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Abstract—A new hybrid scheme (LEA) that combines the advantages of Eulerian and Lagrangian frameworks is applied to the

visualization of dense representations of time-dependent vector fields. The algorithm encodes the particles into a texture that is then

advected. By treating every particle equally, we can handle texture advection and dye advection within a single framework. High

temporal and spatial correlation is achieved through the blending of successive frames. A combination of particle and dye advection

enables the simultaneous visualization of streamlines, particle paths, and streaklines. We demonstrate various experimental

techniques on several physical flow fields. The simplicity of both the resulting data structures and the implementation suggest that LEA

could become a useful component of any scientific visualization toolkit concerned with the display of unsteady flows.

Index Terms—Flow visualization, texture advection, unsteady flow fields.
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1 INTRODUCTION

TRADITIONALLY, unsteady flow fields are thought of as a
collection of pathlines or streaklines that originate from

user-defined seed points [9], [10]. These trajectories are often
visualized in experimental laboratories through the injection
of dye into the fluid [17]. Release of the dye can be continuous
or pulsed, colored, locally concentrated, or spreadout over an
extended region. Proper use of dye makes it possible to
extract quantitative information about the velocity magni-
tude, direction, rate of strain tensor, and to visualize
pathlines, streaklines, and timelines [7], [11], [13], [18].

At the other end of the spectrum, the use of dense
representations of the flow as a means of maximizing
information content has been attracting a lot of attention [3],
[6], [7], [8], [12], [13], [15], [18]. In a time-dependent context,
the fundamental challenge faced by this class of algorithms
is to produce smooth animations with good spatial and
temporal correlation.

In this paper, we describe a new algorithm based on
dense representations of time-dependent vector fields and
apply it to noise and dye advection. The method combines
the advantages of the Lagrangian and Eulerian formalisms.
Briefly stated, a dense set of particles is stored as
coordinates in a texture. Each iteration is defined by a
Lagrangian step (backward time integration of the particles)
and a Eulerian step (update of the image pixel colors).
Texture advection and dye advection are differentiated
chiefly by how the advected textures are defined. All
information is stored in a few two-dimensional arrays. By
its very nature, the algorithm takes advantage of spatial

locality and instruction pipelining and can generate anima-
tions at interactive frame rates.

The rest of the paper is organized as follows: Section 2
gives an overview of related work. The general approach is
described in Section 3, while the algorithm is examined in
Sections 4 (noise advection) and 5 (dye advection). Section 6
discusses parameter selection. Timing results are presented
in Section 7. Conclusions are drawn in Section 8.

2 RELATED WORK

Several techniques have been advanced to produce dense
representations of unsteady vector fields. Best known is,
perhaps, UFLIC (Unsteady Flow LIC), developed by Shen
and Kao [15] and based on the Line Integral Convolution
(LIC) technique [2]. The algorithm achieves good spatial
and temporal correlation. However, the images are difficult
to interpret: The paths are blurred in regions of rapid
change of direction and are thickest where the flow is
almost uniform. The low performance of the algorithm is
explained by the large number of particles (three to five
times the number of pixels in the image) to process for each
animation frame.

The spot noise technique, initially developed for the
visualization of steady vector fields, has a natural extension
to unsteady flows [3]. A sufficiently large collection of
elliptic spots is chosen to entirely cover an image of the
physical domain. The position of these spots is integrated
along the flow, bent along the local pathline or streamline,
and finally blended into the animation frame. The render-
ing speed of the algorithm can be increased by decreasing
the number of spots in the image. The control of pixel
coverage is done by assigning a fixed lifespan to each spot.

Max and Becker [12] propose a texture-based algorithm
to represent steady and unsteady flow fields. The basic idea
is to advect a texture along the flow either by advecting the
vertices of a triangular mesh or by integrating the texture
coordinates associated with each triangle backward in time.
When texture coordinates or particles leave the physical
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domain, an external velocity field is linearly extrapolated
from the boundary. This technique attains interactive frame
rates by controlling the resolution of the underlying mesh.

A technique to display streaklines was developed by
Rumpf and Becker [13]. They precompute a two-dimen-
sional noise texture whose coordinates represent time and a
boundary Lagrangian coordinate. Particles at any point in
space and time that originate from an inflow boundary are
mapped back to a point in this texture.

More recently, Jobard et al. [6], [7] extend the work of
Heidrich et al. [4] to animate unsteady two-dimensional
vector fields. The algorithm relies heavily on extensions to
OpenGL proposed by SGI, in particular, pixel textures,
additive and subtractive blending, and color transformation
matrices. They pay particular attention to the flow entering
and leaving the physical domain, leading to smooth
animations of arbitrary duration. Excessive discretization
errors associated with 12 bit textures are addressed by a
tiling mechanism [6]. Unfortunately, the graphics hardware
extension this algorithm relies on most, the pixel texture
extension, was not adopted by other graphics card
manufacturers. As a result, the algorithm only runs on the
SGI Maximum Impact and the SGI Octane with the MXE
graphics card. Application of LEA to flows with shocks is
considered in Hussaini et al. [5]. Recently, a new algorithm
based on the Nvidia GeForce3 graphics card has been
developed for texture advection [18].

