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Abstract

We develop the notion of Lagrangian distribution on a scattering manifold X. The latter is a
manifold with boundary, with the boundary being viewed as points “at infinity.” In analogy
with the classical case, a Lagrangian distribution is associated with a submanifold A of the
compactified cotangent bundle of X. The submanifold A is Lagrangian with respect to a
symplectic structure induced by the scattering geometry of X. Our analysis relies on the
parameterization properties of A by means of local phase functions, and the study of the
maps which preserve the scattering structure. We study the principal symbol map associating
Lagrangian distributions with sections of a line bundle over A. In particular, we establish the
principal symbol short exact sequence.
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Introduction

In this article, we develop a theory of Lagrangian distributions on asymptotically Euclidean
manifolds. Lagrangian distributions were defined by Hérmander [20] as a tool to obtain a
global calculus of Fourier integral operators. The latter are widely applied, e.g., in the study
of partial differential equations [16], spectral theory [15], index theory [2] and mathematical
physics [18]. Motivating examples for the necessity of studying Lagrangian distributions
on asymptotically Euclidean spaces include fundamental solutions to the Klein—Gordon
equation, which exhibit Lagrangian behavior “at infinity” (see [12]), as well as simple or
multilayers which arise when solving partial differential equations along infinite boundaries
or Cauchy hypersurfaces (see [5]).

In local coordinates, a classical Lagrangian distribution # on a manifold X is given by an
oscillatory integral of the form

I,(a) =/ e%a(x,0)do, 0.1
R:

for some symbola € S™ (R?xR*)anda phase function ¢ on a subset of R? xR® bounded in x.
The key feature of the classical theory of Lagrangian distributions is that each such distribution
is globally associated with a Lagrangian submanifold A C T*X, locally parameterized by
the phase function ¢, and that its leading order behavior can be invariantly described by its
principal symbol, which is a section in a line bundle on A. In this article, we prove that the
situation on asymptotically Euclidean manifolds is similar, but with a more delicate structure
“at infinity.” To make this precise, we work within the framework of scattering geometry,
developed in [29,32] (see also [19,40]). In particular, we provide an extensive introduction
to the scattering geometry theory and describe a class of naturally arising morphisms, the
scattering maps, which play a relevant role in our analysis. We note that the scattering
manifolds may also be seen as Lie manifolds (see [1]; see also [4]), and in this way, our
theory complements recent advances in the theory of Lagrangian distributions and Fourier
integral operators on such singular spaces (via groupoid techniques, see [25]).

A class of oscillatory integrals on Euclidean spaces, the local model for our theory, was
studied in [11]. For the scattering manifolds setting, a fitting theory of Lagrangian submani-
folds on R¢ was developed in [12]. As a first step, we adapt this to general scattering manifolds
with boundary X = X U 0X, the boundary being viewed as infinity. On such manifolds,
the environment for microlocalization is then the compactified scattering cotangent bundle
seTr X , a manifold with corners of codimension 2 and its boundary W = T X. Indeed,
the boundary may be seen as a stratified space, and the two boundary faces of ST X, which
intersect in the corner, inherit a type of contact structure. The geometric objects of study in
our theory are then Legendrian submanifolds of the faces VW which intersect in the corner and
are the boundary of some Lagrangian submanifold in the interior and smooth (distribution)
densities thereon. Hence, the compactification in the fiber is natural from the point of view
of symplectic geometry. Another reason for the compactification in the base space variable,
as well as in the fiber, is that the localizing cutoff functions used for the microlocalization
are compactly supported in both the sets of variables, which is an advantage in most com-
putations, and makes more evident the symmetric role of variable and covariable, which is a
main feature of this setting.
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Lagrangian distributions on asymptotically Euclidean... 1733

The prototype of a scattering geometry is the Euclidean space R?, identified with the
interior of the unit ball BY under radial compactification. Under this identification, the local
symbol class of the naturally associated pseudodifferential calculus is given by the so-called
classical SG-symbols (see Sect. 1). Namely,

SGo ™ (R x RY) = py™ p, " 6 (BE x BY), 0.2)

where px and py are boundary-defining functions of IB‘;( and IB%‘;,, respectively. The wider
class SG™"v (R x R*) consists of all the functions a € €>°(RY x R?) satisfying the global
estimates (1.3) on R x R*. The original definition of the SG-calculus dates back to the 1970s,
with the work of Cordes (see [5]), and Parenti [34], aimed at studying problems on R4, with
A= (14 |x)"™1 — A), m € R, being a basic example of differential elliptic operator
included in the calculus. Schrohe [35] extended the SG-calculus to a class of manifolds, the
so-called SG-manifolds, including, for instance, manifolds with finitely many cylindrical
ends, and more generally, so-called .¥-manifolds (see again [5]). Such manifolds admit a
(natural) scattering structure [29], giving rise to the same calculus, whose residual elements
are operators with smooth kernels “rapidly decaying at infinity.” The subclass SGlge'm"’ (R x
R®) consists of all those a € SG™<™v (R x R*) which admit a polyhomogeneous expansion
(cf. [17,29,37,40]). The classical SG-calculus has also been employed and developed by
Schulze in his approach to pseudodifferential calculi on singular manifolds (cf. [17,37])
The analysis of the SG Fourier integral operators on R started in [6-8]. Note that the
weight factors appearing in the identification (0.2) encode the information about the orders,
in particular, the rate of “decay/growth at infinity” associated with the component m,. The
handling and the study of the effects of such factors (not present in the case of the analogous
theory on smooth, closed manifolds) are one of the main aspects of our analysis. It is crucial,
in particular, in the construction of the principal symbol map (see our main theorem below)
in connection with the principal part of classical SG-symbols.

We start from the relationship between the classes of “local Lagrangian distributions”
[11], defined by means of SG-classical symbols, and the (globally defined) sc-Lagrangian
submanifolds on scattering manifolds [12]. The link with Lagrangian distributions is now
as follows. We prove that, despite the singular geometry, any sc-Lagrangian submanifold
A C Wlocally admits a parameterization through some phase function ¢, via a generalization
of the map

Lo :Cop—> Ayt (x,0) > (x,dro(x,0)),

where C, = (de@)~'{0}. For each such a phase function, a Lagrangian distribution can
be expressed locally as an oscillatory integral as in (0.1). Up to Maslov factors and some
density identifications, the restriction of a(x, ) to C,, yields the principal symbol of « and
is interpreted as a (density-valued) function on A by identification via A,. Indeed, the main
theorem characterizing the principal symbol reads as follows.

Theorem Let A be a sc-Lagrangian on X. Then, there exists a surjective principal symbol
map

Ty I (X, A) > E(A, My ® Q),

where M is the Maslov bundle and /2 denotes the half-density bundle over A. Moreover,
its null space is I~ 1™ =1(X, A) and we have the short exact sequence

iemy

0 —> 1" By (X, A) — I (X, A) —— €A, Ma ® Q') — 0.
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1734 S. Coriasco et al.

Equivalently,
"™ (X, A) /T~ N (X A) > €A, My @ Q7).

One possible application of the principal symbol is to calculate the singularities of Tr e ~//P
for t # 0 of a scattering pseudodifferential operator P € w;’c’f’”‘v’ (X) for me, my > 0. The
case t+ = 0 was calculated in [3,10] and gives the leading contribution in the Weyl law,
whereas the singularities at ¢ # 0 are related to the sharp and refined error terms (cf. [15] for
the case of compact manifolds without boundary).

We have the following examples of (scattering) Lagrangian distributions.

(1) Standard Lagrangian distributions of compact support, [20,23], in particular Lagrangian
distributions on compact manifolds X without boundary, are scattering Lagrangian dis-
tributions, using the identification

rescaling

Fiber-conic sets in 7*X \ {0} <—> Sets in $*X <— Sets in WY

(2) Legendrian distributions of [32]. Here, the distributions are smooth functions whose
singularities at the boundary are of Legendrian type, meaning in WV°.

(3) Conormal distributions, meaning the distributions where the Lagrangian (see Sect. 2.4) is
0 (SCT* X’ ) for a (k-dimensional) p-submanifold X’ C Y. These distributions correspond,
under compactification of base and fiber, to the oscillatory integrals given in local (pre-
compactified) Euclidean coordinates by

Me Ny

u(x', x") = /e'*’fa(x,s)ds, a(x, &) € SG~" (R x RITH),

If we consider a linear subspace R¥ ¢ R4, then the class of translation invariant conormal
distributions is a subset of conormal distributions. These can be represented by oscillatory
integrals of the form

ux’, x" :/e'*'fa(g)dg, a(€) e SM(RIH,

A prototypical example is given by (derivatives of) 8p(x") ® 1. Conormal distributions
arise as (simple or multiple) layers when solving partial differential equations along
infinite boundaries or Cauchy surfaces.

(4) Examples of scattering Lagrangian distributions which are of none of the previous types
arise in the parametrix construction to hyperbolic equations on unbounded spaces, in
particular constant coefficient hyperbolic equations on R?. We refer to [36] for a discus-
sion of the two-point function for the Klein—Gordon equation (cf. also [38] for the wave
equation). The later example is especially important, since in quantum field theory the
usage of the distinguished parametrices of [16] is limited by the fact that the error term
is not compact (cf. [13]).

Note that the kernels of pseudodifferential operators on X x X are not scattering conormal
distributions associated with the diagonal A C X x X when X is a manifold with boundary.
This can be mitigated by blowing up the corner dX x dX (see Remark 4.12).

Summarizing, our results show that the theory of Lagrangian distributions, classically
studied either locally or on compact manifolds without boundary, may be generalized to a
theory of Lagrangian distributions on Euclidean spaces or manifolds with boundaries, hence
amuch wider class of geometries. It is formulated in a way that makes it transferable to other
singular geometries, as well as manifolds with corners.
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The paper is organized as follows. In Sect. 1, we give an introduction to scattering
geometry. In particular, we discuss the natural class of maps between scattering manifolds,
compactification and scattering amplitudes. In Sect. 2, we define the Lagrangian submani-
folds and phase functions that arise in our theory. In Sect. 3, we discuss the techniques of
classifying phase functions which parameterize the same Lagrangian submanifold. In Sect.
4, we define the Lagrangian distributions in this setting, starting from oscillatory integrals,
and study their transformation properties. Finally, in Sect. 5, we define the principal symbol
of Lagrangian distributions and prove its invariance.

1 Preliminary definitions

In the following, we will recall some elements of the geometric theory known as “scattering
geometry” (cf. [29,30,32,40]). To start with, we need to recall some groundwork on the
analysis on manifolds with corners, for which we adopt the definition of [28,31] (cf. also
[26] and [24] for a discussion on the different notions of manifolds with corners in the
literature).

1.1 Manifolds with corners and scattering geometry

We recall the following extrinsic definition of a (smooth) manifold with (embedded) corners.

Manifolds with corners and €°°-functions

Let X be a paracompact Hausdorff space. As in the case of manifolds without boundary, a
manifold with corners is defined in terms of local charts. A d-dimensional chart with corners
(of codimension k) on X is a pair (U, ¢), where U is an open subset of [0, oo0)k x RA—k
forsome 0 < k < d,and ¢ : U — ¢(U) C X is a homeomorphism. If k = 1, we call
(U, ¢) a chart with boundary. As usual, we define compatibility between charts and an atlas
of charts and therefore obtain a definition of manifolds with boundary and manifolds with
corner (abbreviated mwb and mwc, respectively, in the following). For every manifold with
corners X of dimension d, there exists a d-dimensional ¢"*°-manifold X without boundary
with X C X, and the interior X° of X is open in X and non- empty whend > 0. We denote by
¢ (X) the space of the restrictions of the elements of > (X ) to X. The tangent space T X
and differentials of maps f : X — Y, Tf : TX — TY, between manifolds with corners
X, Y, are obtained as restrictions of the corresponding objects on Xand?Y.

We always assume X to be compact and assume that there is a finite collection of €°-
functions on X, {pilier, called boundary-defining functions (abbreviated bdf), such that
X =Nieglp € X, pi(p) = 0}, and at every point where p; = O for every j € J C I,
the differentials of these p; are supposed to be linearly independent. In particular, dp; # 0
when p; = 0. We also always assume to be working in local coordinates of the form x: p
P15 -y Pks X1, -+ -, Xa—k)(p), Where k is the number of boundary-defining functions!

Remark 1.1 Joyce calls this notion a (compact) manifold with embedded corners (cf. Remark
2.11 in [24]). By Proposition 2.15 in [24] we see that, locally, a boundary-defining function

! Note that the p j cannot always be chosen as coordinates at interior points, since their differential may vanish
in the interior. As it is customary, we disregard this minor technical inconvenience in order to allow for an
easier consistent notation and think of the p to be replaced by any other admissible coordinate function there.
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1736 S. Coriasco et al.

always exists, and the property that all corners are embedded ensures that a global boundary-
defining function exists. Most of the times the actual choice of boundary-defining function
is not relevant (cf. Proposition 2.15).

Let p € X. Then, the depth of p, depth(p), is the number of independent boundary-
defining functions vanishing at p, which coincides with the codimension of the boundary
stratum in which p is contained. We recall that for j € {0,...,d} one sets 9;X = {p €
X | depth(p) = j}. In particular, X° = dpX and 9X = Uj>0 0;X. We note that as such,
the boundary of a mwc is not a mwc itself, but rather a topological manifold. Nevertheless,
it is possible to define the set of smooth functions on d X as the set of restrictions of smooth
functions on X to 0X.

Given a relatively open subset U of a manifold with corner X, we say that U is interior if
UNdX = . Otherwise, we always assume that U contains all interior points of the boundary
U N X and call U a boundary neighborhood.

We will write f € ¢°°(U) if and only if there is an extension f € €°°(X) that coincides
with f on U. The space pl_m‘ e pk_m"%"O(U) is the space of functions & € ¥°°(U?) such
that p}"" - - p;"* h extends to an element of €*°(U).

The class of mwc that interest us is that of (products of) fiber bundles where both the base
and the fiber are allowed to be a compact manifold with boundary (abbreviated “mwb”).
The archetype of such a mwec is the product of two mwbs. Indeed, if X and Y are mwbs,
B = X x Y is amwc. We write B = 0B, and we have (adopting the notation of [12,17])

B=(0X x Y)U(X° x dY)U(dX x 3Y) =: B U BY UBY°.

=01 B =B

We now describe the basics of scattering geometry (cf. [29,30,32,40]). We first recall the
guiding example.

Definition 1.2 (Radial compactification of RY) Pick any diffeomorphism ¢ : R — (B%)?

that, for |x| > 3, is given by
(-%)
tixt—> —\|1——).
x| | x|

Then, its inverse is given, for |y| > _%, by

iy -yl
|yl
The map ¢ is called the radial compactification map. We may hence view R¢ as the interior
of the mwb B and call B¢ “infinity.”
Denote by [x] a smooth function R? — (0, 00) that, for |x| > 3, is given by x — |x]|.
Then, ¢~ H*[x] isa boundary-defining function on B (and we view [x] ' asa boundary-
defining function on R?). Indeed, for |yl > 2/3itis givenby y — 1 — |y| = py.

