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Abstract A recent model predicting Omori’s law giving
the number of aftershocks per unit time following an earth-
quake involves a differential equation analogous to the Fried-
mann equation of cosmology. The beforeshock phase is anal-
ogous to an accelerating universe approaching a Big Rip, the
main shock to the Big Rip singularity, and the aftershock to
a contracting universe. The analogy provides some physical
intuition and Lagrangian and Hamiltonian formulations for
Omori’s law and its generalizations.

1 Introduction

One of the first results obtained in modern seismology was
Omori’s law stating that, on average, following a strong earth-
quake the number of aftershocks per unit time n(t) decays
according to the empirical power law11 [1]

n(t) = k

c + t
= k

t − |c| , (1)

where k > 0 and c < 0 are constants. There is a large body
of literature on Omori’s law (see [4,5] for reviews), but its
physical interpretation is still mysterious, although it seems
clear that somehow the source of the earthquakes should be
traced to a rupture mechanism in the rocks composing the
Earth’s crust. There is some belief that Omori’s law is funda-
mental and not a mere data-fitting device and, in this optics,
it makes sense to derive it from basic models.

The derivation proposed in Refs. [5–7] begins by noting
that n(t) satisfies the first order differential equation

ṅ = −σ n2 , (2)

1 The Omori law is used also to describe seismicity rates before and
after eruptions [2,3].
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where σ = k−1 and an overdot denotes differentiation with
respect to time. The derivation uses an analogy between
the decaying number of aftershocks per unit time and the
decreasing density of ionospheric plasma due to the recom-
bination of opposite charges [5–7]. If n± is the density of
positive/negative charges and n = n+ + n−, the recombi-
nation equation becomes ṅ = −σn+n− and approximates
to Eq. (2) for a globally neutral plasma in which n+ � n−.
Similarly, an earthquake occurs due the fast slip of rock along
a fault plane in the Earth’s crust, and there are two adjacent
sides (denoted with n+ and n−) of a tectonic fault. Rup-
ture releases the energy in an active fault and neutralizes the
stresses on the parallel sides of it, reducing the number n
of active faults. The evolution of the number of faults then
should obey [5–7]

dn

dt
= −σn+n− � −σn2 (3)

where σ is a deactivation coefficient and n+ = n− has been
used. The fact that a pair of adjacent fault sides is involved
rules out different powers in the Omori law2 [5,7].

The beforeshock phase, during which secondary shocks
increase their frequency until the main shock, can be
described by a version of Omori’s law ṅ = σ n2, although
the phenomenological descriptions and data fitting are dif-
ferent. Here we point out that there are many similarities
between the differential equation satisfied by Omori’s law
and the Friedmann equation of spatially homogeneous and
isotropic Friedmann–Lemaître–Robertson–Walker (FLRW)
cosmology [8–13]. The analogy holds in the case of a uni-
verse with a phantom fluid as the matter source and with a
Big Rip singularity occurring at a finite time. The Big Rip
separates the “before” and “after” universes and is analogous

2 In principle, however, the deactivation coefficient σ could depend on
time, introducing nonstationarity and deviations from a strict Omori law
[5,7].
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to the main earthquake shock. This analogy is intriguing and
may provide some physical intuition about variability of the
deactivation coefficient σ versus variability of the power in
Omori’s law. What is more, the analogy reveals previously
unknown Lagrangian and Hamiltonian formulations of the
physical system described by the Omori law (2) and its gen-
eralizations.

In the next section we discuss the Lagrangian and Hamil-
tonian associated with the Omori law (2). In Sect. 3 we recall
the basics of FLRW cosmology and we present the analogy
with a Big Rip in a spatially flat universe, while Sect. 4 con-
tains the conclusions.

