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1. INTRODUCTION

Lagrangian Probability Density Function (PDF) methods have arisen 

the past 10 years as a union between PDF methods and stochastic Lagrangian
models, similar to those that have long been used to study turbulent

dispersion. The methods provide a computationally-tractable way of cal-

culating the statistics, of inhomogeneous turbulent flows of practical

importance, and are particularly attractive if chemical reactions are

involved. The information contained at this level of closure--equivalent

to a multi-time Lagrangian joint pdf--is considerably more than that

provided by moment closures.

The computational implementation is conceptually simple and natural.

At a given time, the turbulent flow is represented by a large number

of particles, each having its own set of properties--position, velocity,

composition etc. These properties evolve in time according to stochastic

model equations, so that the computational particles simulate fluid
particles. The particle-property time series contain information equivalent

to the multi-time Lagrangian joint pdf. But, at a fixed time, the ensemble

of particle properties contains no multi-point information: Each particle

can be considered to be sampled from a different realization of the flow.

(Hence two particles can have the same position, but different velocities
and compositions.)

It is generally acknowledged (e.g. Reynolds 1990) that many different

approaches have important roles to play in tackling the problems posed

by turbulent flows. Each approach has its own strengths and weaknesses.

23
0066-4189/94/0115-0023505.00

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


24 POPE

At one end of the spectrum of approaches, Direct Numerical Simulations

(DNS) offer unmatched accuracy, but their computational cost is high,

and their range of applicability is extremely limited (Reynolds 1990). 

the other .end of the spectrum, simple turbulence models such as k-~

(Launder & Spalding 1972) offer essentially unrestricted applicability,
moderate cost, but poor or uncertain accuracy (except in some simple

flows). Compared to suclh turbulence models, Lagrangian PDF methods
have the same wide applicability; their cost is greater (but less than DNS);

and, for the reasons presented below, their potential for accuracy is greatly

increased.

In going beyond simple turbulence models (i.e. moment closures), the

challenge is to incorporate a fuller description of the turbulence, while

retaining computational tractability. If appropriately chosen, the fuller

description allows unsatisfactory modeling assumptions to be avoided,

and at the same time provides more information to model the unavoidable.

It can be argued that the dominant process in turbulent flows is con-

vection (by the instantaneous fluid velocity). At high Reynolds number,

molecular diffusion makes a negligible contribution to spatial transport,

and so convection dominates the transport of momentum, chemical
species, and enthalpy. In moment closures, at some level, convection is

modeled by a gradient diffusion assumption, which can lead to qualita-

tively incorrect behavior (see, for example, Deardorff 1978). In Lagrangian

PDF methods, on the other hand, convection is treated simply and natur-

ally in the Lagrangian frame with no modeling assumptions. Similarly, in

reacting flows, finite-rate nonlinear reaction rates can present insur-

mountable difficulties to moment closures; whereas arbitrarily complex

reactions can be handled naturally by Lagrangian PDF methods, without

modeling assumptions (Pope 1985, 1990).

In any statistical approach to turbulence, modeling assumptions are

required at some level. It is notoriously difficult to construct general and

accurate models for turbulence, whereas there are many other stochastic

physical phenomena for which simple statistical models are successful (see

e.g. van Kampen 1983). There are two features of turbulent flows that go

a long way to explaining the inherent difficulties. First, turbulence has a

long memory: In free shear flows, it is readily deduced (from experimental
data) that the characteristic time scale of the energy-containing turbulent

motion is, typically, four times the characteristic mean-flow time scale.

Second, through the fluctuating pressure field, the velocity field experiences

long-range interactions. Among other effects, this can lead to large-scale

organized motions, and to the boundary geometry influencing the tur-

bulence structure in the interior of the flow.
Lagrangian PDF methods can take full account of the long memory of
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turbulence. For the fluid properties considered, the multi-time Lagrangian

joint pdf completely describes the past history of all fluid particles that (on

different realizations) pass through a given point at a given time. As

discussed in Section 5, the long-memory incorporated in current stochastic

Lagrangian models leads to fluid-particle motions that are consistent with

large-scale turbulent structures.
In the next Section the relevant Eulerian and Lagrangian pdfs are

introduced, and the different PDF methods are categorized. Section 3 is

devoted to the Langevin equation. This equation provides a simple stochas-

tic model for the velocity of a fluid particle: It is also a building block for
other stochastic models. The particle representation of a turbulent flow,

which is fundamental to the Lagrangian PDF approach, is described in
Section 4. Then more recent and sophisticated stochastic models are

reviewed in Section 5.

2. EULERIAN AND LAGRANGIAN PDF METHODS

The purpose of this section is to introduce the various pdfs considered,

to categorize PDF methods, and to provide references to the relevant

literature.

2.1 Eulerian pdfs

We start by considering a single composition variable (e.g. a species mass
fraction) which, at position x and time t, is denoted by ~b(x, t). At fixed

(x, t), ~b is a random variable, corresponding to which we introduce the

independent sample-space variable O. Then the cumulative distribution

function (cdf) of q~ is defined 

F~(0, x, t) = Prob {q~(x, t) < 0}, (1)

and the probability density function (pdf) of q5 

f~(0; x, t) = ~ F~(0, x, t). (2)

The fundamental significance of the pdf is that it measures the probability

of the random variable being in any specified interval. For example, for

0b > 0a, from Equations (1) and (2) we obtain

Prob {0a N {#(X, t) < 0U} = f*(0; X, t) (3)
a

The pdfjust defined, f,(x, t), is the one-point, one-time Eulerian pdf 
~b(x, t). It completely describes the random variable q~ at each x and 
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separately; but it contains no joint information about ~b at two or more

space-time points. If ~b(x, t) is statistically homogeneous, then fo is inde-
pendent of x.

More generally, we may want to consider a set oftr composition variables

~b(x, t) where ~ = {qbl, q~2 ..... q~}. Then, with ~k = {~b 1, ~/~2, ̄  ¯ ¯, ~b~} being
corresponding sample-space variables, the joint pdf of ~b is denoted by

f~0P; x, t). Further, with U(x, t) being the Eulerian velocity of the fluid, 
introduce sample-space velocity variables V = { V~, Vz, V3} and denote the

(one-point, one-time Eulerian) joint pdf of velocity by fu(V; x, t). Finally,

the velocity-composition joint pdf is denoted by f(V, ~p; x, t).

By definition, in a PDF method, a pdf (or joint pdf) in a turbulent flow

is determined as the solution of a modeled evolution equation.

2.2 Assumed PDF Methods

In spite of their name, assumed PDF methods are not PDF methods

(according to the above definition). Instead of being determined from 

modeled evolution equation, the pdf is assumed to have a particular shape

that is parametrized (usually) by its first and second moments. The method
has found application in combustion (e.g. Bilger 1980). For the pdf of 

single composition, the suggested shapes include: a beta-function dis-

tribution (Rhodes 1975); a clipped Gaussian (Lockwood & Naguib 1975);

and a maximum entropy distribution (Pope 1980). The extension to several

composition variables, which is considerably more difficult, has been con-

sidered by, among others, Correa et al (1984), Bockhorn (1990), 
Girimaji (1991).

Although assumed PDF methods are favored in some applications,

compared to PDF methods they have two disadvantages. First, no account

is taken of the influence of the dynamics (e.g. reaction) on the shape of the

pdf. Second--and maybe surprising at first sight--assumed PDF methods

are computationally more expensive (if not intractable) for the general
case of many compositions.

2.3 Eulerian PDF Methods

One of the first cases studied using PDF methods, and one that continues

to receive considerable attention, is reaction in constant-density homo-

geneous turbulence. In the simplest situation, the composition is charac-

terized by a single passive scalar 4,(x, t), that evolves 

D~b _ FV2q~ + S(x, t).
(4)

Dt

Here D/Dt = O/Ot+U" V is the substantial derivative, F is the (constant)

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


LAGRANGIAN PDF METHODS 27

molecular diffusivity, and the reaction rate is a known function of the

composition:

s(x, t) = ~[~(x, t)]. (5)

For the statistically homogeneous case considered, the composition pdf

f,($; t) is independent of x. Without further assumption, the evolution

equation for f, can be deduced from Equation (4). This can be done using

any one of several different techniques that have been developed over the
years. These techniques are reviewed by Pope (1985), Dopazo (1993), 

Kuznetsov & Sabel’nikov (1990), and are not described here. For the

present case the result forf,(~k; t) 

f, - -- 02 ~[f~(4’)],~ ~ [/e~Z(~, t)]--
(6)

where

X(~’, t) = F<Vq5 .VqSl~b(x, t) = ~b> (7)

is the conditional scalar dissipation.

