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SUMMARY 
 
Computer analysis of structures has traditionally been carried out using the displacement method 
combined with an incremental iterative scheme for nonlinear problems. In this paper, a Lagrangian 
approach is developed, which is a mixed method, where besides displacements, the stress-resultants and 
other variables of state are primary unknowns. The method can potentially be used for the analysis of 
structures to collapse as demonstrated by numerical examples. The evolution of the structural state in time 
is provided a weak formulation using Hamilton's principle. It is shown that a certain class of structures, 
known as reciprocal structures has a mixed Lagrangian formulation in terms of displacements and internal 
forces. The form of the Lagrangian is invariant under finite displacements and can be used in geometric 
nonlinear analysis. For numerical solution, a discrete variational integrator is derived starting from the 
weak formulation. This integrator inherits the energy and momentum conservation characteristics for 
conservative systems and the contractivity of dissipative systems. The integration of each step is a 
constrained minimization problem and is solved using an Augmented Lagrangian algorithm. In contrast to 
the displacement-based method, the Lagrangian method clearly separates the modeling of components 
from the numerical solution. Phenomenological models of components essential to simulate collapse can 
therefore be incorporated without having to implement model-specific incremental state determination 
algorithms. The state determination is performed at the global level by the optimization method. 
 

INTRODUCTION 
 
Nonlinear analyses of structural response to hazardous loads such as earthquake and blast forces should 
include (i) the effects of significant material and geometric nonlinearities (ii) various phenomenological 
models of structural components and (iii) the energy and momentum transfer to different parts of the 
structure when structural components fracture. Computer analysis of structures has traditionally been 
carried out using the displacement method, wherein the displacements in the structure are treated as the 
primary unknowns, combined with an incremental iterative scheme for nonlinear problems. In this paper, 
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an alternative method is proposed for the analysis of structures considering both material and geometric 
nonlinearities. The formulation attempts to solve problems using a force-based approach in which 
momentum appears explicitly and can be potentially used to deal with structures where deterioration and 
fracture occur before collapse. In conventional formulations, the response of the structure is considered as 
the solution of a set of differential equations in time. Since the differential equations hold at a particular 
instant of time, they provide a temporally local description of the response and are referred to as the strong 
form. In contrast, in this paper, a time integral of functions of the response over the duration of the 
response is considered. Such an approach presents a temporally global picture of the response and is 
referred to as the weak form. 
The kernel of the integral mentioned above consists of two functions – the Lagrangian and the dissipation 
functions – of the response variables that describe the configuration of the structure and their rates. The 
integral is called the action integral. In elastic systems, the configuration variables are typically 
displacements. It is shown here, however, that in considering elastic-plastic systems it is natural to also 
include the time integrals of internal forces in the structure as configuration variables. The Lagrangian 
function is energy-like and describes the conservative characteristics of the system, while the dissipation 
function is similar to a flow potential and describes the dissipative characteristics. In a conservative 
system, the action integral is rendered stationary (maximum, minimum or saddle point) by the response. In 
analytical mechanics, this is called Hamilton’s principle or more generally the principle of least action. 
For non-conservative systems such as elastic-plastic systems, such a variational statement is not possible, 
and only a weak form which is not a total integral is possible. It is shown moreover that the form of the 
Lagrangian is invariant under finite deformations. Such a weak formulation enables the construction of 
numerical integration schemes that inherit the energy and momentum conservation characteristics for 
conservative systems and the contractivity of dissipative systems. 
An overview of variational methods that have been developed for plasticity is first presented in order to 
place the present work in context. The concept of reciprocal structures and their Lagrangian formulation is 
then explained using simple systems with springs, masses, dashpots and sliders. The Lagrangian 
formulation for skeletal structures is subsequently developed and treatment of geometric nonlinearity is 
shown. Some remarks are then made about the uniqueness of the solution and the extension of the 
approach to continua. A discrete variational integrator is derived starting from the weak formulation. The 
solution of each step is a constrained minimization problem and is solved using an Augmented Lagrangian 
algorithm. Numerical examples are then presented. 
 

