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Abstract This work presents a fully Lagrangian 1 Introduction

Finite Element Method (FEM) with nodal in-
tegration for the simulation of Fluid-Structure
Interaction (FSI) problems. The Particle Fi-
nite Element Method (PFEM) is used to solve
the incompressible fluids and to track their
evolving free surface, while the solid bodies
are modeled with the standard FEM. The cou-
pled problem is solved through a monolithic
approach to ensure a strong FSI coupling. Ac-
curacy and convergence of the proposed nodal
integration method are proved against several
benchmark tests, involving complex interac-
tions between unsteady free-surface fluids and
solids undergoing large displacements. A very
good agreement with the numerical and ex-
perimental results of the literature is obtained.
The numerical results of the nodal integration
algorithm are also compared to those given by
a standard Gaussian method and their upper-
bound convergent behavior is also discussed.
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This paper presents a Lagrangian Finite El-
ement Method (FEM) with nodal integration
for the simulation of Fluid-Structure Interac-
tion (FSI) problems, also in the presence of
free-surface fluid flows. The large motion and
deformation of the fluid, as well as the detec-
tion of the fluid-solid interface, are handled
with the Particle Finite Element Method (PFEM)
[16,28,17], a well-assessed numerical technique
that combines the Lagrangian FEM solution
of the governing equations with an efficient
remeshing strategy. On the contrary, the solid
parts of the computational domain are not in-
volved in the remeshing operations and they
are solved with a standard FEM. The strongly
coupled solution of the FSI problem is obtained
with the monolithic strategy called Unified for-
mulation [17,13]. This PFEM-FEM model yields
to a conforming-mesh FSI algorithm, i.e. the
contact elements (those elements connecting
solid and fluid domains) have overlapped fluid
and solid nodes at the interface. The result-
ing mesh is used to discretize the governing
equations as in a standard elemental FEM, but
their integration is performed over the nodal
patches and not over the elements, and the
stresses/strains are defined at the nodes and
not at the Gauss points. The integration pro-
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cedure used in this work is based on the nodal
integration scheme for FEM presented in [7].

There are several points of interest in the
application of a coupled PFEM-FEM strategy
with nodal integration to FSI problems.

In the recent work [10], it has been shown
that PFEM with nodal integration (in the fol-
lowing, nodal PFEM) presents some impor-
tant skills in the framework of free-surface fluid
analysis. In particular, if compared to the clas-
sic PFEM with elemental integration (in the
following, elemental PFEM), the nodal PFEM
showed to suffer less from mesh distortion, to
give a more accurate stress field, and to need
fewer iterations to converge. However, for the
same mesh, it was shown that the elemental
PFEM is more accurate in the solution of the
unknown variables (nodal velocities and pres-
sures) and has a reduced computational cost
to build and solve the linear system.

In non-linear solid mechanics, nodal PFEM
has an important advantage versus elemental
PFEM. In fact, in a nodal integration method,
remapping operations of historical variables dur-
ing the remeshing step are avoided because all
variables, including stresses and strains, are
stored at the nodes. This is crucial for the con-
servation and accuracy of the historical vari-

ables because interpolation errors are completely

avoided. However, it is important to remark
that this does not mean that a nodal integra-
tion method is completely immune from the
re-generation of the mesh. Indeed, as for the
standard elemental PFEM [9], also a nodal ap-
proach may suffer from the perturbation gen-
erated by the changes of elemental connectiv-
ity and topology (e.g. the creation or elimina-
tion of new boundary elements). The response
of a solid nodal PFEM to these remeshing sit-
uations is an issue that deserves a deep specific
study and it is considered out of the scope of
the present work.

Another well-known property of FEM for-
mulations with nodal integration (in the fol-
lowing, nodal FEM) is that they are expected
to give an upper bound solution to the elastic
problem [21,20,8]. In [10], an analogous behav-

ior was also found for the nodal PFEM in the
context of fluid dynamics problems. In other
words, for a given mesh, a nodal FEM gives
a softer (in fluid dynamics, less viscous) so-
lution than the expected one, contrary to a
FEM with elemental integration (in the fol-
lowing, elemental FEM), which converges to
the solution from below. In theory, this dual
property enables to get a range of possible so-
lutions by combining the results of an elemen-
tal FEM (lower-bound solution) and those of
a homologous nodal FEM (upper-bound solu-
tion). This way, one could obtain an indicative
prediction of the expected solution also using
relatively coarse meshes. This feature could be
very helpful for some demanding fluid, solid,
or FSI problems, where fine meshes cannot be
employed due to computational cost reasons.

The definition of stresses and strains at the
nodes gives another important advantage to
nodal FEM models. In fact, in a nodal method,
the one-field approach (e.g. velocity formula-
tion) is expected to give the same solution as
a mixed method using pressure as the addi-
tional nodal unknown (e.g. velocity-pressure
formulation), at least if the problem is not
fully-incompressible and does not require sta-
bilization. This feature is particularly useful
in the framework of FSI analysis, where mixed
conforming-mesh methods with Gaussian in-
tegration, such as the elemental PFEM formu-
lations [17,13], require the duplication of the
pressure degrees of freedom at the interface
nodes. This complication is avoided in a nodal
integration FEM framework because the nodal
pressures are used only for the solution of the
incompressible fluids and not to solve the com-
pressible or quasi-incompressible solids.

All the described properties of the nodal
integration algorithm explain the growing in-
terest in applying this technique to a PFEM
framework. The first contribution in this field

was given by [35,34] with their so-called Smoothed

Particle Finite Element Method (SPFEM). The
authors took inspiration from the Smoothed
Finite Element Method (SFEM) [19,26,38,18],
and applied successfully their PFEM with nodal
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integration to geomechanics applications. More
recently, [10] explored the nodal PFEM in the
context of unsteady free-surface fluid dynam-
ics. The present work wants to follow this in-
vestigation line and, for the first time in the lit-
erature, it analyzes the application of a nodal
PFEM to FSI problems. In fact, despite the
large number of published PFEM formulations
for FSI analysis (e.g. [17,24,4,23]), still, there
does not exist a similar approach in the liter-
ature. Note that, also in the family of SFEM
methods, there are only a few examples of for-
mulations for FSI (e.g. [39,38,37]), especially
in presence of free-surface fluids.

