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Abstract. We report the development of a novel Lagrangian

microphysics methodology for simulations of warm ice-

free clouds. The approach applies the traditional Eulerian

method for the momentum and continuous thermodynamic

fields such as the temperature and water vapor mixing ra-

tio, and uses Lagrangian “super-droplets” to represent con-

densed phase such as cloud droplets and drizzle or rain drops.

In other applications of the Lagrangian warm-rain micro-

physics, the super-droplets outside clouds represent unacti-

vated cloud condensation nuclei (CCN) that become acti-

vated upon entering a cloud and can further grow through

diffusional and collisional processes. The original methodol-

ogy allows for the detailed study of not only effects of CCN

on cloud microphysics and dynamics, but also CCN process-

ing by a cloud. However, when cloud processing is not of in-

terest, a simpler and computationally more efficient approach

can be used with super-droplets forming only when CCN is

activated and no super-droplet existing outside a cloud. This

is possible by applying the Twomey activation scheme where

the local supersaturation dictates the concentration of cloud

droplets that need to be present inside a cloudy volume, as

typically used in Eulerian bin microphysics schemes. Since a

cloud volume is a small fraction of the computational domain

volume, the Twomey super-droplets provide significant com-

putational advantage when compared to the original super-

droplet methodology. Additional advantage comes from sig-

nificantly longer time steps that can be used when modeling

of CCN deliquescence is avoided. Moreover, other formula-

tion of the droplet activation can be applied in case of low

vertical resolution of the host model, for instance, linking the

concentration of activated cloud droplets to the local updraft

speed.

This paper discusses the development and testing of the

Twomey super-droplet methodology, focusing on the ac-

tivation and diffusional growth. Details of the activation

implementation, transport of super-droplets in the physical

space, and the coupling between super-droplets and the Eu-

lerian temperature and water vapor field are discussed in

detail. Some of these are relevant to the original super-

droplet methodology as well and to the ice phase model-

ing using the Lagrangian approach. As a computational ex-

ample, the scheme is applied to an idealized moist thermal

rising in a stratified environment, with the original super-

droplet methodology providing a benchmark to which the

new scheme is compared.

1 Introduction

Traditional cloud modeling methodologies apply a contin-

uous medium approach for all thermodynamic variables,

that is, not only for the temperature and water vapor, but

also for all forms of cloud condensate and precipitation.

Such methodologies have been the workhorse of the cloud-

scale modeling from its early days (e.g., Kessler, 1963; Liu

and Orville, 1969; Murray, 1970; Schlesinger, 1973; Klemp

and Wilhelmson, 1978; Clark, 1979), but also in numeri-

cal weather prediction using global as well as limited-area

models and in climate simulation. Since the edge of an ice-

free cloud represents a sharp transition from droplet-laden

air close to saturation to unsaturated droplet-free air outside

the cloud, numerical diffusion and dispersion errors impose

stringent constraints on numerical schemes suitable for cloud

modeling. For instance, since cloud and precipitation vari-
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ables are positive definite, any numerical scheme that intro-

duces negative values to the numerical solution (e.g., dur-

ing advection in the physical space) is not suitable for cloud

simulation. Moreover, difficulties in representing sharp cloud

edge discontinuities in thermodynamic fields are well appre-

ciated by the cloud-scale modeling community, especially

from the point of view of the supersaturation field, the key

variable for the formation and growth of water and ice cloud

particles (e.g., Grabowski and Morrison, 2008, and refer-

ences therein).

The last couple of decades witnessed an increased inter-

est in cloud-scale computational approaches that limit the

abovementioned problems and attempt to better represent

the truly multiphase nature of clouds. Among those, the

particle-based Lagrangian method, referred to as the La-

grangian cloud model (Andrejczuk et al., 2008, 2010) or

the “super-droplet method” (Shima et al., 2009), is of par-

ticular relevance (see also Riechelmann et al., 2012; Arabas

et al., 2015; Hoffmann et al., 2015, among others). By rep-

resenting formation and growth of natural cloud particles

using a subset of those particles (“super-particles”), many

problems haunting traditional Eulerian approaches are ei-

ther eliminated or significantly reduced. For instance, forma-

tion of cloud droplets through activation of cloud conden-

sation nuclei (CCN) can be formulated in a straightforward

way, and processing of CCN through collision–coalescence

or chemical reactions within droplets can be simulated from

first principles. In the continuous medium approach, how-

ever, these processes require either extreme computational

effort (i.e., multidimensional bin schemes) or are simply im-

possible to consider without additional simplifications. In the

Lagrangian approach for warm (ice-free) clouds, each super-

droplet (SD hereafter) carries a set of attributes, such as the

CCN size and composition, wet particle mass and multiplic-

ity parameter (the latter being the number of real droplets

each super-droplet represents), that allow the representation

of condensation and associated latent heat release as well

as the development of drizzle and rain. In previous appli-

cations of such a methodology, the super-droplets outside

clouds represent unactivated CCN (haze) particles that be-

come activated upon entering a cloud and can further grow

through diffusional and collisional processes. Since the in-

formation about the CCN is available for each super-droplet,

the methodology allows for detailed study of not only effects

of CCN on cloud microphysics and dynamics, but also CCN

processing by a cloud. However, when cloud processing is

of no interest, the Twomey activation (Twomey, 1959) can

be used with super-droplets forming when CCN is activated

and no super-droplet existing outside a cloud as often ap-

plied in Eulerian bin microphysics models (e.g., Grabowski

et al., 2011). Since cloud volume is a small fraction of the

computational domain volume, the Twomey super-droplets

allow significant savings when compared to CCN-based La-

grangian methodology. Moreover, significantly longer time

steps can be used because modeling of CCN deliquescence

is avoided.

This paper discusses the development and testing of a

novel Lagrangian approach focusing on activation and dif-

fusional growth of cloud droplets. Our motivation is to use

this methodology to study the impact of turbulence and en-

trainment on the spectrum of cloud droplets in shallow warm

boundary layer clouds, such as tropical or subtropical cu-

mulus and subtropical stratocumulus (see idealized adiabatic

parcel simulations discussed in Grabowski and Abade, 2017,

hereafter GA17). The key aspect, difficult if not impossible

to apply in the Eulerian approach, is the possibility to for-

mulate a subgrid-scale statistical scheme and apply it to in-

dividual droplets taking advantage of a stochastic formula-

tion along the Lagrangian particle trajectory as in GA17. The

developments discussed here exclude collision–coalescence

as only marginally relevant to the spectral broadening prob-

lem. Collision–coalescence can be included in a relatively

straightforward way (see a review and tests of various ap-

proaches discussed in Unterstrasser et al., 2017) and adding

it to the model described here will be pursued in the future.

The next section presents analytic formulation of the

Twomey super-droplet scheme and discusses its implemen-

tation in the Eulerian fluid flow model. The specific as-

pects discussed in detail are the treatment of the activation

on the finite-difference fluid flow model grid, transport of

super-droplets across the Eulerian grid, and coupling be-

tween the super-droplets and Eulerian thermodynamics. Sec-

tion 3 presents examples of model simulations where the La-

grangian thermodynamics is included in an anelastic small-

scale fluid flow model and applied in moist rising thermal

simulations. A traditional super-droplet scheme (i.e., follow-

ing CCN particles and allowing their activation and growth

of resulting cloud droplets) is used to show consistency be-

tween the two methods. Brief conclusions and the outlook

are presented in Sect. 4.

