mm i; tð Þ
N

¼ Mm i; tð Þf g; (16)

where Nm is the number of particles in motion. In Figure 3a, the number of moving particles at three different
instants is 3, 2, and 4, out of 5, hence yielding φN

m = 0.6, 0.4, and 0.8, respectively. A sketch of φN
m during the

entire period of observation is shown in Figure 3d as a blue line. Since only five particles are observed, the
φmN tð Þ diagram shows a step change of 0.2 every time a particle starts or stops moving.

If the process is ergodic, stationary, and uniform in space, it is physically meaningful to look for the expected
value of the proportion of motion,ϑm, defined as

ϑm ¼ Mm i; tð Þ½ �: (17)

This quantity indicates how likely a particle i is to be moving at a time instant t (i.e., in how many realizations,
relative to a large total number of realizations, the particle has been moving at time t). For a stationary and
spatially uniform process, the value ofϑm is the same for all particles and all time instances, so that one
can also call it a global proportion of motion and estimate its value by equation (15) or (16).

In order to obtain a good estimate of the global relative duration of motion,ϑm, we need a sufficiently large
data set in terms of the number of particles and the length of observation time compared to typical periods of
motion and rest. In the absence of large samples, it can be easily shown that the sample average of φT

m is
equal to the time average of φN

m(t):

φmT
� � ¼ φmN ¼ 1

N
1
T

XN
i¼1

∫
t1þT

t1
Mm i; tð Þ; (18)

and this nested sample and time averaging can be employed to obtain an estimate ofϑm as

ϑm≅ Mm i; tð Þ
n o

¼ φmT
� � ¼ φmN : (19)

3.2. Eulerian Description of Movement Within a Reference Spatial Domain

From an Eulerian perspective we are interested in describing the state of motion within the reference area A.
We, therefore, define the relative number of particles within the reference area A that are moving, φA

m(t)
(equal to the number of moving particles within A divided by the total number of particles within A):

φmA tð Þ ¼ Nm
A tð Þ

NA tð Þ (20)

For example, the middle diagram in Figure 3a shows four particles within the area A, and only one of them is
moving, so that the corresponding φA

m value is 0.25. A sketch of φA
m during the entire period of observation

is shown in Figure 3d as a black line. It shows a step change every time a particle changes the state of motion,
or enters into A, or exits from it.
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A particle i is within Awhen the clipping functionMA(i,t) is equal to 1 (within black boxes in Figure 3b), and it is
moving when Mm(i,t) = 1. Therefore, the relative number of moving particles within A, φA

m, also can be
expressed as

φmA tð Þ ¼
PNA tð Þ

i¼1
Mm i; tð Þ

PN
i¼1

MA i; tð Þ
¼

PN
i¼1

MA i; tð ÞMm i; tð Þ
PN
i¼1

MA i; tð Þ
¼ MA i; tð Þ Mm i; tð Þ� �

MA i; tð Þ� � (21)

The Lagrangian quantities φT
m and φN

m, and the Eulerian quantity φA
m, quantify the proportion of motion in

different manners. For an integrated approach, it is interesting to explore the conditions under which φT
m,

φN
m, and φA

m become estimates ofϑm. One possibility is to use a time average of φA
m(t), which is analogous

to using the Lagrangian quantityφmN equation (18), except that now the state of motion is observed above an
area A. For the ideal case of A being “large,” NA(t) is also large, and we can assume that it is constant in time
(e.g., Ancey et al., 2006; Furbish, Roseberry, et al., 2012): NA(t) ≅ NA. It follows from equation (20) or (21) that

φmA tð Þ ¼ Mm i; tð Þf gA (22)

and φmA also tends to be constant in time. Moreover, if NA is large, we can assume that {Mm(i, t)} = {Mm(i, t)}A
(i.e., averaging over the set of particles within A produces the same result as averaging over the entire
sample N). This means thatφmA tð Þ=φmN tð Þ. Hence, the relationship with the Lagrangian relative time of motion
for a particle and the global expected relative duration of motion expressed by equation (19) applies.

In the case of a “small” area, instead, a further issue arises because the total number of particles used to obtain
φA

m(t), NA(t), may vary with time. The time-varying number of particles, NA(t), can be decomposed into a time
average:

NA tð Þ ¼ N MA i; tð Þ� �
; (23)

and a fluctuation, NA
0 tð Þ ¼ NA tð Þ � NA tð Þ . This, in turn, produces correlation terms in the expression for the

time average of the number of moving particles within A, Nm
A tð Þ, which can be developed as

Nm
A tð Þ ¼ ∑

NA tð Þ

i¼1
Mm i; tð Þ ¼ NA tð Þ Mm i; tð Þf gA ¼ NA tð Þ Mm i; tð Þf gA þ NA’ Mmf gA ’; (24)

The expression for φmA tð Þ can be found by averaging equation (20) in time and combining it with
equations (23) and (24).