3 LAGRANGIAN-EULERIAN APPROACH

We wish to track a collection of particles, pi, along a
prescribed time-dependent velocity field, that densely
covers a rectangular region. If we assign a property P ðpiÞ
to the ith particle pi, the property remains constant as the
particle follows its pathline. At any given instant t, each
spatial location x has an associated particle, labeled ptðxÞ.
One expresses that the particle property is invariant along a
pathline by

@P ðptðxÞÞ

@t
þ v

tðxÞ � rP ðptÞðxÞÞ ¼ 0: ð1Þ

The property attached to each particle takes on the role of
a passive scalar. Its value is therefore not affected by
diffusion or source terms (associated with chemical or other
processes). This equation has two interpretations. In the
first, the trajectory of a single particle, denoted by x

tðpÞ
where p tags the particle, satisfies

dxtðpÞ

dt
¼ v

tðxt; pÞ: ð2Þ

In this Lagrangian approach, the trajectory of each
particle is computed separately. The time evolution of a
collection of particles is displayed by rendering each
particle by a glyph (point, texture spot [3], arrows). Except
for the recent work of Jobard et al. [5], [6], [7], [18], current
time-dependent algorithms are all based on particle track-
ing, e.g., [1], [3], [10], [12], [15]. While Lagrangian tracking is
well-suited to the task of understanding how dense groups
of particles evolve in time, it suffers from several short-
comings. In regions of flow convergence, particles may

accumulate into small clusters that follow almost identical
trajectories, leaving regions of flow divergence with a low
density of particles. To maintain dense coverage of the
domain, the data structures must support dynamic inser-
tion and deletion of particles [15] or track more particles
than needed [3], which decreases the efficiency of any
implementation.

Alternatively, a Eulerian approach solves (1) directly.
Particles lose their identity. However, the particle property,
viewed as a field, is known for all time at any spatial
coordinate. Unfortunately, any explicit discretization of (1)
is subject to a Courant condition1 so that, in practice, the
numerical integration step is limited to at most one to two
cell widths. In turn, this imposes a maximum rate at which
flow structures can evolve.

In our approach, we choose a hybrid solution. Between
two successive time steps, coordinates of a dense collection
of particles are updated with a Lagrangian scheme, whereas
the advection of the particle property is achieved with a
Eulerian method. At the beginning of each iteration, a new
dense collection of particles is chosen and assigned the
property computed at the end of the previous iteration. We
refer to the hybrid nature of this approach as a Lagrangian-
Eulerian Advection (LEA) method.

To illustrate the idea, consider the advection of the
bitmap image shown in Fig. 1a by a circular vector field
centered at the lower left corner of the image. With a pure
Lagrangian scheme, a dense collection of particles (one per
pixel) is first assigned the color of the corresponding
underlying pixel. Each particle advects along the vector
field and deposits its color property in the corresponding
pixel in a new bitmap image. This technique does not
ensure that every pixel of the new image is updated.
Indeed, holes usually appear in the resulting image (Fig. 1b).

A better scheme considers each pixel of the new image as
a particle whose position is integrated backward in time.
The particle position in the initial bitmap determines its
color. There are no longer any holes in the new image
(Fig. 1c). Repeating the process at each iteration, any
property can be advected while maintaining a dense
coverage of the domain.

The core of the advection process is thus the composition
of two basic operations: coordinate integration and property
advection.
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1. If the discrete time step exceeds some maximum value, severe
numerical instabilities result.

Fig. 1. Rotation of bitmap image about the lower left corner. (a) Original

image. (b) Image rotated with Lagrangian scheme. (c) Image rotated

with Eulerian scheme.



Given the position x
0ði; jÞ ¼ ði; jÞ of each particle in the

new image, backward integration of (2) over a time interval
h determines its position

x
ÿh i; jð Þ ¼ x

0 i; jð Þ þ

Z

ÿh

0

v
tÿ�

x
� i; jð Þð Þd� ð3Þ

at a previous time step. h is the integration step, x� ði; jÞ
represents intermediary positions along the pathline
passing through x

tði; jÞ and v
� is the vector field at time � .

An image of resolution W �H, defined at a previous
time tÿ h, is advected to time t through the indirection
operation

I
tði; jÞ ¼

I
tÿhðxÿhði; jÞÞ 8xÿh 2 ½0;WÞ � ½0; HÞ

user-specified value otherwise;

�

ð4Þ

which allows the image at time t to be computed from the
image at any prior time tÿ h. This technique was used by
Max and Becker [12]. However, instead of integrating back
to the initial time to advect the same initial texture [12], we
choose h to be the interval between two successive
displayed images and always advect the last computed
image. This minimizes the need to access coordinate values
outside the physical domain. Notice that at least a linear
interpolation of Itÿh pixels at the positions xÿh is necessary
to obtain an image of acceptable quality.

In the next two sections, we describe noise-based and
dye-based advection methods.

4 NOISE-BASED ADVECTION

With our Lagrangian-Eulerian approach, a full per-pixel
advection requires manipulating exactly W �H particles.
All information concerning any particle is stored in two-
dimensional arrays with resolution W �H at the corre-
sponding location i; jð Þ. Thus, we store the initial coordi-
nates x; yð Þ of those particles in two arrays Cx i; jð Þ and
Cy i; jð Þ. Two arrays C

0
x and C

0
y contain their x and

y coordinates after integration. A first order integration
method requires two arrays Vx and Vy that store the
velocity field at the current time. Similarly to LIC, we
choose to advect noise images. Four noise arrays N, N0, Na,
and Nb contain, respectively, the noise to advect, two
advected noise images, and the final blended image.