VARIATIONAL PRINCIPLES FOR PLASTICITY 
 
Variational formulations of plasticity are based on the principle of maximum dissipation and the 
consequent normality rule Simo [1]. The local Gauss point level constitutive update has been ascribed a 
variational structure based on the concept of closest point projection (Simo [2] and Armero [3]). Various 
approaches have however been used for deriving global variational formulations for plasticity, each of 
which when discretized in time, leads to a constrained minimization problem in every step. These are base 
on (1) Complementarity and Mathematical Programming Approach (Maier [4]), (2) Variational Inequality 
Approach (Duvaut [5]) and (3) Convex Analysis and Monotone Operator Approach (Romano [6]). The 
most common procedure is to use the Backward Euler method to approximate the rate quantities in the 
variational statement leading, to a constrained minimization problem in each time increment (see Simo [1] 
for a detailed presentation). Variational formulation of dynamic plasticity was not extended beyond the 
variational inequality formulation of Duvaut [5]. In this work, a weak formulation for dynamic plasticity is 
attempted using Hamilton’s principle. It can be shown that the Backward Euler method used for quasi-
static plasticity is unsuitable for dynamic analysis because of its excessive numerical damping. A 
numerical integrator well-suited for dynamic analysis is developed herein discretizing the variational 
principle instead of the differential equations. 
 



SIMPLE PHENOMENOLOGICAL MODELS OF RECIPROCAL STRUCTURES 
 
Reciprocal structures are those structures characterized by convex potential and dissipation functions. In 
this section, the concept of reciprocal structures is explained using simple spring-mass-damper-slider 
models shown in Figure 1. Mixed Lagrangian and Dissipation functions of such systems are derived for  
various structural components.  
 
Mass with Kelvin type Resisting System 
Consider a spring-mass-damper system with the spring and the damper in parallel (Kelvin Model shown 
in Figure 1(a))  subjected to a time-varying force input P(t). The equation of motion is given by: 

 mu cu ku P+ + =&& &  (1) 

where m is the mass, k is the modulus of the spring, c is the damping constant, u is the displacement of the 
mass and a superscripted “.” denotes derivative with respect to time. The well known approach in 
Analytical Mechanics is to multiply equation (1) by a virtual displacement function δu, integrate over the 
time interval [0,T] by parts to obtain the action integral, Ι, in terms of the Lagrangian function, Λ, and the 
dissipation function, ϕ , as shown below (see for example, José [7]): 
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where δ denotes the variational operator, and the Lagrangian function, Λ, and the dissipation function, ϕ , 
of this system are given by: 
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u u mu ku= −& &L  and ( ) 21

2
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Notice that due to the presence of the dissipation function and because the force P(t) can in general be 
non-conservative, equation (2) defines δΙ and not Ι itself. Conversely, starting from (2), equation (1) can 
be obtained as the Euler-Lagrange equations: 
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Thus, the Lagrangian and dissipation functions and the action integral determine the equation of motion. 
 
Mass with Maxwell type Resisting System 
Consider on the other hand, a spring-mass-damper system with the spring and the damper in series 
(Maxwell Model - shown in Figure 1(b)) subjected to a time varying base-velocity input, vin(t). The 
formulation requires to obtain a Lagrangian function and a dissipation function for this system that 
determine the equations of motion as above. Formulation of compatibility of deformations results in: 
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&
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where F is the force in the spring and damper. Writing the equation of equilibrium of the mass, 0mu F+ =&& , 
solving for the velocityu&  and substituting in equation (5), we have: 
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where v0 is the initial velocity of the mass.  Defining 
0

t

J Fdτ= ∫  (as suggested by El-Sayed [8]), the 

impulse of the force in the spring and damper,  equation (6) can be written as: 
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From the correspondence between equations (7) and (1), we conclude that the Lagrangian function, Λ, the 
dissipation function, φ and the action integral, δΙ of this system are given by: 
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Equation (7) can also be thought of as the equation of motion of the dual system shown in Figure 1(c). We 
observe that while the Lagrangian and Dissipation functions involve the displacement and the velocity for 
a parallel (Kelvin type) system, they involve the impulse and the force for a series (Maxwell type) system. 
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(d) Combined Kelvin-Maxwell system (e)Elastic-viscoplastic system (f) Elastic-ideal plastic system 
Figure 1. Simple phenomenological models 