3.3. Sediment Discharge and Effective Velocities

This section presents the relationship between the sediment motion and the sediment discharge through a
target line located at x0. The time average sediment discharge through the target line during the period of
observation t1 ≤ t ≤ t2 = t1 + T can be expressed as

Q t1; t2ð Þ ¼ V t1; t2ð Þ
t2 � t1

¼ w
T
NQ (25)

where NQ is the number of particles crossing the target line during the observation period T. The derivation of
the expected value of NQ andQ is presented in Appendix A. It has been carried out under the assumption that
the area A used to calculate NA/A is sufficiently large to provide stable values and also that NA/A is constant in
space. From equation (A4) the expected value of sediment discharge per unit width is

Q
� �
B

¼ w
NA

A
λ½ �
T
; (26)

where B is a reference width and λ is the distance traveled by one particle during T. If we denotewNA/Awith C,
the expected value of the sediment transport rate can be expressed as

Q
� �
B

¼ C u½ �; (27)
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where u is a (Lagrangian) effective velocity of particles equal to λ/T. The ratio of the distance to the part of T
during which the particle was moving, Tm, yields the time-averaged velocity of particles during motion, um,
which is related to the effective velocity by

um ¼ u
φmT

: (28)

When the area A is not sufficiently large to consider NA as constant, a correlation term must be added to
equation (27). As discussed in Ballio et al. (2014), if one considers an instantaneous solid discharge equal
to the product of instantaneous concentration and velocity (Q/B = Cu), then the time-averaged solid
discharge is

Q
B
¼ Cuþ C’u’; (29)

where the correlation term can be interpreted as a diffusive flux (e.g., Ancey & Heyman, 2014; Furbish,
Roseberry, et al., 2012; Heyman et al., 2016). The relative weight of the mean and fluctuating terms in equa-
tion (29) may also depend on the choice of the variables. For example, Radice and Ballio (2008) presented an
analysis of experimental data and a corresponding formalism according to which the use of um rather that u
made the correlation vanish. This finding was interpreted by arguing that concentration and velocity are
highly correlated in relation to the intermittency of the process (they are either both equal to zero or different
from zero at any instant in time), but may not be correlated when only the period in motion is considered
(i.e., when they are both different from zero).

4. Persistence of Motion

As a counterpart of section 3, which presented a global proportion of motion, the present section provides
a more detailed description. We want to distinguish a highly variable behavior (consisting of many occur-
rences of relatively short periods of motion and rest) from another behavior with a less frequent exchange
of longer periods of motion and rest. In the latter case, a particle, once entrained, tends to remain in
motion for a longer period of time (i.e., to persist in motion). This tendency is, therefore, referred to as per-
sistence of motion. The approach taken in this section is an alternative way to account for the intermit-
tence of the bed load process. It is closely related to an entrainment-disentrainment form of the Exner
equation (e.g., Ancey, 2010; Ancey & Heyman, 2014; Ballio et al., 2014; Charru et al., 2004; Lajeunesse
et al., 2010), as well as to modeling the particle trajectories as random walks (e.g., Fan et al., 2016; Lisle
et al., 1998). From a phenomenological point of view, the persistence of motion is also obviously related
to the characteristics of particle hops (e.g., Campagnol et al., 2015; Fathel et al., 2015; Hu & Hui, 1996; Lee
et al., 2000; Ramesh et al., 2011).

4.1. Lagrangian Variables

Particle behavior is here analyzed at the scale of the “intermediate trajectories” according to the conceptual
definition by Nikora et al. (2001, 2002). These correspond to the hop lengths and the associated individual
periods of motion interrupted by periods of rest. The time window of observation T is, necessarily, much
larger than the time scales of both periods.

With reference to Figures 1a and 1b, a hop length of a particle i corresponds to an event that consists of a
single period of motion followed by a single period of rest, so that the duration of such an event is
Δt = Δtm + Δtr. Note that, by definition, an event contains a single entrainment (of a particle being at rest)
and a single disentrainment (of the same particle, moving after entrainment). The average effective velo-
city of the particle during the event is uΔx = Δx/Δt, while its counterpart during the period of motion
is uΔx

m = Δx/Δtm.

The total time of movement for a particle i during period T, Tm(i), has been defined by equation (14).
Alternatively, hop-related quantities can be used to express Tm(i) as

Tm ið Þ ¼
XJ ið Þ

j¼1

Δtm i; jð Þ: (30)
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The total time of rest for the particle i during T is analogous:

Tr ið Þ ¼
XJ ið Þ

j¼1

Δtr i; jð Þ: (31)

Assuming that T is large enough to disregard truncated periods of motion/rest at the beginning and at the
end of the time window, it follows that for each particle i

T ið Þ ¼ Tm ið Þ þ Tr ið Þ ¼
XJ

j¼1

Δt i; jð Þ ¼ J ið Þ Δt i; jð Þh i: (32)

The relative duration of motion along the global trajectory, which is expressed by equation (15) as φT
m = Tm/T,

does not provide information about how persistent the motion is (i.e., to what extent it is partitioned into
short or long intervals). Instead, the persistence of motion can be quantified by the time averaging of
Lagrangian entrainment or disentrainment functions:

e ið Þ ¼ 1
T

∫
t1þT

t1
e i; jð Þdt ¼ d ið Þ ¼ 1

T
∫

t1þT

t1
d i; jð Þdt ¼ J ið Þ

T
¼ 1

Δt i; jð Þh i : (33)

In other words, if the intermediate trajectories for a given particle have an average duration hΔti, the
average rate of events (entrainment, disentrainment) is 1/hΔti. Equation (33) is an example of connecting
time averaging with event averaging, consistent with arguments in section 2.3. One should note that time
averages for e(i,t) and d(i,t) along the trajectory have to be equal, because each event contains a single
entrainment and a single disentrainment and, therefore, the total number of entrainments during the
period T is the same as the number of disentrainments, and at the same time the same as the number
of events, J(i).

As described above, there are various options for averaging. For uniform conditions in space and time, and in
the presence of a sufficiently large sample characterized by ergodic processes, all averages converge to
expected values:

Δtmh i ¼ Δtmf g ¼ Δtm½ � ¼ τm; (34a)

Δtrh i ¼ Δtrf g ¼ Δtr½ � ¼ τr ; (34b)

Δth i ¼ Δtf g ¼ Δt½ � ¼ τ ¼ τm þ τr : (34c)

This also applies to multiple subsequent averages, as, for example, in equation (19). A consequence of equa-
tions (34a)–(34c) is that the expected value of the proportion of motion also can be expressed as ϑm = τm/τ.

