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Abstract. We investigate the Lagrangian perturbation theory of a homogeneous and
isotropic universe in the non-relativistic limit, and derive the solutions up to the fourth
order. These solutions are needed for example for the next-to-leading order correction of the
(resummed) Lagrangian matter bispectrum, which we study in an accompanying paper. We
focus on flat cosmologies with a vanishing cosmological constant, and provide an in-depth
description of two complementary approaches used in the current literature. Both approaches
are solved with two different sets of initial conditions—both appropriate for modelling the
large-scale structure. Afterwards we consider only the fastest growing mode solution, which
is not affected by either of these choices of initial conditions. Under the reasonable approxi-
mation that the linear density contrast is evaluated at the initial Lagrangian position of the
fluid particle, we obtain the nth-order displacement field in the so-called initial position limit :
the nth order displacement field consists of 3(n-1) integrals over n linear density contrasts,
and obeys self-similarity. Then, we find exact relations between the series in Lagrangian and
Eulerian perturbation theory, leading to identical predictions for the density contrast and
the peculiar-velocity divergence up to the fourth order.
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1 Introduction

In the last years several analytic techniques have been proposed in order to study the inho-
mogeneities of the large scale structure (LSS) [1–7]. The basic idea of them is to solve the
equations for an irrotational and pressureless fluid of cold dark matter particles in terms of
a perturbative expansion. In the standard scenario the density and velocity field of the fluid
particle are the perturbed quantities. Thus the validity of the perturbative series depends
on the smallness of these fields. This approach is called Eulerian (or standard) perturbation
theory (SPT), since the equations are evaluated as a function of Eulerian coordinates [8].
Subsequent gravitational collapse leads to highly non-linear structures in the universe like
galaxies, clusters of galaxies, etc., i.e., regions where the local density field departs signifi-
cantly from the mean density. As a result, the series in SPT breaks down. This situation was
already realised in 1969 by Zel’dovich, who proposed an approximate solution which is above
all applicable to the highly non-linear regime by a Lagrangian extrapolation of the Eulerian
linear solution, inspired by the exact solution for inertial systems [9–12]: the Zel’dovich ap-
proximation (ZA). In general, the ZA can be derived from the full system of gravitational
equations and forms a subclass of solutions of the Lagrangian theory of gravitational insta-
bility (i.e., Lagrangian perturbation theory; LPT) [3, 13–16]. In LPT the only perturbed
quantity is the gravitational induced deviation of the particle trajectory field from the homo-
geneous background expansion. Stated in another way, LPT does not rely on the smallness
of the density and velocity fields, but on the smallness of the deviation of the trajectory
field, in a coordinate system that moves with the fluid. It can be shown that this implies
a weaker constraint on the validity of the series and hence can be maintained substantially
longer during the gravitational evolution (see the thorough discussion in [17–19]). Addi-
tionally, to obtain an SPT series one basically has to approximate the continuity- and the
Euler-equation order by order, so that, strictly speaking, mass- and momentum-conservation
are not fulfilled. In LPT, on the other hand, the Jacobian of the transformation from the
Eulerian to the Lagrangian frame is approximated and so is the precise localisation of the
fluid element, whereas the continuity- and Euler-equation are still exactly solved.