An important observation is that the reaction term in the pdf equation

(6) is in closed form, whereas the corresponding terms in moment closures
[e.g. <~(~b)> and <~b3(40>] are not--hence the attraction of PDF methods

for reactive flows.

The term involving Z in Equation (6) represents molecular mixing and

requires modeling. In general--as exemplified by Equation (7)--in

Eulerian PDF methods, the quantities that have to be modeled are one-

point one-time conditional expectations.

Molecular mixing models (which model the term in Z in Equation 6)

have a long history which is briefly reviewed in Section 5.5 and more
thoroughly elsewhere (Pope 1982, 1985; Borghi 1988; Dopazo 1993); and

there are several relevant recent.works (Chert et al 1989, Sinai & Yakhot
1989, Valifio & Dopazo 1991, Pope 1991a, Gao 1991, Gao & O’Brien

1991, Fox 1992, Pope & Ching 1993).

The composition PDF method can be extended to several compositions,

and to inhomogeneous flows. The latter necessitates modeling turbulent

convection--generally as gradient diffusion. Recent applications to multi-
dimensional flows are described by Chen et al (1990), Roekaerts (1991),

and Hsu et al (1993).
For inhomogeneous flows, the method based on the velocity-com-

position joint pdf f(V, q,; x, t) has the advantage of avoiding gradient-

diffusion modeling. For constant-density flow, the Navier-Stokes equa-

tions can be written
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DU
Dt - vV2U- V(p) Vp’, (8)

where v is the kinematic viscosity, and the pressure (divided by the density)

p is subjected to the Reynolds decomposition. From this equation, and

from Equation (4) written for each composition qS~(x, t), the evolution

equation forf(V, ~k; x, t) can be deduced to 

Of Vi~x~+~[f~(~) ] oQ~) of ~[f(~x~_VV U,.lv,~p)]

~ + Ox~ ~V~

-~[f(vV~v, 0)], (9)

where (V~]V,O) is written for the conditional expectation

(Vz~]U(x, t) = V, ~(x, t) - ~), and the summation convention applies 

a as well as to i.

The terms on the left-hand side of Equation (9) are in closed form and
represent convection, reaction, and acceleration due to the mean pressure

gradient. Those on the right-hand side contain one-point one-time con-
ditional expectations. Models for the effects of the viscous stresses and the

fluctuating pressure gradient are discussed below.

2.4 Lagrangian pdfs

Fundamental to the Lagrangian description is the notion of a fluid particle.

Let t0 be a reference time, and let x0 = {Xo~,Xoz, Xo~} be Lagrangian co-

ordinates. Then x+(t, x0) denotes the position at time t of the fluid particle

that is at x0 at time t0 [i.e. x+(t0, x0) = x0].
For each Eulerian variable [e.g. U(x, t)] t~e corresponding Lagrangian

variable (denoted by the superscript +) is defined by (for example)

U+(t, x0) = U[x+(t, x0), (10)

By definition, a fluid particle moves with its own velocity. So, given the
Eulerian velocity, x+ is determined as the solution of

ex+ (t, x0)
- ~+(~, *o), (~ 

Ot

with the initial condition

x+(t0, x0) = x0. (12)

To simplify the subsequent development we impose two restrictions.

First, we consider flow domains that are (possibly time-dependent)

material volumes. Thus fluid particles do not cross the boundary of the

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


LAGRANGIAN PDF METHODS 29

flow domain. Second, we consider constant-density flow so that the deter-
minant of the Jacobian ~x~-/dXoj is unity. Both of these restrictions are

readily removed (see Pope 1985).

The primary Lagrangian pdf considered is

fL(V, X; tlV0, x0), (13)

which is the joint pdf of the event

{U+(t, x0) = V, x+(/, Xo) (14)

subject to the condition U+(t0,x0) = V0. Thus fL is the joint pdf of the

fluid particle properties at time t, conditional upon their properties at

time to. Note that, in the Lagrangian pdffL, x denotes the sample space

corresponding to x+(t, x0), while in the Eulerian pdf it is a parameter.

Also, other fluid particle properties [e.g. 4~+(t, x0)] can be included in the

definition offL.
The Lagrangian pdffL is defined in terms of the reference initial time

to and a future time t > to. More generally, we may consider M times

to < t~ < t2... < tM, and define the M-time Lagrangian pdf

fLM(VM, XM; tin: VM- 1, XM-- 1; t~t 1;’’" ; Vl, Xl; tl [Vo, x0) (15)

as the joint pdf of the events

{U+(tk, x0) = Vk, x+(tk, x0) = x~; k = 1,2,..., (16)

subject to the same initial condition as before, U÷(t0, x0) = V0.

2.5 Lagrangian PDF Methods

In Eulerian PDF methods, the quantities to be modeled are one-point,
one-time conditional expectations (see Equation 9). In Lagrangian PDF

methods, the modeling approach is entirely different. Stochastic models

are constructed to simulate the evolution of fluid particle properties. For

example, Figure 1 shows the time series of one component of velocity

(in stationary, homogeneous, isotropic turbulence) according to a simple

stochastic model--the Langevin equation (which is the subject of the next

Section).
It is useful to distinguish between the fluid-particle properties (U÷ and

x÷) and the values obtained from the stochastic models. Thus U*(t) and
x*(t) denote the modeled particle properties, with x* evolving 

dx*(t)

dt - U*(t).
(17)
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~ 0
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0 5 10

Figure 1 Sample of an Ornstein-Uhlenbeck process obtained as the solution of the Langevin

equation (Equation 21).

Then fL*(V,X; tIV0, x0) is the joint pdf to U*(t) and x*(t) subject 

initial condition

U*(t0) = Vo, x*(to) = (18)

If the stochastic model is accurate, then fL* is an accurate approximation

tofL.
Stochastic Lagrangian models--such as the Langevin equation--have

long been used in studies of turbulent dispersion, where the quantities of

interest are (or can be obtained from) Lagrangian pdfs. For example, if 
pulse of a contaminant is released at time to and location x0, then (if

molecular diffusion can be neglected) the expected concentration of the
contaminant at a later time t is proportional to the pdf of x+(t, x0), which

is modeled by x*(t). In fact, as early as 1921, G. I. Taylor proposed 

stochastic model for x*(t) precisely for this application (Taylor 1921).
A direct numerical implementation of a stochastic model of turbulent

dispersion is to release a large number N of particles at the source [i.e.

x*(to) = Xo] with initial velocities U*(to) distributed according to 
Eulerian pdff(V; Xo, to). Then the stochastic model equations are inte-
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grated forward in time to obtain U*(t) and x*(t). The expected particle

number density (at any x, t) is then proportional to the mean contaminant

concentration.

In Lagrangian PDF methods, the stochastic models are used to deter-

mine both Lagrangian and Eulerian pdfs. This is achieved through the

fundamental relation:

f(V; x, t) fff(vo; x0, t0)fL(V, X;tlV0, x0) dV0 dx0,(19)

where integration is over all velocities and over the entire flow domain at

to. (A derivation of this equation is given by Pope 1985.) Thus the Lagrangian

pdffL is the transition density for the turbulent flow: It determines the
transition of the Eulerian pdf from time to to time t.

Since fL determines f, it also determines simple Eulerian means, such

as the mean velocity (U(x, t)) and the Reynolds stresses (uiuj) (where

u = U-(U)). Such means can therefore be used as coefficients in the
stochastic Lagrangian models.