For hop length, one obtains:

λ ið Þ ¼
XJ ið Þ

j¼1

Δx i; jð Þ; (35)

so that λ(i) = J(i)hΔx(i, j)i. We can define different averages for Δx, all converging to an expected value:

Δx i; jð Þh i ¼ Δx i; jð Þf g ¼ Δx i; jð Þ½ � ¼ ξ: (36)

Some attention to particle velocities is required because the average velocity of a particle when it is in
motion, um, is different from the event-averaged velocity along intermediate trajectories:

um ið Þ ¼ λ ið Þ
Tm

¼

PJ ið Þ

j¼1
Δx i; jð Þ

PJ ið Þ

j¼1
Δtm i; jð Þ

¼ Δx i; jð Þh i
Δtm i; jð Þh i≠

Δx i; jð Þ
Δtm i; jð Þ

	 

¼ umΔx i; jð Þ� �

: (37)

The inequality is due to the fact that the intermediate trajectories (hops), Δx(i, j), are typically correlated with
the corresponding time of motion, Δtm(i, j) (e.g., Fathel et al., 2015).

Journal of Geophysical Research: Earth Surface 10.1002/2016JF004087

BALLIO ET AL. 394



4.2. Eulerian Variables: Entrainment/Disentrainment

A derivation of Eulerian entrainment and disentrainment functions, E(t) and D(t), from their Lagrangian coun-
terparts is analogous to the derivation presented for the number of particles in motion over A (see
again equation (21)):

E tð Þ ¼
XN
i¼1

MA i; tð Þe i; tð Þ ¼
XNA tð Þ

i¼1

e i; tð Þ ¼
XNr
A tð Þ

i¼1

e i; tð Þ; (38)

D tð Þ ¼
XN
i¼1

MA i; tð Þd i; tð Þ ¼
XNA tð Þ

i¼1

d i; tð Þ ¼
XNm
A tð Þ

i¼1

d i; tð Þ: (39)

Note that summing e(i,t) over either NA or NA
r gives the same result, since an already moving particle cannot

be entrained. Analogously, summing d(i,t) over either NA or NA
m also yields the same result.

Temporal evolutions for E and D are discontinuous, analogous to those for e and d described above. If
previous definitions are averaged in time, one obtains:

E ¼
XN
i¼1

MA i; tð Þe i; tð Þ ¼
XNA tð Þ

i¼1

e i; tð Þ ¼ NA tð Þ e i; tð Þf gA ¼ Nr
A tð Þ e i; tð Þf grA ; (40)

D ¼
XN
i¼1

MA i; tð Þd i; tð Þ ¼
XNA tð Þ

i¼1

d iA; tð Þ ¼ NA tð Þ d i; tð Þf gA ¼ Nm
A tð Þ d i; tð Þf gmA : (41)

It should be noted that, unlike their Lagrangian counterparts, Eulerian values of E(t) and D(t) are not
necessarily equal.

In general, we can expect some correlations between the number of particles within A and the
entrainment/disentrainment probability of each particle; for example, in relation to the so-called collective
entrainment (e.g., Heyman et al., 2013, 2014). Again, we can simplify expressions under the condition of a
large A, so that NA, NA

m, NA
r are (approximately) constant in time:

E ¼
XNA tð Þ

i¼1

e i; tð Þ ¼ NA e i; tð Þf gA ¼ Nr
A e i; tð Þf grA ; (42)

D ¼
XNA tð Þ

i¼1

d i; tð Þ ¼ NA d i; tð Þf gA ¼ Nm
A d i; tð Þf gmA : (43)

In the limit of large area, long time T, and stationary and ergodic process where we can assume that all tra-
jectories have identical time averages, one obtains that e ¼ 1= Δth i ¼ 1=τ, with the result

E
� � ¼ NA e½ � ¼ NA

τ
: (44)

4.3. Eulerian Variables: Sediment Discharge

For conditions of stationary and ergodic processes and a long period of observation T, the relationship
between the sediment discharge and the Lagrangian variables is linked to relations that have already been
derived (section 4.1). We have

λ½ �
T

¼ J Δxh i½ �
J Δth i½ � ¼

Δxh i½ �
Δth i½ � ¼

ξ
τ

(45)

(note that J is constant under the above conditions). If we further consider a large area of observation, we obtain

Q
� �
B

¼ w
NA

A
λ½ �
T

¼ w
NA

A
ξ
τ
¼ w

NA

A
e½ �ξ ¼ w

A
E
� �

ξ; (46)

which is the typical Einstein-type formulation for sediment discharge. In equation (46) it is again expected
that different kinds of averaging eventually result in the same values, under the assumptions considered
above.
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The two expressions for sediment discharge (equations (27) and (46))
are equivalent in this study under the general conditions discussed
above (i.e., NA is a constant resulting from a large area of observation,
long period of observation, and stationary and ergodic processes).

5. Application to Experimental Results
5.1. Experimental Setup

The bed load transport experiments performed by Hosseini Sadabadi
et al. (2016a) were conducted in a 5.5 m long pressurized duct with
transparent walls and a cross section of 0.4 m × 0.11 m. Polybutylene-
Terephthalate (PBT) grains with relative density equal to 1.27 and size
of 3 mm were glued onto steel plates placed on the flume bottom to
create a fixed rough bed. The standard deviation for the bed elevation
was consistent with that measured for a movable bed composed of the
same sediment (Campagnol et al., 2015).

The threshold flow velocity for sediment transport (Uc) was deter-
mined in preliminary experiments with a fully mobile bed and was

equal to 0.23 m/s (Campagnol et al., 2013). During the same preliminary runs, a relationship between the
flow velocity and the sediment transport capacity was determined.