General perturbation and solution schemes to any order of Lagrangian perturbations
on any FLRW background have been given in the review [20], based on explicit evalua-
tions of the general first-order scheme including rotational flows [3, 13, 21], and the general
second-order scheme for irrotational flows [15]. The third-order scheme for irrotational flows
with slaved initial conditions (i.e., for an assumed initial parallelism of peculiar-velocity and
peculiar-acceleration) is given in [16], and the fourth-order scheme for this subclass of the
general solution has been derived in [22] (see further below for an explanation). Lagrangian
perturbation theory has also been extended to include pressure [23], and the series can be
derived from exact integrals of longitudinal and transverse parts [24, 25]. Extensive compar-
isons of LPT results against N-body simulations can be found in [2, 19, 26–32].
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In the present paper, we explicitly reexamine the Lagrangian framework in two different
representations and evaluate them up to the fourth order. For both representations we choose
a different set of initial conditions, which can be labeled as ‘Zel’dovich type’, since only one
initial potential has to be chosen instead of two in the general case. Note that the fastest
growing mode solution is not affected by either of these choices. At this point the reader
may ask, what is the point in deriving higher-order solutions for the purpose of modelling the
LSS. First of all, the fourth-order solution is needed for the next-to-leading order correction
to the LPT matter bispectrum, which we calculate in an accompanying paper. From a
theoretical point of view one also expects a match between SPT and LPT under certain
circumstances. In reference [5] the equivalence of SPT and LPT is shown, if one sums up
the perturbative solutions up to the third order. However it is not clear a posteriori if this
matching between SPT and LPT occurs at the fourth-order as well, because the convergence
of the LPT and SPT series need not to behave equally. Furthermore, there is a growing
interest to apply higher-order solutions in the context of resummation approaches, and we
consider an explicit demonstration and a thorough comparison with the SPT series useful.
Also, note that resummation techniques in the LPT framework are directly feasible rather
than complex scenarios in SPT [33].

Although the subject of this paper is quite technical, we try to keep it as readable
as possible, e.g., we restrict our calculations to an Einstein-de Sitter (EdS) universe. The
organisation of this paper is as follows: in section 2 we derive the evolution equations step by
step and confront two complementary ways of how to deal explicitly with LPT calculations.
We do so to shed light on two different looking formalisms used in the current literature.
Then, in section 3 we mention and explain our choice of initial conditions. In section 4 and 5
we show the results in both formalisms. Afterwards, we prepare our solutions to be used in
Fourier space and derive relations between the SPT and LPT series in section 6. Finally, in
section 7 we give a discussion and conclude. Our notation is introduced and defined in the
text, but is also summarised in table 1.

2 Systems of equations

According to the ΛCDM model and its current success in treating most of the problems in
observational cosmology [34], we live in a statistically homogeneous and isotropic universe.
The universe is expanding, thus the mean density ρ(t) is diluting. But this global effect
cannot compete with the gravitational potential locally. Hence local density fluctuations
δ(r, t) are the source of gravitational collapse, which leads to the observed LSS. We can
define the above quantities in terms of the full density ρ(r, t) as

ρ(r, t) = ρ(t)[1 + δ(r, t)] , (2.1)

where ρ is given by the assumed homogeneous background density in a Newtonian model
with hypertorus topology [35]. In this chapter we set up the evolution equations that are
sourced by

• 2.n.1: the full density ρ(r, t), which we label with “full-system approach”,

• 2.n.2: and for the density contrast δ(r, t), the “peculiar-system approach”,

step by step (n = 1, · · · , 4) and independent from each other. Readers who are only
interested in the final equations may go directly to page 5: Eqs. (2.21-2.23) are the equations
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in the full-system approach, whereas Eqs. (2.29-2.31) refer to the peculiar-system approach.
The perturbation equations are shown in section 2.4. Finally, in section 2.5, we clarify errors
and common misunderstandings in the current literature.

2.1 Eulerian equations

2.1.1 Full-system approach

Let us briefly go through the derivation of the equations of motion in the Lagrangian de-
scription. For simplicity we focus on flat cosmologies with a vanishing cosmological constant
although a more general implementation is straightforward [3, 13, 36]. As usual we denote the
density, the velocity and the acceleration fields by ρ, v, and g, respectively. In a non-rotating
(Eulerian) frame with coordinate r at cosmic time t, the equations for self-gravitating and
irrotational dust are [37]:

∂ρ(r, t)

∂t
+∇r· [ρ(r, t)v(r, t)] = 0 , (2.2)

εijk ∂rjvk(r, t) = 0 , (2.3)