From a broader perspective, this work should
be considered as a further step towards a uni-
fied nodal PFEM formulation for non-linear
fluid and solid mechanics.

The paper is structured as follows. In Sec-
tion 2, first, the governing equations of the
problem are presented, and then, the fully dis-
cretized form of the problem is derived in a
nodal integration framework. In Section 3, the
fundamentals of PFEM are recalled and the al-
gorithm to detect the fluid-solid interface is ex-
plained. Section 4 presents the linearized form
of the problem and it describes the FSI so-
lution algorithm. The validation examples are
presented in Section 5. Finally, Section 6 gives
the concluding remarks and presents the fu-
ture research lines associated with this work.

2 Governing equations

In the spirit of the Unified method for FSI [17,
13], solid and fluid formulations are here pre-
sented together. The governing equations of
the problem are the momentum balance and
the mass conservation and they are formulated
in an Updated Lagrangian framework, as in
the standard PFEM [16].

Calling {2 the updated/deformed domain
and being (0,7") the time interval, the momen-
tum balance equations read
p0—V.-0-b=0

in 2x(0,7T) (1)

where p is the density of the material, v is the
time derivative of the velocity vector, o is the
Cauchy stress tensor and b are the body forces
per unit of volume.

The mass conservation, or continuity, equa-
tion is written as [29,12]

1

—h—dy(v)=0 in 2x(0,T) (2)

where x is the bulk modulus of the material
and the volumetric deformation rate d, is de-
fined as

dy(v) =V - v = trace (d) (3)

where the deformation rate d is computed from
the velocity as

d= % (V'v + [V’lJ]T) (4)

The system of Egs.(1 - 2) must be com-
pleted with appropriate initial and boundary
conditions.

On the Dirichlet (I3,) and Neumann (I7})
boundaries, the following conditions are im-
posed

on I, (5)
on Ft (6)

v—v=0

ocn—1t=0

being © and £ the prescribed velocities and
tractions, respectively, and n the outgoing nor-
mal vector to the domain boundaries.

2.1 Galerkin approximation

Following a standard Galerkin approach, Eqs.(1-
2) are integrated over the computational do-
main and each term is multiplied by test func-
tions.

After applying the divergence theorem and
using the vector test functions w, the weak
form of momentum equations Eq.(1) reads

/pw-i)dﬂ—i—/d(w):adﬁ
Q Q

) (7)
—/w~bdQ— w-tdl =0
2 I
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Analogously, using the scalar test function
q, the following weak form of the continuity
equation (Eq.(2)) is obtained

1
/fqu()—/qdvdﬂz()
nk 0

Asin the standard FEM, the computational
domain (? is discretized over a finite elements
mesh composed by triangles (tetrahedra in three-
dimensions). Linear shape functions N are used
to interpolate the velocity and pressure fields,
as well as the test functions, as follows

(z)o(t)
(x)p(t)

Note that the upper symbol (-) that appears
in Eq.(9) denotes a nodal variable. This con-
vention will be also used for the rest of the
derivation.

Combining Eqs.(9) with Eqgs.(7-8), the weak
forms of the linear momentum and continuity
equations transform into

(8)

v(z,t) = w(z,t) = N(x)w(t)

det) = N@)gt)

N
p(z,t) =N

/pNTN d()’fj—i—/BTo- an
(7] 2

—/NdeQ—/ NTtdr=o0
0 I

/ENTN d(lﬁf/ NTd,dn =0 (11)
ok )

(10)

where the operator B used in Eq.(10) is
defined such that [2]

d(z,t) =B(z)5(t)
(12)

(Vv(w, t) + [Vo(a, t)}T)

N =

2.2 Spatial integration

In this approach, the weak form (Eqs.(10-11))
is integrated numerically over the nodal patches
of the triangular mesh. In the bulk, the area
of the nodal patch is the overall area of all
neighboring elements, see the graphical repre-
sentation in Figure la. Instead, for a node I
belonging to the fluid-solid interface Figure 1b,
two different nodal areas must be defined, one

for the fluid part (£2L) and one for the solid
one (£2%). In both cases, the nodal patch area
27 of node I representing the material m is
defined as

@

L=y (13)
where (27 is the area of the neighbor element
a of material m and nel is the number of el-
ements of the same material sharing node I.
The material of the elements is given by the
material of the shared nodes (interface nodes
have both materials definitions).

(a) Internal node I

Fig. 1: Graphical representation of nodal patch.
(a) patch area 27 of an internal node I. (b) Fluid
and solid patch areas (2% and 021, respectively) of
a node [ located at the fluid-solid interface.

Considering non-overlapping domains, nodal
and elemental areas are defined such that

NN, NE,,
/ =Y 0 =" oo (14)
2, I=1 a=1
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where NN,, and NE,, are the total number
of nodes and elements of the mesh of material
m.

For the sake of simplicity and to lighten the
notation, in the following, the sub-index spec-
ifying the node material is omitted and the
derivation of the proposed nodal formulation
will be carried on for a general material. Note
that this is in line with the spirit of the Uni-
fied formulation for fluid and solid mechanics
[15,13]. The sub-indices f and s specifying the
fluid and solid parts, respectively, will be intro-
duced into the formulation only when strictly
necessary.