The bed load run presented in this paper was obtained with a bulk flow velocity U = 0.32 m/s, resulting in
U/Uc = 1.4. The shear velocity was calculated from the measured velocity profile. The corresponding
Reynolds number based on the grain diameter was Re* = 47, thus indicating a transitionally rough surface.
Bed load particles identical to those in the fixed bed were fed at a constant rate at the upstream end of
the duct. The sediment feeding rate was set equal to the transport capacity determined in the preliminary
runs. However, as it will be shown, the disentrainment rate slightly exceeded the entrainment rate.

The use of a fixed bed obviously prevents some processes from being observed (for example, burial and reap-
pearance of sediment particles). However, under weak transport conditions, the sediment transport is limited
to a surficial layer of the bed and, therefore, a fixed bed may suffice to study the process. Specific compari-
sons performed by Campagnol et al. (2013, 2015) showed that properties of particle hops were not different
in the two conditions, whereas a systematic comparison of rest times was not performed in those studies,
which only considered motion events.

Particle motion was filmed (Hosseini Sadabadi et al., 2016a) from above at a rate of 32 fps, with an observa-
tion window of 273 mm in the streamwise direction and 200 mm in the transverse direction, and a filming
duration of 50 s. Image processing enabled the bed load particles to be tracked. A flowchart of the measuring
method was presented by Campagnol et al. (2013). The particles were first identified based on image thresh-
olding and then tracked based on a criterion of minimum distance that was considered appropriate given a
relatively limited concentration of white particles in the observation area (for a step-by-step description of
the procedure applied to a similar experimental campaign, see a video article by Radice et al., 2017).
Uncertainty in measurement of instantaneous particle velocity by this procedure was quantified by
Campagnol et al. (2015), who also argued that a rate of 32 fps represented a satisfactory compromise
between competing requirements of high temporal resolution and low uncertainty. Furthermore, a (time-
consuming) manual validation and correction allowed the identification of particles during the entire time
they spent in the observation window. The process generated 321 “global” trajectories, including periods
of rest and movement for each particle. Assigning the instantaneous values of Mm(i) to each particle
required an operational criterion to decide if a particle was to be considered in motion or at rest at any time.
Hosseini Sadabadi et al. (2016b) amended a rule proposed by Campagnol et al. (2013) and considered a
particle to be in motion at a time instant if its x position at that time was larger than all the previous ones
and smaller than all the following ones; otherwise, the particle was considered at rest at that time. Figure 4
shows a single frame of the movie, where the white spots correspond to movable grains, as the fixed grains
constituting the bed were painted black. The path of a particle during the movie is superimposed onto
the frame.

Figure 4. A movie frame covering the 273 × 200 mm2 observation window with
movable grains (white spots) and a sample particle track (white line). Motion is
from left to right. Gray diamonds correspond to positions of rest along the path.
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Figure 5 shows the time series of the main Lagrangian parameters (x location, streamwise velocity compo-
nent, and the clipping function for movement in Figures 5a, 5b, and 5c, respectively) for the trajectory shown
in Figure 4. The particle crossed the whole observation window, so that the total measured displacement was
equal to the window length. The particle entered the window at t = 29.3 s and left it at t = 34.1 s, so that the
total time for which it was observed was only 4.8 s, much less than the movie duration (50 s). A new time
variable, TA, is therefore defined as the time that particle i has spent within the observation window:

TA ið Þ ¼ ∫
tþT

t
MA i; tð Þdt ¼ TMA ið Þ (47)

The average value of TA for the whole sample is 7.0 s, showing that the majority of particles spent only a short
period of time within the observation area A.

Figure 6 shows the probability density function (PDF) of measured hop lengths, Δx. The distribution was
determined using 680 hops that were obtained for the 321 tracked particles and has two peaks: the first peak
is at Δx = 0 (most probable hops correspond to very small displacements), while the second is at Δx = 270mm
(corresponding to particles that crossed the whole window without stopping). The second peak represents
truncated motions (hops longer than the measuring window); therefore, it results from all hops longer than
270 mm, rather than corresponding to a probability density at 270 mm.

The results discussed so far indicate that the observation window was
relatively short compared to the particle hop lengths. This evidently
limits the possibility of measuring Lagrangian quantities. On the other
hand, no difficulties arise with Eulerian quantities. Figure 7 shows
the time series of the total number of particles (moving + still) within
the observation window, NA, and the number of moving particles,
NA

m. While NA
m was stationary on average, NA increased with time

due to the previously mentioned imbalance between entrainment
and disentrainment rates.

Finally, Figure 8 shows the time series of the instantaneous sediment
flux, q, across a transverse line at x = 73 mm. The sediment flux corre-
sponds to the sum of Dirac functions (q = Σiδ(t � t0), equation (9)).

Figure 5. Lagrangian parameters [(a) position, (b) velocity, (c) clipping function for motion] for the particle whose track is
shown in Figure 4.

Figure 6. Probability density function of hop length.
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Therefore, its time series appears as a “bar code.” The plot also includes
the cumulative number of particle crossings within the duration of the
experiment; the cumulative function progressively increases up to the
total number of crossings NQ = 260. Time series for entrainment
and disentrainment functions (not shown) have a similar “bar
code” appearance.

5.2. Lagrangian Proportion of Motion

The relative time of motion φT
m(i) in the above experiments could not

be computed from equation (15), because, due to the limitations of
the observation window, each particle was observed only for a limited
portion of the total time. A relative time of motion depending on the
area of investigation was defined as: φTA

m(i) = TA
m(i)/TA(i), where TA

m

is the total time of movement for particle i during the period it spent within A. This φTA
m was sketched

together with φT
m in Figure 3c. Figure 9 shows the PDF of φTA

m for particles undergoing at least one hop
during T. The plot indicates φTA

m = 1 as the most probable value, corresponding to particles that were never
at rest within the measurement space-time window and thus providing another demonstration of the
truncated particle motions already discussed on the basis of Figure 6.