Fig. 2 shows a flowchart of the algorithm. After the
initialization of the coordinate and noise arrays (Section 4.2),
the coordinates are integrated (Section 4.3) and the initial
noise array N is advected (Section 4.4). The first advected
noise array, N0 is then prepared for the next iteration by
subjecting it to a series of treatments (left column in Fig. 2).
Care is first taken to ensure that no spurious artifacts
appear at boundaries where flow enters the domain
(Section 4.5). This is followed by an optional masking
process to allow for nonrectangular domains (Section 4.6).
A low percentage of random noise is then injected into the
flow to compensate for the effects of pixel duplication and
flow divergence (Section 4.7). Finally, the coordinate arrays
are reinitialized to ready them for the next iteration
(Section 4.8). The right column in the flowchart describes
the sequence of steps that transform the second advected

noise array Na into the final image. Na is first accumulated

into Nb via a blending operation to create the necessary

spatio-temporal correlation (Section 4.9). Three optional

postprocessing phases are then applied toNb before its final

display: A line integral convolution filter removes aliasing

effects (Section 4.10.1) and features of interest are empha-

sized via an opacity mask (Section 4.10.2).

4.1 Notation

Array cell values are referenced by the notationA i; jð Þwith i

and j integers in 0; ::;W ÿ 1f g � 0; ::; H ÿ 1f g. We adopt the

convention that an array A x; yð Þ with real arguments is

evaluated from information in the four neighboring cells

using bilinear interpolation. A constant interpolation is

explicitly noted A xb c; yb cð Þ, where xb c is the largest integer

smaller than or equal to x. To simplify the notation, array

operations such asA ¼ B apply to the entire domain of ði; jÞ.
The indirection operation A i; jð Þ ¼ B rC i; jð Þ; sD i; jð Þð Þ,

where Cði; jÞ and Dði; jÞ lie in the range 0;W ÿ 1½ � and

0; H ÿ 1½ �, respectively, and r and s are scalars, is denoted

by A ¼ B rC; sDð Þ.

4.2 Coordinate and Noise Initialization

We first initialize the coordinate arraysCx,Cy and the noise

arrays N and Nb. Coordinates are initialized by

Csði; jÞ ¼ iþ randð1Þ
Cyði; jÞ ¼ jþ randð1Þ;

�

ð5Þ

where randð1Þ is a real number in 0; 1½ Þ. The random offset

distributes coordinates on a jitter grid to avoid regular

patterns that might otherwise appear during the first

several steps of the advection. Note that the integer part

of each coordinate serves as an index into the cell.
N is initializedwith a two-valued noise function (0 or 1) to

ensure maximum contrast and its values are copied into Nb.

Coordinates and noise values are stored in floating-point

format to ensure sufficient accuracy in the calculations.
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Fig. 2. Flowchart of LEA algorithm.



4.3 Coordinate Integration

A first order discretization of (3) with a constant time step h
gives

C
0
x ¼ Cx ÿ ðlmax=VmaxÞVxðrWV

Cx; rHV
CyÞ

C
0
y ¼ Cy ÿ ðlmax=VmaxÞVyðrHW

Cx; rHV
CyÞ;

�

ð6Þ

where rWV
¼ WV ÿ 1ð Þ=W and rHV

¼ HV ÿ 1ð Þ=H for a
vector field resolution of WV by WH . The two scaling
factors rWV

and rHV
ensure that the coordinates of the

velocity arrays stay within proper bounds. We replaced the
constant integration time step h with the quotient lmax=Vmax,
where Vmax is the maximum velocity magnitude over the
entire space-time domain. Therefore, the new quantity lmax

represents the maximal possible displacement of a particle
over all iterations, measured in units of cell widths. The
actual displacement of a particle is proportional to the local
velocity, also measured in cell widths. The velocity arrays
Vx and Vy at the current time are linearly interpolated
between the two closest available vector fields in the data
set. Section 6 discusses the relationship between parameters
necessary to generate animations consistent with the
physics of the problem.

A useful property of a first order formulation is that the
velocity arrays are never accessed at a point outside the
physical domain. We have also implemented a second order
discretization, but found no noticeable improvement due to
the small extent of the spatio-temporal correlations in the
final display. However, high accuracy is important for dye
advection (Section 5).

4.4 Noise Advection

The advection of noise described by (4) is applied twice to
N to produce two noise arrays N

0 and Na, one for
advection, one for display. N0 is an internal noise array
whose purpose is to carry on the advection process and to
reinitialize N for the next iteration. To maintain a
sufficiently high contrast in the advected noise, N

0 is
computed with a constant interpolation. Before N

0 can be
used in the next iteration, it must undergo a series of
corrections to account for edge effects, the presence of
arbitrary domains, and the deleterious consequences of
flow divergence.

Na serves to create the current animation frame and no
longer participates in the noise advection. It is computed
using linear interpolation of N to reduce spatial aliasing
effects. Na is then blended into Nb (Section 4.9).

A straightforward implementation of (4) leads to condi-
tional expressions to handle the cases when

x
0 i; jð Þ ¼ C

0
x i; jð Þ;C0

y i; jð Þ
ÿ �

is exterior to the physical domain. A more efficient
implementation eliminates the need to test for boundary
conditions by surrounding N and N

0 with a buffer zone of
constant width. From (6), x0 i; jð Þ refers to cells located at
most a distance of b ¼ hd e cell widths away from the array
borders. An expanded noise array of size W þ 2bð Þ �
H þ 2bð Þ is therefore sufficient to prevent out of bound
array accesses (see Fig. 3). The advected arrays N

0 and Na

are computed according to

N
0ðiþ b; jþ bÞ ¼ N C

0
xði; jÞ

� �

þ b; C
0
yði; jÞ

j k

þ b
� �

Naði; jÞ ¼ N rWC
0
xði; jÞ þ b; rHC

0
yði; jÞ þ b

� �

;

8

<

:

ð7Þ

for all i; jð Þ 2 0; ::;W ÿ 1f g � 0; ::; H ÿ 1f g, where rW ¼
W ÿ 1ð Þ=W and rH ¼ H ÿ 1ð Þ=H. The two scaling factors
rW and rH ensure a properly constructed linear interpolation.