Using the nodal partition of the computa-
tional domain, the linear momentum equations
(Eq.(10)) are rewritten as

NN NN T
Z/ pNINTdQ &' + Z/ [B']" & d0
=17 =17

NN NN
- N'b dn — Ntdr=o0
(15)

where symbol > should be interpreted as the
standard FEM assembly operator, and the nodal
B is computed for a generic node I as

B =
1 1 1
N{, 0 N[, 0 .NIL, 0
I I I
0 Nl,.. 0 N,.. 0 NI,
1 1 1 1 1 1
N{, N, .. Nf N}, ..NIL, NI,

(16)

Following [7], the derivatives of the shape func-
tions in matrix B are computed from the ele-
mental derivative of the shape functions as

1 ne Qa
I @
Nij =1 > Nii—= (17)
a=1

Exploiting the linearity of the shape func-
tions and being them equal to one at the nodes,

the following nodal integrated form of the lin-
ear momentum is obtained

NN NN .
St 1+ (BT 50!
T ()
-y bt = ol =0

I=1 I=1

where I'! is the nodal contour length, o is
equal to one if the node I belongs to a Neu-
mann boundary and equal to zero otherwise.

After analogous operations, the semi-discretized

form of the continuity equation (Eq.(11)) is
computed as

NN NN

2ol s 7ol _
E 2 g d,2° =0
I=1 =1

where the nodal volumetric deformation rate
d! is computed from the nodal deformation
rate tensor d as

(19)

dl = trace (JI) (20)
with
d' = B'g"' (21)

where vector ™™ contains the velocity com-
ponents of node I and those of its neighbor
nodes. In 2D, its size is 2nn’, where nn! is the
number of neighbors of node I plus one.

2.3 Time integration

In order to obtain the fully discretized form
of problem Eq.(18-19), the time derivative of
nodal velocities and pressure must be defined.

For a generic time interval ["t; ”+1t] of du-
ration At, the nodal accelerations ¥ are ob-
tained using a second order Newmark scheme
as [27]
ntls _ 2 (n+1ﬁ -~ n,l—)) _nj

At

Combining Eq.(22) and Eq.(18), the fully
discretized form of the linear momentum equa-
tions at time "'t can be written as

n+1Rm = n+1Fd+n+1F6 _n+1Fe -0 (23)

(22)
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where F¢, F?_ and F® are the dynamic, inter-
nal and external equivalent nodal forces vec-
tor, respectively, and they are computed as fol-
lows

NNy
n+1Fd :Zp |:At (n+1,l—) o n’l_J) - n,l—) nJrIQI
I=1
NN
ntlpo _ Z [BI]Tn+16,I n+1 ol
I=1
NN
n+1Fe — n+1b1 n+1QI
NN
_ Zal{n-ﬁ-li‘l ntl pI
I=1
(24)

On the other hand, the time derivative of
the pressure is computed as

. 1
ntls __ _~ (nt+ls _ no 25
p=—7(""p="p) (25)
Analogously to what has been done for the
linear momentum equations, the fully discretized
form of the continuity equation at time "¢ is
written in the following form

n+1RC = n+1FZ7 _ ’ﬂJrva -0 (26)
being
n+1Fp:NNL nt+ls_ nz= n+1QI
Iz:; kAL ( P p)
NN (27)
n+lpv _ n+1 31 n+1 I
FY = ; dl i

2.4 Stabilization

For incompressible materials, the formulation
is stabilized in order to circumvent the unful-
fillment of the inf — sup condition [3]. In this
work, the same stabilization procedure presented
in [10] and based on the Finite Increment Cal-
culus (FIC) stabilization technique [27] is used.

The FIC stabilization terms affect only the
continuity equation (Eq.(26)), while the mo-
mentum equation (Eq.(23)) is left unchanged.

For the incompressible parts of the domain
(in this work, the fluid parts only), Eq.(26) is
modified by adding the stabilization term F™
as follows

nJrch = n+1Fp _ n+1F'u 4 n+1F‘r — 0 (28)

with

nJrlF‘r =7 (L n+1]3_|_ Manrlf)"_ nJrlfp)
(29)

where the stabilization parameter 7 is com-
puted as [27]

—1
Bus  2p
T (m * 5)
being h and 0 are characteristic distances in
space and time [27].
Matrices L, M, and f, of Eq.(29) are de-

fined elementally and integrated for each fluid
element e as

(30)

Le = / VNP VNedy2, (31)

(M7 = / 2 NIN7dr (32)
rg lin

and
1€ I . 2 -
[fp] :/ N |:/wn == (usdy, —t,)| dI’
re hn

- / [VNTbds2
(33)
where
Nf . N3, N3,

VNE = e e e
Nl‘7y N2‘,y N3,y

(34)

and h,, is a characteristic lenght of the element,
0, and d,, and #,, are the normal projections of
nodal acceleration, deformation rate, and im-
posed traction, respectively.
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2.5 Stresses definition

In order to close the formulation, the stresses
of the internal force term (Eq.(24)) must be de-
fined. In this method, stresses and strains are
defined nodally and not at the Gauss points,
as in the standard elemental FEM. Concern-
ing the constitutive models, fluids are assumed
to be incompressible and Newtonian, whereas
a hypoelastic law is considered for the solid
parts of the computational domain.

2.5.1 Fluid nodal stress tensor

For fluids, the nodal Cauchy stress tensor at
n+1t is computed according to the standard
Newtonian model as

- 1 -
n+16. _ Q,U'f (n+1d _ 3n+1dvI> +n+1ﬁI (35)

where p¢ is the fluid dynamic viscosity. The
nodal deformation rate tensor d is obtained
from Eq.(21) and the volumetric deformation
rate from Eq.(20).

The fluid pressures are computed using the

stabilized form of the continuity equation (Eq.(28)).

Note that all terms of Eq.(35) are defined
nodally. Thus, interpolation procedures are not
required for the computation of the stresses.
This represents an important advantage of nodal
integration methods with respect to the ele-
mental ones.