Remark 1.3 In scattering geometry, the explicit choice of compactification of R often differs
from ours (see [32]). Write (x) = /1 + |x|2 for x € R? and define

( L2 ) . 9)

Pl )= Wy, Y).

(x) (x)

This maps R into the interior of the half-sphere with positive first component, and py and

d — 1 of the ¥ = py - x functions may be chosen as local coordinates. Because of the follow-
ing computation, both compactifications are equivalent, meaning they yield diffeomorphic
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w Wie

We

0X

Fig.1 The boundary faces and corner of 7 X
manifolds. In fact, for |x| > 3, we may write

1+ [x]72 1— (x)2
Hence, (x)~! and [x]~' yield equivalent boundary-defining functions on R?.

Definition 1.4 (Scattering vector fields on mwbs) Let X be a mwb, with boundary-defining
function p. Consider the space by (X) of vector fields tangential to d X. Then, V(X) is the
space p by (X). Near any point with p = 0, the vector fields {p28p, paxj} generate °V(X).
In particular, V(X)) contains vector fields supported in X°.

By the Serre—Swan theorem, there exists a ¢ °°-vector bundle T X such that 5V (X) are
its °°-sections. We have a natural inclusion map T X — T X. Note that { pzap, POy, } are,
as elements of *°T, X, nonvanishing at boundary points p € dX despite p = 0. The inclusion
reverses for the dual bundles T*X < 5°T*X. In coordinates, we denote the dual elements
to {pzap, POy, } by [i—g, % }, and these span the sections of °7* X near the boundary.

We now consider the compactified scattering cotangent bundle SCT™ X, which is the fiber-
wise radial compactification of 7*X. The new-formed fiber boundary may be identified
with a rescaling of the cosphere bundle, called *S*X. Since X is a mwb, ST*X isa compact
manifold with corners. The boundary of W = ST X, which we denote? by W, splits into
three components: the boundary faces

W= T X, WV i="55,X, WY =%S5X.

This geometric situation (with X identified as the zero section) near the boundary is summa-
rized in Fig. 1 (cf. [12,32]).

2 This is a slight change of notation compared to [29] where it is denoted Cc.
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1738 S. Coriasco et al.

The exterior derivative d lifts to a well-defined scattering differential *d on the scattering
geometric structure. In coordinates, with p a local boundary-defining function, we write

d—1
dp dx;
S =0t 5 ) P (L.1)
j=1

Note that for f € ¥°°(X), this means that as a section of °T*X, d f necessarily vanishes
on the boundary. In fact, we may extend *d to the space p~!%>°(X) and obtain a map

A2 p ' (X)) — O X) = T(°T*X).

That is, in local coordinates near the boundary,
dp dp ! dx;
ot N =T — f o = (P ) 5D b f L
j=1

Remark 1.5 We note that p~!%°°(X) and similarly defined spaces are independent of the
actual choice of boundary-defining function p (cf. Remark 1.1).

Example 1.6 Outside a compact neighborhood of the origin, polar coordinates provide an
isomorphism RY = R4 x S9=1. The vector fields 9, and }BX 5 Xj being coordinates on sd-1,
correspond (up to a sign) under radial inversion p = % to p2 dp and pdy;. Hence, scattering
vector fields on B¢ arise as the image of the vector fields of bounded length on R under
radial compactification.

Definition 1.7 A scattering manifold (also called asymptotically Euclidean manifold) is a
compact manifold with boundary X, whose interior is equipped with a Riemannian metric g
that is supposed to take the form, in a tubular neighborhood of the boundary,

o= R
o p*’

where p is a boundary-defining function and g5 € ¥*°(X, Sym>T*X) restricts to a metric
ondX.

Any mwb may be equipped with a scattering metric.
Example 1.8 In polar coordinates, the metric on R \ {0} can be written as
g= (dr)®2 + rzng—l.
Pulled back to B¢ using ¢, thatis, r = (1 — lyD~' = p~! near the boundary, this becomes

(d,0)®2 + 8sd—1

gpd = .
B o4 02
In the sequel, in the case of mwbs X, Y, Z, ..., we will always implicitly choose a
boundary-defining function denoted by px, py, pz, ..., respectively.

Definition 1.9 (Scattering vector fields on product type manifolds) For aproduct B = X x Y,
with X and ¥ mwbs, we may introduce *V(B) as pxpy(®V(B)). Near a corner point,
the resulting bundle °T* B is hence generated, if X = (px,x) andy = (py, y) are local
coordinates on X and Y, respectively, by

PXPYdpys PXPYx; PXOFDpys PXPY Dy,
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Lagrangian distributions on asymptotically Euclidean... 1739

The space °V(B) splits into horizontal and vertical vector fields,> VX (B) and VY (B),
respectively, and we define @ (B) as the set of (scattering) 1-forms w € *©@!(B) such
that w(v) = 0 for all v € VY (B).

Given complete set of coordinates x = (px, x),y = (py, y) on X and Y, respectively,
we see that °@% (B) is the set of sections generated by

d,OX de

%Py PXPY

The underlying vector bundle will be denoted by °H X B. Similarly, we define **@* (B) and
sCHY B. It is important to note that we have the following “rescaling identifications”:

d d
PX s g K e ot (v c0 (X)),

SC@X(B) B

2

Px PY Px (1.2)
scX dx/ —ldxj —1lepoo sc
*®*(B) > — <« py — € py, € (Y,"O(X)).

PX PY PX

Again, we may define the scattering exterior differential d, induced by the usual exterior
differential d, and extend it to a map

Sd:pyl oy '€ (B) — €O(B).

In terms of the scattering differentials on X and Y, we may decompose *d as *d = dx +5dy,
where

sch . pglp;l%oo(B) - sc@X(B)’
SCdY . p‘;lp;l(gOO(B) — SC@Y(B).

1.2 Amplitudes

Definition 1.10 (Amplitudes of product type). Let B be amwc, {p;}j=1..x a complete set of
bdfs. Then, a is called an amplitude of order m € R¥ if

aep " p"HEP(B).

For an open subset U of X, a locally defined amplitude of product type is an element of
Zm

py " p " e (U). For p € 93X, we call a elliptic at p if pi"' -+ p/*a(p) # 0. We
write

%OOO(X) = ﬂ p;m1 . pk—mk%OO(B)
meRk

for the smooth functions vanishing at the boundary of infinite order.
For p € 9B, we call a rapidly decaying at p if there exists a neighborhood U of p such
that a vanishes of infinite order on U N 3 B, that is, a € 65°(U).

We now study the leading boundary behavior of these amplitudes. For simplicity, we only
consider B = X x Y formwbs X and Y.

3 Consider the projection pry : B — X. Then, v € V(B) satisfies v € VX (B) if v(pry f) = 0 for all
f € €°°(X). The set seVY (B) is defined in analogy.
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1740 S. Coriasco et al.

Definition 1.11 Let a € py"p, " €>°(B) and write a = py"*p," " f for some f €
%> (B). Given a coordinate neighborhood U of a point p € B°*, we define symbols ¢ *(a)
of a on U by

0@ x.y) =py"py ' fO.x,y), peBUB
oV (@ y) =px"py" " f(x,0,y), peBrUB/e

—m

oVe(a)x,y) = px"py ¥ F(0,x,0,y) peBYe
The tuple (6¥ (a), 0¢(a), 0¥¢(a)) is denoted by o (a) and called the principal symbol of a.

Fix € > 0o small that px and py can be chosen as coordinates on B, respectively, whenever
px < €and py < €. We choose a cutoff function x € ¥°°(R) such that x(t) = Ofort > €/2
and x(t) =1 fort < €/4.

Definition 1.12 Forany a € py"*p, "' € (B), the amplitude

ap(x,y) = x(px)a®@(x,y) + x(oy)o ¥ (@ (x,y) — x (ox)x (py)o V(@) (x,y)

is called the principal part of a.

While a;, does depend on the choice of x, its leading boundary asymptotics do not. By Taylor
expansion of f, we obtain:

Lemma 1.13 The principal part a,, of a satisfies a — a, € pgm‘)+1p;m‘0+l<€°°(3).

Example 1.14 (Classical SG-symbols). Let B = B x B*, where B? and B* are the radial
compactifications of R and R*. The space of so-called classical SG-symbols, SGge’m‘/’ (R x
RS), is that of @ € ¥°(RY x R®) such that (! x :*H*a € p;m"p;mw%w(B). These
symbols are then precisely those that satisfy the estimates

8f3£a(x,6’)‘ < (x)me~lalgymy 1Bl (1.3)

and admit a polyhomogeneous expansion (see [17,29,40]), and the principal symbol of a
corresponds to its homogeneous coefficients (see [17, Chap. 8.2]).

We will need to consider density-valued amplitudes and integrate amplitudes on mwbs.
For this, we introduce the space of scattering o -density bundles (cf. [29]), where °Q° (X) =
p~7@+D Qo (X) in terms of the usual o -density bundle. Note that *°Q° does not depend on
the choice of boundary-defining function.

Example 1.15 Under the radial compactification, the canonical Lebesgue integration density
on RY, dx € QI(RY), is mapped to (,dx € seQl(BY). In particular, we obtain ¢, dx =
p_(d"'l)d,o dS?=1 More generally, if (X, g) is a scattering manifold, then the metric induces
a canonical volume scattering 1-density jtg.

Since the density bundle is a line bundle, any choice of scattering density provides a
section of it and allows for an identification of scattering densities on X and % *°-functions.

We denote the set of all smooth sections of the bundle Q7 (X) by €°°(X, °Q° (X)), and
the tempered distribution densities (ff(fo)/ (X, 5Q7 (X)) are the continuous linear functionals
on 65°(X, *Q177(X)).
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Lemma 1.16 Let X be a mwb and Y a manifold without boundary. Then, integration over Y
induces a map

/ CEO(X X Y, FQNUX x V) — py MY (X, *Q! (X)).
Y

Remark 1.17 More generally, let X and Y be mwbs and Z a manifold without boundary.
Consider a fiber bundle f : X — Y with typical fiber Z. For every scattering density
w e € (X,*Q (X)), the pushforward

fur € py MNP E2(Y, QN (V)
is defined locally by integration along the fiber.

Let (U, ) be a trivializing neighborhood of the fiber bundle, that is, U C Y open,
¥ : X — U x Z smooth and f| -1y = pry o 3. Assume without loss of generality that

w is supported on £ ~1(U). Then, set

f*u=/u°1/fj~
VA

1.3 Scattering maps

We now introduce and characterize the class of maps whose pullbacks preserve amplitudes
of product type. They are a special case of interior b-maps in the sense of [28], and humbly
mimicking Melrose’s naming conventions we call them sc-maps. We first introduce them on
manifolds with boundary and then generalize to manifolds with higher corner degeneracy,
such as products of mwcs.

Definition 1.18 (sc-maps on mwb) Let Y and Z be mwbs. Suppose ¥ : Y — Z. Then, WV is
called an sc-map if for any m € R and a € p,," ¢ (Z) it holds that:

(1) W*a € py"€®(Y);
(2) if p € ¥(Y) with p = W(g) and (p% a)(p) > 0, then (poy ¥*a)(q) > 0.

Remark 1.19 In particular, ¥ maps the boundary of Y into that of Z. It also follows that
T W maps inward pointing vectors at the boundary (meaning vectors with strictly positive
d,-component) to inward pointing vectors at the corresponding points. Indeed, we see that,
at the boundary, ¥,.d,, = h=19,,.

Remark 1.20 1t is obvious that the composition of two sc-maps is again a sc-map.

It is straightforward to adapt this definition to that of a local sc-map by replacing ¥ and
Z with open subsets.

Lemma 1.21 (sc-maps in coordinates). Let Y and Z be mwbs, U C Y and V C Z open
subsets. A smoothmap ¥V : U — V is a local sc-map if and only if

V*oz = pyh for some h € €*°(Y) withh > 0. (1.4)
Hence, any local diffeomorphism of mwbs is a local scattering map. Moreover:

Lemma 1.22 Let X, Z be mwbs. Given any open, bounded set U C R, define the projection
pryz :ZxU — Z,(z,y) — z. Then, idx X pry is a sc-map.
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We now investigate the action of pullbacks by sc-maps on the objects introduced above.
The following assertions can be verified in local coordinates.

Lemma 1.23 Let Y and Z be mwbs, U C Y and V C Z open subsets. Let ¥ : U — V be a
local sc-map. Then, the following properties hold true.

o U™ yields a map p% s@k(V) - oy @k (U) for any m € R and k € N. Moreover, for
0 € p O (V), we have Sd(W*0) = W*(*UH).

o W* yields a map °Q° (V) — ¢Q° (U) for any o e[o,1]. -

e The map T*W : T*V — T*U lifts to a map ST W+ STV — ST U. In local
coordinates, away from fiber infinity, ST s given by

(W), o) = (v, (W),

wherein J WV is the Jacobian of V aty. The extension to fiber infinity is obtained by taking
interior limits ||~ — 0.

We observe that sc-maps provide a natural class of maps between scattering manifolds.

Corollary 1.24 Suppose Y is a mwb, (Z, pz, g) a scattering manifold, V a sc-map Y — Z
which is an immersion. Then, (Y, W*pz, W*g) is a scattering manifold.

Proof We first observe that W*p7 is a boundary-defining function on Y. Indeed,
d¥*pz = hdpy + pydh. (1.5)
This implies, at the boundary, & dpy # 0. The scattering metric on Z pulls back to

grg =y @PDT s @) Wrg
0y py (W)t (WFpz)?

which is again a scattering metric. O

Corollary 1.25 Any scattering manifold Y of dimension s is locally diffeomorphic to B®.
Moreover, any scattering density on Y can locally be written as the pullback by one on B°.

We now extend the notion of sc-map to manifolds with corners.

Definition 1.26 (sc-maps on mwc). Let Y and Z be mwcs. Then, a smoothmap ¥ : ¥ — Z
is a local sc-map for some complete sets of local bdfs {py, };c; and {pz,}ics if:

Forall i € I wehave W*pz, = py,h; forsomeh; € €°°(Y) withh; > 0.

Remark 1.27 In particular, ¥ maps the boundary of Y into that of Z.

As mentioned before, sc-maps are special cases of b-maps. In fact, they are those interior
b-maps that are smooth maps in the sense of [24]. The only difference with the smooth maps
in [24] is that, therein, ¥*pz, = 0 is allowed.

Example 1.28 In particular, if V| : Y| — Z; and W, : Yo — Z, are sc-maps on mwb, then
Wy x Wy : Yy x Yo = Z; X Z; is a sc-map on the resulting product mwc.

Remark 1.29 Note that we fix the ordering of the boundary-defining functions. This is impor-
tant, in particular, when considering sc-maps between products X x ¥ — X x Z or of the
form X x ¥ — T*X. Most of the times, the choice of bdfs will be clear from the context.
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Note that, on a mwb, it is possible to extend any map dX — 90X with x > x' to a
scattering map, by setting (ox,x) — (px,x’) in a collar neighborhood of 34X given by
X = [0, €) x 0X. The following proposition grants us the ability to continue scattering maps
from a corner into the interior.