4.5 Edge Treatment

A recurring issue with texture advection that must be
addressed is the proper treatment of information flowing
into the physical domain. Within the context of this paper,
we must determine the user-specified value in (4). To
address this, we recall that the advected image contains a
two-valued random noise with little or no spatial correla-
tion. We take advantage of this property to replace the user-
specified value by a random value (0 or 1). At each iteration,
we simply store new random noise in the buffer zone, at
negligible cost.

At the next iteration, N will contain these values and
some of them will be advected to the interior of the physical
domain by (7). Since random noise has no spatial correla-
tion, the advection of the surrounding buffer values into the
interior region of N0 produces no visible artifacts.

To treat periodic flows in one or more directions, the
noise values are copied from an inner strip of width b along
the interior edge of N0 onto the buffer zone at the opposite
boundary. As a result, particles leaving one side of the
domain seamlessly reappear at its opposite side.

4.6 Incoming Flow in Arbitrary Shaped Domains

It often happens that the physical domain is nonrectangular
or contains interior regions where the flow is not defined.
Denote by B the boundaries interior to N that delineates
these regions. LEA handles this case with no modification
by simply setting the velocity to zero where it is not
defined. The stationary noise in these regions is hidden
from the animation frame by superimposing a semitran-
sparent map that is opaque where the flow is undefined.
For example, the opaque regions of this map might
represent shorelines or islands.

When the flow velocity normal to B is nonzero and
points into the physical domain, the advection of stationary
noise values will create noticeable artifacts in the form of
streaks. This might happen if an underground flow, not
visible in the display, emerges into view at B. If necessary,
we suppress these streaks with the help of a precomputed
Boolean mask (or, alternatively, a Boolean function) M i; jð Þ
that determines whether or not the velocity field is defined
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Fig. 3. Noise arrays N
0 and Na are expanded with a surrounding region

b ¼ hd e cells wide.



at ði; jÞ. N0 i; jð Þ is then updated with random noise where
M i; jð Þ is false.

4.7 Noise Injection

We propose a simple procedure to counteract a duplication
effect that occurs during the computation of N

0 in (7).
Effectively, if particles in neighboring cells of N

0 retrieve
their property value from within the same cell of N, this
value will be duplicated in the corresponding cells of N.
Single property values in N may be duplicated onto
neighboring cells in N

0, where coordinates C
0
x;C

0
y

ÿ �

have
identical integer values.

To illustrate the source of noise duplication, we consider
an example. Fig. 4 shows the evolution of property values
and particle positions for four neighboring pixels during
one integration step and one advection step. The vector
field is uniform, is oriented at 45 degrees to the x axis, and
points toward the upper right corner. At the start of the
iteration, each particle has a random position within its
pixel (Fig. 4a). To determine the new property value of each
pixel, the particle positions are integrated backward in time
(Fig. 4b). The property value of the lower left corner pixel is
duplicated onto the four pixels (worst-case scenario)
(Fig. 4c). The fractional position of each particle is then
reinitialized for the next iteration.

Over time, the average size of contiguous constant color
regions in the noise increases. This effect is undesirable
since lower noise frequency reduces the spatial resolution of
the features that can be represented. This duplication effect
is further reinforced in regions where the flow has a strong
positive divergence.

To break the formation of uniform blocks and to
maintain a high frequency random noise, we inject a user-
specified percentage of noise into N

0. Random cells are
chosen in N

0 and their value is inverted (a zero value
becomes one and vice versa). The number of cells randomly
inverted must be sufficiently high to eliminate the appear-
ance of pixel duplication, but low enough to maintain the
temporal correlation introduced by the advection step.

To quantify the effect of noise injection, we compute the
energy content of the advected noise in N at different scales
as a function of time. Although the Fourier transform would
appear to be the natural tool for this analysis, the two-
valued nature of the noise image suggests instead the use of
the Haar wavelet (linear combination of Heaviside func-
tions). We perform a two-dimensional Haar wavelet trans-
form and compute the level of energy in different scale
bands (the spatial scale of consecutive bands varies by a

factor of two). The two-dimensional energy spectrum is
reduced to a one-dimensional spectrum by assuming that
the noise texture is isotropic at any point in time. (The
smooth anisotropic flow results from blending multiple
noise textures.) The energy in each band is scaled by its
value after the initial noise injection. Ideally, we would like
to preserve the initial spectrum at all times.

Fig. 5 illustrates the influence of the noise injection on the
time evolution of the energy spectrum. Without injection,
the energy in the larger scales (regions of pixel duplication)
increases rapidly without stabilizing. This comes at the
expense of some energy loss in the smaller scales (which
decreases in the figure). As the percentage of noise injection
increases, the spread of the scaled spectrum decreases
continuously toward zero (the ideal state). However,
excessive injection deteriorates the quality of the temporal
correlation.

The necessary percentage of injected noise is clearly a
function of the particular flow and depends on both space
and time. It should be modeled as the contribution of two
terms: a constant term that accounts for the duplication
effects at zero divergence and a term that is a function of the
velocity divergence. In the interest of simplicity and
efficiency, we use a fixed percentage of two to three
percent, which provides adequate results over a wide range
of flows.