The next task is to estimate the expected value ϑm for the proportion of motion. On the basis of the available
data, neither φT

m nor φN
m could be computed by their respective definitions (equations (15) and (16))

because the particles were within the observation area for a limited time. Therefore, the global proportion
of motion was estimated by pooling all the observed particles. Using this approach, one envisions each par-
ticle observation as a random outcome of the same process, as discussed by Heyman et al. (2016). Therefore,
the global proportion of motion was estimated using a new version of equation (15) that jointly considered
the contributions of all the observed particles to a global Tm and a global T:

ϑm≅

PN
i¼1

TmA ið Þ
PN
i¼1

TA ið Þ
(48)

A value of ϑm = 0.340 was obtained, indicating that under the applied hydrodynamic conditions (U/Uc = 1.4),
the intermittency of the sediment transport process resulted in a 35% proportion of motion and a 65% pro-
portion of stillness.

5.3. Eulerian Proportion of Motion

Figure 10 shows the time series of the Eulerian relative number of moving particles within the observation
window, φA

m(t). Its time average is 0.342, which is very similar to the relative time of motion obtained from
(48). As discussed in section 3.2, this result is to be expected for large numbers of particles within the obser-
vation area, as a consequence of NA and φA

m being independent of time. Instead, it is clear from Figures 7 and
10 that such a condition is not met for the present data set. Nevertheless, the Lagrangian and Eulerian pro-

portions of motion are in good agreement: φmT
� �

≅ φmA tð Þ with a 0.5% difference, thanks to the method of

considering tracks jointly by means of equation (48).

Figure 7. Temporal evolution of number of particles (gray) and number of mov-
ing particles (black) over A.

Figure 8. Time series of instantaneous sediment flux across a transverse line, corresponding to a sum of delta functions at
particle crossings (black, left axis) and cumulative number of crossings (gray, right axis).
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The correlation between the fluctuating terms of NA and φA
m is now

explored. A comparison of different averaging options demonstrates
that the correlation was weak for the present experiment:

Nm
A ¼ NAφmA ¼ 15:40≅NAφmA ¼ 45:42�0:342 ¼ 15:55 (49a)

NA’ Mmf gA ’ ¼ � 0:15 (49b)

Some arguments about how this result may change with the size of the
observation area are provided in section 6. Furthermore, it should be
noted that the present experiment involved weak bed load over a
plane fixed bed. Different bed conditions and transport intensities
(particularly those higher than described here) may change the active
processes and, in turn, the correlation terms. For example, processes

such as sediment burial and reappearance in a mobile layer (possibly, in the presence of bedforms) may
strongly alter the temporal fluctuations with respect to those for continuously exposed particles (see, e.g.,
Ghilardi et al., 2014a, 2014b; Iwasaki et al., 2017; Voepel et al., 2013). Threshold sizes to consider spatial
and temporal scales large enough to achieve process uniformity/stationarity are expected to be more
demanding than in the present case.

5.4. Persistence of Motion

As mentioned above, limited size of the space-time observation window may prevent a sound estimation of
the properties of hops. The examples given in Figures 6 and 9 demonstrate that several hops are longer than
270 mm, but we cannot know how long they are. Some discussion of how to handle effects from truncation
by the observation window is provided in Fathel et al. (2015). As a matter of fact, measured PDFs are strongly
distorted, so that they do not allow derivation of any statistics for Δx, nor for Δt (not even mean values). For
example, as we cannot disregard truncation of hops, it is not possible to use equations (30) to (33) to calculate
mean values for event duration or entrainment/disentrainment functions. However, in this case, one can also
consider the tracks jointly, as was done in equation (48):

τm≅

PN
i¼1

TmA ið Þ
PN
i¼1

JA ið Þ
(50)

where JA is the number of events observed for one particle within A, keeping in mind that JA = 0 for particles
that do not stop. Equation (50) thus calculates the average duration of motion by dividing the total observed
time of motion of all particles and all motion events measured within the observation window by the total
number of such events. This method is similar to some developments proposed by Heyman et al. (2016, p. 12
of supporting information), who evaluated a first moment of a particle deposition rate “dividing the number
of deposition events by the cumulative time of travel by particles.” In a system at equilibrium, the number of
entrainment and deposition events is the same. However, as previously discussed, the system was not really
stationary in the experiment described here, so that the numbers of entrainment and disentrainment events
were not exactly the same (specifically, we observed 376 entrainment and 412 disentrainment events). For this
application, we simply use the mean between the two values, thus obtaining

τ ¼ 5:73 s

τm ¼ 1:95 s

τr ¼ 3:76 s

(51)

Given the way in which values for τ were calculated, the estimate ofϑm

based on the duration of motion yields results identical to those of sec-
tion 5.3: τ m/τ = ϑm = 0.340. The expected value of the hop length, ξ , is
estimated by applying the method of equation (50) to traveled dis-
tances and hop lengths as

ξ≅

PN
i¼1

λA ið Þ
PN
i¼1

JA ið Þ
(52)

Figure 9. Probability density function of φTA
m(i).

Figure 10. Temporal evolution of the relative number of moving particles
within A.
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where λA is the total distance traveled by a particle while it was within A (which is the spatial counterpart of
TA

m in equation (50)).