 
Mass with Combined Kelvin and Maxwell Resisting Systems 
Consider now the combined Kelvin-Maxwell system shown in Figure 1(d) subject to a Force Input. (Note 
that the velocity input has been excluded for the sake of simplicity). The forces in the springs are denoted 
by F1 and F2 respectively and their impulses by J1 and J2. If we define the flexibilities of the springs as a1 
= 1/k1 and a2 = 1/k2, then the equations of equilibrium and compatibility become respectively: 

 1 2mu cu k u J P+ + + =&&& &  and 2 2 2
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It is found that elimination of either u or J2 results in a differential equation that does not have a weak 
formulation that separates into a Lagrangian part and a dissipation part. Such a formulation would 
therefore not lend itself to the derivation of the discrete variational integrators of the next section. 
Moreover, when considering plasticity, the dissipative term in equation the compatibility equation is not 
single valued and hence, elimination of J2 would not be possible. It is therefore necessary to devise mixed 
Lagrangian and dissipation functions that contain u, J2 and their time derivatives. Consider the following 
Lagrangian, dissipation functions and action integral: 
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It can be easily verified that the corresponding Euler-Lagrange equations are the equilibrium equation of 
the parallel subsystem and the compatibility equation of the series subsystem: 
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Alternate formulation for Combined Kelvin and Maxwell System 
It is found however, that it is more convenient for MDOF structural systems to use a Lagrangian function 
of all the spring forces as shown below, even though it is not minimal. 
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or in matrix notation: 
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A , the flexibility matrix and B = [1 1], the equilibrium matrix. The 

equilibrium matrix operates on the vector of internal forces to produce the vector of nodal forces. The 
compatibility matrix operates on the velocity vector to produce the rate of change of deformation. As a 
consequence of the Principle of Virtual Work, the transpose of the compatibility matrix is the equilibrium 
matrix. The dissipation function and the action integral are still given by equation (10). The Euler-
Lagrange equations are: 
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The mixed Lagrangian of equation (13) and the Dissipation function of equation (10) form the basis of 
further developments in this paper. Observe that the Lagrangian is not unique. For example, the 
Lagrangian: 
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would result in the same governing differential equations(14). In fact, any Lagrangian differing from that 
in (13) by only a gauge transformation of the form: 
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where χ( u,J) is any scalar function would result in identical Euler-Lagrange equations (see for example, 
Scheck [9]). The form (15) is obtained from a Legendre transformation of the potential energy in spring 2. 
However, we prefer the form (13) due to its following features: (1) It does not contain the displacement, u 

explicitly. Therefore the momentum, 
u

∂
∂
L

 is conserved (see for example, Scheck [9]). This leads to the 

idea of the generalized momentum, 1 2up mu J J
u
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where the equilibrium matrix B is not constant, as shown in a later section. 
 
Elastic-plastic Dynamic System 
Consider the elastic-visco-plastic dynamic system of Figure 1(e). This is in fact a visco-plastic 
regularization of the elastic-ideal-plastic system of Figure 1(f). Let the yield force of the slider be Fy, so 



that that force Fslider in the slider is such that |Fslider| = Fy. If the force in the spring is F and its impulse, 

0

t

J Fdτ= ∫ , then the rate of deformation of the slider-dashpot combination is: 
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where again, , <x> is the Mackaulay Bracket and sgn(x), the signum function. The above constitutive 
equation can be obtained as follows from a convex dissipation function: 
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The equations of equilibrium and compatibility are therefore: 

 mu J P+ =&&&  and 
( )