2.5.2 Solid nodal stress tensor

For solids, the nodal Cauchy stress tensor is
computed according to the following hypoelas-
tic model

- 1 _
e =" + 2us At ("“d - "+1dvI)
(36)

w

+ n+1A]§I

where p4 is the second Lamé constant.
For compressible solids, the nodal pressure
variation "T! Ap can be computed directly from

the non-stabilized continuity equation (Eq.(26))
as

7L+1Ap _n+1 ﬁ _ nﬁ = kAt "+1Jv (37)
Note that this direct relationship between the
pressure and the volumetric strain rate is ful-
filled exactly in a nodal integration framework
because both variables are defined at the nodes
(d, is computed nodally from the nodal ve-
locities using Eq.(20)). This is in contrast to
standard Gaussian integration methods where,
typically, the volumetric strain measure is com-
puted at the Gauss point while the pressures
and the velocities are defined nodally. Combin-
ing Eq.(36) and Eq.(37), it yields:

w

— 1 _
n+15’ :n& + 2M5At (n+1d _ n+1dvI>
(38)
+ kAT T
and
e ="G 4 2u AT d 4+ N AT, T (39)

where ), is the first Lamé constant and x, =
As + %,us is the solid bulk modulus.
Remarkably, in both Eqs.(38)-(39), which
are equivalent to Eq.(36), the stresses are ob-
tained using only the nodal velocities and not
the nodal pressures. Hence, for the solid solu-
tion that does not need stabilization, the pres-
sure is not used as nodal unknown because
the velocity formulation is expected to have
the same accuracy in stresses than the mixed
velocity-pressure method. This also allows avoid-
ing the duplication of the pressure degrees of
freedom at the fluid-solid interface, as it was
required in the elemental version of this FSI
method [13], because nodal pressures are used
as unknowns only for the fluid solution.

3 PFEM remesh and fluid-solid
interface detection

In this approach, the free-surface fluid flow dy-
namics is described through the PFEM. This
method combines the treatment of mesh nodes
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as material particles with an efficient remesh-
ing technique to solve accurately large defor-
mation problems with a Lagrangian FEM. Sev-
eral examples of its successful application to
complex non-linear problems can be found in
the literature, e.g. [30,4,36,25,6,11], just to
mention some of the most recently published
PFEM-based formulations.

In the PFEM, the FEM mesh needs to be
rebuilt whenever it becomes excessively dis-
torted. The new mesh is built over the cloud
of points formed by the nodes of the previ-
ous (distorted) fluid mesh and all the solid
boundaries (Figure 2b). This step implies the
elimination of all the elements of the previ-
ous fluid mesh. Note that this step does not
affect the solution of the proposed nodal inte-
gration method, as all the information is stored
at nodes position, whereas it is critical for ele-
mental integration methods that store histor-
ical variables at the Gauss points. The Delau-
nay Triangulation is then performed over the
cloud of nodes (Figure 2c), and, finally, the
Alpha Shape method is used to recognize the
actual contours of the computational domain
(Figure 2d).

The PFEM remeshing algorithm allows for
the automatic detection of the fluid-solid inter-
face. This occurs when fluid and solid domains
are close enough to have at least one connect-
ing element sufficiently small and regular to
fulfill the Alpha Shape criteria (Figure 2d).

The conforming-mesh contact given by the
PFEM remesh algorithm facilitates the FSI so-
lution, as it is only required to assemble prop-
erly fluid and solid contributions into the solv-
ing linear system, as in a standard finite el-
ement analysis. On the other hand, it must
be guaranteed that, at the interface, fluid and
solid meshes have similar size and so avoiding
topological inconveniences, such as the pene-
tration of fluid nodes into the solid domain.

4 Solution scheme

The fluid-structure interaction problem is solved
following the scheme of the so-called Unified

(a) Mesh after computation of previous step

(b) Step 1: erase fluid elements

(¢) Step 2: create Delaunay triangulation

EaN I

(d) Step 3: do Alpha Shape check

SN T

Fig. 2: PFEM remeshing and contact detection al-
gorithm.

Formulation [15,13]. Fluids and solids are solved
within the same linear system in a monolithic

way, guaranteeing automatically a strong FSI

coupling and avoiding the iterations of fluid

and solid solutions, as for staggered approaches.
Furthermore, as nodal pressures are useless for

the solid solution accuracy (see Section 2.5.2),

it is not required to duplicate the pressure un-

knowns at the fluid-solid frontier, contrary to

the homologous elemental approaches for FSI

[15,13].

Following previous works [13,14,10], the non-
linear solution is obtained via a two-step iter-
ative procedure. At each non-linear iteration,
first, the linear momentum equations (Eq.(23))
are solved for the increments of nodal veloci-
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ties for both solid and fluid parts in monolithic
FSI spirit. Then, in the updated configuration,
the stabilized continuity equation (Eq.(28)) is
computed only for fluid nodes. This scheme is
repeated until the convergence of velocity and
pressure solutions is not reached.

For a generic non-linear iteration k+ 1, the
increments of nodal velocity are obtained from
the following linearized form of the momentum
equations as

("M +*K)"*'Av = —*R,, (40)
where A% is the vector of increments of nodal
velocities, * R,, is the residual of the linear mo-
mentum balance at the previous non-linear it-
eration (Eq.(23)).

The nodal contribution of the mass matrix
M is computed as

ksl P kol
M, = —-"(
"2At

On the other hand, the stiffness matrix K is
assembled nodally as [7]

(41)

kKIZ[kBI}TC kBI kQI (42)
where matrix *B' is computed at each non-
linear iteration k from Eq.(16).

The constitutive matrix C can be written
in a unified manner for fluids and solids as

RAt+ 2 RAt— 22 0
C=|RrAt—22 RAt+2£ 0 (43)
0 0 [

where for solids 1 = pusAt and & = kg, while
for fluids fi = uy and & = 0xy. The parameter
0 is used to reduce the fluid bulk modulus in
order to avoid the ill-conditioning of the alge-
braic linear system. The procedure to set the
optimum value of  has been described in [12].