Proposition 1.30 Let By = X| x Y| and B, = X3 x Y3 be products of mwbs. Let V¢, WY
be two (local) scattering maps near a point p € B‘{je,

WeiB — B and VB — BY
such that W€ = WY when restricted to B;ﬁe. Then, there exists a (local) scattering map ¥ on
a neighborhood U C By of p with W*® = W|g. such that
dpx, Yy, = dpy, W px, =0 on By. (1.6)

If We and WY are local diffeomorphisms near p (in their respective boundary faces), then
W js a local diffeomorphism near p.

Proof This is Whitney’s extension theorem for smooth functions, applied to the system of
functions (and their derivatives)

(F)*x, (¥)*y, (¥)*py  on By,
W) ox, (W¥)*x, (W¥)*y  on B,
together with conditions (1.6) and
Dy y¥*py, =0 on B,
Dy yW*px, =0 onBf.

Note that, if ¢ and ¥ are local diffeomorphisms at p, the differential of W is an invertible
block matrix, and hence, W is a local diffeomorphism. O

Lemma 1.31 Let X and Y be mwbs. Consider a sc-map ¥V : X x Y — X x Y of product

form WV = Wy x Wy, with sc-maps Wy on X, and Wy on Y, respectively. Assume a €
—my

py | Py ¢€°(X x Y). With the notation of Definitions 1.11 and 1.12, we have:
oV (Wra) — WioVa) € p, " T o e,
o (Wra) — W*(oa) € py" oy 6™,
—my+1 —m,+1
(Y*a), — V*(ap) € me'/’ ox g,
Proof We will only prove the first identity, and the others follow by similar arguments. Write
(¥*px)(X) = pxhx (x) and (¥*py)(¥) = pyhy (y). I a = py"p,"" f, then
(V) (x,y) = px" oy " Ohy " (DY )X, ).
This implies
oV (Wra)(x,y) = px" oy hy" )Ry (0. y) (¥ )(x. 0. y),
VeV a)x,y) = px" oy hy" GOy (W (X, 0, ).
Using Taylor’s theorem, we obtain that h;mw (y) — h;m"’ 0,y) € py€>®(X x Y), and
therefore 0¥ (W*a) — W*(c¥Va) p;m‘ﬁl,o;m"(foo(X x Y), as claimed. O
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Corollary 1.32 The principal part of a € p;m‘/' py " C°(X xY) is well defined as an element
of

X" oy " ER (X x V) oy oy e (X x 1),

Moreover, the principal part does not depend on the choice of boundary-defining functions.
Remark 1.33 Note that the space
px" oy " ER(X X ¥) [ py" M o™ e (X x ¥)

can be identified with €°°(d(X x Y)), which identifies our notion of principal symbol with
that of [30, Sect. 6.4].

The following lemma is one of the main technical tools in this article. We have already
observed that the local model of a scattering manifold near the boundary is the radial com-
pactification of R?. We now show that scattering maps arise naturally as the composition of
vector-valued amplitudes and radial compactification. Furthermore, we clarify the relation
between total derivative and the scattering differential under compactification.

Lemma 1.34 Let Y be a mwb. Assume f € p;, ' €Y, RY) with py| f| # 0 on dY.* Then,
W = o f extends to a local sc-map Y — B®. Moreover, the matrix of coefficients of

SCdf —
dfa
has the same rank as the differential TV of W.

Proof Since ¢ is a diffeomorphism, ¢ o f is a smooth map, while py > & and we may thus
restrict our attention to a neighborhood of 9Y where py|f| is everywhere nonvanishing.
As usual, we pick a suitable collar neighborhood of product type such that locally ¥ =
[0,&) x dY, and we write dim(Y) = s and y = (py, y) for the coordinates. We have to
compute V*pz. Write f(py,y) = p;lh(,oy, y) for h € €°°(Y,R?) with h(0, y) # 0 for
all (0, y) € Y. Since py is assumed sufficiently small, | f (y)| = oy ! |7 (y)| may be assumed
sufficiently large and hence

f® ( 1 ) h(y) ( Py )
\IJ = [e] = T 1_7 T l_ '
W) =@ HW = 7] i)~ 1) ()]

In this form, ¥ clearly extends up to the boundary. The boundary-defining function on B¢
is, in this coordinate patch, pz = 1 — |x|. Thus,

1 1
el T erfml

By assumption, py|f(y)| = |h(y)| is smooth and nonvanishing, which proves that ¥ is an
sc-map.

For the second half of the statement, we first observe that, since ¢ is a diffeomorphism
R? — (B9)° and %4 coincides, up to a rescaling by a nonvanishing factor, with the usual

*

U pz

4 This means py f is the restriction to Y of an element g € €°°(Y, RY) with g #0onadY.
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differential in the interior, we may restrict our attention to the boundary 9Y . Then, we compute
dp = dy
v .
A (Y) = py0py () —5 + D prdy, f(¥) =
Py j=1 PY
d .

d s—1
= (=h(y) + prdp h(¥) T2+ 9y h(y) pyYf

Y =1
We identify 5d f with its coefficients (s x d)-dimensional block matrix
(=h(y) + pydpy 1 (y) By, h(¥))j=1...5-1) -
At the boundary py = 0, we obtain
(=h By, ) j—t1....5-1)(0, y). (1.7)

We want to compare the rank of (1.7) with that of the differential of W at the point (0, y) € 9Y.
As shown above, the function W is given, at an arbitrary pointy = (py, y) close enough to

aY, by
h(y) <1_ Py )
Ih(y)l w1/’

whose differential at (0, y) is the block matrix

TW(, y) = (—# + 8oy (ayjl,};—l)j=1 ...... Y _1)(0, y). (1.8)

Now observe that, since they are derivatives of unit vectors, 9y, ; ‘Z—‘ and d,, \ZT are orthogonal
to h, which is itself nonzero.> Therefore, the rank of 7 W (0, y) equals that of the block matrix

(—h <3yj “/17);:1 S_l)(O, »). (1.9)

,,,,,

Finally, we have that
h h (h -9y, h)
dy,h = dy, <|h|—> = |hldy, +—2

|h| 1| |2
collinear to 3, 2 collinear to h
Yj 1Al
This means that the null space (and hence the ranks) of (1.7) and (1.9) coincides. m}

Example 1.35 The simplest example for a map where Lemma 1.34 applies is given by the
map f ="' : B¢ - RY.

Remark 1.36 Recall (cf. [22, App. C.3]) that the intersection of two 4 °°-submanifolds ¥ and
Z of a ¥°°-manifold X is clean with excess ¢ € Ny if Y N Z is a ¥°°-submanifold of X
satisfying
T.(YNZ)=T,YNT,Z, VxeYNZ,
codim(Y) + codim(Z) = codim(Y N Z) + e.

5 Recall that, in fact, [v(t)| = 1 < v(r) - v(t) = 1 = 2v() - V(1) =0 & v(r) L v/ (1).
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Bst+1 B® x (—¢,¢)

Fig.2 The action of j visualized

Example 1.37 Let X beamwbanda € py™ pg." ' ¢ (X x B°). In this example, we extend
a to a local symbol on a suitable subset of X x B+,
We view B**! as embedded in R**! with coordinates (vi, ..., ys, 7). Define

BT S B (LD, (0 5) e (

=3
T 5]2, ,
where y = (y1, ..., ys). For every ¢ € (0, 1), we obtain coordinates on
U=;""{B x (—e,0)} =B n{I5] < ¢},

cf. Fig. 2. We note that U is a fiber bundle of base B* and fiber (—z¢, ¢).

We verify that j is a sc-map. For this, we now view B® x (—¢, ¢) as a (non-compact)
manifold with boundary6 with boundary-defining function pz = 1 — [y]. Observe that near
the boundary we have

]*,02=1— [y]
J1-32
=<1— [y]2+§2>. LG e &)
VI=532 1=V + P

= pB.\-+lh.

Since |¥| < €, h is positive and in ¥°°(U). Hence, ; is an sc-map.

As usual, we may perform the same construction fiber-wise on a fiber bundle by consid-
ering local product decompositions to obtain a local sc-map. Namely, let X be an arbitrary
mwb. Then, W = idxy x ; is again a sc-map on the product X x (Bs X (—e, 8)). Using
Lemma 1.22 and Remark 1.20, wee see that &' = W o (idx x pres) : X xU — X xBfisa

M Coo(X x U).

sc-map. Hence, W*a € Px" Ppost

6 This means we view BS x (—¢, &) as embedded in the manifold with boundary B* x S, which can be
embedded in S* x S!. For higher dimension, we embed (—¢, &)" < T".
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2 Phase functions and Lagrangian submanifolds
2.1 Clean phase functions

Definition 2.1 (Phase functions) Let X and Y be mwbs, B = X x Y. Let U be an open
subset in B. Then, a real-valued ¢ € p}l Py g ®(U) is a local (sc-)phase function if it is the
restriction of some @ € py ' py '€ (B) to U such that *d@(p) # 0 for all p € BY N JU.

If U = B, thatis, ¢ € p}l,o;l‘foo(B) with SCd(p(p)|B7 # 0, we call ¢ a global sc-phase
function.

Remark 2.2 Phrased differently, if U is an interior open set, ¢ is just a smooth function.
In the non-trivial case of U being a boundary neighborhood, the above definition means
that, for every p € 9B in the - or Ye-component of the boundary of U, there exists an
element ¢ € °V(B) such that ¢(p) is elliptic at p, meaning ¢(¢) € €°(X x Y) satisfies
(g go) (p) # 0. Itis, by compactness, bounded away from zero at the possible limit points in
dU. In the following, we usually do not write ¢ but simply identify & and ¢ at these limit
points.

Example 2.3 (SG-phase functions). If B = B9 x B?, such ¢ corresponds to so-called (classi-
cal) SG-phase functions on R? x R*, cf. [11,12], but with a relaxed condition as || x| — oco.
Indeed, in light of the SG-estimates (1.3), the previous definition translates to

1(x) 'Vl + 1(0) ' Vil > C for 16] > 0. 2.1)

The relationship between these and “standard” phase functions which are homogeneous in
6 is discussed in [12]. Examples of SG-phase functions are the standard Fourier phase x - 6
onRY x RY and xo(0) — x - 6 on REF! x RY.

Definition 2.4 (The set of critical points) Let X and Y be mwbs, B = X X Y, ¢ €
p;Ip; lgoo (B) a (local) phase function. A point p € B (in the domain of ¢) is called a
critical point of ¢ if Sdy@(p) = 0, that is, if £ () (p) = 0 forevery ¢ € VY (B). We define

Cy ={p € B|*dyo(p) =0} (2.2)
We set C, = Cy N B and specify
Cp=Co,NB* for ece,,Ye}

We now adapt the usual definition of a clean phase function from the classical setting to
the case with boundary.

Definition 2.5 (Clean phase functions). A phase function ¢ is called clean if the following
conditions hold:

1. there exists a neighborhood U C B of 9B such that C, N U is a manifold with corners
with 0C, C 0B;

2. the tangent space of T,,C, is at every point p given by those vectors in v € T}, B such
that v(¢ (@) = 0 for all ¢ € VY, that is, T *dy¢)v = 0;

3. the intersections C; = C, N B* are clean.

The last condition is equivalent to the existence of w € Tc, Cg such that

(T*dye)(w + 3,,) = 0. (2.3)
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This means that, for some w tangent to B°, we have w + 9, € ch-JCq,‘ Here, p, is the bdf of
B*. We now discuss the implications of these conditions.

Lemma 2.6 Let ¢ be a clean phase function. Then, either we are in the “non-corner crossing
case” la.) or in the “corner crossing case” 1b.), namely:

la. both C; and Cg/ are closed manifolds (without boundary) and C =0
1b. C, consists of two components, @ and @, which are both submanifolds (with bound-
ary), of the same dimension dim(Cy) — 1, with joint boundary C:,{/e = 8@ = 8@ of
B. The intersection of@ and @ in C;{fe is again clean.
In both cases, the differential of *dy¢ : B — T*B, viewed as a map T *dy¢) : TB —
T (*T*B), characterizes TCg:

2. The tangent space of @ and Cg at each point p is given by those vectors v € T B® such
that v(¢ () = 0 forall ¢ € VY, that is, T *dy@)v = 0.

By condition 3.) of Definition 2.5, we have dim(ker(7T (*dy¢))) = dim Cy,. Hence, the
restrictions of 7' (*dy¢) to the individual boundary components of B on C,, are of constant
rank. Namely,

s—e on C;,
k(T (*dyg)) = {s—e—1 on C:,{f and Cg,
s—e—2 on C(Z’e,

for some fixed number e, called the excess of ¢, which is given by
e=dimCy, —d.

Remark 2.7 Conversely, if the rank of T (*dy ¢) is constant in a neighborhood of each critical
point of *dy ¢, then ¢ is clean by the constant rank theorem. In case e = 0, ¢ is called non-
degenerate, and the two characterizations coincide. The corresponding case of SG-phase
functions (on RY) was studied in [12].

2.2 The associated Lagrangian

In the classical local theory without boundary on subsets of RY x (R \ {0}) (see [22,
Chapter XXI.2]), the set of critical points C,, is realized as an immersed Lagrangian in 7*R?
by the map (x, ) — (x, ¢/ (x, 0)). In the present setting, the situation is more complicated.
Following [12], we define an analogous map A, on the mwc B = X x Y into ST X

For that, we consider the following sequence of maps. Using “rescaling identifications”
(1.2), we may view (X,y) — *dx¢(x,y) asamap in p;l%w(Y, @ (X)). Since *°O (X) are
the sections of %7 X, composing with the radial compactification yields, in view of Lemma
1.34, a map into the compactified fibers of ST X

Definition 2.8 The map A, : B — T~ X is defined by
x,y) = (x,1(dxe(x,y))).
Lemma 2.9 There is a neighborhood U C B of Cy such that Ay, : U — ST X is a local

sc-map.
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Proof We write,} = (px,x),y = (py, y) for coordinates in B, x and § = (pgz, &) for
coordinates in 7" X. Since Ay 1s the identity in the first set of variables, we have )Lf;x =X.

In the second set of variables, A, acts as ¢ o Sdx ¢, with*dx¢ € p;]%“’(Y, @ (X)). Notice
that on Cff U Cf,f/e, we have *dy(x,y) # 0, since %dg # 0 on BY U BY¢ and Sdyg = 0
on C,. Hence, due to compactness, we may find a neighborhood of Cf,f/ U C(Z’ ¢ on which
Sdxe(x,y) # 0. Writing ¢ = pglp;]f for f € €°°(X x Y), this means

d—1
dpx dx;

(—f + Pxdpx [)5— + 30, f—2 #0.
Px PY j=1 T PXpPY

Rescaling and viewing dx¢ as a map in ,o;l‘foo(Y, °® (X)), we express *dy g as

dx

d—1
_ dpx j
dxg = py' | (—F + ox0p )5+ Y0, f pr

X =1

2.4)

Composing with ¢, we are therefore in the situation of Lemma 1.34, up to additional smooth
dependence on the X-variables, and conclude that A, is a local sc-map.