4.8 Coordinate Reinitialization

The coordinate arrays are reinitialized to prepare a new
collection of particles to be integrated backward in time for
the next iteration. However, coordinates are not reinitia-
lized to their initial values. The advection equations
presented in Section 3 assume that the particle property is
computed at the previous time step via a linear interpola-
tion. Unfortunately, the lack of spatial correlation in the
noise image would lead to a rapid loss of contrast, which
justifies our use of a constant interpolation scheme.
However, the choice of constant interpolation implies that
a property value can only change if it originates from a

JOBARD ET AL.: LAGRANGIAN-EULERIAN ADVECTION OF NOISE AND DYE TEXTURES FOR UNSTEADY FLOW VISUALIZATION 215

Fig. 4. Noise duplication. A single noise value is duplicated into four cells

in a uniform 45 deg flow.

Fig. 5. Energy content of the flow at different scales based on a 2D Haar
wavelet decomposition of the two-valued noise function (assumed to be
isotropic). The energy in each band is scaled with respect to its initial
value. Results are shown for injection rates of 0 percent, 2 percent,
5 percent, and 10 percent.



different cell. If the coordinate arrays were reinitialized to
their original values at each iteration, subcell displacements
would be ignored and the flow would be frozen where the
velocity magnitude is too low. This is illustrated in Fig. 6,
which shows the advection of a steady circular vector field.
Constant interpolation without fractional coordinate track-
ing clearly shows that the flow is partitioned into distinct
regions within which the integer displacement vector is
constant (Fig. 6a).

To prevent this from happening, we track the
fractional part of the displacement within each cell.
Instead of reinitializing the coordinates to their initial
values, the fractional part of the displacement is
added to cell indices ði; jÞ:

Cxði; jÞ ¼ iþC
0
xði; jÞ ÿ bC0

xði; jÞc
Cyði; jÞ ¼ jþC

0
yði; jÞ ÿ bC0

yði; jÞc:

�

ð8Þ

The effect of this correction is shown in Fig. 6b.
The coordinate arrays have now returned to the state

they were in after their initialization phase ((5); they verify
the relations Cx i; jð Þb c ¼ i and Cy i; jð Þ

� �

¼ j.

4.9 Noise Blending

Although successive advected noise arrays are correlated in
time, each individual frame remains devoid of spatial
correlation. By applying a temporal filter to successive
frames, spatial correlation is introduced. We store the result
of the filtering process in an array Nb. We have found the
exponential filter to be convenient since its discrete version
only requires the current advected noise and the previous
filtered frame. It is implemented as an alpha blending
operation

Nb ¼ ð1ÿ �ÞNb þ �Na; ð9Þ

where � represents the opacity of the current advected
noise array. A typical range for � is 0:05; 0:2½ �. Fig. 7 shows
the effect of � on images based on the same set of noise
arrays.

The blending stage is crucial because it introduces spatial
correlation along pathline segments in every frame. To show
clearly that the spatial correlation occurs along pathlines
passing through each cell, we conceptualize the algorithm
in 3D space; the x and y axes represent the spatial
coordinates, whereas the third axis is time. To understand

the effect of the blending operation, let’s consider an arrayN

with black cells and change a single cell to white. During
advection, a sequence of noise arrays (stacked along the
time axis) is generated in which the white cell is displaced
along the flow. By construction, the curve followed by the
white cell is a pathline. The temporal filter blends
successive noise arrays Na with the most recent data
weighted more strongly. The temporal blend of these noise
arrays produces the projection of the pathline onto the xÿ y
plane, with an exponentially decreasing intensity as one
travels back in time along the pathline. When the noise
array with a single white cell is replaced by a two-color
noise distribution, the blending operation introduces spatial
correlation along a dense set of short pathlines.

Streamlines and pathlines passing through the same cell
at the same time are tangent to each other, so a streamline of
short extent is well-approximated by a short pathline.
Therefore, the collection of short pathlines serves to
approximate the instantaneous direction of the flow. With
our LEA technique, a single frame represents the instanta-
neous structure of the flow (streamlines), whereas an
animated sequence of frames reveals the motion of a dense
collection of particles released into the flow.

The filtering phase completes one pass of the advection
algorithm. The image Nb can be displayed to the screen or
stored as an animation frame. N0 is used as the initial noise
texture N for the next iteration. It is worthwhile to mention
that each iteration ends with data having the exact same
property as when it started. In particular, the coordinate
arrays satisfy

bCxði; jÞc ¼ i; bCyði; jÞc ¼ j

and N contains a two-color noise without degradation of
contrast.

4.10 Postprocessing

A series of optional postprocessing steps is applied to Nb to
enhance the image quality and to remove features of the
flow that are uninteresting to the user. We present two
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Fig. 6. Circular flow without and with accumulation of fractional

displacement (h = 2).

Fig. 7. Frames obtained with different values of �.



filters. A fast version of LIC can be applied to remove high

frequency content in the image, while a velocity mask serves

to draw attention to regions of the flow with strong

currents.