εijk ∂rjgk(r, t) = 0 , (2.4)

∇r · v̇(r, t) = −4πGρ(r, t) , with dv/dt ≡ v̇ = g and ρ > 0 , (2.5)

(i = 1,2,3)

where Einstein summation over the spatial (Eulerian) components is implied. Eq. (2.2) is the
continuity equation and denotes mass conservation, Eq. (2.3) states the irrotationality of the
velocity, and should be viewed as an additional constraint to the field equation that requires
an irrotational acceleration field, i.e., to Eq. (2.4). The divergence of the field strength, here
with Euler’s equation inserted, is linked to the density source in Eq. (2.5). Note that we make
use of the convective time derivative, i.e., d/dt := ∂/∂t|r + v · ∇r, which we denote by an
overdot.

2.1.2 Peculiar-system approach

Eqs. (2.2)-(2.5) are written in terms of the full density ρ(r, t), thus including the homogeneous
and isotropic deformation of an expanding universe ρ(t) (≡ ρ0/a

3) for a matter dominated
universe). However, it is also possible to construct a set of equations [1, 13, 38] where Poisson’s
equation is only sourced by the density contrast δ, which is linked to the full density in the
following way: ρ(x, t) = ρ(t) [1 + δ(x, t)]. x denotes the comoving distance and is related to
the physical distance as r = ax, where a(t) is the cosmic scale factor. The Poisson equation
then reads [13, 39–41]:

∆xΦ(x, η) = α(η) δ(x, η) , α = 6/(η2 + k) , (2.6)

where we have switched to superconformal time η ≡
√
−k(1−Ω)−1/2 (we denote its derivatives

with d/dη ≡ ′) [38]. For an EdS universe we have the simplification a2dη = dt, with
a = (η0/η)

2, and α = 6/η2. The peculiar-evolution equations can then be written as (compare
with Eqs. (2.2-2.5)):

(i = 1,2,3)

∂δ(x, η)

∂η
+∇x · {[1 + δ(x, η)]u(x, η) a} = 0 , (2.7)

εijk ∂xj
uk(x, η) = 0 , (2.8)

εijk ∂xj
u′k(x, η) = 0 , (2.9)

∇x · gpec(x, η) = −α(η) δ(x, η) , with du/dη ≡ u′ = gpec and δ > −1 , (2.10)
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Eq. (2.8) states the irrotationality of the peculiar-velocity u = adx/dt, Eq. (2.9) the irro-
tationality of the (rescaled) peculiar-acceleration gpec ≡ d2x/d2η, and Eq. (2.10) links the
acceleration to the density contrast field.

2.2 From the Eulerian to the Lagrangian framework

The two set of equations, namely Eqs. (2.3-2.5) and Eqs. (2.8-2.10) are equivalent but have
technical subtleties with their pros and cons, which we point out in the following Lagrangian
description. We now briefly recall the corresponding Lagrangian systems that have been
introduced in [37] and [13] in the full-system approach, and in [13], appendix A, for the
peculiar-system. Note that the Lagrangian description can be formulated in the same La-
grangian coordinates in both systems, which is the reason why the peculiar-system is es-
sentially redundant. We nevertheless have chosen to confront the two approaches for the
purpose of assisting work that deals with either of the two representations. Additionally, the
peculiar-system approach is useful in order to link the LPT series to its counterpart in SPT,
which we do so in section 6.