2 Formulation

2.1 Analytic formulation

Model equations describe evolution in space and time of the

potential temperature, water vapor mixing ratio, and a set

of Lagrangian point particles representing activated cloud

droplets. The potential temperature 2 and water vapor mix-

ing ratio qv equations are as follows:

D2

Dt
=

Lv

cp5
Cd, (1)

Dqv

Dt
= −Cd, (2)

where D/Dt = ∂/∂t + (u · ∇) is the material (advective)

derivative, Cd is the condensation rate, 5 = (p/p0)
R/cp is

the Exner function (p is the local pressure that in the anelas-
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tic system comes from the environmental profiles and p0 =

1000 hPa), and Lv and cp are the latent heat of vaporization

and air specific heat at constant pressure, respectively. The

condensation rate Cd is defined as the rate of change of the

mass of cloud droplets. For the finite-difference model con-

sidered here, it can be calculated from the rate of change of

mass of all cloud droplets located within a given grid cell:

Cd =
d

dt

(

N
∑

i=1

4ρw

3ρa
πr3

i Ni

)

, (3)

where ρw and ρa are the water and air density, respectively,

and ri and Ni are the radius and concentration of N cloud

droplet classes (bins) into which all droplets located within

the grid cell are grouped. Such a definition has some similar-

ity to the way condensation rate is calculated in Eulerian bin

microphysics schemes, an analogy that will be useful when

droplet activation is discussed later in this section. Given the

supersaturation S = qv/qvs−1 (where qvs is the saturated wa-

ter vapor mixing ratio) the individual droplet growth equation

is as follows:

dri

dt
=

AS

ri + r0
, where A =

qvsρaDv

ρw

(

1 +
Lv

cp

∂qvs

∂T

) , (4)

r0 = 1.86 µm is a parameter that allows including kinetic ef-

fects (e.g., Clark, 1974; Kogan, 1991), and Dv is the diffusiv-

ity of water vapor in the air that depends on the temperature

and pressure. A convenient feature of Eq. (4) is that the rate

of growth remains bounded when ri approaches zero. The

coefficient A used in Eq. (4) is an approximate form of a

more general formulation as given, for instance, by Eq. (3)

in Grabowski et al. (2011). The approximate formulation

(Eq. 4) can be obtained by assuming that the thermal con-

ductivity of air K is approximately given by K = cpρaDv,

that is, replacing thermal diffusivity with the diffusivity of

water vapor (this is accurate to about 10–15 %). Note that

Grabowski et al. (2011) and GA17 applied a constant value

A = 0.9152 × 10−10 m2 s−1. Droplets are carried by the air-

flow (i.e., droplet sedimentation is excluded), an assumption

justifiable by the exclusion of droplet collisions, the spatial

scales considered (tens of meters and larger), and the length

of simulations (up to a few tens of minutes). Thus, the evolu-

tion of the ith droplet position xi is calculated as

dxi

dt
= u(xi, t), (5)

where u is the air flow velocity predicted by the dynamical

model.

Considering typical cloud droplet concentrations in nat-

ural clouds, from several tens to a few thousands per cu-

bic centimeter, it is computationally impossible to follow

all cloud droplets in the entire volume of even a very small

cloud. Thus, the Lagrangian methodology involves follow-

ing only a selected (typically relatively small) subset of cloud

droplets, referred to as super-droplets following Shima et al.

(2009). This is again in the spirit of using a finite (and typ-

ically relatively small) number of classes (bins) in the Eu-

lerian bin microphysics scheme. As in Andrejczuk et al.

(2008), Andrejczuk et al. (2010), Shima et al. (2009), and

Riechelmann et al. (2012), among others, the list of attributes

for each super-droplet includes the position xi , radius ri , and

multiplicity. The latter depicts the number of particles rep-

resented by a single super-droplet. Other attributes can be

added if needed, for instance, the local supersaturation per-

turbation (on top of the grid-scale supersaturation predicted

by the flow model) that can affect super-droplet growth in

Eq. (4) as in GA17 or the subgrid-scale velocity perturbation

that can affect the motion of the super-droplet in Eq. (5).

2.2 Numerical implementation

As will be discussed in Sect. 3, the novel super-droplet

scheme has been included in the finite-difference anelas-

tic model EULAG and its simplified version referred

to as babyEULAG. EULAG and babyEULAG apply

nonoscillatory-forward-in-time (NFT) integration scheme

(e.g., Smolarkiewicz and Margolin, 1993; Grabowski and

Smolarkiewicz, 2002; Prusa et al., 2008). For the coupling

with super-droplets, the NFT scheme for the potential tem-

perature (Eq. 1) and water vapor mixing ratio (Eq. 2) has

been modified to include the Euler-forward time integration,

that is,

9(t + 1t) = [9(t) + F(t) 1t]0, (6)

where 9 is either 2 or qv, F represents the right-hand-

side of Eqs. (1) and (2), and subscript “0” depicts the de-

parture point of the fluid trajectory. This is the same as ap-

plied in the bin microphysics versions of EULAG in Wys-

zogrodzki et al. (2011, Sect. 2.2 therein) and babyEULAG

in Grabowski and Jarecka (2015, appendix therein). Explor-

ing the analogy between Lagrangian (trajectory-wise) and

Eulerian (control-volume-wise) description of the fluid flow

equations, Eq. (6) is solved using the flux-form monotone

advection scheme MPDATA (e.g., Smolarkiewicz, 2006).

Thus, the second-order-in-space and centered-in-time advec-

tion scheme is combined with the first-order-in-time (Euler

forward) integration of the forcing term. A similar approach

is used for the super-droplets, where the super-droplet trans-

port is computed using the predictor–corrector scheme and

droplet growth is calculated using the first-order-in-time un-

centered scheme. It should be stressed the momentum equa-

tion in the host babyEULAG and EULAG models is ad-

vanced applying the centered in time scheme.

2.3 Super-droplet initiation

The key element of the scheme presented here that makes

it distinct from the approach used in Andrejczuk et al.

(2008, 2010), Shima et al. (2009), Riechelmann et al. (2012),
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Arabas et al. (2015), and others, is the way super-droplets

are created. The original implementations assume that super-

droplets fill the entire computational domain, and they ini-

tially represent deliquesced (humidified) CCN in equilib-

rium with their local environment. These unactivated super-

droplets may become activated if environmental conditions

dictate so, for instance, when passing through the cloud

base. When CCN dry radius is one of the super-droplet at-

tributes, the original approach allows explicit representation

of aerosol processing by a cloud when collision–coalescence

takes place (Shima et al., 2009, in which case the dry CCN

after collision–coalescence combines dry CCN from collid-

ing droplets), or when chemical reactions are included (e.g.,

Anna Jaruga; PhD dissertation, University of Warsaw). How-

ever, if neither of those processes is of interest, a significantly

simpler approach can be used based on the so-called Twomey

activation (Twomey, 1959) as often used in bin microphysics

schemes (e.g., Grabowski et al., 2011). The Twomey ap-

proach links the number mixing ratio of activated CCN N to

the maximum supersaturation S experienced by the cloudy

volume. We will refer to the analytical or tabulated corre-

spondence between N and S as the N–S relationship. Cloud

base activation in the Eulerian bin microphysics scheme is

simulated by introducing cloud droplets into appropriate bins

until the supersaturation reaches its peak and activation is

completed (see Grabowski et al., 2011). Without collision–

coalescence, the local droplet number mixing ratio provides

information about the maximum supersaturation experienced

by the volume in the past. With collision–coalescence, an ad-

ditional model variable, the number mixing ratio of already

activated CCN, needs to be used to control whether addi-

tional CCN activation is required (see Sect. 2c in Morrison

and Grabowski, 2008). The additional variable is also needed

if a significant variability of the CCN exists in the compu-

tational domain (e.g., in the vertical direction) or if droplet

sedimentation is included in the model physics.