Finally, expected values for sediment velocity (indicating the effective velocity with υ and the velocity during
motion with υm) can be computed by considering the estimated hop length and T or Tm, respectively.
Resulting values are

ξ ¼ 177 mm

υ ¼ ξ
τ
¼ 30:3 mm=s

υm ¼ ξ
τm

¼ 89:1 mm=s

(53)

Note that the mean value derived from the PDF in Figure 6 is hΔxi = 102 mm, demonstrating that truncation
produces a strong underestimation for themean value of the hop length if the latter is estimated as themean
of the PDF of measured hops. An analogous conclusion can be derived for motion time (hΔtmi = 1.18 s) and
resting time (hΔtri = 3.34 s) when directly derived as averages of the measured truncated sample. These
results highlight the need to reconsider how mean values for Lagrangian properties have been determined
in earlier studies.

5.5. Sediment Discharge

Particle crossings corresponding to instantaneous sediment discharge are shown in Figure 8. The time
average of the sediment discharge can be evaluated directly from the total number of particles crossing
the reference target within the duration of the movie (NQ = 260):

Q
w

¼ NQ

T
¼ 5:2crossings=s (54)

An independent mixed Eulerian/Lagrangian evaluation stems from equations (27) and (46):

Q
w

¼ B
NA

A
ξ
τ
¼ 5:1crossings=s (55)

thus proving the consistency of the estimates for the various kinematic quantities. The latter relationships
yield a remarkable argument that average values of hop properties (which are Lagrangian quantities suffer-
ing from a significant bias due to the observation window) can be obtained from purely Eulerian measure-
ments of Q (or alternatively NA and u based on equation (27)) and E, thus bypassing the already
mentioned practical impossibility of obtaining rigorously Lagrangian measurements of particle motion. In
other words, measurements of Lagrangian variables can be hindered by the limited spatial and temporal
scales of measurement, while these conditions are more compatible with measurements of Eulerian quanti-
ties. It is therefore useful to link Lagrangian and Eulerian statistics of processes, because the latter may allow
one to infer characteristics of the former.

6. Discussion

The conceptual framework presented in this work considers bed load particles individually and attributes all
their properties to their center of mass (concentrated particles). From a Lagrangian perspective, everything is
represented by the temporal history of one particle, and mean values can be obtained by time, sample or
event averaging. Eulerian variables are defined by averaging over a control volume and can be further aver-
aged in time. Crucial for the framework is the introduction of two clipping functions representing, at any
given time, (i) if one particle is in motion or at rest and (ii) if one particle is within an area of observation.

The identification of particle entrainment and disentrainment is necessary to derive all the quantities related
to these events (entrainment and disentrainment functions, hop properties). This requires operational criteria
to be applied to the measured particle tracks for assigning the instantaneous value of Mm. As described
above, a criterion based on particle position was used in this work. Operational criteria for labeling the
particle motion state can also consider different quantities. Among recent examples, Seizilles et al. (2014)
considered the ratio of the standard deviation of particle position over four successive frames to the particle
size. Heyman et al. (2016) used a two-parameter criterion based on particle velocity and elevation above the
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bed. In addition, Hosseini Sadabadi et al. (2016b) presented a sensitivity analysis of some investigated quan-
tities to the criterion used to recognize particle motion or rest, comparing the proposed criterion to the one of
Campagnol et al. (2013). The criterion of Hosseini Sadabadi et al. (2016b), more restrictive than that of
Campagnol et al. (2013), returned, for the same experiment, a different number of hops (that were 3 times
less); the frequency of occurrence of relatively shorter and longer hops was different, resulting, for the new
criterion, in larger mean values for hop length and duration. This sensitivity could be further extended to
other types of criteria and represents a challenge for quantification of some key properties of sediment trans-
port. However, this issue has not been examined in the present work, which has, instead, focused on the
conceptual framework for analysis.

A Lagrangian analysis requires individual particles to be followed. This is not necessary with an Eulerian
standpoint, which considers the quantity of sediment within, for example, some reference volume. Our
framework requires a base sample of N particles to be defined; the sample is necessary to provide determi-
nistic links between the two approaches (see, e.g., equation (5) and similar ones with sums over particles). The
only requirement that we imposed on the sample was that all the particles were identical, although this
requirement can be removed by accounting for the specific volume of each particle. Statistical properties
of our analysis may be influenced by small sample sizes, but otherwise are not sample dependent.
However, different quantities can be defined depending on how the initial sample of particles is chosen. A
significant example is represented by the proportion of motion introduced in this work. The relative number
of moving particles expressed by equation (21) is analogous to other descriptors that are present in the lit-
erature; for example, the particle concentration used by Radice et al. (2009) or the different versions of
particle activity used by Roseberry et al. (2012) and Heyman et al. (2014). However, the different values
obtained according to how the initial sample of particles is chosen can be retrieved from each other using
appropriate scaling factors.

The definitions presented in our analysis are general and do not require specific hypotheses. Instead, parti-
cular conditions may be needed to neglect, for example, correlation effects. A specific and particularly rele-
vant issue is the size of the area of observation. Absolute bounds for classifying an area as large or small
cannot be given based on a single experiment. Consequently, they fall outside of the scope of this paper.
However, some discussion in this regard is provided as follows.

On a phenomenological basis, one can consider that the size of a reference area, A, influences how quantities
vary or covary. For example, Heyman et al. (2014) studied the spatial correlation functions of particle activity
in the bed load transport. Furthermore, Radice et al. (2009) analyzed the bed load particle concentration and
showed that its variance decreased for increasing A, following a power law. A similar finding was reported by
Roseberry et al. (2012). An analogous exercise can be attempted for the correlation introduced in
equation (24). For the area used in the experiment documented here (equal to 6,000 times the squared
particle size), the weight of the correlation terms was as low as 1%, as shown in equations (49a) and (49b).
Reduced areas of observation, corresponding to 1,100, 280, and 45 times the squared particle size, produced
weights of the correlation term of 4, 7, and 9%, respectively. One could conclude that, for this aspect, the area
used in this experiment was sufficiently “large” because 1% is sufficiently “small.” However, assigning thresh-
olds is never exempt from some degree of arbitrariness.