0
J

aJ u
J

ϕ∂
+ − =

∂

&

&& &
&

 (19) 

where a = 1/k, and it is verified without difficulty that the Lagrangian function, the dissipation function 
and the action integral are respectively: 
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Figure 1(f) shows an elastic-ideal plastic dynamic system. As noted above, this system is obtained from 
the viscoplastic one in the limit of the regularizing viscous coefficient, η, going to zero. The dissipation 
function ϕ of equation (18) then becomes: 
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i.e., ( ) ( )CJ Jϕ =& &U  where C is the elastic domain, { }: yC x x F= <  and CU  is the so called indicator 

function of the set C. The Lagrangian formulation of the elastic-ideal plastic system is then the same as 
that of the elastic viscoplastic system, i.e. equations (20), with the dissipation function suitably 
interpreted. 
Structures composed entirely of components whose potential as well as dissipation functions are convex 
functions have a Lagrangian Formulation. The systems discussed in the previous sub-sections are of this 
type. This class also includes a wider variety of other behavior such as hyperelasticity, rate-independent 
plasticity, viscoelasticity, viscoplasticity and tension- or compression-only resistance.  
 

COMPATIBILITY EQUATIONS OF A FRAME ELEMENT 
 
In order to obtain a Lagrangian formulation for a frame structure, the compatibility equations need to be 
expressed in a form similar to Eq. (14). Consider the beam element with rigid plastic hinges at the two 
ends. From Figure 2(b), the compatibility of deformations in the element gives: 
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Figure 2. Beam element with rigid-plastic hinges 

 
Let Ae be the elastic flexibility matrix of the element. Then e

beam =q A Q&& , where q is defined as 

{ }1 2 3 4 5 6
beam beam beam beam beam beam beamq q q q q q=

T
q  and Q is the element independent end force vector. Let 

ϕhinge1 and ϕhinge2 be the dissipation functions of hinges 1 and 2 respectively. Then we have: 
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where Φhinge1 and Φhinge1 are the stress-resultants in hinges 1 and 2 respectively. Note that the end forces 

are: { }1 1 3 4hinge Q Q Q= − T
F  and { }1 1 5 6hinge Q Q Q= − T

F . Define a dissipation function 1 2
e

hinge hingeϕ ϕ ϕ= + ;   

Combining these results gives the element equation: 
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GOVERNING EQUATIONS OF SKELETAL STRUCTURES 

 
The governing equations of the structure consist of the equilibrium equations, the compatibility equations 
and the constitutive equations. The equilibrium equations are: 

 −Mu + Cu + BJ P = 0&&& &  (25) 

where M, C and B are the mass, damping and equilibrium matrices respectively  F is the vector of 

element internal forces, ( ) ( ) ( ){ }1 2 elemN=
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external force vector. Let A be the block diagonal assembly of the element elastic flexibility matrices. The 
the compatibility equation is: 
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Internal imposed displacements within elements, such as resulting from pre-stressing or thermal loads 
have been neglected here for the sake of simplicity - no forcing term in equation (26). Pre-multiplying 
equation (25) by a kinematically admissible virtual displacement δu (satisfying compatibility), and 
equation (26) by a statically admissible virtual impulse δJ (satisfying equilibrium), we have: 
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Equilibrium is considered in the undeformed configuration, so that the equilibrium matrix B is a constant. 
Geometric nonlinearity, where B is a function of u, is considered in the next section. Adding equations 
(27), integrating over the time interval [0,T] and making use of integration by parts, we obtain: 
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With the Lagrangian and the dissipation function are then given by: 
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2 2
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,
2

ϕ ϕ= +Tu J u Cu J& && & &  (29) 

Conversely equations (25) and (26) can be obtained from the relation (28) as Euler-Lagrange equations. 
 

EFFECT OF GEOMETRIC NONLINEARITY ON THE LAGRANGIAN FUNCTION 
 
Having examined the structural dynamic problem under small deformations, it is now desired to consider 
equilibrium in the deformed configuration. The effect of large structural displacements can be considered, 
while that of large deformations within the corotational frames of elements can be ignored. This seems to 
be justified for elastic-plastic frame elements where significant displacements occur after yielding when 
hinges form, thus not accompanied by large deformations within the element corotational frame. The 
effect of the change of length on the flexibility coefficients of beam-column members is also neglected 
since this is a higher order effect. Large deformations may be included by proceeding from the Lagrangian 
density and performing spatial discretization such as by the Finite Element Method. Some remarks on this 
are made in the next section. 
The difference in formulation from the previous case is only the fact that the equilibrium matrix, B, is a 
function of displacement, B(u). However, the equilibrium equations (25) being in global coordinates and 
the compatibility equations (26) being incremental (compatibility of deformation and displacement rates) 
must both remain unchanged by this additional consideration. It is demonstrated (see Sivaselvan [10]) that 
the spatially pre-discretized Lagrangian of equation (29) holds in the deformed configuration as well:  