It is almost inevitable that computationally viable stochastic models are

Markov processes. That is, with t,_ 1 < t, < t,+ t, the joint pdf of U*(t,+ l)

and x*(t~+ l) is completely determined by U*(t,), x*(t,) and the Eulerian

pdff(V; x, t,), independent of the particle properties at earlier times t,_ 

It then follows that (the model equivalent of) the M-time Lagrangian pdf
(Equation 15) is given by the product of the M transition densities

fL*u(V~, xu; tu: V~t_ 1, XM- l; tu_ ~;... ; V~, Xl; t~ ]Vo, Xo)
M

= I-I fL*(Vk, Xk; tklV,_ l, Xk_ 1). (20)
k=l

Thus for Markov models it is sufficient to consider the transition density

J~* since this contains the same information as the M-time Lagrangian pdf.

Lagrangian PDF methods are implemented numerically as Monte Carlo/

particle methods. In contrast to implementations for dispersion studies,

the large number of particles are at all times uniformly distributed in the

flow domain. This particle representation is described in more detail in

Section 4. Calculations based on this approach are described by Haworth

& Pope (1987), Anand et al (1989, 1993), Haworth & E1 Tahry (1991),

Taing et al (1993), and Norris (1993), for example.

3. LANGEVIN EQUATION

The Langevin equation is the prototypical stochastic model. The basic
mathematical and physical concepts are introduced here in a simple setting.

More general and advanced models are described in Section 5.
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We begin by considering stationary homogeneous isotropic turbulence,

with zero mean velocity, turbulence intensity u’, and Lagrangian integral

time scale T. The subject of the Langevin equation, U*(t), is a model for

one component of the fluid-particle velocity U÷(t).

Written as a stochastic differential equation (sde), the Langevin equation

is

dU*(t) = -- U*(t) dt/T+ (2u’2/T)1/2 dl, V(t), (21)

where W(t) is a Wiener process. The reader unfamiliar with sdes, can

appreciate the meaning of the Langevin equation through the finite-differ-

ence approximation

U*(t + At) = U*(t)- U*(t)At/T+ (2u’2At/T)~/2~, (22)

where ~ is a standardized Gaussian random variable ((3) = 0, (~2) 
which is independent of the corresponding random variable on all

other time steps. Thus the increment in the Wiener process dW(t) can be

thought of as a Gaussian random variable with mean zero, and variance

dr.
The basic mathematical properties of the Langevin equation are now

described, and then their relationship to the physics of turbulence is dis-

cussed.

The Langevin equation (Equation 21 or 22) describes a Markov process

U*(I) that is continuous in time (see Gardiner 1990, for a more precise
statement). Hence, in the terminology of stochastic processes, U*(t) is a

diffusion process. Although it is continuous, it is readily seen that U*(t) is

not differentiable: Equation (22) shows that [U*(t+At)-U*(t)]/At varies
as At- 1/2, and hence does not converge as At tends to zero.

For simplicity we consider the initial condition at time to that U*(to) is

a Gaussian random variable with zero mean and variance u’2. Then, for
t > to, U*(t) is the stationary random process known as the Ornstein-

Uhlenbeck (OU) process, a sample of which is shown on Figure 1. The

OU process is a stationary, Gaussian, Markov process, and hence is
completely characterized by its mean ((U*(t))=0), its variance

((U*(t)2) = u’2), and its autocorrelation function, which is

p*(s) = ( U*( t + s)U*( t) ’ ~ = e-I*I/T, (23)

(see e.g. Gardiner 1990). Notice that these results confirm the consis-

tency of the specification of the coefficients in the Langevin equation:
The rms fluid-particle velocity is u’, and the Lagrangian integral time

scale is
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T = ff p*(s) ds. (24)

To what extent does U*(t) model the fluid particle velocity U÷(t)? The

first and obvious limitation is that U÷(t) is differentiable, whereas U*(t)
is not. Hence the model is qualitatively incorrect if U*(t) is examined on

an infinitesimal time scale.

But consider high Reynolds number turbulence in which there is a large

separation between the integral time scale T and the Kolmogorov time

scale %; and let us examine U+(t) on inertial-range time scales s, T >> s >>
This is best done through the Lagrangian structure function (see e.g.

Monin & Yaglom 1975)

DL(s) = ([U+(t+s)- U+(t)]2). (25)

The Kolmogorov hypotheses (both original 1941 and refined 1962) predict
(in the inertial range)

DL(s) = Co(e)s, (26)

where Co is a universal constant, and (e) is the mean dissipation rate. And

the Langevin equation yields [for the structure function based on U*(t)]:

De*(s) = 2u’2s/T, for siT << 1, (27)

as is evident from Equation (22). Thus the Langevin equation is consistent

with the Kolmogorov hypotheses in yielding a linear dependence of De on

s in the inertial range. (Equation 27 corresponds to an ~o-z frequency

spectrum (at high frequency), which in turn corresponds to white-noise

acceleration.)
By comparing the coefficients in Equations (26) and (27) we obtain 

relation

T-l = Co(a)/(2u’2) = ~Co(e>/k, (28)

where k is the turbulent kinetic energy; and the Langevin equation

(Equation 21) can be rewritten in the alternative form:

dU*(t) = - ~ Co U*(t) dt (C0(e>)1/2 dW(t). (29)

To date, Lagrangian statistics in high-Reynolds number flows have

proven inaccessible both to experiment and to direct numerical simulation.
Consequently, a direct test of Equation (26) has not been possible. How-

ever at low or moderate Reynolds number, both techniques have been
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used to measure the Lagrangian autocorrdation function p(~’). Figure 

shows the results compared to the exponential (Equation 23) arising from
the Langevin equation. At very small times s/T, the behavior is quali-

tatively different because U*(t) is not differentiable--correspondingly,

p*(s) has negative slope at the origin. But for larger times, the exponential
form provides a very reasonable approximation to the observed auto-

correlations.
Measurements on turbulent dispersion provide an indirect test of the

Langevin equation. For particles originating from the origin at time t = 0,

their subsequent position is

x*(t) = U*(t’) (30)
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Figure 2 Lagrangian velocity autocorrelation function in isotropic turbulence: open sym-

bols and lines from DNS of Yeung & Pope 0989); full symbols from experiments of Sato 

Yamamoto (1987); dashed line exponential, Equation 23. (From Yeung & Pope 1989.)
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This (according to the Langevin equation) is a Gaussian process, with zero

mean, and variance

(x*(t)2~ 2u’2T[t- T(1 -- e-’/r)], (31)

which exhibits the correct short-time limit [(x*(t) 2) ~ (u’t) 2] and long-

time limit [(x*(t) 2) ~ 2u’2Tt] given by Taylor’s (1921) theory.

The Langevin equation has been applied to dispersion behind a line

source in grid turbulence by Anand & Pope 0985) with modifications to

account for the decay of the turbulence and the first-order effects of

molecular diffusion. The result shown on Figure 3 is in excellent agreement

with the data.

Several refinements and extensions to the Langevin equation are

described in Section 5, where further comparisons with DNS data are

made.

We now describe the most rudimentary extension of the Langevin equa-

tion to inhomogeneous flows. The equation is a model for the evolution
of all three components of velocity U*(t) of a fluid particle with position

X*(t).

’ I ~ I ’ I ’ I

o.~,/ ~

z’//o10°
~

10-I

/ ¯ - =
"~/ X --52

~ + = 60
05

~ ~ - la,"" Stapountzis et.al.10.2

~ ~"lJ []-’~o/M ~ 19.3

"~ , I , I , I , I

103 10"2 101 10° 101

~w /~o

Figure 3 Turbulent dispersion behind a line source in grid turbulence. The rms dispersion

x’ -- (x.2) ~/2 is normalized by the integral scale at the source lo; the distance downstream

of the source xw is normalized by the distance from the grid to the source Xo. Experimental
data of Warhaft (1984) and of Stapountzis et al (1986). Solid line is the calculation of Anand

& Pope (1985) based on the Langevin equation.
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There are three modifications to Equation (29)--all to the drift term.

First, the velocity increment due to the mean pressure gradient -dtV(p)

is added. Second, the fluid particle velocity relaxes to the local Eulerian

mean (U(x*[t], t)) (rather than to zero). And, third, the coefficient 

drift term is altered. The result is

+(Co(~))’/2dw(t). (32)

In this (and subsequent) equations, it is understood that mean quantities

(i.e. V(.p), (~), and (U)) ar e evaluated at theflui d-particle posi tion

x*(t). The vector-valued Wiener process W(t) is simply composed of three

independent components W~(t), Wz(t), and W3(t ). The increment dW has

zero mean and covariance

( dWi dW/) = dt 6ii. (33)

[As discussed at greater length in Section 5.1, the coefficient (½+ ~C0) 

Equation (32) (compared to ]C0 in Equation 29), correctly causes 

turbulent kinetic energy to be dissipated at the rate (~). The omission 
the ½ in Equation (29) is because that equation pertains to the hypothetical

case of stationary (i.e. non-decaying) isotropic turbulence.]