On Cg, away from C:f ¢, we have that py # 0, and correspondingly, Sdx¢(x, y) stays
bounded. Since ¢ maps bounded arguments into the interior, we find A,* pz # 0. Since A, is
smooth, A, is an sc-map. m]

In particular, ((*dx¢(x, y)) maps boundary points with py = 0 to boundary points of the
fiber, that is, to WY U Wve.

Definition 2.10 We define L, = 1,(Cy) and Ay = A,(Cy). We further write A;) for
rp(Cg) C W* for e € {e, ¥, e}. We say that ¢ parameterizes Ly and Ay.

Theorem 2.11 The map Ay : Cp — ST X s of constant rank d. Its image L, as well
as the boundary and corner faces Ny = Ay(Cg) are immersed manifolds of dimension
dim Ag = dim Cj — e. Furthermore, Ay : Cy — Ay is a submersion.

The proof is inspired by that of Lemma 2.3.2 in [14] (adapted to clean phase functions),
but much more involved, due to the presence of the compactification. We treat this new
phenomenon by carefully applying Lemma 1.34.

Proof We obtain the rank of TA, for A, : Cy — ST X by computing the dimension of
its null space. Let v = 8px - 0py + 8x - 0y + Spy - 3y, + 8y - 0, be a vector at a point
p = (px, x, py,y) € Cy. For the moment, we assume py > 0. We write A, = (id x 1) 0 £,
with
Lo : X XY = *T*X  (x,y) > (x,"dxe(x, y)).

Assume that T¢,(p)v = 0 and v € T),C,. The condition T €, (p)v = 0 implies that §ox =0
and éx = 0. Let v = 8py - 9, + 8y - 9,. Hence, the assumptions are reduced to

7*dxe(p) =0,

1*dyp(p) =0,
where v is interpreted as acting on the coefficient functions of the differentials.

In coordinates, these coefficient functions are given by

Sdxe(p) = oy (= f + px oy . 0 F)P),  Sdye(p) = (—f + pydp, £, 3y L) (D).

(2.5)
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Using — f + pydp, f = 0and 9y f = 0, it is easily seen that on C, assumptions (2.5) are
equivalent to

0x Py (oY dpy — Ddpy f ox Py 8pydy f

/’;Z(I"Yapy — Do f P;laxayf (‘S’OY) =0. (2.6)
Py py dpy f Py Bpy 0y f 8y
0oy 0y f 9y 0y f

The cleanness condition translates to the dimension of the nullspace of T%dy¢ being
constantly e. We identify T°dy ¢ with the matrix

(py 3py - l)apx f 8y apx f
(IOYapy — Do f ayaxf
PY dpy 0oy f dy0py f
Py 0py 0y f dydy f

The matrices appearing in (2.6) and (2.7) are related by

J= 2.7)

prpx' 00 O\ (pxpy*(pydp, — Doy f oxpy dpydyf

s 0 er00 0y 2 (pydpy — Doxf  py'ocdy f (py 0>.
0 0py 0 Py oy py f Py dpy 3y f 01
0 0 01 Qpy Oy f dydy f

This proves that (2.5) is equivalent to v € ker T%dy ¢ under our assumptions py > 0 and
px > 0, and the rank of £, is given by

tk £, = dim T,,C, — dimker Ty = (d +¢) — e = d.

Now assume that px = 0. We see that the first row of (2.6) vanishes identically, but we
have additional condition (2.3), implying that, at px = 0, the first row of (2.7) depends
linearly on the other rows. Therefore, the rank of £, is still 4 at points with px = 0. The
composition with id x ¢ changes nothing for py > 0, since ¢ is a diffeomorphism there.

To perform the limit py — 0, we have to examine carefully the effect of the presence
of the compactification ¢, in the spirit of the proof of Lemma 1.34. For v € T,C, such that
Thy(p)v = 0, that is, as above, of the form

v =38py - p, + 38y -0y,
we now obtain the set of equations
v(L Scdxgo)(p) =0,
vidye(p) =0,

which are equivalent to the set of equations

Doy *dx ayts‘iixgo> <8py>
=0. 2.9
( Opy Oy f 0y0y f 8y (&)

We need to compare the rank of the coefficient matrix in (2.9) with that of T5dy ¢ at points
of the form (pyx, x, 0, y). For this purpose, we go through a series of “reductions,” along the
lines of the proof of Lemma 1.34, to simplify the comparison. First, we can identify *dx¢

with
1 (—=f+px0o f\ .
Pr ( o )T

(2.8)
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Note that 2 # 0 near Cw, since ¢ is a phase function. As in the proof of Lemma 1.34, the
evaluation at (px, x, 0, y) then gives

. S h h h
<8PYLBCdX(p 3yLSCdX‘/)> — _W + 8/))’ I a)’m . (210)
Opy Oy [ 0y0y f dpydyf  ydyf

Since all derivatives of \ZT are orthogonal to ﬁ and & # 0, the rank of matrix (2.10) equals

the one of
_h_ g9 R
—me Ovm ) @.11)
0 9,9, f

In fact, in (2.10), as well as in (2.11), the first column is linearly independent of the others.
Now we write
h 1 (h-0y.h)
;T = T Ovih — 7y3]h’
|l 1Al i

collinear to &

and remove the collinear summands, which again does not change the rank of matrix (2.11).
Therefore, the rank of (2.10) is the same as the one of

1
mE o) 2.12)
0 3,0y f

Multiplying the first d rows and the first column of (2.12) by the nonvanishing factor |k|,
again the rank does not change, and we can look at

—h 3.k f_pXB,Uxf _ayf+PXay3pr
( ) ) | Zarf 3y f . (2.13)
0 9,0y f 0 3,9, f

On Cy at py = 0, this equals

—PX a,oxf PX ayapr
—0x f 0y 0y f . (2.14)
0 0y0y f

Finally, we observe that the dimension of the null space of (2.14) is, by cleanness of ¢ (in
particular by (2.3) applied to Cf,fj or Cff %), the same as the one of

_8px f ay apx f

=0y f Oyox [ s
=T°d 2.15
0 3,0y f Yeley: (2.15)
0 0y 0y f
namely e. Therefore, the rank of A, equals d = (d + e) — e near Cy, which concludes the
proof. O

Lemma2.12 The map A, : C, — Ly is a local fibration, and the fiber is everywhere a
smooth manifold without boundary.

Proof Since 1, is locally an sc-map, T'A, maps the set of vectors at the boundary that are
inwards pointing into itself (see Remark 1.19). Therefore, A, is a so-called tame submersion
in the sense of [33, Lemma 1.3]. As such, it is a local fibration and the fiber is a manifold
without boundary. O
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2.3 Symplectic properties of the associated Lagrangian

Asin the classical theory, L, is an immersed Lagrangian submanifold, and its boundary faces
A*® are immersed Legendrian submanifolds. Let us briefly recall these concepts. For more
information, the reader is referred to [12,19,32].

As acotangent space, T* X carries a natural symplectic 2-form w induced by the canonical
I-form o € €°°(T*X?, T*(T*X?)) as w = da. This 1-form can be recovered from w by
setting @ = 0¥ J w for the radial vector field ¥ on €>°(T*X?), which is given by o¥ =
& - 9¢ in canonical coordinates. We now write (X, &) = (px, x, pg, &) for the coordinates
in the mwe 37" X which are obtained from the rescaled canonical coordinates under radial
compactification in the fiber, cf. [32]. Then, Q‘/’ corresponds to pgdyg; on € (T*X ?). For
the purpose of scattering geometry, it is natural to rescale further and define, on 7* T X)°,

aV = péapSJ w.

There exists another form of interest, namely

e . 2
a 1= pydpy 1 w.

We now extend these forms to 7* (SCT* X)) and define the boundary restrictions of «®. Observe
that, while their explicit form depends on the choice of bdfs, the induced contact structure at
the boundary does not (see next Lemma 2.13)

Lemma 2.13 The forms a® extend to 1-forms on W?*, denoted by the same letter. The induced
contact structures do not depend on the choice of bdfs.

Example2.14 On T*R? = RY x R, with canonical coordinates (x, &), the vector fields Q‘/’
and ¢ correspond to o¥ = & - d¢ and ¢¢ = x - 9. The symplectic 2-form is Zj d&; Adx;
and hence

oV w=¢-dx and ‘.= —x-dE.

Obviously, the coefficients of these forms diverge as [§] — oo and [x] — o0. The rescaled
forms “at the boundary at infinity” then correspond to

X
o = 5 . dx and of = —— . d¢&.
(51 [x]
After achoice of coordinates near the respective boundaries, this is the general local geometric
situation.

We are now in the position to formulate the symplectic properties of A, (cf. [11]). Recall
that a submanifold N of a symplectic manifold (M, w) is Lagrangian if w|ry = 0 and a
submanifold N of a contact manifold (M, «) is Legendrian if a|7y = 0.

Proposition 2.15 The immersed manifolds defined in Theorem 2.11 satisfy:

L. Ly is an immersed Lagrangian submanifold with respect to the 2-form w on T X)0 =
T*X;

2. Ag is Legendrian with respect to the canonical 1-form oV on WY = §*(X°);

3. A; is Legendrian with respect to the 1-form a® on W¢ = Tj X.

We take this as the definition of an sc-Lagrangian (cf. [12]).

Definition 2.16 (sc-Lagrangians) Let A := AV UAC CW. A s called an sc-Lagrangian if:
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Y
w X

Pe
PX 144

A T Ve
We

Fig.3 Intersection of AY € WY and A® C W€ at the corner W¥¢

1. AV = ANWY is Legendrian with respect to the canonical 1-form ¥ on WY = 8% X
2. A® = ANW¢ is Legendrian with respect to the 1-form o® on W¢ = T, X;
3. AY has a boundary if and only if A¢ has a boundary, and, in this case,

AV =AY = 9AC = AV NJAC,
with clean intersection.

Figure 3, which is taken from [12], summarizes, schematically, the relative positions of A;
and Ag near the corner in W.

We may take the analysis one step further in order to stress the Legendrian character of
the boundary components near the corner and to reveal the symplectic properties of A¥V¢ by
blowup. For the sake of brevity here, we move this analysis to the appendix, Sect. A.

We may sum up our previous analysis by stating the next Theorem 2.17.

Theorem 2.17 For a clean phase function ¢, Ay = Ly(Cyp) is an immersed sc-Lagrangian.

Definition 2.18 We say that an sc-Lagrangian A is locally parameterized by a phase function
¢ if, over the domain of definition of ¢, we have A = A,.

In particular, if A is locally parameterized by a phase function, then it is admissible. Con-
versely, we have the following result (cf. [12]).

Proposition 2.19 If A is an sc-Lagrangian, then it is locally parameterizable by a clean
phase function ¢, that is, A* NU® = Ag, N U*® for some open subset U C W?*. In particular,

A arises as the boundary of some Lagrangian submanifold L, of ST X,

Remark 2.20 The proof of Proposition 2.19 in [12] is based on concrete parameterizations in
R? x R?. It applies here nonetheless, since any d-dimensional manifold with boundary X
can be locally modeled by B¢. Hence, ST X can be locally modeled by BY x B¢ and thus,
under inverse radial compactification (applied to both factors), by R? x R?. Note that in [12]
we imposed additional conditions, namely

A°N@OX x({0})) =49, (2.16)
and that x - £ = 0 in local canonical coordinates on AY¢, since this is always true for

a parameterized Lagrangian (see (2.17)). However, condition (2.16) is equivalent to the
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stronger assumption that *dg # 0 also on B¢, which we do not impose here. The assumption
x - & =0, in turn, is superfluous, since it already follows from the symplectic assumptions
on AY¢, as we now show.

Assume that both £ - dx = 0 and —x - d¢ = 0 on a bi-conic submanifold L of R¢ x R<.
Then, we must have d(x - £) = 0. However, when |x| and || tend to oo, this blows up unless
x - & = 0. This shows that x - £ = 0 is indeed automatically fulfilled.

This corresponds to the fact that, for the bi-homogenous principal symbol of a phase
function w'/’e, we have, when Vg (x, 0) = 0, that (cf. [12])

(x, Vap(x,0)) = ¢(x,0) = (0, Vop(x,0)) =0, @.17)

where we have used Euler’s identity for homogeneous functions twice.

2.4 Scattering conormal bundles

In this section, we consider the simple example of a scattering conormal bundle. Consider
a k-dimensional submanifold X’ C X which intersects the boundary of X cleanly or not
at all (called p-submanifold in [31]). In the following, we assume an intersection with the
boundary. Then, there exist local coordinates (px, x’, x”’) such that X’ is locally given by

X = {(px,x’,x”) | ox > 0, X=0¢ Rd—l—k,x// c Rk_l}.

We can now consider the compactified scattering conormal ST X! SCT*X, X. The boundary

faces of T X’ constitute a Lagrangian.
In fact, write X = L(Rd), so that X’ corresponds to a subspace of R¥ of the form

X = {(x/,x//) |x/ —0e Rd_k,x// ERk}.

We can then introduce ¥ = ((R?~¥) and ¢(x,y) =x"-yon R? x R4—* whichis an SG-phase
function, taking into account (2.1). The true phase function on X x Y is then @ x ! ).
We can then compute C, = X' x ¥ and A, = *T" X'

Indeed, in the Euclidean setting, A, corresponds to the three conic manifolds

AL =10, x",€,0)} € (R?\ {0}) x R
AV ={0,x",&,0)} C R\ {0}) x (R?\ {0})
AY ={0,x",&,0)} CR? x (R \ {0})

which have the claimed symplectic properties. Compactification of the R?-components and
projection of the conic (Rj \ {0})-component to the corresponding sphere then yields the
compactified notions in 7" X.

3 Phase functions which parameterize the same Lagrangian

In this section, we adapt the classical techniques for exchanging the phase function locally
parameterizing a given Lagrangian (see [39, Chap. 8.1]) to the setting with boundary. Since
Ay, not Ly, is our true object of interest, we say that two phase functions ¢;,i = 1, 2, locally
parameterize the same Lagrangian at pg € W if Ay, = Ay, in a small (relatively) open
neighborhood of pg in the respective boundary faces.

Our first observation is the following:
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Lemma3.1 Ifp € p)?lpﬁyl ¢ (X x B%) is a local phase function and r € €°°(X x B®),
then ¢ + r is still a local phase function and it parameterizes the same Lagrangian as ¢.

Proof Since r € ¢°°(X x B*), ¥dr = 0 when restricted to the boundary. Therefore, ¢ + r
is still a local phase function. By the same reason, C, = Cy,. Finally, we have

Aotr (X, by) = (X, 1(*dx (¢ +1))).
Computing *dy (¢ + r) in coordinates (see (2.4)),

d—1

_ dpx
My = py' | (—f + px0px [+ PYPxOpy ) —5 + Y _(Bx; f + pypxdy;7)
X j=1

dx Jj
PX
we observe that at px = 0, the contribution from r vanishes. The same is true in the limit of
py — 0 under application of ¢ (see also Lemma 1.34). O

3.1 Increasing fiber variables

Given a clean phase function ¢ € p;I p]@l C®(X x B*) with excess e, define J €
Py pg C¥(X x B x (—e, £)) as follows:

=2

Ty, §) = oxy) + ——.
PX PBs

We see that 5dy # 0 when dg # 0 and SCstX(_é,e)& = 0 if and only if y = 0 and
Sdps @ = 0. Thus,

€5 ={xy.0 | xy) €Cy},

which implies that the excess is not changed, and A = A,. Summing up, ¥ is a local clean
phase function in s+ 1 fiber variables with the same excess e as ¢ and (locally) parameterizing
the same Lagrangian as ¢.