2 Lagrangian formulation of Omori’s law and a
mechanical analogy

It is not obvious that Omori’s law can be described using
the Lagrangian or Hamiltonian formalisms. A Lagrangian
leading to Omori’s law is

L(n, ṅ) = nṅ2 + σ 2 n5 . (4)

In fact, the Euler–Lagrange equation

d

dt

(
∂L

∂ ṅ

)
− ∂L

∂n
= 0 (5)

yields

2nn̈ + ṅ2 − 5σ 2n4 = 0 . (6)

Now, the Omori law (2) is a first integral of Eq. (6). In fact,
by differentiating (2) one obtains

n̈ = −2σ nṅ = 2σ 2 n3 , (7)

using which one verifies that 2nn̈ + ṅ2 − 5σ 2n4 = 0.
The corresponding Hamiltonian is

H = πnṅ − L = n
(
ṅ2 − σ 2n4

)
, (8)

where πn ≡ ∂L/∂ ṅ = 2nṅ is the momentum canonically
conjugated to the variable n. One notes that ∂H/∂t vanishes
and the Hamiltonian is conserved, H = const. Furthermore,
using the Omori law (2) in Eq. (8) gives

H = 0 , (9)

i.e., the point-particle system associated with the Omori
Lagrangian and Hamiltonian has conserved total energy
equal to zero.

One can write

H
2

= μ

(
ṅ2

2
− σ 2

2
n4

)
(10)

where, for n ≥ 0, μ(n) = n is a position-dependent
mass, with kinetic energy μ ṅ2/2, potential energy V (n) =
−μσ 2n4/2, and zero total mechanical energy. Since ṅ < 0,
the particle will move to the left of the n-axis, tending toward
n = 0 (i.e., the seismic activity is more intense at the initial
point n(0) > 0 and stops at n = 0).

The (n, ṅ) phase plane associated with Omori’s law has a
very simple structure. Equation (2) or, equivalently, Eq. (9)
is an energy constraint that reduces the orbits of the solutions
to move on the parabolas ṅ(n) = ∓σn2, with the upper sign
corresponding to the aftershock phase and the lower one to
the beforeshock phase. The two parabolas correspond to the
orbits of two different dynamical systems and are considered
here as living in the same phase plane only for convenience:
the fact that they touch each other at the origin (0, 0) has no
meaning since these are disconnected curves.

The aftershock phase corresponds to the lower quadrant
n ≥ 0, ṅ ≤ 0, in which the point representing the state of the
system moves along the downward-facing parabola towards
the origin, which is an attractor. In this regime, secondary
shocks decay in a finite time |c|.

The beforeshock phase corresponds to the upper quadrant
n ≥ 0, ṅ ≥ 0, in which the point representing the dynami-
cal system moves away from the origin and upward toward
infinite n and ṅ, reaching infinity in a finite time. The main
shock corresponds to infinity in this plane, to the pole t = |c|
in the solution

n(t) = k

|t − |c|| , (11)

and to a discontinuity in the dynamics.

3 Analogy with a cosmic Big Rip singularity

One can square Eq. (2) and rewrite it as

(
ṅ

n

)2

= σ 2n2 (12)

which is analogous to the Friedmann equation of cosmology
if one exchanges n(t) with the cosmic scale factor. In order
to develop the analogy, let us recall the basics of FLRW
cosmology [9–13].

In general relativity [8–10], a spatially homogeneous and
isotropic universe can only have one of three possible geome-
tries, which are described by the four-dimensional FLRW
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line element given, in comoving polar coordinates (t, r, θ, ϕ),
by

ds2 = −dt2 + a2(t)

[
dr2

1 − Kr2 + r2
(
dθ2 + sin2 θ dϕ2

)]
.

(13)

The function a(t) (“scale factor”) quantifies how two points
at fixed comoving distance r0 (e.g., two average galaxies
without proper motions) move away from each other as the
universe expands. Their physical separation at time t is l(t) =
a(t)r0 and it increases in an expanding universe described by
increasing a(t). Therefore, the scale factor a(t) illustrates the
expansion history of the universe.

The constant K in Eq. (13) is normalized to K =
1, 0,−1 corresponding, respectively, to a closed universe
(closed three-dimensional spatial sections t = const.),
Euclidean spatial sections, or hyperbolic 3-spaces [8–13],
which includes all the possible FLRW geometries. The cos-
mic dynamics is described by a(t) [8–13].

In relativistic cosmology the matter content of the uni-
verse, which is the source of the spacetime curvature, is usu-
ally modeled by a perfect fluid with energy density ρ(t) and
isotropic pressure P(t). These quantities are related by some
equation of state, usually (but not necessarily) of the form
P = wρ with w = const.