4.10.1 Directional Low-Pass Filtering (LIC)

Although the temporal filter (noise blending phase)

converts high frequency noise images into smooth spatially

correlated images, aliasing artifacts remain visible in

regions where the noise is advected over several cells in a

single iteration. As a rule, aliasing artifacts become notice-

able where noise advect more than one or two cells in a

single time step (see Fig. 8, bottom). Experimentation with

different low-pass filters led us to conclude that a Line

Integral Convolution filter applied to Nb is the best filter to

remove the effect of artifacts while preserving and enhan-

cing the directional correlation resulting from the blending

phase. This follows from the fact that temporal blending

and LIC bring out the structure of pathlines and stream-

lines, respectively, and these curves are tangent to one

another at each point. Although the image quality is often

enhanced with longer kernel lengths, it is detrimental here

since the resulting streamlines will have significant devia-

tions from the actual pathlines. The partial destruction of

the temporal correlation between frames would then lead to

flashing effects in the animation. A secondary effect of

longer kernels is decreased contrast.
While any LIC implementation can be used, our

algorithm can advect an entire texture at interactive rates.

Therefore, we are interested in the fastest possible LIC

implementation. To the best of our knowledge, FastLIC [16]

and Hardware-Accelerated LIC [4] are the fastest algo-

rithms to date and both are well-suited to the task.

However, we propose a simple, but very efficient, software

version of Heidrich’s hardware implementation to post-

process the data when the highest quality is desired.
Besides the input noise array Nb, the algorithm requires

two additional coordinate arrays, Cxx and Cyy, and an array

NLIC to store the result of the line integral convolution. The

length of the convolution kernel is denoted by L. For

reference, we include the pseudocode for Array-LIC in Fig. 9.
In general, L � h produces a smooth image with no

aliasing. However, large values of h speed up the flow, with

a resulting increase in aliasing effects. If the quality of the

animation is important, L must be increased, with a

resulting slowdown in the frame rate. The execution time

of the LIC filter is commensurate with the timings of

FastLIC for L < 10. Beyond 10, a serial FastLIC [16] should

be used instead. An OpenMP implementation of our ALIC

algorithm on shared memory architectures is straightfor-

ward. Results are presented in Section 7. As shown in

Table 1, smoothing the velocity field with LIC reduces the

frame rate by a factor of three across architectures. We

recommend exploring the data at higher resolution without

the filter or at low resolution with the filter.

4.10.2 Velocity Mask

A straightforward implementation of the texture advection

algorithm described so far produces static images that show

the flow streamlines and interactive animations that show

the motion for the flow along pathlines. The length of the

streaks is statistically proportional to the flow velocity

magnitude. Additional information can be encoded into the

images by modulating the color intensity according to one

or more secondary variables.
It is often advantageous to superimpose the representa-

tion of flow advection over a background image that

provides additional context. Two examples are shown in

Fig. 10. In order to implement this capability, the image

must become partially transparent.
Two approaches have been implemented. First, we

couple the opacity of a pixel to its color intensity. Second,

we modulate the pixel transparency with the magnitude of

the velocity.
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Fig. 8. Frame without (bottom) and with (top) LIC filter. A velocity mask if

applied to both images.

Fig. 9. Pseudocode for ALIC (Array LIC).



The blended image pixel color ranges from black to
white. Neither color has a predominant role in representing
the velocity streaks. Therefore, one of these colors can be
eliminated and made partially transparent. We consider a
black pixel to be transparent and a white pixel to be fully
opaque. The transfer function that links these two states is a
power law. Regions of the flow that are nearly stationary
add little useful information to the view. For example,
regions of high velocity are often of most interest in wind
and ocean current data. Accordingly, we also modulate the
transparency of each pixel according to the velocity
magnitude. This produces a strong correlation between
the length of the velocity streaks and their opacity.

The ideas described in the two previous paragraphs are
implemented through an opacity map, also referred to as a
velocity mask. Once computed, the velocity mask is com-
bined withNb into an intensity-alpha texture that is blended
with the background image. We define the opacity map

A ¼ 1ÿ 1ÿVð Þmð Þ 1ÿ 1ÿNbð Þnð Þ ð10Þ

as a product of a function of local velocity magnitude and a
function of the noise intensity. Higher values of the
exponents m and n increase the contrast between regions
of low and high velocity magnitude and low and high
intensity, respectively. When m ¼ n ¼ 1, the opacity map
reduces to

A ¼ VNb:

As the exponents are increased, the regions of high
velocity magnitude and of high noise intensity increase
their importance relative to other regions in the flow.

Higher quality pictures that emphasize the velocity
magnitude can also be obtained by replacing the noise
texture with a scalar map of the velocity magnitude (with
color ranging from black to white as the magnitude ranges
from zero to one) with an opacity defined by (8). As a result,
the texture advection is seen through the opacity map.

5 DYE-BASED ADVECTION

By replacing the advected noise texture by a texture with a

smooth pattern, one can emulate the process of dye

advection, a standard technique used in experimental flow

dynamics [17]. In this approach, a dye is released into the

flow and advected with the fluid. Dye advection has been

considered outside the context of texture advection techni-

ques [11], [14]. Standard approaches include tracking

clouds of particles or defining the dye with a polygonal

enclosure. More recently, dye has been incorporated within

the framework of texture advection schemes simply by

including the dye into the advected texture [7], [18]. If the

noise texture is replaced by a texture of uniform back-

ground color upon which the dye is deposed, the high

frequency nature of the texture is removed. As a result,

many of the treatments detailed in Section 4 are no longer

required and the implementation is greatly simplified. The

principal assumption in dye advection is that the color of

the texture varies smoothly in space.
Effects that can safely be neglected include particle

injection into the edge buffer, random particle injection,

218 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 8, NO. 3, JULY-SEPTEMBER 2002

TABLE 1
Timings in Frames/Second as a Function

of Options and Resolutions

Each configuration has been tested on four different configurations: PC
workstation (Xeon Dell Precision Workstation 530, 1.7 GHz, 1GB,
256KM L2 cache) (upper left), Octane (SGI Octane, R12000, 300MHZ,
2GB, 2MB L2 cache, 64KB L1 cache) (upper right), Onyx2 (SGI Onyx2,
R12000, 300MHz, 2GB, 8MB L2 cache, 64KB L1 cache) (lower left), and
Onyx2 with four processors (lower right).