The same approach can be used with super-droplets as al-

ready applied in GA17 in adiabatic parcel simulations. The

key idea is that super-droplets are created in supersaturated

conditions when the local concentration of activated droplets

as given by the Twomey relationship is smaller than the

one dictated by the local supersaturation. When a complete

evaporation of cloud droplets occurs in subsaturated con-

ditions, super-droplets are simply removed from the super-

droplet list. Hence, no super-droplets exist outside of cloudy

volumes, similarly to traditional Eulerian bin microphysics

schemes. It follows that super-droplets with Twomey acti-

vation provide significant computational advantage over the

traditional Lagrangian approach because only a relatively

small number of super-droplets has to be used. Note that

in the Eulerian bin scheme the computational expense of

the droplet transport in the physical space is independent of

whether droplets fill a small or a large fraction of the domain.

This is because each bin needs to be advected separately in

the physical space and the computational effort is indepen-

Figure 1. Thick line: number mixing ratio of activated CCN as a

function of the supersaturation, the Twomey relationship, used in

simulations described herein. Thin dashed lines illustrate numerical

implementation of the CCN activation scheme. See text for details.

dent of whether the entire domain or just its small fraction

is filled with droplets. It is worth pointing out that applying

Twomey activation to create cloud droplets in the Lagrangian

warm-rain thermodynamics bears similarities to the way ice

particles are initiated in a particle-based Lagrangian model

targeting ice processes (e.g., Sölch and Kärcher, 2010).

We assume the same CCN characteristics as in GA17 and

Arabas et al. (2015). CCN characteristics include the chem-

ical composition, the number mixing ratio of activated CCN

for a given supersaturation (the Twomey relationship) and

the activation radius. CCN are assumed to be composed of

sodium chloride (sea salt; NaCl). Idealized CCN distribu-

tion, the same as in Arabas et al. (2015), is represented by a

sum of two lognormal distributions with number mixing ra-

tio, mean radii, and geometric standard deviations (unitless)

57.33 and 38.22 m g−1 (i.e., per cubic centimeter for the air

density of 1 kg m−3; these values come from converting the

60 and 40 cm−3 concentrations to the number mixing ratio

using air density at the bottom of the computational domain

in simulations discussed in Sect. 3), 20 and 75 nm, and 1.4

and 1.6, respectively. The N–S relationship is tabulated and

the table is used as input to the super-droplet scheme. Once

activated, the initial radius corresponding to the activation ra-

dius is assigned for each super-droplet. The latter is approxi-

mated as 8×10−10/Sact (m) as in GA17, where Sact is the ac-

tivation supersaturation; see Eq. (6) and Fig. 2 in Grabowski

et al. (2011). In addition to the droplet radius, the model

keeps track of the super-droplet multiplicity parameter (or at-

tribute), that is, the number of droplets the super-droplet rep-

resents, Shima et al. (2009). A newly created super-droplet

is placed randomly within a given grid cell and added to the

super-droplet list.

Geosci. Model Dev., 11, 103–120, 2018 www.geosci-model-dev.net/11/103/2018/



W. W. Grabowski et al.: Lagrangian condensation with Twomey activation 107

t t + Δt 

Updraft 

(a) (b)

Figure 2. Illustration of the activation as represented on the fluid

flow grid. Panel (a) shows locations of CCN activated at a given

model time step. Panel (b) shows the situation at the next time step

when activated CCN are advected away from the grid cell and acti-

vation of new CCN is required.

Figure 1, adopted from GA17, shows the N–S relationship

and illustrates the way super-droplets are created. First, the

maximum supersaturation Smax is selected. Smax has to ex-

ceed the maximum supersaturation anticipated in the simula-

tion. Smax equal to 4 % is used here as shown in Fig. 1. The

corresponding maximum number mixing ratio of activated

droplets Nmax is divided by the number of droplet classes to

be used in the simulations. The example in Fig. 1 assumes

10 classes whereas simulations typically apply several tens

to several thousands of classes. New super-droplets are in-

troduced to a given grid cell when the supersaturation pre-

dicted for that grid cell exceeds the supersaturation corre-

sponding to the activation supersaturation of super-droplets

already present in the grid cell. The approach illustrated in

Fig. 1 ensures that the multiplicity parameter is the same

for all super-droplets. This is beneficial because equal mul-

tiplicity minimizes statistical fluctuations of derived cloud

quantities (such as the droplet concentration or liquid wa-

ter content) when super-droplets are advected from one grid

cell to another. The approach adopted here was suggested

by simple one-dimensional advection tests completed dur-

ing early stages of the scheme development. However, equal

multiplicity is possibly the worst choice when collision–

coalescence is added to the scheme physics as pointed out

by Unterstrasser et al. (2017). We note in passing that Unter-

strasser and Sölch (2014) discuss various methodologies for

introducing Lagrangian particles, including stochastic parti-

cle initiation as well as particle merging and splitting, that all

aid computational efficiency of the Lagrangian cloud model.

These need to be considered while expanding the scheme to

include collision–coalescence.

When applied in a multidimensional fluid flow model,

there is an additional issue with the proposed scheme

that needs to be addressed. Figure 2 shows a single two-

dimensional grid cell at which formation of new super-

droplets takes place at time t . At the next time step, t + 1t ,

super-droplets are advected upwards by the updraft, and a

droplet-free volume is advected into the grid cell. Assuming

that the supersaturation within the grid cell does not change,

there is a need to activate new super-droplets as some of those

present within the grid cell at the previous time step moved

upwards. The new super-droplets should be introduced into

the droplet-free volume (i.e., in the lower part of the grid cell

in Fig. 2b) because unactivated CCN would be there. How-

ever, keeping track of volumes void of super-droplets dur-

ing activation followed by advection is cumbersome. At the

same time, adding new super-droplets randomly into the en-

tire grid cell leads to the situation where super-droplets are

not randomly distributed (i.e., more super-droplets is present

in the upper part of the grid cell in Fig. 2). A simple approach

adopted here is that all super-droplets are always randomly

repositioned within a given grid cell once additional activa-

tion within that cell takes place.

2.4 Transport of super-droplets in the physical space

Super-droplets are advected in the physical space applying

a predictor–corrector scheme to solve Eq. (5). The predictor

step estimates the n+ 1 time level position from n time level

velocity as follows:

x
n+1
p = x

n
+ u

n(xn)1t, (7)

where the subscript “p” depicts the predictor solution. The

corrector step (subscript “c”) is subsequently applied as fol-

lows:

x
n+1
c = x

n
+

[

u
n+1(xn+1

p ) + u
n(xn)

]1t

2
. (8)

The predictor–corrector scheme ensures the second-order

accuracy for the time integration of the super-droplet trans-

port. However, to increase accuracy, the corrector step can be

repeated by replacing xp by the already-calculated xc in the

u
n+1 velocity on the right-hand side of Eq. (7). Note that ve-

locity needs to be interpolated to the super-droplet position

and repeating the corrector step increases the overall compu-

tational cost. We will test the benefit of the second correction

step in the droplet advection procedure later in this section. It

also needs to be pointed out that the super-droplet transport

requires knowledge of the flow velocity at the n+1 time level

in Eq. (8). Similarly to the case of EULAG‘s and babyEU-

LAG’s advection of the temperature and water vapor mixing

ratio where advecting velocities need to be known at n+1/2

time level, the n+1 time level velocities in Eq. (8) are extrap-

olated from velocities available at n − 1 and n time levels.