On the other hand, the area of observation was too small for quantification of the Lagrangian properties. This
was shown by PDFs in Figures 6 and 9, making it impossible to apply equations (15) and (16) to compute the
Lagrangian proportion of motion, equations (30) to (33) for the hop duration, and equations (35) and (36) for
the hop length. We pooled the particle tracks into a single sample and applied equations (48), (50), and (52) to
compute these properties. Track pooling can be performed in two alternative ways, with counterparts of
equations (48), (50), and (52) being

ϑm≅
1
N

XN
i¼1

TmA ið Þ
TA ið Þ (56)

τm≅
1
N

XN
i¼1

Tm
A ið Þ
JA ið Þ (57)

ξ≅
1
N

XN
i¼1

λA ið Þ
JA ið Þ (58)
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The difference between the set of equations (48)–(50)–(52) and the set of (56)–(57) and (58) is that, in the
former case, summation is performed for both the numerator and denominator of a considered ratio,
while in the latter case it is performed for the ratio, so that the order of the operations (ratio and summa-
tion) is inverted. For the case of a large area, the homologous formulae will return the same values.
Instead, for a small area, equation (56) does not perform as well as (48) because it neglects the correlation
(introduced by the limited area of observation) between the time that a particle spends within A and the
time that the particle spends in motion within A. Instead, one needs to find the average of the function
Mm over the domain that consists of all time intervals that any particle spent within the reference area
A. With reference to Figure 3b, this averaging domain consists of all rectangles plotted with thick black
lines, an approach that leads to equation (56). For equations (57) and (58), the explanation is different:
a limited area of observation introduces particles that do not stop, for which JA = 0, so that the ratios
involved in these equations would not have a finite value.

7. Conclusions

Similar to many other physical processes, bed load transport can be described by taking either a
Lagrangian approach (following the motion of individual particles) or an Eulerian approach (observing
grain motion at prescribed locations). Various attempts to represent the kinematics of the process have
appeared in recent years in the literature, frequently with extensive use made of statistical tools in consid-
eration of the fluctuating nature of bed load.

The unifying framework proposed in this study for analysis of the sediment transport process merged the
Lagrangian and Eulerian views and included all the quantities most typically used to formulate sediment
transport models. The intermittency of the sediment transport process was associated with two comple-
mentary concepts: (i) proportion of motion and (ii) persistence of motion. The Lagrangian representations
of the proportion of motion were a relative time of motion for single particles and a number of particles
in motion relative to the full particle sample. The Eulerian indicator was the relative number of particles
in motion over a certain area of the bed. The persistence of motion was related to the successions of
particle entrainment and disentrainment events that are needed to determine the properties of particle
hops. Starting from particle tracks, and through the definition of appropriate clipping functions for
particle motion and for particles being above a certain reference area of observation, several mean
quantities could be obtained: for example, particle concentration, hop length and duration, time of rest,
entrainment and disentrainment fluxes, and sediment transport rate. The presented set of equations,
therefore, enabled key averaged quantities to be derived from the kinematics of individual grains and pro-
vided a unifying framework for relating Lagrangian and Eulerian approaches, thereby addressing the goals
of our study.

The framework for analysis proposed in this paper involved only first moments of quantities. In fact, cor-
relation effects can be discarded if one uses a large observation area as support for the conceptualization
of the process. However, the estimation of mean Lagrangian properties (e.g., hop length) requires an area
larger than a threshold area to make spatial and temporal correlations vanish. One can first use track pool-
ing to obtain mean values for Lagrangian quantities. Additionally, the framework proposed in this study
demonstrated that it is possible to obtain the mean values for Lagrangian properties of particle hops from
Eulerian quantities, whose reliable determination is not prevented by the size of an observation area. In
fact, the mean hop length can be obtained from Eulerian data of sediment transport rate and entrainment
flux. In this way, the research presented in this paper strongly supports laboratory or field investigations
devoted to the measurement of mean particle hops.

The definitions and relationships outlined in this study constitute a (relatively) simple framework for
analysis, whose self-consistency is ensured by the fact that all the quantities are deterministically linked
to the motion of individual grains via the two clipping functions. When applied to experimental data,
the framework has demonstrated its usefulness in clarifying limitations of the laboratory setup with
respect to the different descriptions of motion, and it enabled operational solutions to be applied.
We expect this set of definitions to be valuable for achieving parameterization of the descriptors of
sediment kinematics.
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Appendix A: Expected Value of Time-Averaged Volumetric Sediment Discharge
Across a Target Surface
Consider a set of identical candidate particles that can potentially contribute to volumetric discharge, Q ,
across a target surface during the observation period of duration T (t1 < t ≤ t1 + T). At the beginning of the
observation window, at t = t1, the candidate particles are located upstream from the target (white particles in
Figure A1a), and it is assumed that they travel only in the positive x direction.

Furthermore, the spatial distribution of the particles over the area of observation, A, is uniform in the sense
that the total number of particles per unit plan area NA/A does not change in space. For this condition to
be met, the plan area has to be sufficiently large to provide a stable value of NA/A as A moves in space.

During the observation period, all candidate particles travel some distance λ ≥ 0 (Figure A1a). For some of
them, the distance will exceed the particle’s original distance from the target (black circles), and for some
of them it will not (gray circles). The total number of particles that cross the target, and therefore contribute
to the discharge, is denoted with NQ.