A stochastic model for fluid-particle properties implies a modeled evo-

lution equation for the corresponding Lagrangian joint pdf. In the present
context, f~*(V,x, tlVo, x0)is the joint pdf of U*(t) and x*(t), with 

initial conditions U*(t0) =: V0, x*(t0) = x0- Then with U*(t) evolving 

extended Langevin equation (Equation 32), and with x*(t) evolving 

Equation (17), fL* evolves according to the Fokker-Planck equation

O ¯ -- Vi Of L* O@)
~fC = ~x~ + ~xx~ ~

+ O4)

(see Gardiner 1990, Risken 1989), with the initial condition

fY(V, x, t01v0, x0) = a(v- v0)a(x- 05)

The Eulerian joint pdf of velocity f(V; x, t) is related to its Lagrangian

counterpart by Equation (19). Hence the above evolution equation forf~
implies a corresponding evolution equation for the modeled Eulerian pdf

f*(V; x, 0, Indeed, sincc the differential operators in the Fokker-Planck
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equation are independent of to, x0, and V0, it follows immediately from

Equation (19) that the Eulerian pdfJ’*(V; x, t) also evolves according 

Equation (34).

The Eulerian pdf equation (i.e. Equation 34 written for f*), together
with a modeled equation for (e), form a complete set of turbulence-

model equations. They are complete in the sense that all the coefficients in

Equation (34) are known in terms off* and (e.). The mean velocity

and the kinetic energy k are determined as first and second moments of

f*, while the mean pressure field (p) is determined as the solution of 

Poisson equation. The source in the Poisson equation involves (U) and

(uiuj) which are known in terms off*.
In Section 5.3 coupled stochastic models for U*(t) and 09*(0 = e*(t)/k

are described, which lead to an evolution equation for the joint pdf of U

and ~o. This single equation provides a complete model: All of the

coefficients are known in terms of the pdf itself.

The above development illustrates the different use of the Langevin

equation in turbulent dispersion and in PDF methods. In the former, the

turbulent flow field is assumed known, and so the coefficients in the

Langevin equation are specified; and the equation is used (at most) 

deduce the Lagrangian pdf. In PDF methods, the Langevin equation
is used to determine the Eulerian pdf, from which the coeff~cients are

deduced.

4. PARTICLE REPRESENTATION

Central to Lagrangian PDF methods is the idea that a turbulent flow can

be represented by an ensemble of N fluid particles, with positions and
velocities x~n)(t), U~n)(t), n = 1, 2 .... , N. The purpose of this section 

describe this particle representation, and to make precise the connection

between particle properties and statistics of the flow.

4.1 Basic Representation

We begin by considering a single component of velocity U at a particular
point and time. Thus U is a random variable, with pdff(V), which 

consider to be known.

For a given ensemble size N(N >_ 1), the particle velocities {U~")} are

specified to be independent random samples, each with pdff(V). It 
conceptually useful (and legitimate) to think of ~") as t he value of Uon

the n-th (independent) realization of the flow. Note that the particle ve-
locities are independent and identically distributed, and hence the num-

bering of the particles is irrelevant.

A fundamental question, to which we provide three answers, is: In what
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sense does the ensemble (Ut")) "represent" the.underlying distribution

f(V)?
The first answer is in terms of the discrete pdffN(V), defined 

1
fr~(V) =- ~ ~ 6(U~")- V). (36)

It is readily shown (see, e.g. Pope 1985) that the expected discrete pdf

equalsf(V) for any N > l:

<fr~(V)) = f(V). (37)

In the analysis of PDF methods, this relation allows properties of the pdf

[i.e. f(V)] to be deduced from the properties of a single particle (~), say).

The second answer involves ensemble averages. In numerical implemen-

tations of PDF methods it is necessary to estimate means such as (U) and

(U2) from the ensemble { U(")}. Let Q(U) be some function of the velocity

U, then we have

<Q(U)) = f~_~ f(V)Q(V) (38)

For example, the choices of V and Vz for Q(V) lead to (U) and (U:).

The mean (Q) can be estimated from the ensemble simply as the ensemble

average

<Q(U)>u -- N Q(O~")) = fu(V)Q(V) (39)

Then (since {U~")} are independent and identically distributed) a basic

result from statistics is that <Q>u is an unbiased estimator of <Q>:

<<Q>N> = <Q>- (40)

Further, if the variance of Q(U) is finite, it follows from the central limit
theorem that for large N the rms statistical error in <Q>u tends to zero as

N ~/2

Hence the second sense in which the ensemble { Ut"~} "represents" the

pdff(V) is that, for all functions Q [for which Q(U) has finite mean and

variance], the ensemble average <Q>u converges in mean square to <Q>.

This is written

lim <Q>u = <Q>. (41)

[An additional convergence result is provided by the Glivenko-Cantelli

theorem (e.g. Billingsley 1986): As N tends to infinity, the difference
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between the cdf F( IO and the empirical cdfF,( V)--i.e. the definite integral

offN(V)--converges to zero with probability one.]
For almost all purposes, the two answers provided above are sufficient:

Equation (37) is used in the analysis of PDF methods, while Equation (41)

is used in numerical implementations. However, neither of these relations

(nor the Glivenko-Cantelli theorem) provides an estimate of the pdff(V)
in terms of { Uen)) that converges in mean square as N tends to infinity.

The third answer, then, is that the techniques of density estimation can be
used for this purpose (see e.g. Tapia & Thompson 1978, Silverman 1986).

These are not reviewed here, since they have not played an important role

in PDF methods. This is because in the implementation of PDF methods,
an explicit representation of the pdf is not required.

The above considerations apply to any random variable U. Consider

now U¢n)(t) to be a model for the velocity of a fluid particle, obtained as

the solution to a stochastic model equation--the Langevin equation, for

example. At the initial time to, the values of (U~")(to)) are sampled from
the specified initial pdff(V; to).

The representations described above are readily extended. The one-time

discrete pdf [representingf(V; t)] 

1 u
fu( V; t) = ~ .~= , 6[U~")(t)-- (42)

while the discrete Lagrangian pdf is

1 u
f~N(V; tl V0) = ~ ,~1 {3[U~")(t)- V]I U~")(to) = V0}. (43)

Multi-time Lagrangian statistics can be estimated as ensemble averages:
for example,

1 u
(Q(U(tl), U(t2)))u = ~ ,~l Q[U~")(tO’ U~")(t2)]" (44)

4.2 Inhomogeneous Flows

The extension of this particle representation to inhomogeneous flows
requires some new ingredients, and it leads to some subtle consistency

conditions.
Throughout, for simplicity, we are restricting our attention to constant-

density flows in a material volume. Hence the volume V of the flow domain
D, and the mass of fluid within it, do not change with time.

At a given time t, an ensemble of N particles is constructed as follows

to represent the joint pdf of velocityf(V; x, t). The particle positions x~")(t)
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are mutually independent, random, uniformly-distributed in D. [Hence the

pdf of each x~n)(t) is l/V.] Then the particle velocity U~)(t) is random, 

pdff[V; x~n)(t), t]. In terms of these properties, the discrete pdf is defined

by

fN(V; x, t) --= ~ 6[x~(t) -- xlf[U~")(t)-- (45)
i=1

The specification of x~)(t) (and also the constant in Equation 45) 

determined by a consistency condition. We require the expectation offN

to equal f; where f satisfies the normalization condition that its integral
over all V is unity. Hence from Equation (45) we obtain

1 = f(f~v) dV = V(f[x(")(t)- x]), 

for any n (since {x~")} are independent and identically distributed). This

condition is satisfied if, and only if, x(")(t) is uniformly distributed.