Velocity interpolation to calculate super-droplet transport

is the key element of the Lagrangian scheme. Since the EU-

LAG model applies unstaggered grid (i.e., all variables are

located at the same position), one possibility is to consider

a grid cell whose four corners in two dimensions (eight ver-

tices in three dimensions) form a rectangular (cuboid-shaped

in three dimensions) grid cell. For a super-droplet located

in such a grid cell, flow velocity at the droplet position can

www.geosci-model-dev.net/11/103/2018/ Geosci. Model Dev., 11, 103–120, 2018
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Figure 3. Illustration of the interpolation scheme used in the super-

droplet transport scheme referred to as “simple” in the text. The

rectangular box represents a single grid cell with u and w depicting

horizontal and vertical velocities perpendicular to grid cell bound-

aries used in the advection scheme of the Eulerian model. The large

dot represents droplet position.

be interpolated from the velocity values at the corners and

vertices. Arguably the simplest possibility is to apply a bilin-

ear (trilinear in three dimensions) interpolation scheme, but a

more advanced scheme may be considered as well. However,

the bilinear interpolation (and likely more advanced interpo-

lation schemes) does not lead to physically consistent results

as documented below.

Advection of the potential temperature and water vapor

mixing ratio (as well as the velocity components) in EU-

LAG is performed on the C grid (i.e., with the horizontal–

vertical velocities at the vertical–horizontal grid cell bound-

aries). Advective velocities come from interpolating veloc-

ity components predicted on the unstaggered grid into the

C grid. Advective velocities satisfy the anelastic incompress-

ibility condition ∇·(ρu) = 0, where ρ(z) is the anelastic den-

sity profile. In two dimensions, the divergence of advecting

velocities can be written in the finite-difference form as fol-

lows (see Fig. 3):

u
i+ 1

2 ,k
− u

i− 1
2 ,k

1x
+

w
i,k+

1
2
− w

i,k−
1
2

1z
= −

w

ρ

∂ρ

∂z
, (9)

where the term on the right-hand side of Eq. (9) represent-

ing the change of the anelastic density with height is left in

the analytic form as it is irrelevant to the discussion. With a

single super-droplet located in the grid cell (see Fig. 3), the

horizontal and vertical velocities can be interpolated using a

simple scheme similar to that used in Arabas et al. (2015):

u = αu
i+ 1

2 ,k
+ (1 − α)u

i− 1
2 ,k

, (10)

w = γw
i,k+

1
2
+ (1 − γ )w

i,k−
1
2
,

where α and γ are nondimensional distances of the super-

droplet position to the cell boundary as shown in Fig. 3. As

documented in the Appendix A, such a definition ensures

that the incompressibility condition (Eq. 9) is maintained

on the subgrid scale of the grid cell. This, however, ensures

that a deformation of the initially rectangular grid cell, as

represented by passive advection of all passive particles ini-

tially located inside the cell, preserves the cell area (volume

in three dimensions). We refer to the interpolation scheme

(Eq. 10) as “simple” in the following discussion in contrast

to the bilinear (or trilinear in three dimensions) interpolation

scheme introduced previously.

To investigate the accuracy of the super-droplet transport

scheme, a relatively simple test problem was designed. In

the test, two-dimensional rising moist thermal simulations

driven by the Eulerian bulk condensation scheme were used,

applying the same simulation setup as in the super-droplet

simulations (see Sect. 3.1). The predicted rising thermal flow

(similar to the one shown later in the paper applying super-

droplets) was applied to advect a large number of passive

particles introduced to a fraction of the computational do-

main including the thermal and its immediate environment

at the onset of the simulation. The number of passive parti-

cles varied from several tens to a few thousands per grid cell

in various tests. In the rising thermal flow simulated by the

model, one should expect the average number of particles

per grid volume to slightly decrease because of the density

decreasing with height. Moreover, the number should show

statistical fluctuations due to advection of particles from one

grid cell to another. The fluctuation amplitude should vary

approximately as an inverse of the square root of the ini-

tial number of particles per grid cell. These assumptions pro-

vide the basis for evaluating the accuracy of the super-droplet

transport.

Figure 4 shows evolution of the minimum and maximum

number of passive particles per grid cell advected using the

predictor–corrector scheme, with the upper and lower pan-

els showing results from the bilinear and simple flow ve-

locity interpolation, respectively. The extrema are calculated

using only grid cells with the cloud water mixing larger

than 0.01 g kg−1 (i.e., cloudy cells). Results are shown from

simulations applying the predictor-only scheme (Eq. 7), the

predictor–corrector scheme (Eqs. 7 and 8), and the predictor–

corrector scheme with additional iteration of Eq. (8). The ini-

tial number of passive particles is either 100 (panels a and c)

or 1000 (panels b and d) per grid cell. The standard deviation

of the number of particles per grid cell after advection should

be close to the square root of the initial number, that is, close

to 10 and 30 particles (i.e., close to 10 and 3 % of the parti-

cle number per grid cell) in the left and right panels, respec-
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Figure 4. Evolution of the maximum and the minimum number of

passive particles per grid cell in the bulk thermal simulations ap-

plying (a, b) the bilinear advection scheme and (c, d) the “simple”

scheme (Fig. 3). Panels (a) and (c) show results applying 100 pas-

sive particle per grid cell, and (b) and (d) show results with 1000

passive particles per grid cell. Both schemes apply either the pre-

dictor step or the predictor–corrector with either one or two correc-

tive iterations. The vertical bar length in (c) and (d) corresponds to

six standard deviations of the expected number of particles per grid

cell. See text for details.

tively. It follows that the difference between the maximum

and minimum number of passive super-droplets per grid cell

should be not significantly larger than a few standard devia-

tions. As the upper panels of Fig. 4 show, the bilinear inter-

polation scheme leads to a larger difference starting around

minute 2 of the simulations, and the difference increases with

time. This is clearly unphysical as argued above. In contrast,

the simple scheme with a single corrective iteration provides

physically consistent results, that is, the difference between

the maximum and minimum is several times the standard de-

viation of the initial particle number per grid cell, and such

a difference is maintained throughout the 10 min long simu-

lations. Only an insignificant improvement is simulated with

the additional iteration of the corrective step (Eq. 8). Finally,

a slight reduction of the mean concentration (located some-

where between the maximum and minimum symbols) is ap-

parent in bottom panels of Fig. 4. This is because of the re-

duction of the droplet concentration due to the decrease of

the air density with height (i.e., the term on the right-hand

side of Eq. 9). It should be also pointed out that the differ-

ence between the predictor-only and the predictor–corrector

schemes should decrease if a significantly shorter time step

is used (e.g., 0.1 s instead of 1 s used in Fig. 4 simulations).

This simple example, together with similar simulations us-

ing different numbers of passive particles not shown here as

well as results of the super-droplet approach available at the

University of Warsaw (Arabas et al., 2015), suggests that

the simple scheme (Eq. 10) (and its extension into a three-

dimensional framework) should be used in the Lagrangian

microphysics. Hence, such a scheme is used in all super-

droplet simulations presented in this paper.

2.5 Coupling thermodynamic Eulerian and

Lagrangian fields

The overall strategy for the time integration of the cou-

pled Eularian and Lagrangian components of the model

thermodynamics is to advance the temperature and mois-

ture fields using Eq. (6) first, then to transport Lagrangian

super-droplets using Eqs. (7) and (8), and finally to calculate

condensation or evaporation of cloud droplets according to

Eq. (4), with the condensation or evaporation providing tem-

perature and moisture tendencies calculated from Eq. (3) in

each grid cell. These tendencies are applied in the next model

time step. Condensation or evaporation of individual super-

droplets require knowledge of the supersaturation that needs

to be calculated from updated temperature and water vapor

fields. The flow-resolved supersaturation field can be supple-

mented with the subgrid-scale fluctuations as in GA17. By

the same token, the resolved flow used to transport super-

droplets through the predictor–corrector scheme can be sup-

plemented with the subgrid-scale velocity fluctuations esti-

mated from the predicted subgrid-scale turbulent kinetic en-

ergy. These additions are not included in the initial formu-

lation and testing of the Twomey super-droplets discussed

in this paper, but will form an important component of the

model application in the future.