The functions a(t), ρ(t), and P(t) obey the Einstein-
Friedmann equations

H2 ≡
(
ȧ

a

)2

= 8πG

3
ρ − K

a2 , (14)

ä

a
= − 4πG

3
(ρ + 3P), (15)

ρ̇ + 3H(P + ρ) = 0, (16)

where G is Newton’s constant, units in which the speed of
light is unity are used, differentiation with respect to the
comoving time t is denoted by an overdot, and H(t) ≡ ȧ/a
is the Hubble function [9–13]. There are only two indepen-
dent equations in the set (14)–(16) since any one of them can
be derived from the other two. Without losing generality, we
choose the Friedmann equation (14) and the energy conser-
vation equation (16) as independent, then the acceleration
equation (15) follows from them.

Equation (14) with K = 0 is formally the same as the
squared Omori differential equation (12) under the exchange
n(t) −→ a(t) provided that the analogous universe is
sourced by a suitable cosmological fluid. Equations (14)
and (12) considered jointly imply that it must be

ρ(t) = ρ0a
2(t) , (17)

where ρ0 is a positive integration constant determined by the
initial conditions and such that

σ 2 = 8πGρ0

3
. (18)

In FLRW cosmology, where the cosmic fluid satisfies the
barotropic equation of state P = wρ, w = const., Eq. (16)
integrates immediately to

ρ(a) = ρ0

a3(w+1)
. (19)

The corresponding solution of the Friedmann equation is

a(t) = a0

|t − t0|3|w+1| . (20)

The comparison of Eqs. (17) and (19) shows that the analogy
between earthquakes and cosmology is valid if the universe
is filled with a perfect fluid with P = wρ and equation of
state parameter w = −5/3 (Fig. 1).

The aftershock regime corresponds to a contracting uni-
verse with decreasing a(t) and ṅ < 0, while the beforeshock
phase corresponds to an expanding analogous universe and
ṅ > 0.

It is well known [9,10] that the Friedmann equation is
a first order constraint and not a truly dynamical (second
order) equation of motion. This constraint (“Hamiltonian
constraint”) corresponds to the vanishing of the Hamilto-
nian of general relativity [9,10,13], and this is exactly the

Fig. 1 The scale factors of an expanding universe approaching the Big
Rip and of a contracting universe emerging from it, for equation of state
parameter w = −5/3 and t0 = 2 in arbitrary units
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role played by the law (2), as seen in Eq. (8). The facts that
the Friedmann equation looks like an energy conservation
equation for one-dimensional motion and that it can describe
a variety of different universes makes it suitable for several
analogies between the cosmos and unrelated physical sys-
tems, including Bose–Einstein condensates [14–19], glacial
valleys [20–22], capillary fluids [23], equilibrium beach pro-
files [24], and freezing bodies of water [25].

In the aftershock phase with ṅ < 0, the analogous Fried-
mann equation describes a spatially flat (K = 0) contract-
ing universe fueled by a perfect fluid with energy density
ρ = ρ0a2 and equation of state parameter w = −5/3. This
“phantom fluid” violates all the energy conditions expected to
hold for physically reasonable matter [9–12]. Nevertheless,
phantom matter is the subject of a large body of literature in
cosmology because it can potentially explain a superacceler-
ating (i.e., Ḣ > 0) universe often preferred by cosmological
observations.

A peculiar feature of a phantom fluid is that it causes
a universe filled with it to expand so fast that it explodes
at a finite time in a Big Rip singularity [26,27]. Contrary
to the better known Big Bang or Big Crunch singularities
where the scale factor vanishes, in a Big Rip a(t) diverges.
Scalar curvature invariants, as well as the energy density ρ

and the pressure P also diverge, making the Big Rip a genuine
spacetime singularity [26,27].