As mentioned in the previous sections, the
stabilized continuity equation (Eq.(28)) is solved
for fluids only. At each non-linear iteration,
the new pressure increments ("1 Ap) are com-
puted as

(M, +L+M,)""Ap=—*R, (44)

where each nodal component of matrix M, is

computed as
I L ot

M, = At n (45)

being ~ the fluid actual bulk modulus is used.

For a generic time step ["t; "+1t] of dura-
tion At, the solution scheme is summarized in
the pseudo-code given in Algorithm 1.

5 Validation tests

In this section, five numerical tests are ana-
lyzed to validate the FSI scheme proposed in
this article. The first two tests are proposed
to validate the solid and the fluid nodal for-
mulations, separately. In the third test, the
interaction between a falling highly stiff ob-
ject with a free-surface fluid is analyzed. Fi-
nally, two complex benchmarks tests involv-
ing huge fluid splashes and large displacements
of solid structures are reproduced numerically
and compared to the results of the literature.

5.1 Dynamic response of a plane strain
cantilever

In this first numerical example, the dynamic
response of the plane strain elastic cantilever
presented in [1] is analyzed. The cantilever, il-
lustrated in Figure 3, has length L = 25 and
height D = 4. Young modulus, Poisson ra-
tio and density are £ = 10%*, v = 0.25 and
p = 0.25, respectively. At its free edge a load
P =40 is applied.

|
L

Fig. 3: Initial geometry of the plane strain can-
tilever.

The time evolution of the obtained vertical
displacement of the top right corner is plot-
ted in Figure 4 and compared to the results of
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Algorithm 1 FSI solution scheme for a time step.

1: k+ 0, ?° « "+l p;0 « nHip; | 50« ntig,

et Skl ok
2: while HAU_ i pr — pr < tolerance do

[[%°]] 5% I
3: V node CompUTENODALAREA() > Eq.(13)
4: V node CoMPUTENODALSHAPEFUNCTIONDERIVATIVE() > Eq.(17)
5: gkt1 « UppareSoLipCaucnyTENSOR(TFTT) > Eq.(39)
6: 6?*1 — UPDATEFLUIDCAUCHYTENSOR(%’“""1,ﬁ?fl) > Eq.(35)
7: REF1 « UppareMoMENTUMRESIDUAL(D" !, 5k +1) > Eq.(23)
8: AR+l SowveLinearRMomeENTUM(REFT) > Eq.(40)
9: phtl ghtl et UppATEKINEMATICS (ATF )
10: REF! « UppareCoNTINUITYRESIDUAL(TF L, p3¥) > Eq.(28)
11: Aﬁ];Jrl + SowEeStaBiLizEDM AssBaLance(RET!) > Eq.(44)
12: ;3’;"’1 — UPDATEFLUIDPRESSURES(Aﬁ’;'H)
13: if Mesh distortion > tolerance then
14: ErASEMESHELEMENTS() > Figure 2b
15: DELAUNAY TRIANGULATION() > Figure 2c
16: AprPPLYALPHASHAPE() > Figure 2d

[1]. A very good agreeement with the reference
solution is obtained.

° ‘Belytschl‘(o—Binden;an (1993) - }
8 Present approach 1
£ 7
X N
g . / \
£, / \
T.f \
5,/ \ /
L/ \ /
0 N’
0 2 4 6 8 10 12
Time

Fig. 4: Dynamic response of a plane strain can-
tilever. Time evolution of the top left corner vertical
displacement. Reference solution: [1].

Figure 5 shows the cantilever at ¢ = 4.55s,
when the maximum vertical displacement is
reached. The value of stress component o, ob-
tained at each node of the mesh is plotted over
the deformed configuration.

It is interesting to analyze the convergence
behavior of the proposed nodal approach and
to compare it to the one obtained with a stan-
dard formulation with elemental integration.
Seven different discretizations with mean ele-

Fig. 5: Dynamic response of a plane strain can-
tilever. Results at ¢ = 4.55s. The plotted contours
are the nodal values of .

ment size spanning from 4 (one element per
height) to 0.06125 (64 elements over the can-
tilever height), are used for the convergence
analysis.

Figure 6a plots the maximum vertical dis-
placement obtained for each mesh with the
proposed nodal formulation, the hypoelastic
one-field V-Element (velocity formulation with
elemental integration [14]) and the two-field
VP-Element (mixed velocity-pressure formula-
tion with elemental integration [14]). The ref-
erence solution [1] is also plotted in the same
graph. The results show that both elemental
and nodal formulations converge to the ex-
pected results. However, as expected [21,20],
while elemental FEM formulations converge to
the solution from below (the computed solu-
tion is stiffer than the expected one), the nodal
integration method gives an upper bound solu-
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tion (the computed solution is softer than the
expected one).

(a)
14 - Nodal Formulation —&—
V-Element —A—
12 | VP-Element
Belytschko-Bindeman (1993) - - - /

g
. NN
N

Vertical Displacement

0.1 1

Mesh size
(b)
10°
102
T 10
S
a 100
Nodal Formulation ——
4 V-Element —a—
107 ¢ V- VP-Element 1
Linear
Quadratic ------
1072
0.1 1 10

Mesh Size

Fig. 6: Dynamic response of a plane strain can-
tilever. Maximum vertical displacement and per-
centage error for different meshes. Reference solu-
tion: [1]. V-Element and VP-Element are Velocity
and Velocity-Pressure formulations with elemental
integration [14].