There are two issues that need to be considered for the

coupling between Eulerian and Lagrangian model compo-

nents. The first one concerns spurious supersaturation fluctu-

ations near cloud edges (see Grabowski and Morrison, 2008,

and references therein). This problem is particularly serious

when the Twomey activation is used as illustrated later in

the paper because of the direct link between the local super-

saturation and the concentration of activated cloud droplets.

Specifically, numerical overshoots of the supersaturation lead

to an immediate activation of new cloud droplets. In contrast,

when deliquescence and droplet activation are explicitly con-

sidered in the traditional super-droplet method, these tran-

sient overshoots may have a smaller impact on the droplet

activation. This is one of the conclusions of the Hoffmann

(2016) study, also confirmed by simulations discussed in this

paper. Grabowski and Morrison (2008) developed a rela-

tively simple method to cope with this problem for the case

of a double-moment Eulerian microphysics scheme and sug-

gested how it can be extended to the bin microphysics. We

apply the Grabowski and Morrison (2008) methodology to

the super-droplet simulations as discussed below.

The second issue concerns the interpolation of the ther-

modynamic fields to the super-droplet position. Shima

et al. (2009) (see Sect. 5.1.2), Riechelmann et al. (2012)
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(Sect. 2.2.3), and Miroslaw Andrejczuk (personal commu-

nication, 2017) interpolate the potential temperature and wa-

ter vapor mixing ratio and then derive the local supersatura-

tion. Such an approach is not appropriate due to the nonlin-

ear relationship between the supersaturation and the potential

temperature. Interpolating the supersaturation would be more

appropriate. However, supersaturation interpolation brings

conceptual issues similar to those concerning super-droplet

transport: if a single super-droplet represents a large ensem-

ble of real cloud droplets, should growth of the ensemble be

represented using the grid-averaged conditions? Moreover,

one-dimensional tests with a stationary cloud–environment

interface show that the supersaturation interpolation results

in a gradual erosion of the cloud edge. This is because super-

saturation interpolation between a cloudy grid cell near the

cloud edge and a subsaturated cell outside the cloud results

in subsaturated conditions for super-droplets located near the

cell boundary leading to their evaporation. In contrast, apply-

ing the mean supersaturation maintains the steady conditions

near the motionless cloud–environment interface. Moreover,

applying the Grabowski and Morrison (2008) methodology

to cope with the spurious cloud-edge supersaturation dis-

cussed below becomes cumbersome (if not impossible) when

the supersaturation interpolation to the super-droplet position

is used. Overall, our tests, similar to those discussed in the

next section, suggest that the impact of supersaturation in-

terpolation in a rising thermal simulations is small, and thus

we decided to proceed with the simpler and computationally

more efficient method of applying the grid-cell supersatura-

tion to growth and evaporation of all super-droplets within a

given grid cell.

2.6 Avoiding spurious cloud-edge supersaturations

The key aspect of the Grabowski and Morrison (2008)

(GM08 hereinafter) method is to rely on the prediction of

the absolute supersaturation (the difference between the wa-

ter vapor mixing ratio and its saturated value) and to lo-

cally adjust the water vapor, cloud water, and temperature to

maintain the predicted absolute supersaturation. This is in the

spirit of Grabowski (1989), who used the temperature and su-

persaturation as main model variables and diagnosed the wa-

ter vapor mixing ratio. Such a method results in a physically

consistent supersaturation field but does not conserve water.

GM08 circumvent this problem and apply the approach to

the Eulerian double-moment cloud microphysics (i.e., pre-

dicting number and mass mixing ratios of the cloud water

field). They also suggest how this approach can be used in

the bin scheme (see Sect. 4 therein). Here we explain how

this method is used with Twomey super-droplets.

The crux of the method is to calculate the amount of cloud

water ǫ that needs to condense or evaporate to ensure that

the predicted potential temperature and water vapor mix-

ing ratio fields give the absolute supersaturation that agrees

with the predicted one. Thus, in addition to the prediction

of the potential temperature and water vapor mixing ratio,

the scheme predicts the evolution of the absolute supersat-

uration (see Eq. A8 in Morrison and Grabowski, 2008, and

Eq. 4 in GM08). Once the amount of cloud water involved

in the adjustment is calculated as in Eq. (7) of GM08, one

needs to decide how that amount is distributed among super-

droplets present within a given grid cell. Following GM08,

the amount of cloud water ǫ that needs to be distributed

among N super-droplets from a given cell is calculated as

ǫ =

N
∑

i=1

ǫi, (11)

ǫi =
ǫ

βτi

, where β =

N
∑

k=1

1

τk

, (12)

where τi = (4πDvniri)
−1 is the phase relaxation timescale

for the ith super-droplet (ni is the concentration of droplets

ith super-droplet represents); see Eq. (A5) in Morrison and

Grabowski (2008). Knowing ǫi , the radius of each super-

droplet within a given grid cell is subsequently modified,

keeping the multiplicity unchanged.

3 Example of application: two-dimensional moist

thermal simulations

The scheme described above has been merged with the EU-

LAG model (e.g., Prusa et al., 2008, www2.mmm.ucar.edu/

eulag/) and its simplified version referred to as babyEULAG

(Grabowski, 2014, 2015). Here we present results from the

babyEULAG model as it is simpler and thus more conve-

nient for the scheme testing and improvement. The Univer-

sity of Warsaw Lagrangian Cloud Model (UWLCM) briefly

described in the next section is used in the comparison. The

Lagrangian approach applied in the UWLCM is referred to

as the traditional super-droplet method in the discussion be-

low. Both the babyEULAG model and the UWLCM apply

the implicit large-eddy simulation approach, that is, without

modeling of the unresolved subgrid-scale transport (see ref-

erences to other studies applying this method in Grabowski,

2014; Pedersen et al., 2016).

3.1 The University of Warsaw Lagrangian Cloud

Model, UWLCM

The UWLCM is an open-source software for two-

dimensional and three-dimensional modeling of clouds with

super-droplet or bulk microphysics. Advection of the Eule-

rian fields is done using the libmpdata++ (Jaruga et al., 2015)

implementation of the MPDATA algorithm (Smolarkiewicz

and Margolin, 1998). Cloud microphysics is modeled using

the libcloudph++ library (Arabas et al., 2015). Coupling be-

tween Eulerian and Lagrangian model components is done

in the same way as in the Twomey model. Potential tempera-

ture and water vapor mixing ratio are not interpolated to the
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position of a super-droplet, but the same value is used for all

droplets within a cell. The procedure for limiting spurious su-

persaturation, which was described in Sect. 2.6, is not used.

The super-droplets are advected with a predictor–corrector

method with velocities interpolated to super-droplet position

using the “simple” scheme defined in Sect. 2.4. In the MP-

DATA algorithm used in simulations presented in this pa-

per, variable-sign fields were handled using the “abs” op-

tion of the libmpdata++ library (see Sect. 3.1.5 and 3.4.1

in Jaruga et al., 2015). Advection of Eulerian fields and of

super-droplets is done with a 1t = 1 s time step. Water con-

densation is done using 10 substeps per time step of advec-

tion, resulting in a 1t = 0.1 s time step for condensation. De-

tails of the substepping procedure are discussed in Arabas

et al. (2015).