Fig. 10. Noise-based advection with velocity mask and LIC filtering. Top:
Sea currents in the Gulf of Mexico (data courtesy of COAPS, Florida

State University). Bottom: Cyclone formation over Europe (data courtesy

of MeteoSwiss, Switzerland).



constant interpolation of the noise texture, coordinate
reinitialization, and noise blending. We introduce here two
new arraysD andD

0 that contain the dye at times t and tþ h.

5.1 Dye Injection

Starting from a background texture of uniform color, we
inject, at every iteration, dye into the fluid. The injection is
often localized in space and assumes the shape of spots or
curves distributed across the fluid. The dye can be released
once and tracked (which approximates the path of a
particle), released continuously at a single point (generates
a streakline), or pulsated (the dye is turned on intermit-
tently). To better discern the resulting patterns, colored dye
is very useful. In this case, three-color components must be
independently advected.

5.2 Dye Advection

The algorithm is similar to that used to advect the noise
texture. However, when advecting dye, it is important to
accurately track its long-time evolution. High order time
integration schemes are therefore desirable. We have
found that a second order Runge-Kutta midpoint algo-
rithm provides sufficient accuracy. The scheme introduces
an intermediate time step and an associated intermediate
position x

�. Although always within the extended
physical, the velocity field at x

� might not be defined.
To avoid this situation, we set x

0 ¼ x
� whenever x

� is
outside the physical domain.

A second order algorithm offers no particular advan-
tages for noise-based texture advection schemes since the
accumulated error over the length of a typical streak is
imperceptible. Noise-based representations cannot give
clear information about the origin of a particle and its
destination. When dye is released into the flow at a point, its
subsequent trajectory lies along a particle path and the
accumulation of error due to an inaccurate time integration
scheme is very noticeable. Fig. 11 compares the result of
first and second order integration schemes on the trajectory
of dye continuously released into a circular flow. Unlike the
first order scheme, the second order scheme produces
closed circles.

In noise advection schemes, constant interpolation of the
coordinate position was necessary to maintain maximum
contrast in the advected texture, which led to the notion of
subcell particle tracking (Section 4.8). Because of the
smoothness of the dye images, we can directly apply the

advection scheme defined by (4). New property values of
D

0 are linearly interpolated at position x
0 in D. With linear

interpolation, subcell coordinates are no longer required; at
each iteration, the integration proceeds from the lower left
corner of each cell. Coordinate arrays are not necessary for
dye advection.

The new property of D0 cells is then computed from D

according to

D
0 iþ b; jþ bð Þ ¼ D rWx

0
xði; jÞ þ b; rHx

0
yði; jÞ þ b

ÿ �

for all i; jð Þ 2 0; ::;W ÿ 1f g � 0; ::; H ÿ 1f g. rH and rW coeffi-
cients are defined in Section 4.4.x0

kði; jÞ is the k component of
the backward integration from coordinates i; jð Þ.

The dye advection proceeds independently from the
noise advection and the two resulting textures Nb and D

0

can be combined to form composite images.
During the advection phase, new property values in D

0

are linearly interpolated from D. Since the dye color now
includes contributions from neighboring pixels with the
background color, the dye is numerically diffused, produ-
cing a smoke-like effect. Although sometimes useful, there
are times when we wish the dye to retain its sharp interface
with the background flow. One solution to counter this
problem is presented in the next section.

5.3 Diffusion Correction

The operation of linear interpolation acts as a smooth filter.
A cross section of a white spot over a black background
would show an intensity profile that gets progressively
smoother as the dot is advected. To maintain a sharp
profile, each color component could be corrected according
to the simple prescription

if c < 0:5 then c ¼ 0 else c ¼ 1

for each color component c 2 0; 1½ �. However, this simple
function produces excessive aliasing effects. Instead, we
designed a filter function to steepen the smoothed profile
toward the ideal discontinuous profile that would result in
the absence of diffusion errors. Imposed constraints are that
c ¼ 0; 0:5; 1 be invariant to the filter. The rational function

c0 ¼
cÿ 1=2

sð2jcÿ 1=2j ÿ 1Þ þ 1
þ 1=2;

with the sharpness parameter s 2 0; 1½ �, satisfies all the
requirements. The identity function is recovered when
s ¼ 0, while the simple thresholding function corresponds
to s ¼ 1.

Fig. 12 shows the effect of diffusion on the advection
of a 16 pixel-wide square spot of dye along a circular
vector field rotating clockwise and centered at x ¼ 0. Each
time step (h ¼ 25), the dye is released at four evenly
spaced points along x ¼ 0. The sharpness parameter is
s ¼ 0; 0:2; 0:5; 1. The sharpness is clearly improved when
the filter is turned on. However, undesirable artifacts are
clearly visible when s ¼ 1. We have found that s ¼ 0:2 is the
minimum acceptable value.

A downside to the correction filter is that some dye is
removed that is not within the diffused region. The effect is
more noticeable if there are an insufficient number of pixels
in the regions with dye. In Fig. 13, dye is released into the
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Fig. 11. Dye advection in a circular flow. (a) First order time integration.