If this consistency condition is satisfied at an initial time to, will it remain
satisfied as the particle properties evolve in time? The answer (established

by Pope 1985, 1987) is yes, provided the mean continuity equation is

satisfied. This in turn requires that the mean pressure gradient [affecting

the evolution of U(")(t), Equation 32] satisfies the appropriate Poisson
equation.

Both of these results are reflected in the Eulerian pdf equation [e.g.

Equation 34 written for f(V; x, t)]. When this equation is integrated over

all V, all the terms on the right-hand side vanish, expect the first which is

-V" (U). If this is nonzero--in violation of the continuity equation--

then the normalization condition on f is also violated. An evolution

equation for V" (U) is obtained from Equation (34) by multiplying by 

integrating over all V, and then differentiating with respect to xj. Equating
the time rate of change of V" (U) to zero, yields a Poisson equation for

@).
With Q(V) being a function of the velocity, we now consider the esti-

mation of the mean (Q[U(x, t)]) from the ensemble of Particles. This 
an important issue because Eulerian means such as (U) and (uiuj) must

be estimated from the particle properties in order to determine the

coefficients in the modeled particle evolution equations, e.g. Equation (32).

Since (with probability one) there are no particles located at x, it 
unavoidable that an estimate of (Q[U(x, t)]) must involve particles in 

vicinity of x. We describe now the kernel estimator (see e.g. Eubank 1988,

H/irdle 1990), which is useful both conceptually and in practice (although

a literal implementation is not efficient). It is assumed that Q[U(x, t)]
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has finite mean and variance, and that the mean is twice continuously

differentiable with respect to x.

For simplicity we consider points x that are remote from the boundary

of the domain; and for definiteness we take the kernel to be a Gaussian of
specified width h. In D dimensions this is

K(r, h) = (x/~h)-° exp (- ½r2/h2), (47)

(where r = Irl). Then a kernel estimator of (Q[U(x, t)]) 

V N
<Q[U(x, t)l>N,h ---- ~ ,~,~. K[x--x(")(t), hlQ[U(")(t)]. (48)

For small h, the bias in this estimate is

((Q)s,h) - (Q) = ~h2V2(Q) ̄ (49)

Hence, as h tends to zero, K(r, h) tends to 6(r) and ((Q)N.h) converges 

(Q).
But as h becomes smaller, fewer particles have significant values of

K[x--x(")(t), h], and so the statistical error rises: The variance of

varies as

V/(Nh°) = (L/h)D/N, (50)

where L -= V l/D is a characteristic length of the domain. It is readily shown

that, for large N, it is optimal for h/L to vary as N- l/(4+D). For then, the
sum of the bias and the rms statistical error is minimized, each varying as

N-2/(4+~). Thus, for such a choice of h we have

lim (Q)N,h = (Q). (51)

These results have two major significances. First, Equation (51) shows

the convergence of the particle representation. Second, it is likely that in

a numerical implementation the error decreases with increasing N no faster

than N- 2/(4+0).

Although it is seldom done in practice, it is in principle possible to use

the above ideas to extract multi-time Lagrangian statistics. It is important

to realize, however, that (at a fixed time) the particle representation con-

tains no two-point information. Recall that different particles can be
viewed as being sampled from different, independent realizations of the

flow.
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5. STOCHASTIC LAGRANGIAN MODELS

5.1 Generalized Langevin Model

The Langevin equation for inhomogeneous flows described in Section 3

(Equation 32) is referred to as the Simplified Langevin Model (SLM). It 

the simplest possible extension of the basic Langevin model (Equation 29)
that is consistent with momentum and energy conservation.

The Generalized Langevin Model (GLM)--proposed by Pope (1983a)

and developed and demonstrated by Haworth & Pope (1986, 1987)-

overcomes some of the qualitative and quantitative defects of the SLM.

For the increment in the fluid-particle velocity U*(t), the GLM 

dU~* = - 0447- ) dt+fgij(~*-(U~.))dt+(Co(e))t/2dWi, (52)
Oxi

where the drift coefficient tensor (qij is a modeled function of the local mean

velocity gradients O(Ug)/Oxj, Reynolds stresses (u~uj), and dissipation
It may be immediately observed that the SLM corresponds to the simple

specification

(53 

Hence the GLM is distinguished by a more elaborate specification of

The first term in Equation (52) is uniquely determined by the mean

momentum equations (at high Reynolds number, when the viscous term

is negligible). The final term in Equation (52) (the diffusion term) has 

same form as in homogeneous isotropic turbulence. This is justified (at

high Reynolds number) by the Kolmogorov (1941) hypotheses: The term

pertains to small time-scale (high frequency) processes that are hypoth-

esized to be locally isotropic and characterized by (e). (Implications

of the Kolmogorov 1962 hypotheses are discussed in Section 5.3, and
Reynolds-number effects in 5.4.)

In the construction of the drift term (involving ~g~), the principal assump-
tion made is that the term is linear in U*. For homogeneous turbulence, the

assumption is fully justified, since this linearity is necessary and sufficient

(Arnold 1974) for the joint pdf of velocity to be joint normal, in accord
with experimental observations (e.g. Tavoularis & Corrsin 1981).

The observed joint no~ality of the one-point velocity pdf in homo-
geneous turbulence leads to several important results. For this case, the

joint pdf is fully determined by the (known) mean velocity, and by the

covariance matrix, namely the Reynolds stresses; and, according to the
GLM (Equation 52), the Reynolds stresses evolve 
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d

~ (u~u,) = ~,+ fVk,(u,u,) fV,,(u~uk) + Co(~),s~,, (54)

where ~ is the production tensor:

- ~). (55)~ ~ - (u~u~) Ox~ (u~u~) o 

Thus for any choice of ~q there is a corresponding modeled Reynolds-

stress equation, which (as shown by Pope 1985) is realizable. The known

behavior of the Reynolds stress equation in certain limits (e.g. rapid dis-

tortion, or two-component turbulence) can then be invoked to impose

constraints on

Using these constraints and experimental data on homogeneous tur-
bulence, Haworth & Pope (1986) determined a specific form of if0 that

accurately describes the evolution of the Reynolds stresses (and hence the
velocity joint pdf) in these flows. As an example, Figure 4 shows the

evolution of the anisotropy tensor

~ ~ (u~)/(u~u,) o, (~6)

for the plane strain experiment of Gence & Mathieu (1979).

As is customary in turbulence modeling, with simplicity as the main

justification, the same model is used in inhomogeneous flows. Haworth &

0.2 0 0-

0 A A
-

-0.2

0 0.01 0.02

Figure 4 Reynolds stress anisotropies b~t =- (u, ut)/(ulul)--~6~ against time for transverse

plane strain of homogeneous turbulent. Symbols: experimental data of Genee & Mathieu
(1979) ~ b~ ~, ~ b:~, O b33, ¯ b2a. Lines: GLM calculations. (From Haworth & Pope 1986.)
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Pope (1987) describe the successful application of the GLM to a range 

free shear flows.

Finally, we observe that there is a Reynolds-stress equation cor-

responding to the SLM. Specifically, for homogeneous turbulence, Equa-

tions (52) and (53) lead 

d

~ {uku,) - ~k,- (2 + 3(70) {e)dk,-- ~(e)~Sk,, (57)

which is Rotta’s (1951) model. Thus, in Reynolds-stress-closure termin-

ology, the GLM is superior to the SLM in allowing for a nonlinear return-

to-isotropy, and for incorporating "rapid pressure" effects. Recently

Pope (1993) considered in detail the relationship between the GLM and
Reynolds-stress models, and thereby deduced specifications correspond-

ing to the isotropization of the production model (IPM, Naot et al 1970)

and to the SSG model (Speziale et al 1991).

5.2 Stochastic Model for Frequency

The Generalized Langevin Model, just described, leads to a modeled

transport equation for the velocity joint pdff(V; x, t). This equation does

not provide a complete model, because the mean dissipation rate {e) (or
equivalent information) must be supplied separately--from a modeled

transport equation for (e), for example. This shortcoming motivated the

development of a complete closure based on the joint pdf of velocity and

dissipation (Pope & Chert 1990), which required the development of 

stochastic model for dissipation.