Because UWLCM explicitly represents CCN deliques-

cence, a more detailed droplet growth equation is used

(see Sect. 5.1.3 in Arabas et al., 2015). The κ–Köhler

parametrization of aerosol hygroscopicity is used. We as-

sume κ = 1.28 for the sea salt aerosol used in this paper (see

Table 1 in Petters and Kreidenweis, 2007). Super-droplets

in the UWLCM typically have different multiplicities and

only the initial number of super-droplets per grid cell is pre-

scribed. The super-droplet initialization scheme is the same

as in Dziekan and Pawlowska (2017) (the “constant SD” type

of simulation described in Sect. 2 therein).

3.2 Setup of moist thermal simulations

Rising moist thermal simulations follow Grabowski and

Clark (1991, 1993) with small modifications. The environ-

mental profiles are taken as constant stability d ln2v/dz =

1.3 × 10−5 m−1 for the temperature (2v is the virtual po-

tential temperature; the potential-temperature-based stability

was used in Grabowski and Clark, 1991, 1993) and constant

relative humidity of 20 %. Surface temperature and pressure

are taken as 283 K and 850 hPa. Note that the 2v-based sta-

bility profile requires an iterative procedure when moving

upwards from the surface because the temperature, mois-

ture, and pressure (the latter resulting from the hydrostatic

balance) have all to be adjusted to give stability and rela-

tive humidity profiles exactly as specified above. The cir-

cular moisture perturbation is introduced in the middle of

the 3.6 km horizontal domain, with the center located at the

800 m height. The vertical extent of the domain is 2.4 km.

The air inside the 250 m perturbation radius (200 m was used

in Grabowski and Clark, 1991, 1993) is assumed to be satu-

rated, and the relative humidity decreases to the environmen-

tal value as cosine squared over the 100 m radial distance.

Uniform horizontal and vertical grid length of 20 m is used.

A 1 s time step is used in simulations applying the babyEU-

LAG model.

The average number of super-droplets per grid cell affects

the amplitude of statistical fluctuations due to the transport

of super-droplets across the Eulerian grid. Because of dif-

ferent formulations of CCN activation, a direct match of the

super-droplet number per grid cell between UWLCM and the

Twomey scheme is impossible. In the Twomey scheme simu-

lations, the number of Smax divisions considered was 50, 200,

1000, and 4000. The corresponding number of super-droplets

per cloudy grid cell was around 40 for 50 divisions, ∼ 150

for 200 divisions, ∼ 700 for 1000 divisions, and ∼ 2700 for

4000 Smax divisions. The UWLCM simulations used in the

comparison with the Twomey scheme simulations discussed

in the next section applied 200 and 4000 super-droplets per

grid cell. Only some of them became activated, and the av-

eraged fraction of activated super-droplets (i.e., those with

the radius larger than the critical radius) was around 45 % for

both cases.

3.3 Comparison between UWLCM and the Twomey

super-droplets

When comparing results from the two models, one needs

to keep in mind that microphysical schemes differ in some

additional details. In particular, the UWLCM applies the

κ–Köhler parametrization (Petters and Kreidenweis, 2007)

to prescribe CCN activation characteristics whereas the

Twomey scheme applies the N–S relationship derived from

activation calculations applying CCN chemical composition

information (i.e., as in Grabowski et al., 2011). Our tests

with the adiabatic parcel model applying either the κ–Köhler

parametrization used in UWLCM or the approach based on

the CCN chemical composition show that difference of a

couple of percentage points between droplet concentration

predicted by the two methods for the same supersaturation

is not unusual. Moreover, different droplet growth equations

are used in the two schemes, although this factor does not af-

fect the favorable comparison presented in Grabowski et al.

(2011). Finally, the number of SDs representing activated

CCN used in both models is not exactly the same as ex-

plained before.

Figures 5 and 6 show spatial distributions of the water

vapor and cloud water mixing ratios for the two simula-

tions, that is, using either the Twomey super-droplets with the

babyEULAG model (Fig. 5) or the traditional super-droplets

with UWLCM model (Fig. 6). Both simulations apply a simi-

lar number of super-droplets per grid cell (4000 aerosol sizes

in UWLCM and 4000 divisions in the Twomey simulation).

Overall, the transition of the initial circular perturbation to

a cloudy rising vortex pair proceeds similarly in the two

models. The most obvious difference comes from the de-

velopment of instabilities near the thermal top. These insta-

bilities are forced by fluctuations of thermodynamic fields

(and thus cloud buoyancy) that result from a finite number of

super-droplets in each grid cell. As discussed in Grabowski

and Clark (1991, 1993), these cloud–environment instabili-

ties represent a combination of Rayleigh–Taylor and Kelvin–

Helmholtz instabilities occurring in a complex geometry near

the thermal leading edge. The spatial scale of the instabil-
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Figure 5. Distribution of (a) the water vapor and (b) the cloud water mixing ratios at 2, 6 and 10 min for the Twomey super-droplet scheme

in the rising thermal simulation.
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Figure 6. As Fig. 5, but for the UWLCM model.

ity depends on the depth of the shear that develops near the

cloud–environment interface as the thermal pushes upwards

(see Sect. 4b in Grabowski and Clark, 1991). The specific re-

alization of the instability pattern changes with the number

of super-droplets used in the simulation, and with the selec-

tion of random numbers applied during positioning super-

droplets on the Eulerian grid during activation. It follows

that the direct comparison between the simulations is pos-

sible only before the development of the instabilities, say, up

to the 6th minute of the simulation (i.e., middle panels in

Figs. 5 and 6).

A more detailed comparison between the two simulations

is facilitated by applying two different statistical measures.

The first one involves conditional sampling of various fields

across the thermal, including points with the cloud water

mixing ratio exceeding a threshold of 0.1 g kg−1. A smaller

threshold allows incorporation of more significant fraction

of points from the thermal edge that are affected by the Eule-

rian model numerics. The statistics include the mean values

of conditionally sampled fields and the standard deviations of

the spatial variability of a given field across the thermal. The

second measure is the time evolution of various quantities

at the center of mass of the cloud water field, that is, at the

height of zcm =
∫

zqcds/
∫

qcds (where qc depicts the cloud

water mixing ratio and the integral is over the entire compu-

tational domain) and a similar expression for the horizontal

position xcm.

Figure 7 compares evolution of the supersaturation field

conditionally sampled over the rising thermal for UWLCM

with 200 and 4000 super-droplets per grid cell and the
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Figure 7. Comparison of the mean supersaturation averaged over the cloudy points for UWLCM (a, d) and the Twomey super-droplet scheme

without (b, e) and with (c, f) the adjustment to avoid unphysical cloud-edge supersaturation fluctuations. The blue and brown lines represent

the mean and the mean plus the standard deviation of the spatial distribution. Panels (a–c) and (d–f) are for simulations with 200 and 4000

super-droplets (UWLCM) or number of divisions (Twomey scheme). Data are plotted at every time step of the fluid flow model.

Twomey approach with 200 and 4000 Smax divisions. The

Twomey results either include or exclude (marked adjust and

noadjust in the figure) temperature and moisture adjustment

as described in Sect. 2.6. The figure shows that application

of the adjustment scheme is critical for maintaining a phys-

ically consistent supersaturation field as the supersaturations

are significantly higher without the adjustment. The physi-

cal consistency is measured by comparing the supersatura-

tion predicted locally with the quasi-equilibrium supersatu-

ration, that is, the supersaturation resulting from a balance

between production due to the updraft and removal due to

condensation (Squires, 1952; Politovich and Cooper, 1988).