(b) Second order time integration.



flow with a thickness of 16 (top) and eight (bottom) pixels.

No filter is applied in the left column, while s ¼ 0:2 in the

right column. Although sharper with the filter on, the

thinner dye has disappeared from the image before

completing one revolution (bottom-right figure).

6 PARAMETER SETTINGS

In Section 4.3, we found it convenient to control the speed of

particles along a pathline with the parameter lmax which

represents the maximum distance a property can be

advected, measured in cell widths. In a stationary flow,

the velocity field is fixed and the user can freely control the

apparent rate of property motion in the flow through lmax.

For time-dependent vector fields, however, the spatial

integration step size and time increment between consecu-

tive vector fields must respect a fixed ratio so that resulting

animation conform to the physical flow.
Spatially, lmax is related to the physical dimensions by

LmaxNimages

W
¼

V�maxt�
W�

;

where a subscript � refers to a physical variable. V�max, t�,

and W� represent, respectively, the maximum velocity, the

total duration, and the width of the domain for the physical

phenomenon. If we fix lmax and the image resolution W , we

deduce the number of frames Nimages necessary to visualize

the phenomenon with such constraints.
Temporally, we often have a set of Nvf instantaneous

vector fields. From them, a total of Nimages vector fields

(twice that for second order integration) are interpolated at

constant intervals hvf :

hvf ¼ ðNvf ÿ 1Þ=ðNimages ÿ 1Þ:

While parameters conformity with physical dimensions

is not essential in the case of noise-based animation, it

becomes necessary for accurate animation of dye spreading.

For instance, for the case of the cylinder (Fig. 14), the
physical dimensions are V�max ¼ 9:9m=s, t� ¼ 4s, and
W� ¼ 8m. The data set is composed of 16 vector fields. If we
choose lmax ¼ 6 pixels, the resulting animation will show the
entire phenomenon in 248, 495, or 743 frames for image
resolutions of 300, 600, and 900 pixels, respectively. Respec-
tively, about 15, 30, and45 interpolatedvector fieldswouldbe
required between the vector fields available in the data set.

7 RESULTS

The next section presents timings of our algorithm. We
conducted experiments to evaluate the efficiency of the
algorithm at four resolutions (3002 through 10002 pixels).
We present in Table 1 timings in frames/second, using
several of the available options. Three different computers
were used.

The organization of the algorithm as a series of array
operations makes it particularly straightforward to paralle-
lize on shared memory architectures. Furthermore, opera-
tions on the array elements only make accesses within
h rows or columns. For small h, the locality of these accesses
is sufficient not to produce cache misses on a CPU with a
cache of moderate size (e.g., 512 kbytes). Table 1 also
includes timings from an OpenMP implementation running
on four processors of an Onyx2.

7.1 Examples

Fig. 14 shows two animations of flow around a circular
cylinder. Dye is released at 10 evenly spaced points along
the line x = 0.05 (the horizontal scale is normalized to 1).
The dye thickness is 32 pixels. We compare the animations
with s ¼ 0 (Fig. 14 left) and s ¼ 0:2 (Fig. 14 right). The dye is
released once every 20 frames with alternating colors. The
effect of the sharpening filter is evident. Depending on how
the dye is released, additional information can be extracted
from the flow. In this case, as the fluid elements are affected
by the velocity gradient tensor, the elements distort and
change direction. This can be quantified by measuring the
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Fig. 12. Effect of sharpness parameter. (a) s = 0, (b) s = 0.2, (c) s = 0.5,

(d) s = 1.

Fig. 13. Effect of dye width. (a), (b) Sixteen pixels wide and (c), (d) eight

pixels wide. (a), (c) without and (b), (d) with diffusion corection.



change in area and shape in a postprocessing step. Only dye

advection is capable of providing this type of data. Note

that continuous dye release alone cannot provide this

information.
Another example of dye injection is to release it

periodically into the flow along a curve (Fig. 15). Ocean

currents in the Gulf of Mexico are emphasized by releasing

dye along two vertical lines every 60 frames. The antidiffu-

sion filter is turned off to produce a smoke-like effect. The

structure of the flow is nicely put into evidence by the

resulting timelines.

We believe that novel combinations in the use of dye,
including release frequency, location, and dye color,
combined with new quantitative analysis techniques of
the resulting images will help better understand the
dynamics of the flow and should prove useful to the flow
modeling community.
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Fig. 15. Three frames from an animation of flow in the Gulf of Mexico.

Colored dye 32 pixels wide is released every 60 frames along two

vertical strips.

Fig. 14. Animation frames of flow around a circular cylinder. Dye is

released periodically and with alternating colors from 10 locations evenly

placed along a vertical strip. (left row) Sharpness s = 0 and (right row)

s = 0.2.



8 CONCLUSION

We presented a software algorithm for the visualization of

unsteady vector fields, based on a combination of Euler and

Lagrangian advection of noise textures. We paid particular

attention to the treatment of edge effects, uniformity of the

noise textures, and spatial and temporal coherence. Various

postprocessing options were considered, including a fast

line integral convolution technique to remove aliasing

artifacts and masking to enhance user-selectable flow

features.

Dye advection strategies come at no extra cost through

the consideration of smooth textures. They are cheaper to

implement than noise advection due to the inherent spatial

coherence built into the textures. A new filter was proposed

to counter the inherent diffusion of dye inherent in our

integration scheme.
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