In fact, rather than the instantaneous dissipation rate e(x, t) the model

developed by Pope &Chen (1990) is based on the turbulence frequency
defined by

co(x, t) = e(x, t)/k(x, t). (58)

It should be noted that this is a mixed quantity in that e(x, t) is random
whereas k(x, t) is not. Thus the probability distribution of co is the same

as that of e, to within a scaling. The mean frequency (~o) has been used
previously as a turbulence-model variable by, for example, Kolmogorov

(1942) and Wilcox (1988).

For homogeneous turbulence, Pope &Chen (1990) developed a stochas-
tic model co*(t) for the turbulent frequency following a fluid particle, co+(t).

Their model is constructed by rcference to the Lagrangian statistics of
dissipation extracted from direct numerical simulations by Yeung & Pope

(1989).
The simulations show that (to a very good approximation) the one-
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point one-time distribution of e is log-normal. That is, for fixed t, the

random variable

Z+(t) -= In [e+(t)/(e)] = In [co+(t)/(co)], (59)

is Gaussian, with variance denoted by a2. Further, except near the origin,

the autocorrelation function of Z+(t), p~(s), is well approximated by the
exponential

px(s) = e-Islv*. (60)

where T~ is the corresponding integral time scale. The simulations support
the approximation

T~ -1 = Cx((D), (61)

with Cz being a constant.
Given that ~ + (t) has a Gaussian pdf and an exponential autocorrelation,

it is obvious to model it as an OU process. The appropriate stochastic

differential equation is

dz*(t) = - [Z*(t) - (~*(t))] dt/T~ + (2~rZ/T~)’/2 dW, (62)

(cf Equation 21).

The modeled frequency is related to ~* by

co*(t) : (co(t))e~*°~, (63)

(cf Equation 59). Consequently, in order to obtain a model equation

for o~*, it is necessary also to model the evolution of (co). With the

nondimensional rate of change S~ defined by
dQo) = _ (co) 2S, ’

(64)
dt

the standard model equation for (e) (Launder & Spalding 1972) implies

S,o = (C,2-- 1)--(C,,- l)P/<e>, (65)

where C,~ and C~2 are standard model constants, and P is the rate of
production of turbulence kinetic energy.

The stochastic model for co* proposed by Pope &Chen (1990) is then

obtained from Equations (62)-(64):

dco*= -co*(co) dt{ S~ + Cz [ln (co*/<co))- 

+co*(2C~(co)a2)~/2 (66)

The above development pertains to homogeneous turbulence. The exten-

sion of the model to inhomogeneous flows is considered by Pope (1991b).
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The only significant modification required to Equation (66) is the addition

of a term that (under appropriate circumstances) causes nonturbulent

fluid (characterized by co*= 0) to become turbulent ((o*> 0). As 

scribed in the next subsection, with this modification, the stochastic
model for frequency is successful in describing the intermittent turbulent/

nonturbulent regions of free shear flows.

5.3 Refined Langevin Model

The stochastic model for frequency co*(t) (Equation 66) can be combined
with the Generalized Langevin Model (Equation 52) to provide a closed

modeled joint pdf equation. However, if the frequency co*(t) following 

fluid particle is known, it is possible to incorporate this information in a

stochastic model for velocity so as to increase its physical realism. Such a

refined Langevin model has been developed by Pope & Chen (1990) and

Pope (1991b).

According to all of the Langevin equations described above, for a small

time interval s (s/T << 1), the modeled Lagrangian velocity increment

AsU*(t) U*(t+s)-U*(t), (67)

is an isotropic Gaussian random vector with covariance

(AsUT(t)AsU~(t)) = Co<~e)st~ij-~-O(s2). (68)

This covariance is consistent with the refined Kolmogorov (1962) hypo-

theses; but the Gaussianity of AsU*(t) is clearly at odds with notions 

internal intermittency. In the spirit of Kolmogorov’s refined hypotheses,

it is natural to model AsU*(t) in terms of the particle dissipation

e*(t) = k~o*(t). This is simply achieved by replacing the diffusion coefficient

C0(e) in the Langevin equation by C0e*. Then, the conditional covariance

of AsU(t) 

(AsUf(t)AsU~*(t)le*(t) = g) = Cogs6ij+ O(s2), (69)

while, correctly, the unconditional variance is again given by Equation

(68).
Since the performance of the GLM is completely satisfactory for homo-

geneous turbulence, Pope & Chen (1990) developed the Refined Lan#evin

model (RLM) to retain this behavior (while replacing Co(e) by

Coe* = Cokco* in the diffusion term). For homogeneous turbulence the

model is

dUff --
~(P) dt+.L~,j(U~*-(U~))dt+(Cokog*)l/2dmi,

(70)
OX
i

where
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(71)

and the tensor ~ij is the inverse of (uiuj)/(~k). Notice that, compared to

the GLM (Equation 52), the additional term in ~i~ is needed to produce

the correct Gaussian joint pdf of velocity (in homogeneous turbulence).

Additional modifications for inhomogeneous flows are described by Pope

(1991b).
The combination of the stochastic model for 09*(0 (Equation 66) 

the RLM for U*(t) provides a closed modeled evolution equation for their

joint pdf. This is the most advanced pdf model currently available. It has

been applied to several different flows by Pope (1991b), Anand et al (1993),

and Norris (1993). Calculations for a plane mixing layer are now briefly

reported in order to illustrate several features of the model.

The calculations pertain to the statistically plane, two-dimensional, self-

similar mixing layer formed between two uniform streams of different
velocities. The dominant flow direction is xl; the lateral direction is x2;

and the flow is statistically homogeneous in the spanwise direction x3. The

free-stream velocities are U~o (at x2 = ~) and 2U~ (at x2 = - ~), so that
the velocity ratio is 2, and the velocity difference is AU = Uo~. At large

axial distances the flow spreads linearly and is self-similar. Consequently,

statistics of U(x, t)/A U depend only on x2/xl [where (x l, x2) = (0, 0) is 

virtual origin of the mixing layer]. Lang (1985) provides experimental data

on this flow. The calculations are performed by integrating the stochastic

differential equations for the properties (x¢"), U¢"), o9¢"); n = 1,2 ..... N) 

N ~ 50,000 particles. A comparison of the mean and rms velocities with
experimental data shows good agreement (see Pope 1991b).

Figure 5 is a scatter plot of the axial velocity and lateral position. For
this flow, with extremely high probability, there is no reverse flow (i.e.

U~l")(t) > 0 for all n and t). Hence the axial location X~l")(t) of each particle

increases monotonically with time. Figure 5 is constructed by plotting the

points (U]")/AU, x~")/xl) for about one fifth of the particles (selected at

random) as they pass a particular axial location x~. (In view of self-
similarity, the value of x~ is immaterial.)

At large and small values of x~/xl, the points are dense at U~*/AU = 1

and 2, respectively, and so appear as horizontal straight lines. These points

correspond to fluid with the free-stream velocity. At the center of the layer

(e.g. x~/xl = 0), the points are broadly scattered in U?/AU, indicative of

turbulent fluctuations with rms of order 0.2. Toward the edges of the layer,
bimodal behavior is evident: with increasing distance from the layer, a

band of points tends to the free-stream velocity, while other points exhibit

fluctuations of order 0.1, but with decreasing probability. This reflects the

turbulent/nonturbulent nature of these regions.
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-0.05 0.0 0.05

Figure 5 Scatter plot of axial velocity and lateral position from joint pdf calculations of

the self-similar plane mixing layer (from Pope 199 lb).

The intermittent nature of the edges of the mixing layer is yet more

evident in Figure 6, which is a scatter plot of frequency and lateral position.

The frequency is normalized by its maximum mean value (~0)max (at 

axial location considered) and is shown on a logarithmic scale. At the

edges of the layer the bimodal nature of~o* is clear: There is a diffuse band

of points centered around o~* ~ 0.3(co7 .... with a second denser band with
a)* values two or three orders of magnitude less. These bands correspond to

turbulent and nonturbulent fluid respectively.

For inhomogeneous flows, experimental data on Lagrangian quantities

are essentially nonexistent. For this reason, there has been little impetus

to extract Lagrangian statistics from pdf calculations. However, as an
illustration of the type of information that is available in Lagrangian PDF

methods, shown on Figure 7 are the fluid particle paths of five particles
whose initial positions were selected at random near the center of the self-

similar mixing layer. It may be observed that several of these trajectories

traverse the layer monotonically, and that the trajectories are devofd of

high wave number fluctuations. From this we conclude that the motion
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Figure 6 Scatter plot of turbulence frequency and lateral position from joint pdfcalculations

of the self-similar plane mixing layer (from Pope 1991b).