This construction may once again be moved to balls, by using Example 1.37 and setting
¥ = W*y. Then, ¥ € pglp]stilC"o(X x U). Using the fact that Sdyr = W*y/, we see
that ¥ is a clean phase function parameterizing A, with excess e. Again, X x B can be
exchanged by any relatively open subset, hence starting with local phase functions.

3.2 Reduction of the fiber variables

Starting again from a clean phase function ¢ € ,o;l ,o]lgf C°(X x B%) with excess e, we now
construct a (local) phase function v in the smallest possible number of phase variables (with-
out changing the excess) which (locally) parameterizes the same Lagrangian. The argument
is similar to the classical one, but extra attention needs to be paid at to what happens near
points with py = 0, namely, we have to keep py as a parameter.

Remark 3.2 In the classical theory, meaning for homogeneous phase functions, it is possible
to reduce the number of fiber variables under the assumption that the matrix agego(x, 0) has
rank r > 0 on C,. However, since a classical phase function ¢ is homogeneous in 6, it
holds that 6 - Vo = ¢, and hence, the second radial derivative is automatically zero on Cy,.
Furthermore, the radial variable can always be chosen to parameterize A,.
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We proceed as in the proof of Theorem 2.11. We first recall that, for pg € C,, writing
0= p;lpglf with f € C*°(X x B*), we have there

0= SCdYq) = (_f + :OYapyf7 8ykf) . (3.1

We then identify Ty*dy ¢ in coordinates with the matrix

Iy = ("Yaﬁyf —0y,J vy, 05, ) . (32)
Bpy Oy f dy; y, f
We see, using (3.1), that on C;{f C {py = 0} this becomes
0 0
J = . 33
Y(p|c$ (apya_wf ayjaykf> G-

Therefore, the rank of this matrix is at most s — 1. Indeed, we observe that, by (2.3), at py = 0
we have dpy # 0 on TCg , and hence, we can always choose py as a parameter to locally
describe C:,{j .

Remark 3.3 By the same argument, px can be chosen as a parameter close to 3¢, while, close
to BY¢, both px and py can be chosen as parameters to represent Cy.

We now seek to reduce the remaining set of variables under the assumption that

The matrix (9y, dy, px py(p)jk has rank r > 0 at pg € c;,{’ u c;fe. (3.4)
Since at points where py # 0 the variable py behaves like all other variables, the same
restriction does not hold near a point p € C. Here, we simply assume that

The matrix Ty*dy ¢ has rank r > 0 at pgy € C;. (3.5)

Since up to multiplication by py > 0 in one row, (3.2) is the Hessian of & (with respect to
y), this is equivalent to rk(Hy f) = r > 0. The two conditions may be summarized into one.
Namely, consider the scattering Hessian (with respect to the y-variables) of ¢

2

SHyp = (plzfpxapypzzprapyﬁl’ Py px dy; p%pxapygo)
Py PX 0py PY Px Dy @ Py PX Iy, Py PX Dy @

3.6)
p%,agyf —dy; [+ pydy; dpy f) .
IOYapy aykf a)’j 8)’kf

Then, ,o;lp;(l S“Hy ¢ becomes, at a point in Cy,:

.

0 0

0 dy; 0y, f
P%B;%yf 'OYa,Vjapyf

Py dpy Dy, [ 3y, 0y, f

Notice that we can factorize these matrices as

(py 0) < 2. f 0y apyf) (py 0) 3.7)
0 1) \9pydy f dy;0y )\ 0 1)°

the rank of which therefore is, for py # 0, that of the standard Hessian of f, Hy f. Therefore,
our assumption may be expressed as:

p;]p;‘SCHygo:( > if po € Y UCY®:

,o;l,oglscHyga: ( ), ifpoeC;.

The matrix ,0;1,0;1 *Hyg hasrank r > 0 at pg € Cy. (3.8)
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We may now proceed as in the standard theory and introduce a splitting of variables y =
(y',y") such that (3y»dy» f) j is an invertible r x r matrix. We can then apply the implicit
function theorem to

0="dyp = (—f + prdpy f. . f)

at pg. We obtain a map from an open neighborhood of po,
k:xy) - (xy.,y'xY)),

such that C, and the range of k locally coincide. Note that k is a scattering map, since py is
always one of the y’ near the v -face.

Then, ¢reg = ¢ o k is a clean local phase function in d x (s — r) variables with excess
e, and k provides a local isomorphism Cy, , — C,. Furthermore, at stationary points po
and k(po), we have that t *dx@req) = t(dx¢), since 5dy¢ = 0 there. Hence, ¢req locally
parameterizes the same Lagrangian as ¢.

Remark 3.4 Note that, after applying a change of coordinates in the y variables, ¢r.q may be
assumed to be defined on BY x B*~" (see also Lemma 3.7).

Summing up, we can formulate the next Proposition 3.5.

Proposition 3.5 Ler ¢ € p;] p;I%W(X x B%) be a local clean phase function of excess e.
Assume

p;lpgl *Hy ¢ has rank r > 0 at a stationary boundary point py € Cy.
We may then define a local phase function ¢ € p;lp);l%“’ (X x B*7") of excess e parame-
terizing the same Lagrangian.

We mention that, locally, the minimal number of fiber variables y that a clean phase
function of excess e locally parameterizing L, has to possess is

Smin =d +e —n,

where n is the (local) number of independent x variables on L. This follows from a simple
dimension argument: The dimension of L, is d, that of Cy, is d + e, and the one of the
projection to x of Cy, coincides with that of L. Note that, by cleanness of the intersection
CyN BY, near AV we have spin > 0.

3.3 Increasing the excess

Given a (local) clean phase function ¢ € pgl p]Ezyl C°(X x B®) with excess e, define ¢ :=
pri . ps@ on X x (B* x (—¢, ¢)), viewing B® x (—e¢, &) as an open subset of B® x S!, which
is a manifold with boundary whose boundary-defining function may be chosen as pry; ops .
In particular, we have, with the obvious identifications,

Sdps x(—s,e)w = P@(XW (SCdIB“'¢) .

Then, Cy = Cy x(—¢, €) and hence dim(C;b) = dim(C;)+1.Furthermore, Ay = Pry pshto
and Ay, = Ay. Summing up, ¥ is a local clean phase function in s + 1 fiber variables with
excess e + 1, defined and (locally) parameterizing the same Lagrangian as ¢.
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As before, we may choose to keep working on balls by invoking the construction from
Example 1.37 and replacing v with

Uty = Ut € py' p €°(X x U).

In this way, since W is a diffeomorphism, ¥ becomes a clean phase function with excess
e + 1 defined on a relatively open subset of X x Bt and similarly, we may raise the excess
by any natural number.

Example 3.6 The standard Fourier phase on R x R, ¢(x, &) = x - &, cannot be seen as an
SG-phase on all of R x R? by setting ¥ (x, &, n) = x - &. Indeed,

(2 V@)1 + (&, M) Ve ol = (1 + xHE> + (1 + £ + nP)x? 3.9)
= (x)(€) +x"n* — 1

For £ = 0 and x = 0 and  — o0, this vanishes but should be bounded from below by
c(1+ |n|)2 if ¢ were an SG-phase function, given (2.1).

Reviewing Example 1.37, the ray & = 0, x = 0 and 1 # 0 corresponds precisely to the
poles in Fig. 2 which werelzglcut off. Indeed, (3.9) is bounded from below by (x)Z((£, n))? in

any neighborhood where > c and hence a local phase function in such sets.

3.4 Elimination of excess

Assume now that ¢ is a phase function on X x B’ with excess e and that at some point
po = (0x.0, X0, pr,0, Yo) € Cyp we have Ay(po) = (0x,0, X0, £&,0. &0). Then, by Lemma
2.12, the preimage of (px 0, X0, P&,0, £0) under A, meaning the fiber in C, through po, is
an e-dimensional smooth submanifold. Locally, since A, is a submersion, we may, by [24,
Prop. 5.1], reduce to the case of a projection, that is, we may find a splitting y = (y’, y")
near po such that A, does not depend on y”. Then,

P(px, x, py,y) = @(px, x, py, ¥y, ¥o)

defines a phase function without excess (i.e., a non-degenerate phase function) that param-
eterizes the same Lagrangian as ¢. As usual, we may again reduce to the case of a ball and
hence replace ¢ by a phase function on an open subset of X x B¢,

3.5 Equivalence of phase functions

We will now discuss the changes of phase function under a change of coordinates and which
phase functions can be considered equivalent. We first check how the stationary points of a
phase function transform under changes by local diffeomorphisms.

Lemma3.7 Let X1, Y1, X2, Yo be mwbs, set B = X; x Y;, i € {1,2}, and let ¢ €
,0;21 ,0;21C°°(Bz) be a (local) phase function. Assume g : X1 — Xo, h : Y1 — Y to
be diffeomorphisms, and set F = g x h. Then, F*¢ € p}llp;llCoo(Bl) is a (local) phase
function with the same excess of ¢, and we have

Crep = {(X1,¥1) € Bi | F(x1,¥1) € Cp), Lpey = (T g)(Ly).
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Remark 3.8 This means that, while the boundary-defining function pg, of ST X 1 does not
vanish, L g+, can then be computed as

Lprg = {(x1, 1(( (T (€)) € ¥T X1 | (g(x1), &) € Ly}
As pg — 0, A‘ﬁ*(p is obtained by taking interior limits (see also Lemma 1.34).

Proof of Lemma 3.7 The result for C,, follows immediately from the first assertion in Lemma
1.23. The statement for L, then follows by writing

Mpep(X1. Y1) = (T ) (hy (X2, ¥2) (3.10)

near a point (X1,y1) € (Crxp)? such that (x2,y2) = (g(x1), A(X1, y1)). Indeed, at these
stationary points, *dy F*¢ = F*(*dx¢), since there *dy = 0. Since equality (3.10) holds
in the interior, the result at the boundary faces can be obtained as interior limits (see also
Lemma 2.9). ]

Remark 3.9 The diffeomorphism g x h may be replaced by a single diffeomorphism F :
X1 x Y1 — X2 x Y3 locally of product type near the boundary faces of X, x Y», i.e., a (local)
diffeomorphism that is a fibered map at the boundary.

We now define in which sense two phase functions may be considered equivalent.

Definition 3.10 Let X, Y1, Y, be mwbs, B; = X x Y;. Let ¢; € py' py C(B;). We say
that ¢; and ¢, are equivalent at a pair of boundary points (x9, y(l)) € By and (x°, yg) € B
if there exists a local diffeomorphism F : X x Y, — X x Yj of the form F = id x g with
g(x%, yg) = y(l) such that the following two conditions hold true:

F*@1 — ¢ is smooth in a neighborhood U of (XO, y(z]), (3.11)
px Py, (F*¢1 — ¢2) restricted to Cy, N QU vanishes to second order.  (3.12)

Lemma 3.11 Equivalent phase functions parameterize the same Lagrangian, that is,
AFprp, = Ny,. Moreover, we have Cpry, = Cgp,.

Proof This follows from Lemmas 3.1 and 3.7. ]

‘We now associate with any local phase function its principal phase part, which corresponds
in the SG-case to the leading homogeneous components of ¢. From the fact that the principal
part of Definition 1.12 is obtained from the boundary restrictions of ¢, we observe, using
F =id x id and Lemma 1.13:

Lemma 3.12 A local phase function ¢ and its principal part ¢, are equivalent.

Remark 3.13 In particular, each phase function is locally equivalent at the e- and -face,
respectively, to a homogeneous (w.r.t. py or py) phase function, after a choice of collar
decomposition. In general, this is not true near the corner BY¢.

Since the difference in condition (3.12) is restricted to the boundary, it does not
restrict the behavior of F*¢; — ¢ into the direction transversal to the boundary, e.g.,
0oy PX PY, (F*p1 — @) at Céz. The following lemma states the transformation behavior of
this directional derivative.
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Lemma3.14 Let X, Y1, Y2 be mwbs and let F : X x Y, — X X Y| be a sc-map of the form
=id x V. Seth = ,0;21 F*py,. Consider a clean phase function ¢ on X x Y and write
f = pxpy,@. Then, we have the following transformation laws:
-1 -1
hF*0p, px' f =0,y F*ox' f.  on F*CJ,

F*pyl0p, f = 8o F*py ! f. on F*CS.

Proof On F *Cg , we have that
pr2 F*f = hF*apylf + F*(dy, f)8pyzy1 = hF*Blef,

where we have used dy, f =0on F *Cg . This proves the first equality.
On F *C;, we compute

Opy F*py 1 = F*py 0py f1 + F* By, by 1) Bpx F* 01y + F*(py: 9y, 1) Doy F*31
= py, W~ F o, fi.

Therein, we used 9y, fi = 0 and 9y, palfl = 0onCy,. O

Remark 3.15 The previous lemma, combined with Lemma 3.12, will imply that, away from
the corner, any phase function can be replaced by an equivalent phase function without radial
derivative (at C,) and the vanishing of this derivative at C,, is preserved under application of
scattering maps.

This corresponds to the fact that, in the classical theory, one can always choose a homo-
geneous phase functions. The (non-homogeneous) terms of lower order which arise in
transformations can be absorbed into the amplitude.

The rest of this section will be dedicated to establishing a necessary and sufficient criterion
for the local equivalence of phase functions.

Lemma3.16 Let X, Yi, Yz be mwbs such that dim(Y) = dim(Y>7), and set B; = X X Yj,
i €{1,2}. Let ; € pX pY e (B;) be phase functions which have the same excess, and

assume that there exist p = x°, yl) € Cy,, 1 € {1, 2}, such that
hor 0, ¥)) = 2, (&0, ¥D),

and, close to (x°, yo) i € {1,2}, both phases parameterize the same Lagrangian A, i.e.,
locally A = Ay, i € {1, 2} Then, there exists a local diffeomorphism F: B, — By of the
form F = id x g with F(x Y, 0y = (x .Y ), such that F*o = ,ox,oyzfl with Cprg, = Cy,,
locally. Moreover, locally near (X0 y2)

(fo — f;) |3, vanishes of second order at any point of Cy, . (3.13)

Remark 3.17 Notice that (3.13) means that the principal parts of F*¢; and ¢ in Lemma 3.16
coincide on Cy,.

Proof of Lemma 3.16 Since 1, are local fibrations from Cy, to Ay, i € {1,2}, and Ay, =

Ay, = A, there is a local fibered diffeomorphism F: B, — By of the form F = id x g,
locally near (x°, Y 0y = F(x0, Y, 9y, such that the following diagram is commutative.
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A
)‘wz/ r\)‘w
aF

C‘PZ C<P1

Note that F is not uniquely determined, not even on C,, when the phases are merely clean
and not non-degenerate.