Except for the initial first minute when droplets are small, the

supersaturation predicted by the model agrees well with the

quasi-equilibrium supersaturation (not shown). An important

point is that simulations with 200 divisions (upper panels)

differ little from simulations applying 4000 divisions (lower

panels) until different flow realizations in the final few min-

utes cause the divergence. The agreement suggests that about

a hundred super-droplet per grid cell is sufficient to obtain

statistics that change little with further increase of the super-

droplet number. The reduction of both the standard deviation

and the amplitude of the fluctuations when the adjustment

scheme is applied is also apparent. The corresponding results

from UWLCM simulations show that the mean supersatura-

tion evolution is similar to those for the Twomey simulations

without adjustment as one might expect.

Figure 8 shows statistics of the droplet concentration in

the format similar to Fig. 7. As expected, the mean concen-

tration is higher when adjustment is not used in the Twomey

approach. The mean concentration slowly decreases in time

because of the air expansion due to rise of the thermal. For

Twomey simulations with 200 Smax divisions, the mean con-

centration at minute 2 is around 77 cm−3 and the standard de-

viation of the spatial distribution is around 5 cm−3 in simula-

tion with the adjustment versus 85 cm−3 and higher standard

deviation without the adjustment. The mean concentration at

2 min decreases to around 72 cm−3 for the 4000 division sim-

ulations. For the UWLCM, the mean concentration at minute

2 is around 75 cm−3 and the standard deviation of the spa-

tial distribution is around 9 cm−3. The similarity of the mean

concentration between the Twomey super-droplets with ad-

justment and UWLCM documents the limited impact of the

cloud-edge supersaturation fluctuations when details of the

CCN activation are resolved in the original super-droplet ap-

proach. Larger standard deviation of the spatial distribution

is likely because of the variable multiplicity attribute among

original super-droplets in the UWLCM model.

Figures 9 and 10 compare various statistics between the

Twomey scheme and UWLCM at the center of mass of

the cloud water field with 200 and 4000 super-droplets

(UWLCM) or Smax divisions (Twomey scheme), 200 in

Fig. 9, and 4000 in Fig. 10. The data are plotted at ev-

ery model time step. Microphysical properties such as the

droplet concentration, mean radius, and the spectral width

show oscillations that are reduced with the increased num-

ber of super-droplets per grid cell. It is important to note that

center of mass is calculated on the Eulerian grid, that is, it

jumps from one grid box to another as the thermal moves up-

wards. The period of the oscillations in Figs. 9 and 10, about

10 s, matches approximately the propagation of the center of

mass over the grid as the updraft velocity is about 2 m s−1 and

the grid length is 20 m. The amplitude of the oscillations can

be estimated by comparing the original evolution (i.e., the
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droplets (UWLCM; purple lines) or 200 divisions (Twomey scheme with adjustment; green lines). The panels show (a) droplet concentration,

(b) droplet mean radius, (c) spectral width of the droplet size distribution, (d) height of the center of mass, (e) supersaturation, and (f) vertical

velocity.

one shown in Figs. 9 and 10) and the evolution sufficiently

smoothed in time so the oscillations are removed. In the case

of the droplet concentration for the Twomey simulations,

the amplitude decreases from 6.0, 2.0, 1.1, and 0.6 cm−3 for

the number of divisions increasing from 50, 200, 1000, and

4000. This is roughly the expected scaling, that is, along the

square root of the number of super-droplets that increases

from around 40 to 2700 for the number of divisions increas-

ing from 50 to 4000. As mentioned before, the direct compar-

ison between various simulations is only possible up to about

the 6th minute as different flow evolutions make results im-

possible to compare at later times. Except for the oscillation

amplitude, the results for different number of Smax divisions

compare well for the Twomey super-droplets.

The differences between Figs. 9 and 10 are consistent with

the differences between conditionally averaged statistics. For

instance, droplet concentrations fluctuate between 60 and

80 cm−3 for Twomey super-droplets with adjustment and

200 Smax divisions and UWLCM with 200 super-droplets

per grid cell. The evolution of the center of mass height is

very similar in Twomey and UWLCM simulations. The mean

radius is close to 15 µm at minute 6 for both the Twomey

and UWLCM. Droplet concentration fluctuations are larger

in UWLCM arguably because of the way CCN is sampled
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Figure 10. As Fig. 9, but for 4000 super-droplets (UWLCM) or 4000 divisions (Twomey scheme).
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Figure 11. Evolution of the maximum supersaturation in the do-

main for UWLCM simulations (purple line) and Twomey scheme

with (blue line) and without (green line) adjustment for unphysical

supersaturation fluctuations. Data are plotted at every model time

step with 200 super-droplets in UWLCM and 200 division in the

model with the Twomey activation.

when super-droplets are created, that is, with different mul-

tiplicity parameters that increase the oscillation amplitude.

The evolution of the vertical velocity at the cloud water cen-

ter of mass increases in both simulations up to about 3.5 min

and decreases thereafter (the evolutions after minute 6 can-

not be compared due to different flow realizations as already

explained). The vertical velocity maxima around 3.5 min are

similar.

As a final element of the comparison, we show in Fig. 11

evolutions of the maximum supersaturation in the compu-

tational domain for simulations with the Twomey super-

droplets with and without the adjustment to limit unphysi-

cal cloud-edge supersaturations and for the UWLCM. The

simulations apply similar number of super-droplets per grid

cell (200 divisions in the Twomey super-droplet simulations

and 200 samples of the CCN distribution in the UWLCM

simulation). The maximum supersaturations occur at dif-

ferent spatial locations near the cloud edge as the cloud–

environment interface moves across the Eulerian grid. This

is why large fluctuations in the UWLCM simulation impact

the mean droplet concentration to a smaller degree than in the

Twomey approach. In a nutshell, CCN has no time to respond

to these fluctuations when deliquescence is explicitly calcu-

lated by the model. In contrast, Twomey activation imme-

diately adds new droplets when supersaturation fluctuations

take place. These additional droplets can evaporate in subse-

quent time steps, but some survive and lead to the increased

mean droplet concentration as documented in Fig. 8. It fol-

lows that the adjustment is the key element of the Twomey

super-droplets, but is less significant for the traditional super-

droplet approach; see Hoffmann (2016).

In summary, we believe that simple tests presented in this

section document the efficacy of the super-droplet approach

with the Twomey activation. Unfortunately, we cannot pro-

vide a direct comparison of the computational effort be-

tween the two approaches because the two models run on

different computer systems. However, since the cloud covers

about 2.5 % of the two-dimensional computational domain,

the Twomey scheme requires roughly 40 times less compu-

tational effort for simulations presented here (this estimate

excludes the difference in the time steps used by both mod-

els). However, for a hypothetical three-dimensional simula-

tion with a domain extending 3.6 km in the second horizontal

direction, the volume of the initial spherical bubble with the

same radius would only constitute about 0.1 % of the com-
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putational domain volume. Thus, the computational effort in

similar three-dimensional simulations would be about 3 or-

ders of magnitude larger in UWLCM than in the babyEU-

LAG with Twomey super-droplets. UWLCM makes up a lot

of this difference by applying modern software engineering

techniques including parallel processing and application of

graphics processing units; see Arabas et al. (2015). It is im-

portant to note, however, that parallelization of the numeri-

cal model applying Twomey super-droplets requires a differ-

ent strategy than the domain decomposition approach typi-

cally applied in finite-difference numerical models. This is to

avoid significant load imbalances between subdomains fea-

turing cloudy grid cells (i.e., with super-droplets) and those

that are cloud-free. It remains to be seen whether such a

different parallelization will lead to problems due to an in-

creased communication.