0. 10, 50. zl 100.

Figure 7 Fluid particle paths in the self-similar plane mixing layer according to stochastic

models: x~ and x2 have arbitrary units. The dashed lines show the nominal edgc of the layer,

where the mean velocity differs from the free-stream velocity by 10% of th,e velocity difference.
(From Pope 1991b.)
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implied by the model is consistent with the large-scale coherent motions

observed experimentally in mixing layers; and, conversely, it does not

resemble the small-scale random motion analogous to molecular diffusion

or Brownian motion.

5.4 Stochastic Model for Acceleration

When examined in detail, the basic Langevin model (described in Section

3) can be justified on physical grounds only in the limit of infinite Reynolds

number Re. Sawford (1991) presents a stochastic model for the fluid

particle acceleration which is extremely valuable and successful in incor-

porating Reynolds number effects. One virtue of the model is that it can

be directly related to Lagrangian statistics obtained from direct numerical

simulations--which are found to depend strongly on Reynolds number.
In the limit of infinite Reynolds number, the model reverts to the Langevin

equation. [As Sawford shows, his model is equivalent to a different for-

mulation given earlier by Krasnoff & Peskin (1971).]

As in Section 3 we consider stationary homogeneous isotropic tur-

bulence with zero mean velocity. The turbulence is characterized by its
intensity u’ (or kinetic energy k = ~u’2), the mean dissipation rate (e~, 

by the kinematic viscosity v. In terms of these quantities, the Reynolds

number is defined by:

k2
Re = (-~. (72)

It is instructive to relate the Reynolds number to time scales. As usual, the

eddy-turnover time TE and the Kolmogorov tim6 scale r,~ are defined by

Tz =- k/Q,) = ~2u’2/(e), (73)

and

Hence we obtain

(74)

Re = (Tz/v,)2. (75)

The Langevin equation contains the single time scale T~; whereas

Sawford’s stochastic model for acceleration contains two time scales,

To and 3. These time scales (precisely defined below) scale as TE and
respectively, at high Reynolds number.

Let U*(t) and A*(t) denote the model for one component of velocity

and acceleration following a fluid particle. Then the velocity evolves by
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d

~ U*(t) = A*(t).

With a’2 defined by

a"2 = u’2/(T~z),

Sawford’s stochastic model for acceleration can be written

where W(t) is a Wiener process.

51

(76)

(77)

(78)

An analysis of this model (see Sawford 1991 or Priestly 1981) reveals that
U*(t) and A *(t) are stationary processes with zero means and variances "2

and a’z, respectively. The autocorrelation function of U*(t) is

p*(s)=Ie-’"/r~--(~)e-’S’/~]/(1--~), (79)

from which it follows that the (modeled) Lagrangian integral time scale 

T= To~ + v. (80)

The principal features of this model are most clearly seen at high (but

finite) Reynolds number, at which there is a complete separation of scales,

i.e. ¯ << To~. For all times s much larger than z, the velocity autocorrelation

function is p*(s) exp(--[sl/T~)--the sa me asfor the Langevin mode

Consequently, in the inertial range (z << s << To), the Lagrangian velocity

structure function varies linearly with s, in accord with the Kolmogorov

hypotheses (Equations 25-27). Correspondingly, the Lagrangian velocity
frequency spectrum varies as ~o-2. But for times s comparable to z, this

model is quite different from the Langevin model. Because U*(t) is a

differentiable function of time, the autocorrelation function has zero slope

at the origin. For not-too-large s/z, the autocorrelation function of accel-

eration is p~,(s) ~-, exp (-Isl/~). Correspondingly, the Lagrangian velocity
frequency spectrum varies as ~o-4 at high frequency (~or >> 1).

In order to complete the model, two specifications are required to fix

T~o and z in terms of TE and Re. Sawford (1991) used the Lagrangian DNS
data of Yeung & Pope (1989) to achieve this. Here we do the same, but 
a slightly different way. First, the DNS data on the Kolmogorov-scaled

acceleration variance
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ao = a’2"~n/(e), (81)

can be well approximated (for not too small Ra) 

ao ~ 3(1-22/Ra), (82)

where R~ = (20/3Re)’/2 is the Taylor-scale Reynolds number. [This form

of correlation can be justified in terms of the inertial-range pressure fluc-

tuation spectrum (M. S. Nelkin 1991, private communication; George et
al 1984).] Second, for each value of Rz studied in the DNS, the quantity

4TE
Cr(R~) = 3 T~’ (83)

can be determined by m~ttching T/r, between DNS and the model. The

values obtained are between 6 and 7, with a least-squares fit yielding

Cr ~ Cx(o~) (1 +4/Ra), (84)

with Cx(oo) = 6.2. In this case there is no justification for the form of the

correlation, and the data exhibit significant scatter around it. Given the
empirical correlations for ao and CT the two time scales are determined as

T~ = T~ , (85)

and

r= "\2aoJ" (86)

The ability of this model to describe Lagrangian statistics is impressive.

Figure 8 shows a comparison of the acceleration autocorrelation functions

pA(S) obtained from the model and from DNS. The agreement indicates

that the model provides a good approximation to the short-time behavior
[although, because A*(t) is not differentiable, p~(s) has finite slope at the

origin].

A revealing plot is of the Lagrangian velocity structure function DL(S)

(Equation 25) normalized by. (e)s. As may be seen from Figure 9, 
model is in good agreement with the DNS data, and correctly shows that

the peak value--denoted by C0*--increases with R~. According to the

Kolmogorov hypotheses, at high Reynolds number, and for inertial-range

times s (z, << s << T), the quantity D~(s)/((~)s), adopts a constant value

C0. It is readily shown that the model has this property, with C0 = Cx(~).
But, as may be seen on Figure 10, the peak value Cg of DL(S)/((e)s)
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Figure 8 Acceleration autocorrelation function against Kolmogorov-scaled time lag. Sym-

bols: DNS data (Yeung & Pope 1989); lines: Sawford’s model. Ra = 38: ~ ---; R~ ~ 63:

~ ~; R~ = 90: ~ ~; R~ = 93: ~. (From Sawford 1991, with permission.)

4

~ o~/ ,~ ’,o,

9~’.i ~ ~

10 -2 10 1 1 10 102 103

Figure 9 Lagrangian velocity structure function DL(S) divided by (e)s against Kolmogorov-

scaled time, s/%. Symbols and lines, same as Figure 8. (From Sawford 1991, with permission.)
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Figure 10

i

102 10~ 11)4 105 106

Co* [the peak value of DL(s)/(e)s] against Taylor-scale Reynolds number. Sym-
bols: DNS data (Yeung & Pope 1989); full line: from stochastic model for acceleration,

dashed line: model asymptote

approaches Co slowly as R~ increases: At the relatively high value
Rz = 1000, Co* is only 85% of Co.

Figure 11 shows the ratio of the Lagrangian to Eulerian time scales. It
may be seen that this ratio varies appreciably over the range of R~ accessible

to DNS and wind tunnel experiments.

A question of some interest and importance is the value of the
Kolmogorov constant Co. The estimate from the above model

[Co = CT(~) = 6.2] is, in essence, obtained by extrapolating from DNS
data in the R~ range 40-90. Other values given in the literature are:

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


LAGRANGIAN PDF METHODS 55
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0.4
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Figure 11 Ratio of Lagrangian to Eulerian time scales against Taylor-scale Reynolds

number. Symbols: DNS (Yeung & Pope 1989); line: stochastic model for acceleration,

Equations (83 86).

Co ~ 3.8_+ 1.9 from measurements in the atmospheric boundary layer
(Hanna 1981); Co ~ 5.0 from kinematic simulations (Fung et al 1992);

Co ~ 5.9 from the Lagrangian renormalized approximation theory
(Kaneda 1992); and Co = 5.7 based on the Langevin equation and further

assumptions applied to the constant-stress region of the neutral atmo-

spheric boundary layer (Rodean 1991). It is not unreasonable to suppose,

therefore, that Co is in the range 5.0-6.5.