After application of F, we may assume that Y] = Y, =: Y, y? = y(z) =: y0 and, locally,
Cyp, = Cy, =: Cy. We now show that the restriction of f; and f> to a relative neighborhood
of (x%,y%) in C, vanishes of second order. Recall that, since *dy¢; = *dy¢, = 0, for any
p = (x,y) € C, we have

(Y 3oy f1 = f1 Oy f1) = (PyOpy f2 — f2 Oy f2) =0 (3.14)

Furthermore, since ¢ and ¢, parameterize the same Lagrangian, we also have Ay, (p) =
Ay (p), that is, 1Cdx@1(p)) = t(Cdxe2(p)). We treat separately the cases p € C; and
peclucle.

If p € C¢, we then find

Ly 0xBpy F1(P)— F1(D), Py B (D)) =t((py  px Doy F2(P) = (D), Py O F2(P))).
(3.15)

Since py # 0 on C¢, and ¢ is a diffeomorphism on the interior, this implies

fip) = fa(p), O fi(p) =0y fo(p), k=1,....,d — 1.
Combining this with (3.14), this further implies

apyfl (P) = apyfz(p)v 8ykf] (P) = 8ykf2(l7)» k = l! ey S — ]
Since (x,y) are a complete set of variables on B¢, we can indeed conclude that f; — f»
vanishes of second order along Cg.
It p e CY or p € CY°, (3.14) implies that

fl(p) = fZ(P) =0, 8ykfl(p) = 8}’kf2(p)7 k=1,...,s — L

We have to evaluate (3.15) as a limit py — O™, using, as in Lemma 1.34, ((z) = |?"(1 — é).
We obtain that, with

v = (0x0py f1, O, f1)» V2 = (0x0py f2, Oy [2)s
v

o = ”3—;”, but not necessarily v; = vy, in which case the proof would be complete. We
now modify F in order to achieve v; = v,. Notice that, since ¢ and ¢, are phase functions,
we have v; # 0 at Cy. We can therefore scale ¢ by means of the local diffeomorphism (near

Cy)

F: (py,y) = (oy r(px, X, oy, ¥), ¥),

llvall
ot ll

F is the identity for py = 0. Therefore, by Lemma 3.7,

where 7 (px, x, py, y) = . Notice that, by our previous computations, r | ceuetVe = 1, and
[ (2

Chrg, =Cop» and Afe, = Ag,.
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By definition, for F*gol we have

fi == pxpyF o1 = :: 2:: *f1).
Therefore,
~ =l
(Px 0px f1, Ox, f1) = orl (pxF*(0py f1), F* (8xkfl))— V1,

since the derivatives acting on r produce a py factor, and then vanish along Cff . Hence,
V] = vy, which completes the proof. O

Remark 3.18 The additional computations in the proof of the previous lemma near the face
Cff correspond to the fact that, classically, x - 8 and x - (20) both parameterize

A={0.61¢er\(0)].

In fact, we observe from the same proof that we may choose the norm of (ox 9,y f1, dx, f1)
at any point of Af without changing A,,.

Theorem 3.19 (Equivalence of phase functions). Let X, Y, 1, Y> be mwbs such that dim(Y) =
dim(Y>), and set B; = X x Y;, i € {1,2}. Let ¢; € py pYICOO(B) i € {1,2}, be phase
functions which have the same excess. Assume that there exist (x B ) € Cy,, i € (1,2}, such
that

Ao X0, ¥)) = 2, 0, D),

and, close to (x, yo) i € {1,2}, both phase functions parameterize the same Lagrangian
A, i.e, locally A = Ay, i € {1,2}. Then, the phase functions ¢ and ¢, are equivalent at
(x9, yl) and (x°, y2) if and only if

sen (o7, ok “Hyio1) = sen (o7, %" “Hr.02) (3.16)

Remark 3.20 Before we go into the details of the proof, we recall the expression for the
differential in condition (3.16) in coordinates. By (3.7), we have, writing ¢ = p;I Py ! f,

-1 _—1sc _(pr 0 agyf ayjapyf py 0
ai'est e = (5 5) (il 1) (3 2)

Hence, for py # 0 the signature of this matrix coincides with the signature of Hy f. For py =
0, itis instead that of the Hessian of f restricted to py = 0, thatis, of the matrix obtained taking
second-order derivatives only with respect to the boundary variables, (8}, 50y, S (O, y))]. e

Proof of Theorem 3.19 We first prove that condition (3.16) is necessary. In view of Lemma
3.11, we only need to compare *Hy, ¢; and *“Hy, ¢, by writing

SHy, > = *Hy, F*¢1 + *Hy, (p2 — F*¢1). (3.17)

We write r = (g2 — F*¢1), which, by assumption, satisfies r € ¥°°(X x Y»). Therefore,
p;z ! ,0;1 S“Hy,r vanishes at the boundary. Indeed, in local coordinates we have

-1 —1sc _ (PYPxDpy POy 0FOX Dy Bpyr
py Py ~Hy,r = .
PY Px 0py PY Dy 7 Py Px Dy; Oy 1
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Thus, we have, at the boundary,

sgn (,o;zl,ogl SCHYZF*(pl) = sgn (,o;zl,o;] SCHy2<p2) . (3.18)

By computing these differentials in coordinates at corresponding stationary points, using
(3.7), this implies (3.16).

For the sufficiency of (3.16), we assume familiarity of the reader with the equivalence of
phase function theorem in the usual homogeneous setting (see [39, Prop. 4.1.3], [39, Prop.
4.1.3]) and sketch briefly that the argument goes through with little modification.

By Lemma 3.16, we may assume Y; = Y. Note that equivalence is achieved for ¢; =
pxpy fi if the f; agree on the boundary. The condition on **Hy ¢; means precisely that the
signatures of the Hessians of the f; in the tangential derivatives agree in the interior and
the signatures of the Hessians of the restriction of the f; to py = 0 as well (see Remark
3.20). As such, we may use the same techniques as in the classical situation to construct
a diffeomorphism on the boundary which transforms the restriction of f; into that of f>
(cf. also [12]). This diffeomorphism is then extended by means of Proposition 1.30 into the
interior. For sake of brevity, we omit the details here. O

Remark 3.21 Note that near (xO, yO) € C‘[’, we can also invoke the classical equivalence
theorem directly. We need to find a transformation

F:(x,0,y)— (x,0, 5(x, y))

such that F*¢; = ¢2. For A > 0, weset ¢;(x, A, y) = Af;(x,0,y), j € {1,2}. Then, ¢; are
equivalent phase functions in the usual homogeneous sense on X x (R4 x Y). Indeed, evalu-
ating d¢; and dg; in coordinates, we see that d¢; # 0 and ¢; is manifestly homogeneous.
Furthermore, the signatures of Hy ¢; are the same as those of *Hy ¢ ;. Since the f; are equal
up to second order, the ¢; are equivalent in the usual sense and there exists a A-homogeneous
G : (x,A,y) = (X,A, ¥(&, X, y)) which is homogeneous such that G*¢; = ¢»,. Setting
F = G|,=1 and possibly applying a scaling, as in the proof of Lemma 3.16, concludes the
proof for (x, yO) € c}f .

4 Lagrangian distributions

In this section, we will address the class of Lagrangian distributions on scattering manifolds.
First, we introduce oscillatory integrals associated with a phase function and show that they
are well defined in the usual sense. Then, we define Lagrangian distributions as a locally
finite sum of oscillatory integrals, where the phase function parameterizes a Lagrangian
submanifold. Using the results from the previous section, we are able to reduce the number
of fiber variables to a minimum and see that the order of the Lagrangian distribution is well
defined independently of the dimension of the fiber.

4.1 Oscillatory integrals associated with a phase function

Definition 4.1 Le.t Y be a mwb. For the remainder of this section, m, denotes a family of
functions m, € ?f()oo(Y), g € (0, 1], such that, for all k € Ny, o € N‘éfl, e € (0,1],

(03 0py )< (0y ) me(y)| < Crg P31 (4.1)

and m.(y) —> lase — 0, forally € Y°.

@ Springer



1764 S. Coriasco et al.

Remark 4.2 We observe that (4.1) does not depend on the choice of bdf and is preserved under
pullbacks by sc-maps. It is possible to find such a family on any manifold with boundary. In
fact, any choice of tubular neighborhood U of dY such that U = [0, §) x 9Y with coordinates
(py, y) introduces a dilation in the first variable. Take a function x € 4°°[0, co) such that
x(x) =1on[0,d]. Then, setm; = 1onY \ U and

x(epy") ifepy! > 8/2,
1 otherwise.

me(py,y) = {

Definition 4.3 Consider X, Y mwbs, U C X xY anopen subset, ¢ € p}l p;] ¢*°(U) aphase
function and a € pgmepim‘/’%”oo(X x Y, %Q12(X) x Q1 (Y)) an amplitude supported in
U. Then, I,(a) € (¢ g"o) (X,%°Q2(X)) is defined as the distributional 1/2-density acting
onf e ‘@”§°(X scQl/2(X)) by

(Ip(a), f) = Kr(l)//xxy (e””a (f ®m5)). 4.2)

Remark 4.4 1f X and Y are equipped with a scattering metric, we have a canonical identifi-
cation of functions and 1-densities provided by the volume form. Therefore, we can freely
choose whether to view functions and distributions as matching (distributional) 1-, 0- or
%-densities.

Remark 4.5 When X = B? and Y = B, these oscillatory integrals correspond, under
(inverse) radial compactification, to the tempered oscillatory integrals analyzed in [12,36].

Lemma 4.6 Expression (4.2) yields a well-defined tempered distribution (density) on X. In
particular, it is independent of the choice of m,.

Proof Assume, without loss of generality, that we have a fixed scattering metric and we can
identify scattering densities and functions. Let U C X x Y =: B be an open neighborhood
of the boundary BY such that dg # 0 on U.

On X x Y \ U, the dominated convergence theorem implies that (4.2) is well defined.
The integrand u, = ¢'Ya(f @ m,) converges pointwise and is dominated by |a - f|, which
is bounded for py > c.

On U, as in the classical theory, we can define a first-order scattering differential L €
Diff!.(U) which has the property that Le’? = ¢/¢. By Proposition 1 from [29], we see that
L' € Diff!.(U). Using repeated integration by parts and (4.1), we are able to increase the
order in px and py to arbitrary powers, and an application of the dominated convergence
theorem then finishes the proof. O

After an arbitrary choice of scattering metrics, we may locally identify (X, gx) and (Y, gy)
with subsets of B¢ and B, respectively. Then, using some explicit local isomorphism ¥ =
Wy x Wy, we can identify densities with functions using the induced measures px and py.
After use of a partition of unity, we may locally express (4.2) as

p(@. £y = tim [[ W (000 Datoy x oy metor ) Flox 1)) (43
e\0 B xBS

= gigg) f /B . VX XY I oy, YA(ox, X, pys ¥) [ (px, X)dpupadpips
X S
“4.4)
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m

where f = W* f|duge| /2 and @ € Pyd " Pgs Voo (B9 x BY) satisfies @ fdugadpps = af .
Summing up, we may always transform to locally work on B¢ x B*, and in local coordinates,
we work with usual oscillatory integrals.

Since (4.2) does not depend on the choice of m,, as it is usual we drop it from the notation

and write, in the sense of oscillatory integrals,

Ip(a) :=/ei¢’a. 4.5)
Y

4.1.1 Singularities of oscillatory integrals

Recall that there is a notion of wavefront set adapted to the pseudodifferential scattering
calculus, called the scattering wavefront set (cf. [5,9,29]).

Definition 4.7 Letu € (45°) (X, *Q!/?). Apointzg € W = B(SCT*X) is not in the scatter-
ing wavefront set, and we write zo ¢ WF(u), if there exists a scattering pseudodifferential
operator A whose symbol is elliptic at zo such that Au € 6;°(X, seQl/2y,

Proposition 4.8 For the oscillatory integral in (4.2), we have
WFSC(](p(a)) - A(p~
Furthermore, if z € Ay and a is rapidly decaying near )»(;1 (2), then z ¢ WFs.(Iy(a)).

Remark 4.9 The (sc-)singular support of u is defined as follows: A point pg € X is contained
in singsupp,(u) if and only if for every f € €°°(X) with f(po) = 1 wehave fu ¢ ‘ﬁ'ooo(X).
Similar to the classical wavefront set and singular support, we have that pr; (WF. (1)) =
singsupp,(u). Thus, in particular, if a is rapidly decaying near Cy, then I, (a) € ‘5000 (X).

We refer the reader to [11,36] for the details of this analysis of the wavefront sets. The
proof is carried out as in the classical setting: First, a characterization of WF in terms of
cutoffs and the Fourier transform is achieved, and then, one estimates F I, (a) in coordinates.

Proposition 4.8 gives another insight why we consider A, as the true object of interest
associated with a phase function, not L. In fact, considering (4.2) once more, we see that
we may modify phase function and amplitude in the integral by any real-valued function
Y € €°(X x Y), writing

0i%q = ol 0TV (e—f‘/fa) )

Then, e Va € py"p, " €>(X x Y), and hence, it is still an amplitude, and ¢ + ¥

is a new local phase function. Now, while in general L, # Lyyy, we have Ay = Agiy,

by Lemma 3.1. This underlines that only A, and not L, can be associated with I, (a) in an
intrinsic way. Nevertheless, it is often convenient to have L, available during the proofs.

4.2 Definition of Lagrangian distributions

The class of oscillatory integrals associated with a Lagrangian is — as in the classical theory
— not a good distribution space, since in general it is not possible to find a single global
phase function to parameterize A. Instead, we introduce the following class of Lagrangian
distributions. Note that, by our previous findings, we may always reduce an oscillatory integral
on X x Y into a finite sum of oscillatory integrals over X x B* for s = dim(Y).
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Definition 4.10 (sc-Lagrangian distributions) Let X be a mwb, A C T"X a sc-
Lagrangian. Then, I (X, A), (me, my) € R2, denotes the space of distributions that
can be written as a finite sum of (local) oscillatory integrals as in (4.5), whose phase func-
tions are clean and locally parameterize A, p}us an element of (5'000 (X). More precisely,
u € "™ (X, A) if, modulo a remainder in %;°(X),

N

=3 / ia, 4.6)
. Y;
j=1 J

where, for j = 1,..., N:

1. Y; is a mwb of dimension s;

2. ¢j € ,o;jl pgl %°°(X x Y;) is alocal clean phase function with excess e, defined on an
open neighborhood of the support of a, which locally parameterizes A;

3. aj € py " py" TGP (X x ¥y, Q! 2(X) x <QN(Y)) with

( ) +d S,’ e,~ d+Sj ej
My j,Mej) = |m —— == =M= -+ = —=].
e =\ T g Ty T e Ty T T
We also set
7R = () XA,
(m,/,,me)e]R2
X, A =14, A= | 1, ).
(m‘/,,me)eRz

Remark 4.11 The reason for the choice of the a; in the scattering amplitude densities spaces
of order (m,, j, my, ;) will be explained in Sect. 4.4.