 ( ) ( )1 1
, , ,

2 2
= + +   

TT T Tu J u J u Mu J AJ J B u u& & && & & &L  (30) 

Since all other terms of the Euler-Lagrange equations remain unaffected, it is sufficient to examine: . 
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Let the structure have a total of Nε deformations (and hence Nε internal forces). The matrix B therefore has 
Nε  columns. Let Bi represent the ith column of B (Notice that the meaning of Bi here is different from that 
in the last section, where it denoted the ith column-wise partition of B). Consider the ith column of the term 
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Therefore, 
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It is postulated that the ith deformation component, εi(u), is a twice continuously differentiable function of 

the deformed configuration. Then i
i

ε∂ =  ∂ 

T

B
u

 is the Jacobian of the deformation function, and 

2

2
i i iε∂ ∂ ∂ = = ∂ ∂ ∂ 

T
B B

u u u
, the Hessian is symmetric. Hence the right hand sides of equations (32) and (34) are 

equal, implying that ( )d

dt

∂ − =  ∂ 

TB
u B 0

u
& . Having recognized the symmetry in B, the above result may also 

be proved using index notation as follows: 
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Thus the formulation remains unchanged when geometric nonlinearity is included. 
 

EXTENSION TO CONTINUUM FORMULATION 
 
It is shown in Sivaselvan [10] that weak formulations analogous to equations (28) through (29) can be 
obtained for continua. The final results are presented here. For a three dimensional continuum, the 
Lagrangian formulation is given by: 
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and for a beam-column with finite deformation, by: 
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The analogy with equations (28) and  (29) is seen easily. The integral over time can be discretized to 
obtain action sums from which discrete variational integrators can be obtained as shown in the next 
section. These can then be discretized in space using, for example, the finite element method.  
 
 
 

TIME DISCRETIZATION - DISCRETE CALCULUS OF VARIATIONS 
 
The numerical integration of the Lagrangian equations by discrete variational integrators is developed 
next for the time integration of the governing equations (39) and (40) of the structure. This development 
consists of two stages: 



1. Following Kane [11], the action integral of equation (41) is discretized in time to obtain an action sum. 
Using discrete calculus of variations, finite difference equations are obtained, which are the discrete 
counterpart s of the Euler-Lagrange equations. It is seen that the numerical method obtained in this 
fashion conserves energy and momentum for a Lagrangian system and inherits the contractivity 
(stability in the energy norm) of dissipative systems. 

2. The task in each time step is shown to be the solution of a constrained minimization problem for which 
an Augmented Lagrangian algorithm is developed. 

The action integral of equation (42) is discretized using the midpoint rule and a time step h, using central 
differences. It is assumed in this process, that the J and u are twice continuously differentiable functions 
and P is a once continuously differentiable function of time, and that the dissipation function is 

continuously differentiable with respect to J& . It is shown by Simo [12] using geometric arguments that 
the O(h2) accuracy holds in the limiting case of rate-independent plasticity when the viscous coefficient η 
→ 0 as well. The resulting action sum is given by: 
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where nh = T and subscript k denotes the approximation at time t = kh. The time integration problem may 
now be stated as: Given {u0, un} and {J0, Jn}, find the sequences {u1, u2, … un-1} and {J1, J2, … Jn-1} that 
make the action sum of equation (43) stationary. This is the discrete variational problem (Cadzow [13] 
and Marsden [14]). Using a procedure called summation by parts, analogous to integration by parts in the 
continuous case, the flowing result can be obtained (Sivaselvan [10]): 
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 (44) 

By using Discrete Variational Calculus ensures that the resulting time-integration scheme possesses 
energy and momentum conserving properties. A heuristic proof of this fact is given by Sivaselvan [10]. 
Kane [11] presents a discrete version of Noether’s theorem (see for example, José [7]) by which it can be 
shown that any numerical integrator derived using the discrete calculus of variations approach inherits 
these conservation characteristics. Moreover, it is shown by Simo [12] that the midpoint rule inherits the 
contractivity or B-stability of  the dissipative system, i.e., systems with neighboring initial conditions 
converge in the energy norm. This approach also provides a framework for consistently developing higher 
order methods and error estimation methods that preserve conservation. 
 