4 Conclusions

This paper discusses technical details of a novel Lagrangian

condensation scheme to model nonprecipitating warm (ice-

free) clouds. The idea is to use Lagrangian point particles

(“super-droplets” following the nomenclature introduced by

Shima et al., 2009), rather than continuous medium vari-

ables such as number or mass mixing ratios, to represent con-

densed cloud water. Previous studies applying such method-

ology (e.g., Andrejczuk et al., 2008, 2010; Shima et al.,

2009; Riechelmann et al., 2012; Arabas et al., 2015; Hoff-

mann et al., 2015) demonstrate significant advantages of the

super-droplet method, such as reduced numerical diffusion,

formulation of the governing equations from first principles,

and straightforward application of suitable statistical tech-

niques to represent unresolved subgrid-scale variability as in

GA17. However, in previous applications of the Lagrangian

microphysics, the super-droplets outside clouds represent un-

activated CCN that become activated upon entering a cloud

and can further grow through diffusional and collisional pro-

cesses. Thus, the super-droplets fill the entire computational

domain and need to be transported even if they exist far away

from a cloud and do not affect cloud processes. The orig-

inal methodology allows for the detailed study of not only

effects of CCN on cloud microphysics and dynamics, but

also CCN processing by a cloud. When applying the super-

droplet method to problems where CCN processing is of sec-

ondary importance (e.g., the impact of entrainment on the

spectrum of cloud droplets), a simpler and more computa-

tionally efficient approach can be used. The idea is to create

super-droplets only when CCN is activated and to remove

them when a complete evaporation (i.e., CCN de-activation)

takes place. Thus, no super-droplet exists outside a cloud

and a significantly smaller number of super-droplets need to

be followed in space and time when compared to the tradi-

tional super-droplet scheme with the same number of super-

droplets per grid cell. The new super-droplet approach is

possible by applying the Twomey activation method where

the local supersaturation dictates the concentration of cloud

droplets (and thus the number of the super-droplets) that

need to be present inside a cloudy volume. Twomey activa-

tion excludes details of the CCN deliquescence and activa-

tion, and super-droplets simply disappear when a complete

evaporation of cloud droplets occurs. Twomey activation is

often used in Eulerian bulk (e.g., Morrison and Grabowski,

2007, 2008) and bin microphysics schemes (e.g., Grabowski

et al., 2011; Wyszogrodzki et al., 2011). Moreover, simula-

tion of the CCN deliquescence requires short time steps and

avoiding it with the Twomey activation provides additional

computational advantage. As mentioned previously, applying

Twomey activation to create cloud droplets bears similarities

to the way ice particles are initiated in a Lagrangian model

targeting ice processes (e.g., Sölch and Kärcher, 2010).

We apply the traditional Lagrangian super-droplet model,

the University of Warsaw Lagrangian Cloud Model

(UWLCM; Arabas et al., 2015; Jaruga et al., 2015) and com-

pare results from UWLCM and the novel Twomey super-

droplet method. The simulations apply an idealized setup of

a moist thermal rising in a stratified environment (Grabowski

and Clark, 1991, 1993). Overall, the comparison demon-

strates the efficacy of the new approach as simulation re-

sults differ little between UWLCM and the new scheme.

This is consistent with adiabatic parcel results discussed in

Grabowski et al. (2011) that – away from the cloud base –

show good agreement between cloud properties simulated

applying a scheme with Twomey activation and a scheme

where details of the CCN deliquescence are modeled explic-

itly. The results presented here show that avoiding spurious

cloud-edge supersaturation fluctuations is essential with the

Twomey activation. This is because these fluctuations imme-

diately translate into unphysical droplet concentrations that

affect subsequent evolution of cloud microphysical proper-

ties. In contrast, these fluctuations that are highly transient

in space and time seem to have small impact on simulations

using the original super-droplet method, in agreement with

results discussed in Hoffmann (2016).

As noted in Clark (1974), Morrison and Grabowski

(2008), and Grabowski and Jarecka (2015), modeling cloud

base activation in the Eulerian cloud model requires high ver-

tical resolution to resolve cloud base supersaturation max-

imum, say, of the order of 10 m. The same is true for the

Lagrangian super-droplets. In the case of lower vertical reso-

lution (i.e., when the cloud base supersaturation maximum is

poorly resolved), an activation parameterization can be used,

for instance, linking the concentration of activated CCN

to the strength of the updraft velocity (e.g., Abdul-Razzak

et al., 1998; Abdul-Razzak and Ghan, 2000, among others).

Such a parameterization can also be used with the method-

ology presented in this paper, for instance, in simulations

of deep convection that only allow low vertical resolution.

As deep convection requires incorporation of ice physics

into the Lagrangian methodology, the possibility of apply-
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ing an even simpler representation of super-droplet formation

through the activation parameterization is appealing. Such a

methodology will pave the way for applications of the La-

grangian methodology beyond high-spatial-resolution large-

eddy simulation today to the cloud-resolving (convection-

permitting) weather and climate simulation of the future. We

plan to include such developments to the Twomey super-

droplet scheme presented here, together with the inclusion

of the collision–coalescence that will be the focus of future

scheme expansions. These developments will be reported in

forthcoming publications.

Code availability. The simulations with the Twomey activation of

super-droplets were done using the bE_SDs v0.1 model, available at

https://doi.org/10.5281/zenodo.1050260. The UWLCM v0.2 code

is available at https://doi.org/10.5281/zenodo.1043909.

www.geosci-model-dev.net/11/103/2018/ Geosci. Model Dev., 11, 103–120, 2018
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Appendix A: Subgrid-scale divergence of the simple

interpolation scheme

Figure A1 shows a grid cell with a subgrid volume of dimen-

sions 1α and 1γ with velocities u1, u2, w1, and w2 on the

volume boundaries. Using the simple interpolation scheme

(10) and symbols defined in Fig. A1, the horizontal veloci-

ties u1 and u2 are given by

u1 = (α −
1α

2
)u

i+ 1
2 ,k

+ (1 − α +
1α

2
)u

i− 1
2 ,k

, (A1)

u2 = (α +
1α

2
)u

i+ 1
2 ,k

+ (1 − α −
1α

2
)u

i− 1
2 ,k

, (A2)

and the vertical velocities w1 and w2 are as follows:

w1 = (γ −
1γ

2
)w

i,k+
1
2
+ (1 − γ +

1γ

2
)w

i,k−
1
2
, (A3)

w2 = (γ +
1γ

2
)w

i,k+
1
2
+ (1 − γ −

1γ

2
)w

i,k−
1
2
. (A4)

The divergence over the small volume (with dimensional ex-

tensions of 1α1x and 1γ1z) is then given by the follow-

ing:

u2 − u1

1α1x
+

w2 − w1

1γ1z
= (A5)

u
i+ 1

2 ,k
− u

i− 1
2 ,k

1x
+

w
i,k+

1
2
− w

i,k−
1
2

1z
= −

w

ρ

∂ρ

∂z
.

It follows that the divergence over the subgrid volume is ex-

actly the same as over the grid cell volume. This is the key

feature of the simple interpolation scheme (Eq. 10) because

it allows transport of super-droplets in a physically consistent

manner as documented in the passive particle advection tests

(see Fig. 4).
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Figure A1. Interpolation of particle-advecting velocities from the

grid cell (large rectangle) into a subgrid-scale volume (small rect-

angle) applying the simple interpolation scheme (Fig. 3).
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