An error measure is defined to compare
quantitatively the results of the proposed nodal
model to those of the two strategies with ele-
mental integration. For the three methods, the
error of each mesh is computed as the percent-
age of the difference between its solution and
the one obtained with the finest mesh, normal-
ized by the expected value of [1] (6.88). The re-
sults plotted in Figure show that the three for-
mulations give a quadratic convergence with
this error measure. However, for the same mesh,
the nodal approach (one-field method) gives

a more accurate solution versus its elemental
counterpart (the V-Element), and a slightly
higher error than the mixed VP-Element.

In summary, these results confirm that in
solid mechanics, homologous nodal and ele-
mental formulations can be used together to
bound the expected solution. Furthermore, they
show that, for the same mesh, the nodal ap-
proach gives a more accurate solution than
the corresponding one-field elemental method.
This is attributable to the fact that, by con-
struction, in the nodal FEM, the mesh nodes
have larger support than in the elemental FEM.
In other words, in a nodal model, there is a
wider coupling between the degrees of free-
dom of the entire mesh [7]. This translates
in a larger bandwidth of the stiffness matrix,
which in turn yields to a higher computational
cost to build and solve the linear system, but
also to higher accuracy of the method. On the
other hand, the one-field nodal formulation has
shown to give a slightly higher error than the
two-field velocity-pressure elemental method.
Note that this result is in line with what was
found in [10] for fluid dynamics problems.

5.2 Water dam break against a rigid wall

This second test is used to validate the fluid
counterpart of the proposed FSI method. The
problem consists of reproducing the collapse
of a water column against a rigid wall pre-
sented in [22]. The initial geometry of the test
is given in Figure 7. The fluid properties are:
density p = 997kg/m?, dynamic viscosity p =
0.00089Pa-s and bulk modulus x = 2.1-10° Pa.
A finite element mesh of 23750 triangles with
mean size 3mm has been used.

Figure 8 shows a qualitative comparison
between the numerical results and the exper-
imental observations. The pictures show that
the proposed nodal PFEM is capable to re-
produce the complex dynamics of the experi-
mental test, from the first collapse of the wa-
ter column to its impact against the terminal
rigid wall and consequent waves and splashes
formation.
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h=0.3m

d=0.6m
L=1.61m
H=0.6m H

d

Fig. 7: Water dam break against a rigid wall. Initial
geometry.

In Figure 9 the dimensionless time (¢*) evo-
lution of normalized residual height (h*) and
wave front position (z*) is plotted. The di-
mensionless variables are computed as t* =
Vt/(g/h), B* = Ymaxz/h and =* = (Tmaz —
d)/d.

The plotted results show a very good agree-
ment between the proposed numerical method
and the laboratory test.

The accuracy of the numerical simulation is
also confirmed by the analysis of the pressure
exerted by the fluid on the rigid wall. In [22],
three pressure sensors were placed at different
heights of the rigid wall, namely, sensor A at
y = 0.03m, sensor B at y = 0.05m and sensor
C at y = 0.08m. In Figure 10, the recorded
time evolution of the pressure values at the
sensors is plotted together with the numeri-
cal results obtained with the proposed nodal
formulation. The plotted dimensionless pres-
sure is computed as p* = p/(gph). The results
show again the very good agreement between
the numerical and the experimental results.
The proposed method is capable to capture
accurately the time of the impact of the fluid
stream against the sensors and, despite some
reduced oscillations, the time evolution of the
exerted fluid pressure.

5.3 Wedge water entry

In this section, the entry of a solid wedge into
a basin filled with water is reproduced numer-
ically with the proposed nodal-based formula-

(a) t = 0.160s

(b) t =0.277s

(c) t = 0.450s (d) t =0.862s

(e) t =1.023s (f) t =1.167s

Fig. 8: Water dam break against a rigid wall. Re-
sults of the proposed nodal PFEM results (upper
figures) and experimental observations [22] (lower
figures) at six time instants.

tion for FSI. The problem is the two-dimensional
adaptation of the experimental test presented
in [33]. The wedge is made falling on the water
at rest from a heigh of 1.3m. The initial geom-
etry of the test is illustrated in Figure 11.

The wedge is modeled as a hypoleastic solid
with high stiffness. In particular, the wedge’s
material properties are E = 10°Pa, v = 0 and
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Fig. 9: Water dam break against a rigid wall. Di-

mensionless time (t* = \/t/(g/h)) evolution of di-
mensionless residual height (h* = ymasz/h) and

wave front position (* = (Zmaes — d)/d). Exper-
imental results from [22].

ps = 466.07kg/m3, while for the water p; =
103kg/m®, py = 1073Pa - s and ky = 2.1 -
10° Pa have been considered.

In this test, it is crucial to capture accu-
rately the actual time of the wedge’s impact
on the water. Therefore, a very fine mesh is re-
quired to reduce the size of the PFEM contact
elements (see Figure 2). Different meshes have
been analyzed to select the optimum mesh size
for this problem. Figure 12 shows the time
evolution of the vertical velocity of the wedge
(taken at the lower vertex of the wedge) ob-
tained with the different meshes, whose mean
size span from 6¢m to 0.75¢m. The plot shows
converged results for the finest mesh. Hence,
the test is analyzed using the results obtained
with the discretization with a mean mesh size

(a) Sensor A

3.5
‘ Numerical
3 | Experimental - - - -
25
2
i 15 J,
1 n N
\‘N* e Y
0.5 F"
0
-0.5
1 2 3 4 5 6 7
t[-]
(b) Sensor B
3.5
‘ Numerical
3 ‘ Experimental - - - -
25
2
+ 15
o
1
&%
05 Nt Ny
0
-0.5 L
1 2 3 4 5 6 7
t[-]
(¢) Sensor C
3.5
‘ Numerical
3 | Experimental - - - -
25
2
L 45
Q
1
05 Py Py
0
-0.5 L

Fig. 10: Water dam break against a rigid wall.
Dimensionless time (t* = /t/(g/h)) evolution of
normalized pressure (p* = p/(gph)) at three dif-
ferent positions of the terminal vertical wall (posi-
tions [z,y] of sensors A, B and C are [1.61m,0.03m],
[1.61m,0.05m] and [1.61m,0.08m|, respectively).
Experimental results from [22].

of 0.75¢m and composed by 6800 and 112150
solid and fluid triangular elements, respectively.