We assume that the PDF for a candidate particle to travel a distance during the observation window T is
known, and identical for all particles. From this known PDF, it is possible to express the exceedance probabil-
ity function P, such that it is equal to the probability of λ being equal to or exceeding a set of its possible
values, λ: P λð Þ ¼ P λ ≥ λð Þ . A typical shape of P λð Þ is shown in Figure A1c. Since λ is always greater or equal
to zero, P λð Þ has the following properties:

P 0ð Þ ¼ P λ ≥ 0ð Þ ¼ 1; (A1)

and

∫
∞

0
P λð Þ dλ ¼ λ½ �: (A2)

Equation (A2) requires the probability distribution of λ to be thin tailed, as discussed, for example, by Furbish,
Roseberry, et al. (2012). We now compare the distances of the candidate particles from the target,ℓ, and the

Figure A1. (a) Definition sketch which shows a set of particles and a target surface (thick line). White circles show the posi-
tion of the candidate particles at t = t1. They are all located upstream from the target surface, at various distances ℓi(i = 1, 2
…). During an observation period T the candidate particles travel distances λi . Particles for which λi≥ℓi contribute to the
sediment discharge across the target during the observation period T; (b) position of some candidate particles at t1 + T in
the coordinate system λ; ℓð Þ. These particles originate from a narrow strip (width Δℓ, shown with dotted lines in both
(a) and (b)), located at a distance ℓ ± Δℓ/2 from the target surface. Gray particles have traveled distances less than ℓ,
whereas black particles have traveled distances that are equal to or larger than ℓ, so they have contributed to sediment dis-
charge; (c) probability that the distance traveled by a particle is equal to or larger than λ. The value corresponding to λ ¼ ℓ is
the ratio of the expected number of black particles and the total number of particles.
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distances they travel during time T, λ. It is convenient to do this in the coordinate system λ; ℓð Þ shown in
Figure A1b, which also shows the lineλ ¼ ℓ. Consider a very short strip, Δℓ, centered at an arbitrary distance,ℓ,

from the target surface. The total number of candidate particles contained within the strip isNA
A BΔℓ, where B is

the width of the target surface. The percentage of the particles from this strip expected to travel a distance
equal to or larger than ℓ (i.e., that travel across the lineλ ¼ ℓ, black circles in Figure A1b) and hence contribute
to the discharge across the target, is equal to the corresponding probability P λ ≥ λ ¼ ℓð Þ ¼ P λð Þ ¼ P ℓð Þ ,
shown in Figure A1c. The expected total number of the candidate particles from the strip Δℓ that contribute

to the discharge is therefore equal to
NA

A
B Δℓ P ℓð Þ. Allowing the length of the strip to become infinitely small

(Δℓ→dℓ ) and integrating along the entire length upstream from the target surface yields the expected
number of particles that contribute to the discharge during the period T:

NQ½ � ¼ NA

A
B ∫

∞

0
P ℓð Þ dℓ ¼ NA

A
B λ½ � (A3)

The time-averaged sediment discharge during the observation period T is equal to the volume of particles
(wNQ, wherew is the volume of each particle), divided by T. The expected average sediment discharge during
the period T is therefore equal to

Q
� � ¼ w

NA

A
B
λ½ �
T

(A4)

Notation

Indices and coordinates.
i index for particles
j index for events
t time coordinate
x streamwise coordinate
y transverse coordinate

Reference times and locations.
t0 time at which a particle reaches a target line
x0 location of a target line

Domain size.
A reference bed area
J number of events for one particle
JA number of events observed for one particle within A
L streamwise extension of A
N number of particles in the sample
NA number of particles within A
T total time of Lagrangian observation
TA time that a particle spends within A

Averaging options for a generic θ variable.
hθi average over particle events
θ average over time
θ’ deviation from a temporal mean
{θ} average over particles
{θ}A average over particles within A
θf gmA average over moving particles within A
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θf grA average over particles resting within A
[θ] expected value
P probability

Clipping functions for particle states.
MA clipping function for particle within A
Mm clipping function for particle motion

Mathematical functions.
H Heaviside function
δ Dirac function

Expected values.
ϑm expected value of proportion of motion

τ τm + τr, expected value of Δt
τm expected value of Δtm

τr expected value of Δtr

υ expected value of u
υm expected value of um

ξ expected value of Δx

Physical properties.
B width of a target line
C w NA/A, concentration of particles within A
D Eulerian disentrainment function
d Lagrangian disentrainment function
E Eulerian entrainment function
e Lagrangian entrainment function
ℓ particle distance from a target line

NA
m number of moving particles within A

NA
r number of particles resting within A

NQ number of particles crossing a target line
Nm number of moving particles
q crossing function
Q sediment transport rate

Re* friction Reynolds number
TA

m time that a particle spends in motion within A
td instant of particle disentrainment
te instant of particle entrainment
Tm total time of motion for one particle
Tr total time of rest for one particle
U bulk flow velocity
u instantaneous particle velocity
Uc threshold flow velocity for sediment transport
um instantaneous particle velocity (for motion state)
uΔx average effective particle velocity within a hop

uΔx
m average particle velocity within a hop
V volume of particles crossing a target line
w particle volume
wA volume of particles within A
Δℓ streamwise length of a narrow strip of bed
Δt duration of a particle event (motion+stillness)
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Δtm duration of a motion event
Δtr duration of a stillness event

ΔwA change of wA

Δx length of particle motion (or hop length, or displacement in a motion event)
φA

m Eulerian relative number of particles in motion
φN

m Lagrangian relative number of particles in motion
φTA

m relative time of motion for a particle, for the duration of its stay within A
φT

m Lagrangian relative time of motion
λ distance traveled by a particle within T
λA observed travel distance for a particle within A
θ any quantity
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