Remark 4.12 As mentioned in the Introduction, kernels of scattering pseudodifferential oper-
ators on a scattering manifold X are sc-Lagrangian distributions. In fact, in this case the
underlying manifold is X x X, which is a manifold with corners. Furthermore, A C X x X
does not hit the corner dX x dX in a clean way, thatis, A C X x X is not a p-submanifold.
Similarly, the phase function associated with the SG-phase (x — y)& € SG;I’1 (R x RY) is
not clean.

The geometric obstruction of A C X x X—or more generally the graphs of (scattering)
canonical transformations—not being a p-submanifold can be overcome by lifting the anal-
ysis to a blowup space (see [27,32]). Let X, Y be manifolds with boundaries and denote by
M = [X x Y;3X x 8Y] the blown-up space. Choose a relatively open set U C M such
that U N M = @. Then, U is a manifold with boundary and we can define Lagrangian
distributions with compact support on U. By the Schwartz kernel theorem, we may asso-
ciate with a Lagrangian distribution K4 € I(U, A) an operator A : X — Y acting by
(Au,v) = (Ka,u ® v) for all u € €5°(X, *Q2(X)) and v € €°(Y, *Q!/2(Y)). This
gives a class of Fourier integral operators (FIOs) on scattering manifolds. We postpone the
construction of the full theory of scattering FIOs, including composition, mapping properties
and propagation of singularities, to a subsequent paper.

The next result follows from Proposition 4.8.
Proposition 4.13 Let A C 0 SST*X bea sc-Lagrangian, andu € 1(X, A). Then, WFy. (1) C
A.
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As in the classical case, the class of Lagrangian distributions contains the globally regular
functions (cf. Treves [39, Chapter VIII.3.2]):

Lemma4.14 Let A C 95T X be a sc-Lagrangian. Then,
EO(X, *QV2 (X)) = 7 7%(X, A). (4.7)

Proof We first prove the inclusion “2.” Choose a finite covering of ST X with open sets
{X j}j'vzl such that there exists a clean phase function ¢; on each X; parameterizing A N

ST X j»J =1,...,N. Let {g j}ﬁyzl be a smooth partition of unity subordinate to such

covering. We view X; as a subset of X x B!, j=1,...,N. )
Let x € 65° (B¢, Q' (BY)) such that [ x = 1. Forany f € ¢2°(X, *Q!/2(X)) we set

aj=€_i¢-’gj'(f®)(), fj-:/];;dei(pjaj, ]:1,’N
We see that
a;j € 65°(X x BY,*Q2(X) x *Q'BY)), j=1,....N,

and, summing up,

N N
> fi = / Y ogi@ oy | (fF@®x()) = f@).
j=1 BE\J=1
The inclusion “C” is achieved by differentiation under the integral sign. O

4.3 Transformations of oscillatory integrals

In Sect. 3, we have seen several procedures that allow to switch from one phase function
to others that parameterize the same Lagrangian. We will now exploit these to transform
oscillatory integrals into “standard form.” In the sequel, we will always assume, by a partition
of unity, that the support of the amplitude is suitably small.

4.3.1 Transformation behavior and equivalent phase functions

Now we reconsider (4.3), to express the transformation behavior of the oscillatory integrals
under fiber-preserving diffeomorphisms. With the chosen notation and a local phase function
@1, we have

I,, (a):/ eilpla:f G = Iy (F ) 48
Y1 Y,

for any diffeomorphism F : X x Y — X x Y| of the form F = id x g. Assume that ¢; is
equivalent to ¢ by F (see Definition 3.10). After the transformation, we rewrite (4.8) as

/ el92 ol (Fro1=92) 4.9)
6]

Now, since F*¢; — ¢ is smooth up to the boundary, the same holds for ! F*91-92) and this
factor can be seen as part of the amplitude. Therefore, we may write

Iy (@) = Iy, ((F*a) exp(i(F g1 — ¢2))). (4.10)
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In particular, we can express I,(a), near any boundary point of the domain of definition,
using the principal part of ¢ introduced in Definition 1.12, namely

Iy, (@), withd = a exp (i(p — ¢p)). (4.11)

—Me

By Lemma3.12, ¢ — ¢, € ¥ and thus @ € py p;m‘b(foo(B). In the following construc-
tions, we always assume that ¢ is replaced by its principal part (cf. Remark 3.15).

4.3.2 Reduction of the fiber

We will now analyze the change of boundary behavior under a reduction of fiber variables
near po € supp(a) N C,. Hence, we assume that

,o;l,o;l *Hy g has rank r > 0 at py € Cy.
We assume, as explained above, that the oscillatory integral is in form (4.11), namely, ¢ is
replaced by its principal phase part. We observe that, at the boundary point py,

tk(py ' px ¥Hyg) = tk(py ' ok “Hyo (9p)).

By Proposition 3.5, we can define a local phase function ¢r.q parameterizing the same
Lagrangian as ¢. In particular, after a change of coordinates by a scattering map, we can
assume (X,y) € X x B*™" x (—¢, )", and ¢req is given by

QDred(X, LY, y/) = W(Xa PY y/v 0)»

where py = pps—r is the boundary-defining function on B*~" and on B*™" x (—¢, &)". We
introduce

~ 1 ., _
X, ¥) = ¢rea(x, py, ¥) + prlple(y”), (4.12)

where Q is a non-degenerate quadratic form with the same signature as 9,79y~ f at pg. Then,
by Theorem 3.19, ¢ is equivalent to ¢ by a local diffeomorphism F = id x g. Note that ¢req
is equal to its principal part, because we assumed that ¢ is replaced by ¢,,.

We may assume that a is supported in an arbitrarily small neighborhood of the stationary
points of ¢. Indeed, we may achieve this for a general amplitude a by applying a cutoff in y”
and writing a = ¢a + (1 — ¢)a. The oscillatory integral with amplitude (1 — ¢)a produces
aterm in ¢2°(X, ©!/2(X)), by Remark 4.9.

Therefore, choosing the support of @ small enough, we may perform the change of variables
by the local diffeomorphism F as in (4.10). We write, motivated by Lemma 1.16 and Example
1.37,

gl
Ared X, T g . ~aa
Y . DY

which is assumed supported in some compact subset of (—¢, €)". Then, I, (a) is transformed
into Iy, , (b) where

= (Fra)(x.Y),

b(x, py,y) = py_rf

(—&.8)"

esrx'pr 00" (ei(F*w(X.,y)—&(x,y)) dred (X, y))dy”. (4.13)

We claim that b(x, py, y') is again a (density-valued) amplitude. First, it is clear that b decays
rapidly at (x, py, ') if a decays rapidly at (x, py, y’, 0). In particular, b is smooth away from
B.
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We now apply the stationary phase lemma [21, Lem. 7.7.3] to (4.13), which yields the
asymptotic equivalence, as py px — 0,

b(x, py,y') = P;/zp;rﬂl det Q|12 175en(Q) i (F 0 pr 0%, 1.3 0 gy (x, py, ¥/, 0)
—my—L+1 —me+L+1
+O(p, " T p T, (4.14)
Similar asymptotics hold for all derivatives of b. We may hence view b as a (density-valued)
amplitude of the order

r r
Semy+ 5). 4.15)

By Remark 3.15 we see that, away from the corner, F*¢ — @ vanishes at C,. Therefore, the
principal part of b does not depend on ¢. Hence, by comparison of principal parts (cf. Lemma
1.13), (4.14) reduces to

(my, my,) = (me -

2 —r/2 _ i
b(x, py, y) ~ o py * I det Q|72 Qg i(x, py, ¥, 0) (4.16)

modulo terms of lower order.

4.3.3 Elimination of excess

Assume now that ¢ is a clean phase function of excess e > 0. Near some point in Cy, as
described in Sect. 3.4, we may make the following geometric assumptions after application
of some diffeomorphism F: We assume that ¥ = B¢ x (—e¢, €)¢ and that the fibers of
C, — A, are given by constant (X, py, y') and arbitrary y”. We proceed as in [39] and
define

@(px.,x, py, ¥ := ¢(px. x, py, ', 0). 4.17)
We observe that for any fixed y” the phase function ¢ (y”), defined as

[p NI, py. y) = @, py. ¥, y"). (4.18)

is equivalent to ¢. Indeed, since d,»*dyy = 0, the differential *Hy¢ (y”) has the same
signature as SHps— @ and both parameterize the same Lagrangian with the same number
of phase variables (s — e). Therefore, Theorem 3.19 guarantees the existence of a fam-
ily of diffeomorphisms G(y”) : (x, py,y") + (X, g(X, py,y’,y")) such that, defining
G: (x,y) = (X, pv,y, ") = (X, 8%, py, ¥, ¥"), ¥y,

G'o—§ (4.19)

is smooth everywhere, and vanishes on Cj away from the corner by Remark 3.15. Then, we
may express Iy (a) as I(b), where

b(x. py.y) = py* / G DEPr ) (G (x, py. v Y Ay (4.20)
(—¢&,6)¢

and

|dy”|

— = (G*a)(x,y).
oy G O®Y

(G*a)red (X, y)

Since 5*(,0 — ¢ is smooth, b is again an amplitude of order

(e, iiy) = (me, my +e). 4.21)
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Notice that at points in C, away from the corner, 5*g0 — @ vanishes, and hence, (4.20) reduces
to

b(x, py.y) = py° / (G*a)rea(x, py, ', y")dy". (4.22)

(—&.8)°

4.4 The order of a Lagrangian distribution

We will now obtain the definition of the order of I, (a), which is invariant with respect to all
the three steps described above.

Lemma 4.15 The numbers jiy, = my +5/2+e/2 and o = m,—s/2+e/2 remain constant
under reduction of fiber variables and elimination of excess.

Proof Consider a Lagrangian distribution A = I, (a) where a has order m,, m, anddim Y =
s with excess e and r reduceable fiber variables. After the reduction of fiber, we obtain an
amplitude a’ with order m/, = m, — r/2, mip = my + r/2 (cf. (4.15)), with excess ¢’ = e
and number of fiber variables s’ = s — r. The elimination of excess yields an amplitude a*
with order mﬁ = m,, mfb = my + e (cf. (4.21)), excess e = 0ands* =5 —e. It is now
straightforward to check that

my+s/2+e/2=mly+5s'/2+e/2=ml, +5"/2+ "2,
me—s/2+e/2=m, —5s'/24+e/2=m! —s*/2 4" )2.
O

This shows that the tuple (iiy, (o) can be used to define the order of a Lagrangian
distribution.

We still have the freedom to add arbitrary constants to both orders. In order to choose these
constants, we compare our class of Lagrangian distributions with Hérmander’s Lagrangian
distributions and the Legendrian distributions of Melrose—Zworski [32]. First, consider the
delta distribution 8p, which is in the Hormander class / 4/4 and wy = d/2. Therefore, we
choose my, = uy —d /4 to obtain the same v -order for 8. Similarly, the constant functionis a
Legendrian distribution of order —d /4 and ., = 0, and therefore, we choose m, = . +d /4.
Note that we use the opposite sign convention for the m,.-order then in [32].

5 The principal symbol of a Lagrangian distribution

We will now define the principal symbol map j,ﬁ}()ym on ["e™¥ (X, A). Similarly to the
classical theory, it takes values in a suitable (density) bundle on A. This is coherent with
the notion of principal symbol map Jme.my for scattering operators (see [29,30]) as well as
of principal part for classical SG symbols (see [17,36]) which both provide smooth objects
defined on W = 95T X D A. We adapt the construction in [39] (see also [20,23]), starting
from the simplest case of local non-degenerate phase functions parameterizing A, up to the
general case of local clean functions.

Let A C W be an sc-Lagrangian, whichon B = X x Y is locally parameterized by a local
non-degenerate phase function ¢ € p;l,o;l‘foo(U), UCB.Leta e p;m‘[’p;m"%“’ (X X
Y, 5Q2(X) x Q! (Y)) be supported in U, and let I,,(a) be a (micro-)local representation
of u € I'"™v (X, A) as a single oscillatory integral.
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We now fix a 1-density i x on X. Any choice of 1 density py on Y then trivializes the one-
dimensional bundle € (X x Y, **Q1/2(X)®%Q! (Y)), and any element is given by a multiple

of py (d+])/2,0;571 VI x ®uy.Any choice of coordinates (py, y) in Y allows for us to express

py locally as 5 (Bp’i "y) dpydy, meaning as having a smooth density factor with respect to the
(local) Lebesgue measure. As such, we rewrite the amplitude a € p, i Py CEP(X x
Y, %Q/2(X) @ 5°Q!(Y)) in any choice of local coordinates as
d+D)/2 s
oy pea(x,y) = ax, y) px T2 o Jiixdpydy. (5.1)
fora e (X x Y).

5.1 Non-degenerate equivalent phase functions

As above (cf. (2.4)), when U is a neighborhood of a point close to the boundary 5, we can
there identify dy ¢ with the map,

Xy > @, y) = (— fXY) +propy f(X,y) 3 f(x,y) €R’,

locally well defined on a neighborhood of C,, within U.

In view of the non-degeneracy of ¢, ® has a surjective differential, so that we can consider
the pullback of distributions d, = ®*§, with § = &y € D'(R®) the Dirac distribution,
concentrated at the origin, on R* (cf. [21, Ch. VI]). More explicitly, choosing functions
(t1, ..., tq) =: t, which restrict to a local coordinate system (up to the boundary) on C,, the
pullback d, can be expressed locally as the density

1
dt = Ay () dr.

dy = ‘det

a(x,

Consider another local non-degenerate phase function ¢ parameterizing A, defined on an
open subset U C X x Y, such that § = F*¢, with a (local, fibered) diffeomorphism

=idxg: X x Y - X x Y.Since Fisa sc-map, there exists a function 2 € €°°(X x Y)
such that (F*py)(x,¥) = py - h(X, ¥).

As above, we identify dy¢@ with the map ® and define dg and Aw(ﬁ in terms of the
functions 7; = = F*t; j» which are local coordinates on C, prov1ded U is small enough.

In the sequel, we show how objects defined in these two choices (¢, ¢) and (7, @) are related.
For that, we implicitly assume all objects evaluated at corresponding points (x,y) € C,
(parameterized by ¢) and (x,y) = F(X,y) € Cg (parameterized by 1.

Lemma 5.1 The functions Ag@ and Ay(t) are related by
9gx, Y|
e

Ag@) = h(x, y)* ™" |det Ay (1 (D).