In Figure 13 the numerical results at five
time instants are plotted. After a free-fall regime,
the wedge after a free fall impacts the water
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b=1.2m
d=1.3m
s=0.015m
H=1.1m
W=2.5m

w

Fig. 11: Wedge water entry. Initial geometry.
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Fig. 12: Wedge water entry. Time evolution of the
vertical velocity of the wedge obtained for different
meshes.

reservoir. This occurs at around ¢ = 0.514s
when the edge reached a vertical velocity of
around 5m/s (Figure 13a). Then, the wedge
penetrates the fluid generating two symmetri-
cal waves at its borders while it is decelerating.

In Figure 14, the time evolution of the ver-
tical velocity and the pressure computed at
point A of Figure 11 are compared to the ones
obtained experimentally in [33] and numeri-
cally in [31]. The time £ = 0 used in the graphs
of Figure 14 represent the moment of the im-
pact of the wedge on the water reservoir (f =
t — timpact =t — 0.514)

Once again, the results obtained with the
proposed nodal PFEM for FSI show a very
good agreement with the results of the liter-
ature.

(a) t=0.514s
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Fig. 13: Wedge water entry. Numerical results at
five time instants.

5.4 Filling of an elastic container with a
viscous fluid

This problem is a benchmark test for free-surface
fluid interacting with highly deformable solids.
The test was initially proposed in [5] and then
slightly modified in [13] to improve its repro-
ducibility. The two-dimensional test consists of
the sudden release of a mass of a highly vis-
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Fig. 14: Wedge water entry. (a) Time evolution of
the vertical velocity of the wedge. (b) Time evolu-
tion of the pressure at the point A of Figure 11.
Reference results: SPH formulation [31] and exper-
imental test [33].

cous fluid (py = 10%kg/m3, uy = 10?°Pa - s
and k; = 2.1-10° Pa) over an elastic U-shaped
container £ = 2.1-10"Pa, v = 0.3 and ps =
20kg/m3). The initial geometry of the problem
is provided in Figure 15.

A mean mesh size of 3e¢m is used. The ini-
tial mesh of the viscous fluid is formed by 19530
triangular elements, while the one of the elas-
tic container by 7507 ones.

The works taken as reference for this test
are the recent publications [4] and [23], where
two staggered methods for FSI were presented.
Both methods use a PFEM with elemental in-
tegration for the fluid solution and a FEM soft-
ware (a commercial one in [23] and an in-house
code in [4]) for the solid solution.

w=4.87m
h=2.5m
b=1.3m

H H=3.75m
R=2.25m
]R

S=0.2m
Fig. 15: Filling of an elastic container with a vis-
cous fluid.

A qualitative comparison between the re-
sults obtained with the proposed nodal FSI
scheme (pictures at the left) and those pre-
sented in [4] (pictures at the right) is shown in
Figure 16 for six representative time instants.
Despite the complexness of the problem, the
figure shows a very good agreement between
the two different PFEM formulations.

A quantitative comparison with the litera-
ture results is given in Figure 17 that reports
the time evolution of the vertical displacement
of the bottom of the elastic structure obtained
by the two reference works ([4] and [23]) and
the proposed nodal PFEM. The three formu-
lations show a very good agreement, especially
during the first 4s of analysis when all the
peaks of vertical displacement are well cap-
tured by all methods. After this first 4s of anal-
ysis, the three formulations show some discrep-
ancies, but this is almost unavoidable in such
unsteady problems. However, it is worth not-
ing that the three solutions oscillate around al-
most the same value of vertical displacement.

In this test, it is particularly important to
guarantee the mass conservation of the fluid
domain. Indeed, changes in the fluid mass lead
to variations of the load exerted over the elas-
tic container and, thus, to different displace-
ment field results. Moreover, it is well known
that mass conservation is one of the most crit-
ical aspects of a PFEM analysis [9], above all
when highly unsteady problems are considered.
For these two reasons, the mass variation has
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(a) t=1.04s

(b) t=1.5s

(f) t=10.0s

Fig. 16: Filling of an elastic container with a viscous fluid. Results at six time instants. For each sub-figure,
the results plotted at the left hand side are obtained with the proposed approach, while those of the right

are from [4].

been monitored in this test and its time evolu-
tion is reported in Figure 18. The graph shows
that the overall mass variation keeps limited
(less than 1.5%) for all the duration of the
analysis. This is remarkable considering the
unsteadiness of the fluid flow and shows the
good mass conservation skills of the used nodal
PFEM.

5.5 Collapse of water column against an
elastic structure

The collapse of a water column against a de-
formable membrane is a well-known benchmark
problem for FSI involving free-surface fluids
[32]. The initial geometry of the test is pro-
vided in Figure 19. For the water, a density p =
1000kg/m3 and a viscosity 4 = 0.001 Pa-s have
been used. The elastic membrane has density
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Fig. 17: Filling of an elastic container with a vis-
cous fluid. Time evolution of the vertical displace-
ment obtained at the bottom of the elastic struc-
ture. Reference results from [4] and [23].
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Fig. 18: Filling of an elastic container with a vis-
cous fluid. Time evolution of the fluid mass varia-
tion with respect to the initial mass.

p = 2500kg/m3, Young modulus E = 103K Pa
and Poisson ratio ¥ = 0. A mesh with a mean

A

L=0.146m
H=0.080m
D=0.012m

L L

Fig. 19: Collapse water column against an elastic
structure. Initial geometry.

mesh size of 2mm has been used for both solid

and fluid computational domain. The initial
solid mesh is composed of 540 triangular ele-
ments, while the fluid domain is initially dis-
cretized with 24375 triangles.