In our analogy, t = |c| corresponds to the main earthquake
shock and is analogous to the Big Rip singularity, while the
aftershock phase ṅ < 0 corresponds to the less studied branch
of a universe contracting from a Big Rip. The expanding and
contracting branches on either side of the Big Rip are dis-
connected because a spacetime manifold stops at a curvature
singularity (in this case, the Big Rip), which is not part of
spacetime itself. The expanding branch of the phantom uni-
verse has an analog in the Omori law with sign changed,
ṅ = σn2, which can be used to model the beforeshock phase
of an earthquake, during which smaller shocks become more
and more frequent and lead to the main shock [2,3]. The main
earthquake separating beforeshock and aftershock regimes is
analogous to the Big Rip singularity.

4 Discussion and conclusions

We have developed an analogy between Omori’s law for the
aftershocks following a main earthquake event and a spa-
tially flat universe in FLRW cosmology, which is sourced by
a phantom fluid and contracting. It is natural to extend this
analogy to include a beforeshock phase corresponding to an
expanding universe sourced by the same (or another) phan-
tom fluid. The Big Rip singularity separating the expanding
and contracting universes is analogous to the spacetime sin-
gularity.

Formally, the catastrophic nature of the solution of Eq. (2)
and of ȧ ≈ a2 is due the fact that the exponent 2 in the
right hand side prevents the existence of a maximal solu-
tion defined on an infinite half-interval [33]. The analogy has
some value for physical intuition. Indeed, the Lagrangian (4)
for Omori’s law is derived using as an example the effec-
tive point-like Lagrangian for a FLRW universe sourced by
a perfect fluid, which is (e.g., [28–32])

L(a, ȧ, P) = 3aȧ2 − a3P . (21)

Another consideration is in order. Aftershocks are often
modeled with the generalized Omori (or Omori-Utsu) law
[34,35]

n(t) = k

(t − |c|)p , (22)

where the exponent p varies according to the location and
the specific earthquake in a rather wide range [36]. In this
case the analog of Eq. (2) is

ṅ = − p

k p
n

p+1
p ≡ −σ(p)n

p+1
p . (23)

One can generalize the previous reasoning for p = 1: the
Lagrangian is now

L(p)(n, ṅ) = nṅ2 + σ 2
(p) n

3p+2
p , (24)

the second order equation of motion is

2nn̈ + ṅ2 − (3p + 2)

p
σ 2

(p) n
2(p+1)

p , (25)

while the Hamiltonian is

H(p) = n

(
ṅ2 − σ 2

(p) n
2(p+1)

p

)
; (26)

it is conserved, and its value is again H(p) = 0. The analogy
with cosmology is still valid and, for the range of values of
p > 0 encountered in the literature, the cosmic fluid is again
a phantom fluid with equation of state parameter

w(p) = − (3p + 2)

3p
(27)

causing again a Big Rip (which always occurs for equation
of state parameters w < −1 [26,27]).

In principle, a deviation of the exponent p from unity ruins
the simple derivation of Refs. [5–7]. These authors attribute
deviations from the simple Omori law (1) to a time depen-
dence of the coefficient σ instead. In the cosmological anal-
ogy, a varying σ corresponds to a time-varying gravitational
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constant G (cf. Eq. (18)), which is impossible in general rel-
ativity. Such a variation is an essential part of scalar-tensor
cosmology, but this possibility necessarily implies the pres-
ence of additional terms in the Friedmann and acceleration
equations (14) and (15) [32,37–39]. The lesson from cosmol-
ogy would be that the variation of σ involves extra energy
terms associated with σ̇ 	= 0 in an energy balance involving
the variation of n. It is more natural, and common in the cos-
mological literature, to allow for a different equation of state
parameter or, perhaps, for time-dependent equation of state
of the cosmic fluid P(t) = w(t)ρ(t). This would still be a
perfect fluid and can be realized, for example, by a scalar field
with a dynamical equation of state, as in early universe infla-
tion [12,13,40–43] and the late time, dark energy-dominated,
era [44]. Both procedures would imply the introduction of
another element in the fundamental derivation of the Omori
law of Refs. [5–7], perhaps a distribution of intersecting faults
with more than two adjacent sides involved. Here we do not
speculate further on this new element. In any case, the search
for fundamental and universal laws as opposed to mere data-
fitting lies at the core of science. Lagrangian and Hamiltonian
formulations and analogies can perhaps help in the search for
these laws.
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