TIME-STEP SOLUTION 
 
In troducing the notation, vn and Fn as the Central Difference approximations of the velocity and the 
internal force respectively, Eq.(44) then becomes: 
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Where n = k – ½,
1 1
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u u
v  and 
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n h

+ −− 
=  
 
 

J J
F .   It is common in modeling frame structures for 

dynamic analyses to use a lumped mass matrix and to ignore rotational inertia. Hence the mass matrix 
could in general be singular. Similarly, the damping matrix could also be singular, for example when 
using mass proportional damping. Thus, consistent with the convexity assumptions and without loss of 
generality, equation (45) can be rearranged and partitioned as follows: 
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where the partitions 1 through 4 represent respectively (i) degrees of freedom with mass, (ii) those with 
damping  but no mass, (iii) those with prescribed forces and (iv) those with prescribed displacements (or 
velocities). The symbols F, vi and Pi denote respectively ( )1 2n n+ +F F , ( )1 2i i

n n+ +v v  and ( )1 2i i
n n+ +P P . 

Eliminating for v1 and v2 using the first two parts of equation (47), we obtain the dynamic compatibility 
equation: 
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where: 
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h= +M M C , 1
11 11 12 22 12

−= − TC C C C C , 1
1 1 12 22 2

−= −B B C C B  and 1 1 1 2
12 22

−= −P P C C P . Observe that the structure 

of A , the equivalent dynamic flexibility matrix, is dual to that of the equivalent dynamic stiffness matrix 
of Newmark’s method with γ = ½. The roles of the flexibility and mass matrices are interchanged. Pre-
multiplying equation (48) by δFn+1 and integrating gives: 
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In obtaining equation (51), it has been noted that 3
3 1nδ δ+ = =B F P 0 , since P3 is prescribed. Since A, C22 

and M are positive definite, from equation (49) we have A  is positive definite. Hence the quantity in 
brackets in equation (51) is minimized. If dissipation is limited to plasticity, then the function ϕ is the 



regularized indicator function of the elastic domain. Hence, in the limit of rate-independent plasticity, the 
problem of obtaining Fn+1 at each step may be stated as follows: 
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This is the Principle of Minimum Incremental Complementary Potential Energy which can be stated 
as: Of all the Fn+1 satisfying equilibrium with prescribed external forces at the un-damped quasi-static 
degrees of freedom and satisfying the yield conditions, the one that minimizes the incremental 
complementary potential energy Π is the one that satisfies equilibrium in the other degrees of freedom 
and compatibility. It is to be noted that due to the nature of the velocity-dependent Lagrangian and 
dissipation functions, it was possible to eliminate the velocities, leading to a minimum principle in forces 
only. In general, however, the incremental potential would be a function of Fn+1 and vn+1 and would result 
in a saddle-point problem at each time step. Equation (52) is similar to the rate variational principles of 
plasticity. 
 
Constrained Minimization by the Augmented Lagrangian Method 
An Augmented Lagrangian algorithm is used for the solution of the minimization problem (52). For a 
detailed treatment of the Augmented Lagrangian formulation, the reader is referred to Glowinski [15]. The 
problem (52) is reduced to a sequence of linearly constrained sub-problems using the Augmented 
Lagrangian regularization: 
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where λ={λ1, λ2,…, λNy}
T is the vector of plastic multipliers, ν is a penalty parameter and <> denotes the 

Mackaulay Bracket. The Augmented Lagrangian regularization is a combination of the usual Lagrangian 
term, λiφi(Fn+1) and the penalty function ν/2<φi(Fn+1)>

2. The latter helps accelerate convergence while the 
former eliminates the need for the penalty parameter to be large, which leads to numerical ill-conditioning. 
Both terms vanish at a feasible point. A dense matrix is presented by Sivaselvan [10]. 
 