In Figure 20, some representative pictures
of the test are given. The images show that
the proposed method can capture the complex
behavior of this unsteady problem, including
the initial dam break, the large motion of the
elastic membrane induced by the water impact
force, and the huge water splashes forming af-
ter the impact to the retaining vertical wall.

(a) t =0.25s

(b) t = 0.40s

B

(c) t=0.60s

(d) ¢t =0.70s

(e) t=0.75s

(g) t = 1.00s

WELQUITY,

Fig. 20: Collapse water column against an elas-
tic structure. Numerical results at different time in-
stants. The velocity contours are plotted over the
solid and the fluid meshes.
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Figure 21 plots the time evolution of the
horizontal displacement of the left top corner

of the structure obtained by the proposed method

and those obtained by other FSI formulations
of the literature. The results show that for the

0.06 : r
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Fig. 21: Collapse water column against an elas-
tic structure. Time evolution of the horizontal dis-
placement of the left top corner of the structure.
Results from the proposed method and other nu-
merical strategies of the literature ([17,24,37]).

first 0.5s of analysis there is a good agree-
ment between the different methods, while, af-
ter 0.5s, a certain discrepancy of results is ob-
served. This is due to the high unsteadiness
that characterizes the second part of this test.
Furthermore, it must be considered that the
dynamics of the test changes significantly with
small variations on the prediction of the deflec-
tion of the elastic membrane. For example, a
stiffer response of the structure yields a higher
upwards motion of the fluid and a delayed re-
turn wave on the structure. Taken all this into
account, the overall agreement with the liter-
ature results confirms again the validity of the
proposed method for FSI problems.

Finally, it is interesting to check if, also in
this FSI test, it is possible to bound the ex-
pected solution by combining the results of el-
emental and nodal approaches, as it has been
done for the solid dynamics test of Section
5.1. As already explained, a nodal FEM is ex-
pected to give an upper bound solution, con-
trary to an elemental method that converges
to the expected result from below. Exploit-

ing this feature, one should be able to get a
range of possible solutions using the results of
nodal and elemental approaches, even if ob-
tained from coarse meshes. For this purpose,
the same dam-break problem is solved using
a coarse discretization of mean size 6mm (50
solid elements and 2700 fluid ones) with both
the nodal and the elemental methods. Figure
22 shows the first 0.4s of the time evolution of
the maximum horizontal displacement of the
structure obtained with the proposed nodal
method and the elemental PFEM [13], using
the coarse and the fine mesh. The graph shows
that the expected solution (in this case, the
one obtained with the finest mesh) is effec-
tively bounded by the coarse mesh solutions
of elemental (lower bound) and nodal (upper
bound) methods. This confirms that, also for
FSI problems, one could use homologous nodal
and elemental methods to have an estimation
of the problem solution from relatively coarse
finite-element meshes. The extension and for-
malization of this property to more complex
non-linear FSI analyses are left for future stud-
ies and considered out of the scope of this
work.
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Fig. 22: Collapse water column against an elastic
structure. Time evolution of the horizontal displace-
ment of the left top corner of the structure obtained
with the proposed nodal PFEM and the elemental
PFEM [13], for a coarse and a fine mesh.
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6 Concluding remarks

This work presented a new nodally integrated
fully Lagrangian method for Fluid-Structure
Interaction (FSI) problems. The fluid parts of
the computational domain are solved with a

recently proposed Particle Finite Element Method

(PFEM) with nodal integration [10], whereas
the solids are modeled with a novel hypoelastic
model with nodal integration. The whole cou-
pled problem is solved with a monolithic ap-
proach to guarantee a strong coupling to the
FSI solution. It is worth remarking that the
proposed method is one of the few examples of
FEM formulations with nodal integration for
FSI problems with free-surface fluids [39, 38,
37], and the first one involving a PFEM for-
mulation.

In FSI analyses involving compressible solids
and incompressible fluids, the use of nodal in-
tegration has the advantage versus standard
methods with Gaussian integration of avoiding
the duplication of pressure degrees of freedom
at the fluid-solid interface, as nodal pressures
are used for the fluid solution only.

The proposed numerical method has been
validated against several benchmark problems.

In the first test, the convergent behavior
of the nodally-integrated solid model has been
proved by analyzing the dynamic bending of
an elastic cantilever. The test has been also

used to show the characteristic property of nodal-

based FEM of giving an upper bound solution
to the elastic problem.

Then, the collapse of a water column against
a rigid vertical wall has been studied. The nu-
merical results have shown very good agree-
ment with the experimental observations in
terms of water motion and values of pressure
exerted on the retaining walls.

In the third and fourth validation tests,
the nodal algorithm has shown to be able to
solve accurately FSI problems in presence of
both stiff and soft elastic bodies and highly
unsteady free-surface fluid flow. A very good
agreement with laboratory experiments and nu-

merical results of the literature has been found
in all cases.

In the last test, it has been shown that, also
for FSI problems, it is possible to bound the
expected solution with the coarse-mesh results
obtained with the nodally integrated method
and its homologous FEM with Gaussian inte-
gration.

The accuracy of the obtained results proves
the suitability of the proposed PFEM-FEM
method with nodal integration for the solution
of complex FSI problems involving large mo-
tions of the solid domains and huge changes of
the topology of the free-surface fluid.

From a broader perspective, this work should
be interpreted as a further step, after [10], to-
wards the derivation of a unified PFEM for-
mulation for large deformation solid and fluid
bodies, including also phase change phenom-
ena. To achieve this objective two further de-
velopments are required. First, the effects of
PFEM remeshing on the solid solution must
be carefully analyzed. Then, a unified constitu-
tive model with a smooth phase transition has
to be defined and implemented into the nodal
integration framework. Both developments are
left for future work.
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