Proof of Lemma 5.1 By direct computation, ® and ® are related by a matrix Mg via

P(x,F) = P(FX, V) - Mpz(x, ¥, (5.2)
where

2:0Y 2 19y

[h(x, Y]~ (X Y) [h&x )] py 05 (x.y)
MCDEIS(Xv S;) =

- Yy
[h(x, y)]—lpya—(x Y Ih, y)]*%,(x, )
Y
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and

3g(x,§
|detM¢5(x,y)|=h(x,“y’)—S—‘-‘det sX.y) |

Differentiating (5.2), we obtain, using that 5(x, y) = ®(F(x,¥)) =0onCg,

0 (@ (F(X.T)
%% %) = Mz, §) - Lo L XV
ey oY = Mea e ) 53
~ Mok 3 | 5 (P 5D,
Furthermore, we have
I x§ = [ Y (Fx ~))] & 9.
a(x H oY T lwy Yy Y

Summing up, we find

A, D) . A, D) - oF -
= C— 4
T (x,¥) = diag(ls, Mp3(x,¥)) - [8( )(F(X,Y))} ) xy), 64
which in turn implies, using F =id x g,
@ [ e
A (@D) = ‘ k. )(X V| =heHIT det = Ay (1(1)),
as claimed. O
We define
e —my—(s+1)/2
wy = (03" oy 0lc, - v/1dl. (55)

with a given in (5.1), which is a half-density on (the interior of) C,.
To define wg accordingly, we check that I, (a) transforms under the action of F as

: TR b3 —m, —My —(d+1)/2 —s5— ~
/ ea = /Nel(F w)(x,y)F*[pXm pymv 0')OX( +1)/ o7’ ' iix ®dpydy] x.5)
Y 14

iG(XY) —me —My~,.  ~  —(d+1)/2 —5—
:/;eﬂp(x,y)pxm PV E0x, ) (03 TV p= 1 VK ® dppd),
Y

where

dot 8ED | (5.6)

Ax,¥) = a(F(x, )hx,7) " ! =
y

We define, coherently with (5.5), wg = p_m‘ mewi(sH)/ZE,Mdal.
Lemma 5.2 The half-densities wy and wy, are related by
wg = Frw,,

in (the interior of) Cg.
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Proof We obtain from (5.6) and Lemma 5.1 that

AP 0D = a(Fx, )R F) " 62| AL 0G|V

Then, using the local coordinates ¢ and 7 = F*t introduced above, on Cy we find

wy = F*(p;mep;mw—(wl)ﬂ )}A (t(t))‘]/z /| j
—F ( —memew*(erl)/Za|A¢(t)|1/2 /|dt|) - F*w(p.

[m}

As a half-density-valued amplitude, wy, is of order (m,, my — (s + 1)/2), as shown by
the computations above. In accordance with the definition of the principal part (cf. Definition
1.12), we set

Py = (a-\/@)‘cq)

As seen above, v, transforms to tog under the pullback via F'. Since A, is a local diffeomor-
phism C, — L, we can also consider

Ay = ()\w)*(mw)’

which yields a local half-density on A,. The fact that, for the two equivalent phase functions
¢ and @, we have Ay = Ay o F, together with the transformation properties of tv,, shows
that

ag =o, =a,

that is, oz and «,, are equivalent local representations of a half-density o defined on A, in
the local parameterizations Ay and A, respectively.

We now prove that the same holds true if ¢ is merely a non-degenerate phase function
equivalent to ¢ in the sense of Definition 3.10. First, if we repeat the construction of \/@
described above, all the computations remain valid modulo terms, generated by 5, which
contain an extra factor px py. This is due to

F'o—§e¢™U)
& oy 07 FxT) = px' 07 hx, DT (F* HHX, T) + (%, 7). g € €°(U)
& f&Y =& FHED + pxpyg.F). g € €(0).
Then, by rescaling wg through multiplication by py¢ p m‘”+(s+l)/2
Cg, such additional terms identically vanish.
Moreover, by Lemma 3.12 and Remark 3.15, we know that, in a neighborhood U of any
point in the interior of C% or Cg , which does not intersect Cg , it can be assumed, after

and then restricting to, on

passage to the principal parts, that § = F*¢ on Cg N U (see Sect. 4.3.1). It follows that the
factor exp(i (F*¢ — @)), appearing in @ (cf. (4.10)), also disappears, away from the corner,
when restricting to the faces C% or cl.

Finally, we observe that v, and tog are obtained as restrictions of smooth objects on X x ¥
and X x Y to their respective boundaries. As such, their transformation behavior extends, by
continuity, to the corner as well, producing smooth objects on C, and Cz. By pushforward
through Az and A, we find again that g = o, = a locally on Ag = A(p =A.
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5.2 Non-degenerate phase functions, reduction of the fiber

We now consider a ¢ such that reduction of the fiber variables (see Sect. 3.2) is possible. By
the argument in Sect. 5.1, we may then write I,(a) = Iy, (b) with b from (4.13). We now
compare o, to the analogously defined half-density B,.,. We can replace the phase function
@ by the equivalent phase function given in (4.12), and this does not affect «,. Hence, we

may assume that ¢ is of the form ¢ (X, y) = @reda(X,y) + %p;lp;] (Qy”, y").
As such, we assume, in this splitting of coordinates, C, C {(x,y’, 0)}. We find:

Lemma 5.3 Under the identification Cy, ., X {0} = Cy, we have
J1d,] = |det 07 2/1d,,, |-
Proof We compute
DX, y) = (— fred(®,¥) + 0y dpy fred(X,¥) 3y frea(x,y) 0)
+ (- %(Qy”, y') 0 3,,00")
= (Prea(x,y) 0)+ (W) QY') eR xR,

Therefore,
at( ) 81( ) at ®7)
— (X, — X, —, X,
x Y Gy™Y %y
o, CD)( ) P AP 1w
X,y = red , red ’ ”
a(x, ; YY) =57
x,y) = x,¥) oy (x,¥) 20y ")
0 0 0
Consequently,
A, d) |72
Vd,| = ’det Vdz]
¢ IX.¥) |y
1
o(t, Preq) | 2 1
= |det ——— - | det 2,/|dt
‘e T |det 01 # /]

C‘Prcd

_1
= |det Q| 2/|dp,eql-

O
Notice that’” a = areq. We compute, by (4.14), modulo amplitudes of lower order,
—me 2 — —r/2 _ P T _(e— 2
bx,y) = px" 20y T det @172 B Da(x, y, 0)iix (oy Ty ).
5.7

We observe that b is an amplitude of order (m, — r/2, my + r/2) and find

b(x,y) = |det Q|72 55 Da(x, ¥, 0) + O(ox py),

7 Observe that ared is obtained by splitting of the density and weight factors in two steps.
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which implies, using Lemma 5.3,

m‘ﬂred = (b(x’ y/)\/ |d‘ﬂred|) .
red
— i Fsen(Q) (u(x, y)\/W)

g

— T @y

C

Cs

This, in turn, finally gives

ﬁ‘ﬁred = ()‘(Pred)*(m%ed) = eizsg“(Q) ' ()“/’)*(m(p) = eizsgn(Q) -

5.3 Clean phase functions, elimination of the excess

We now proceed with the last reduction step, namely, we consider a clean phase function and
eliminate its excess. As in Sect. 4.3.3, we assume ¥ = B* ¢ x (—¢, €)¢ with the fibers of
Cy, — A, given by constant (X, py, y’) and arbitrary y” € (—e¢, €)°.

Switching to the phase function @ in (4.17), we may write I,(a) = I(b) with b defined
in (4.20). We apply the construction of the previous section and obtain the density Sz =
(A« (b - \/@)0 from the data (¢, b).

Alternatively, we may study the parameter-dependent family of oscillatory integrals
Iy (a(y”)) with phase functions ¢ (y”) defined in (4.18) and amplitudes

a(y"): (x, py,y) > pyCax, py,y,y") = pyax,y),

with corresponding principal parts a(y”). Since ¢ (y”) is non-degenerate, we can define the
parameter-dependent family of half-densities on A

(") = G (807 - ldsonl)
(")

and finally set
Ve = / ap(y") dy”. (5.8)
(—¢.6)¢

Proposition 5.4 The half-densities on Ay = Ay, = A given by yg and B coincide.

Proof We consider the smooth family of diffeomorphisms G(y”) = id x g(y”), depending
on the parameter y”, involved in G from (4.19). Assuming the amplitudes a(y”) supported
away from the corner points, we can suppose, as above, G(y")*¢ (y") — ¢ = 0. We now
compute, using Lemma 3.7 and expression (4.20), together with the transformation properties
of to,

~ _1
T ®) |2
(05 - V1451) % pr. ¥)les = 35, oy ¥ ez [det 5 Vle, ¥
> 7
9 —my—s—1
(—e.e)¢ y Cy 7

2

V1dr| dy”

Cs

AT, ®)
X |det
a(x,y)
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1
a, d(y") |2
(Lemma 5.1 =) :/( Ge(y”)*|:a(x, Ve, ,n|de oy Vde| |dy”
—&:¢) Y ey
(Def. of dy(yry =) = / G(y”)*[(a(y”)- |d¢(y”)|> (x, py,y’)] dy”.
(—e.8)° Coiy

Applying (A3)+ to the left-hand side, we obtain 8. To apply (Ay)« to the right-hand side,
we first recall that ¢ and ¢ (y”) are equivalent by G(y”). Using again Lemma 3.7 (see also
Lemma 3.16), this implies

A5 =2p 0 GO = (Ap)x = (kg(y))x © G(Y s (5.9

Since A does not depend on y”, we can take it inside the integral and use (5.9), finally
obtaining

B = (0:p)x [ /( . G(y”)*[(a(y”) / |d¢(y”)|)] %N)dy”]
- /( G0 0600 GO (a0 fidean )], 0"

PO
= / (A¢<y”>)*[(a(y”) Vg ) |)] dy” = / agp(y") dy” = yg.
(—e.8)° G0 (—&.6)°
Extension to the corner points as in the previous subsections proves the claim. m}

We already showed that the half-density o associated with [,(a) is invariant under a
change of equivalent non-degenerate phase functions. Together with the argument above,
this also shows that the half-density y associated with [,(a) remains the same under the
change of equivalent phase functions which are clean with the same excess.

5.4 Principal symbol and principal symbol map

Letu € I""™¥ (X, A). Consider any local representation of u, as introduced in Definition
4.10, with clean phase function ¢ with excess e associated with A and a some local symbol
density. The arguments in the previous subsections show how to associate with these data a
half-density y, defined on A. We also showed that switching to an equivalent phase function,
as well as the elimination of the excess, do not change y . The reduction of the fiber variables
replaces y with ¥’ such that

]/, _ ei%sgn(Q) v,

with Q from (4.12). Let ¥ be the half-density defined by an integral representation I7(@),
with another phase function ¢ associated with A. Then, similarly to [39], in general we have

J=eDTy, (5.10)

where o = sgn (,o;l,o;] SCHygo) and ¢ = sgn (,o;l,o;] ScH;gZ). Denote by 7 the number

of fiber variable for &, § the dimension of ¥ and € the excess of &, and define the integer
number

1 - ~
K=5(U—G—S+S+€—E).

Then, (5.10) is equivalent to B
i“el07OF y = COT 3 (5.11)
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We are then led to the following definition of principal symbol map.

Definition 5.5 Let u € 1™ (X, A). We define .# (u) = {(Y;, ¢;)} as the collection of
manifolds and associated clean phase functions (Y}, ¢;) locally parameterizing A, giving
rise to local representations of u in the form I, ; (aj). With each pair (Y, ¢) € J(u), we
associate the half-density y, as described in Sect. 5.3, in such a manner that, for any other
element ()7, @) € J(u), we have coherence relation (5.11) in A,(Y) N Aa(?). We call the
collection of half-densities {y;}, each one associated with (Y}, ¢;) € .#(u), the principal
symbol of u, and write jrﬁt\e,mw () = {y;}.

By an argument completely similar to the one in [39], we can prove the following result.

Theorem 5.6 Let A be a sc-Lagrangian on X. Then, the map

Ty "M (XA 3w {y)) (5.12)
given in Definition 5.5 is surjective. Moreover, the null space of map (5.12) is I~ =1(X
A), and thus, (5.12) defines a bijection

classes in "™ (X, A)/I™e~ =1 (X, A) > {y;).

The image space of -jl’f’l\g,m\[, can be seen as € (A, My ® Q'/?), where My is the Maslov
bundle over A.
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Appendix A: Resolution of Lagrangian singularities near the corner

In this appendix, we show that A¥¢ may be viewed as a Legendre manifold with respect to
a (degenerate) contact form, well defined on the blowup of the corner component W¥¢ of
ST X,

We have already stated that the forms

aV 1= p2d,aw and af 1= pxdpy .

are well defined in the interior near the respective boundary face W¢ or WY and extend
to it. The freedom in choosing the boundary-defining function has as a consequence that
these forms are merely well defined up to a multiple by a positive function; however, their
contact structure at the boundary (which is all we need to characterize A® as Legendrian)
is independent of the choice of bdfs. Neither form extends to the corner component WY*.
Instead of the rescaled 1-forms, we now consider the non-rescaled forms

seqV = PEdpg 1w

af 1= pxdpy 0

as sections of S¢T*(*°T*X?). Then, these extend as scattering one forms on ST x (cf. [32,

@.1DD.
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LemmaA.1 The forms oV and *a® extend from *T*X° to scattering one forms on ST X,
In a particular choice of coordinates (see [32] and Remark 1.3), they are given by

Syl — dni midpg 0 dx
PXPE  pxpL pxpz’
scaij/ =n de ” dx

2 T :
pEPY PXPE

Here, n = (n1,n") are smooth functions of (pg, &), d — 1 of which may be chosen as
coordinates.

Again, the (scattering) contact structures of these forms, when restricted to the respective
boundary faces, do not depend on the choice of bdf, since two choices of bdf only differ by
positive factors. These forms *“«® will then vanish on A®, e € {e, ¥}, since one can identify
the kernels of *°a® with that of «® by rescaling there. Furthermore, both ¥ and ¢ vanish
when restricted to AV¢.

Example A.2 On T*R? with canonical coordinates (x, &), this corresponds to both the forms
E-dx and —x-dé&
vanishing on the bi-conic (in x and £) manifold with base AVe (cf. [12]).

Hence, AV¢ is, in some sense, (scattering) isotropic.8 We note, however, that the AY¢ is
not Lagrangian with respect to any symplectic form on WY, since

dim(OWVYe)

dim(AY ) =d —2#d—1= 5

However, we may now blow up the corner WY€ in T(X) and consider the front face

B=LOWY€) in [T (X); W¥¢], which is a 2d — 1-dimensional manifold (see Fig. 4). Here,
B T (X); WYl — *T(X),

is the blow-down map.

Proposition A.3 The lift of the form

O["[/e — PXPE

5 (scaw+scae)

to the blowup space
(7 x; We] £ 77 x

restricts to a contact 1-form on the front face B~"WY¢. Moreover, B~V (AV¢) is Legendrian
with respect to aVe.

Proof We note that

awe = PXPE (pxapx + pEapE)Jw'

N =

8 Not with respect to the standard symplectic form, since it does not extend to the boundary, but to a rescaling
of it.
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W

AY

Fig.4 Resolution of Ag, near the corner

In the special choice of coordinates of Lemma A.1, we compute

1 d dpz 1
aVe = <ﬂ - p“) + =dn; +n"dx.
2 X PE 2

Now, smooth coordinates on the blowup of ST X along W¥¢ = {px = pg = 0} are given
by

= ==L (x, >
P = px o (x, &) px > px (A1)
p=pg T="7" (X8 pz>px
In any case, ,3*on is of the form
1 der 1
a¥® =£-n— + =dn +n"dx.
21 2
Since T = 0 marks the boundary of the front face 8 —hyyve Ve isa 1-form on the interior
of B~1WYe, Finally, «¥¢ vanishes on 8~ ! AV¢ since *°a¥ and *°«® vanish on AV®. O
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