With the Langevin and refined Langevin models (which contain no

Reynolds-number dependence) it is found that values of Co = 2.1 (Anand

& Pope 1985) and Co = 3.5 (Pope &Chen 1990), respectively, are required
to calculate accurately the dispersion behind a line source in grid turbulence

at Ra ~ 70. It is now apparent that these values--while being appropriate
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values of the model constants at moderate Reynolds number--do not

correspond to the value of the Kolmogorov constant Co.

A stochastic model for the fluid p~.rticle acceleration A*(t) (such 

Equation 78), combined with the equations ~* = U* and 1]* = A*, leads

to a modeled equation for the Eulerian joint pdf of velocity and accel-

eration, J~A. Such a model equation has not, to date, been applied to

inhomogeneous flows. Compared to the velocity joint pdf equation (stem-

ming from a Langevin equation), the equation forf~A has the advantages of

incorporating Reynolds-number effects and of representing Kolmogorov-

scale processes. This may be of particular value in the study of near-wall

flows.

5.5 Other Stochastic Models

Table 1 summarizes the stochastic Lagrangian models that have been

proposed for various fluid properties.

Table 1 Stochastic Lagrangian models of turbulence

Subject of model Authors

Fluid particle position Taylor (1921 

Fluid particle velocity

(single-particle dispersion)

Novikov (1963), Chung (1969), Frost (1975), 

(1979), Wilson et al (1981 a~z), Legg & Raupach (1982),

Durbin (1933), Ley & Thomson (1983), Wilson 

al (1983), Thomson (1984), Anand & Pope (1985), 
Dop et al (ii985), De Baas et al (1986), Haworth 

Pope ( 198611, Sawford (1986), Thomson (1986a), 

(1987), Thomson (1987), Maclnnes & Bracco (1992)

Fluid particle acceleration Sawford ( 199 I)

Relative velocity between Novikov (1963), Durbin (1980), Lamb (1981), Gifford
fluid particle pairs (1982), Sawford (I 982), Durbin (1982), Lee & 

(two-particle dispersion) (1983), Sawford & Hunt (1986), Thomson (1986b),

Thomson (1990)

Dissipation Pope &Chen (1990), Pope (I 991 

Velocity-gradient tensor Pope & Cheng (1988), Girimaji & Pope (1990)

Scalar (e.g. species Valifio & Dopazo (1991)
concentration)

Scalar and scalar gradient Fox (1992)
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Taylor (1921) proposed a stochastic model for a component of fluid par-

ticle position x*(t) in which successive increments Ax* ~ x*(t + At)- x*(t)

are correlated. It is interesting to observe that the statistics implied by

this model are identical to those from the Langevin equation (Durbin

1980).
For the fluid particle velocity U*(t), early proposals for the use of the

Langevin equation were made by Novikov (1963), Chung (1969), 

Frost (1975). The works cited in Table 1 from the period 1979-1984 reflect

active use of stochastic modeling of atmospheric dispersion. These models

are essentially of the Langevin type, with the primary issue being the

specification of the coefficients. In inhomogeneous flows, if the coefficients
are specified incorrectly, stochastic models can predict (incorrectly) that

an initially uniform distribution of particles becomes nonuniform. Most

of the works since 1985 address this issue; a complete explanation is

provided by Pope (1987).

The concentration variance of a contaminant in a turbulent flow can be
studied in terms of the relative dispersion of fluid particle pairs (Batchelor

1952). Hence stochastic models have been developed (see Table 1) for 

relative velocity between particles. These models have had some notable

successes in predicting and explaining experimental observations. For
example, Durbin (1982) shows that a two-particle dispersion model

accounts for the observed sensitivity of the scalar variance in decaying

grid turbulence to the initial scalar-to-velocity length scale ratio; and

Thomson (1990) shows that his model accounts for the nontrivial evolution
of the correlation coefficient between scalars emanating from a pair of line

sources in grid turbulence, which has been studied experimentally by

Warhaft (1984).
A key quantity in the specification of two-particle model coefficients is

the separation distance between the particles. Only recently (Yeung 1993)

have DNS results that can be used to develop and test such models become

available. Some insight is also provided by kinematic simulations (Fung

et al 1992).
The local deformation of material lines, surfaces, and volumes in a

turbulent flow is determined by the velocity gradient tensor following the

fluid (see e.g. Monin & Yaglom 1985). This motivated the development 

stochastic Lagrangian models for the velocity gradient tensor by Pope &

Cheng (1988) and Girimaji & Pope (1990). One use of such models is 

the calculation of the area density of premixed turbulent flame sheets (Pope

& Cheng 1988).

An important yet difficult topic is stochastic Lagrangian models ~b*(t)
for a set of scalars ~b ÷ (t)--such as temperature and species concentrations.

In conjunction with a Langevin model, a stochastic model for ~b*(t) leads
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to a modeled equation :for the Eulerian joint pdf of velocity and com-

position which can be used to study turbulent reactive flows. Examples of

applications of this approach can be found in Anand & Pope (1987), Masri

& Pope (1990), Haworth & E1 Tahry (1991), Correa & Pope (1992), 

(1993), Taing et al (1993), and elsewhere.

A set of compositions q~ has certain properties that are very different
from these of velocity U. Among these are: boundedness; localness of

interactions in composition space; and (in important limiting cases) lin-

earity and independence (Pope 1983b, 1985). These properties make the

modeling of 4~*(t) different and more difficult than the modeling of U*(t).

Currently there is no model that is even qualitatively satisfactory in all

respects.
The simplest model---proposed in several different contexts and with

different justifications--is the linear deterministic model:

- C4(co) (~b* - (q~)) (87)
dt

(Chung 1969, Yamazaki & Ichigawa 1970, Dopazo & O’Brien 1974, Frost

1975, Borghi 1988). Although (in application to inhomogeneous turbulent

reactive flows) the model is not without merit, because it is deterministic,
it clearly provides a poor representation of time series of the fluid particle

composition ~b+(t).

Also widely employed are stochastic mixing models (e.g. Curl 1963,

Dopazo 1979, Janicka et al 1979, Pope 1982). In the terminology of

stochastic processes, these models are point processes: The value of ~p*(t)
is piecewise constant, changing discontinuously at discrete time points.

Again, these models have their uses, but clearly the time series they gener-

ate, 4’*(0, are qualitatively different to those of turbulent fluid, 4,+(t).

Shown in Table 1 are the only proposed models that are stochastic, that

generate continuous time series, and that preserve the boundedness of
scalars. It is possible that a completely satisfactory model at this level

will not be achieved. Instead, it may be necessary to incorporate more

information, particularly that pertaining to scalar gradients (see e.g.

Meyers & O’Brien 1981, Pope 1990, Fox 1992).

6. CONCLUSION-

Lagrangian PDF methods are based on stochastic Lagrangian models--

that is, stochastic models for the evolution of properties following fluid
particles. For example, stochastic models for the fluid particle velocity

U*(t) (Equation 70) and for the turbulence frequency o~*(t) (Equation 66)
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lead to closed model equations for both the Lagrangian and Eulerian joint

pdfs of these quantities. The Eulerian pdf equation can be used as a

turbulence model to calculate the properties of inhomogeneous turbulence

flows. This equation is solved numerically by a Monte Carlo method which

is based, naturally, on the tracking of a large number of particles.

The primary stochastic models reviewed here are for velocity (based on

the Langevin equation), for the turbulent frequency (or dissipation), 

for the fluid particle acceleration. Lagrangian statistics extracted from

direct numerical simulations of homogeneous turbulence have played a

central role in the development of these models. Similar statistics at higher
Reynolds numbers and in inhomogeneous flows are needed to develop and

test the models further.
Other fluid properties--most importantly the composition S--can be

adjoined to the PDF method. This requires stochastic models for the

quantities involved. In spite of considerable efforts, deficiencies remain in

stochastic models for composition.
There is a close connection between Lagrangian PDF methods and

Reynolds-stress closures. This connection can be used to benefit both

approaches. In particular, new ideas in Reynolds-stress modeling (e.g.

Durbin 1991, Lumley 1992, Reynolds 1992) can be readily incorporated

in PDF methods.
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