NUMERICAL EXAMPLE 
 
The example structure is shown in Figure 3. It is a 
portal frame consisting of three element. The 
connections are assumed rigid. The stress-strain 
curve of the material is assumed bilinear with the 
following properties: E = 199955 kN/mm2 and σy = 
248.2 kN/mm2. In order to verify the results 
obtained the program DRAIN-2DX (Allahabadi 
[16]) is used here. Two analyses, one with and one 
without P∆ effect, are performed. 
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Figure 3. Example portal frame 

Analysis without P∆ effect 
First, a dynamic analysis is performed without external axial load on the columns, hence no significant 
geometric nonlinearity and P∆ effects. Figure 4(a) shows the horizontal displacement history of node 2 
(Fig. 3.4). The permanent displacements resulting from plastic deformation have close agreement when 
calculated using the Lagrangian Approach or DRAIN-2DX. Figure 4(b) shows that there is significant 
difference between the two analyses in predicting the vertical displacements. While the plastic material 



model in DRAIN-2DX accounts for the reduction of bending moment capacity resulting from the axial 
force interaction; it does not consider the development of centroidal axial plastic strain from plastification 
caused by bending according to the normality rule. It is important to consider this effect when relying on 
tension stiffening in beams for collapse prevention. Figure 4(c) shows the time history of the rotation of 
node 2. The curve is flat when plastic rotations develop in the columns at constant joint rotations. Other 
differences between the Lagrangian approach and DRAIN-2DX come from the additional joint rotations 
caused by differential settlements of the columns resulting from permanent axial deformation.  Figure 4(d) 
shows a plot of the horizontal reaction at node 1 versus the horizontal displacement at node 2, showing 
good agreement between the two approaches. 
 
Analysis with P∆ effect 
A dynamic analysis is performed with an axial force of 731.05 kN on each column, corresponding 50% of 
the yield force. In this case there is significant geometric nonlinearity. Figure 5(a) and Figure 5(b) show 
that the horizontal and vertical displacements continue to grow. The point marked “collapse” in Figure 
5(d) is the point beyond which an external horizontal force is required to pull the structure back to keep 
displacements from growing autonomously under the vertical loads acting on it. During a dynamic 
analysis, when this point is crossed, displacements continue to grow without reversal even when the input 
reverses; the analysis is terminated at this point. It is also noticed that under load reversal, the yield force 
in the opposite direction is higher than the original yield force since the moments resulting from P∆ 
effects need to be overcome in addition. 
 

SUMMARY AND CONCLUSIONS 
 
The evolution of the elastic-plastic structural state in time is provided a weak formulation using 
Hamilton’s principle. It is shown that a certain class of structures called reciprocal structures has a mixed 
weak formulation in time involving Lagrangian and dissipation functions. The new form of the 
Lagrangian developed in this work involves not only displacements and velocities but also internal forces 
and their impulses leading to the concept of the generalized momentum for framed structures. This 
Lagrangian has been shown to extend to continua. The derivative of the compatibility operator with 
respect to displacements possesses a symmetry that renders the Lagrangian invariant under finite 
displacements. The formulation can therefore be used in geometric nonlinear analysis. A discrete 
variational integrator has been derived starting from a weak formulation. 
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(c) Joint rotation (d) Column shear force-displacement 

Figure 4. Results with no external axial force 
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(c) Joint rotation (d) Column shear force-displacement 

Figure 5. Results with external axial force 
 
This integrator inherits the energy and momentum conservation characteristics for Lagrangian systems and 
the contractivity in the energy norm of dissipative systems. The integration of each step has been shown to 
be a constrained minimization problem – the principle of incremental minimum complementary potential 
energy. An Augmented Lagrangian algorithm and a dense matrix implementation have been derived for 
the solution of this problem. Since the matrix A  of the minimization problem (52) is positive definite, the 
solution is globally convergent, allowing for larger time steps for computation. This is however not the 
case in the conventional incremental iterative approach where the tangent matrix may not be positive 
definite and the Newton iterations may not be globally convergent, limiting the time step. In the 
continuum case, the minimization problem (52) would be over the function space of stresses rather than 
over the vector space of internal forces as shown here.  
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