2.2.1 Full-system approach

It is useful to transform from Eulerian coordinates ri to Lagrangian coordinates qi (i =
1, 2, 3), and we start with the transformation of Eqs. (2.2-2.5). We introduce integral curves
r = f(q, t) of the velocity field

df

dt
= v , (2.11)

and set the initial position at time t0 to

f(q, t0) =: q . (2.12)

The Jacobian of the transformation can be written as

Jij(q, t) := fi,j , J := det[Jij ] , (2.13)

where commas denote partial derivatives with respect to Lagrangian coordinates q. The
formal requirement J > 0 guarantees the existence of regular solutions and the mathematical
equivalence to the Eulerian system [20]. The continuity equation, Eq. (2.2), is then integrated
to yield ρ = ρ(q, t0)/J , and with the usage1 of g = f̈ we cast Eqs. (2.3-2.5) into [37]

εijkJ
−1
lj J̇kl = 0 , (2.14)

εijkJ
−1
lj J̈kl = 0 , (2.15)

J−1
ij J̈ji = −4πGρ0J

−1 , ρ0 = ρ(q, t0) . (2.16)

Note that Eq. (2.15) follows directly from Eq. (2.14). Hence from the irrotationality of the
velocity field we can conclude the irrotationality of the acceleration field (but not vice
versa!). This is shown in [15] and is valid for any integral curves, and for the perturba-
tive solutions at each order as well. With the inverse Jacobian, i.e., J−1

ij ≡ 1/J adj[Jij ] =

1We assume the equivalence of the acceleration field and the gravitational field strength, i.e., Einstein’s
equivalence principle.
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1/(2J) εilmεjpqJplJqm, and the use of Eq. (2.13) we have:

fi,n εnjkfl,jḟl,k = 0 , (2.17)

fi,n εnjkfl,jf̈l,k = 0 , (2.18)

εilmεjpqf̈j,ifp,lfq,m = −8πGρ0 . (2.19)

To solve Eqs. (2.17-2.19) we impose the following ansatz for the trajectory

f(q, t) = a(t)q + p(q, t) ⇒ fi,j = aδij + pi,j , (2.20)

where aq stands for the homogenous-isotropic background deformation, and p is the perturba-
tion—induced by gravitational interaction. Plugging Eq. (2.20) into Eqs. (2.17-2.19) we finally
obtain:

(a2
d

dt
− ȧa) εijk pk,j = a εijk pl,j ṗl,k + pi,n εnjk

[

pl,j ṗl,k − (a
d

dt
− ȧ) pk,j

]

, (2.21)

(a2
d2

dt2
− äa) εijk pk,j = a εijk pl,j p̈l,k + pi,n εnjk

[

pl,j p̈l,k − (a
d2

dt2
− ä) pk,j

]

, (2.22)

(a2
d2

dt2
+ 2äa) pl,l + a (pi,i p̈j,j − pi,j p̈j,i) +

ä

2
(pi,i pj,j − pi,j pj,i) + pci,j p̈j,i !

! = −(4πGρ0 + 3äa2) . (2.23)

In the above equations we have defined the co-factor element pci,j ≡ 1/2 εilmεjpqpp,l pq,m.
Eqs. (2.21-2.23) with ρ0> 0 form a closed set of Lagrangian evolution equations in the full-
system approach.

2.2.2 Peculiar-system approach

Analogous considerations lead to a similar set for Eqs. (2.8-2.10): the comoving trajectory
field is x = F (q, η), and with gpec = F ′′ it follows that:

Fi,n εnjkFl,jF
′

l,k = 0 , (2.24)

Fi,n εnjkFl,jF
′′

l,k = 0 , (2.25)

εilmεjpqF
′′

j,iFp,lFq,m = −2α δJF , (2.26)

where JF ≡ det[Fi,j ], and, as before, a prime denotes a derivative with respect to supercon-
formal time. For the set of Eqs. (2.24-2.26) we impose the ansatz:

F (q, η) = q +Ψ(q, η) ⇒ Fi,j = δij +Ψi,j , (2.27)

where the crucial difference in Eq. (2.27) with respect to Eq. (2.20) is the missing factor of
a, and F = f/a links the comoving to the physical trajectory field. In the peculiar-system
approach it is common to choose mass conservation by the following constraint:

ρ(x, η) d3x ≡ ρ(η) d3q , δ = 1/JF − 1 . (2.28)

Explicitly, in doing so we either restrict ourselves to a specific class of initial conditions [3]
or assumed initial quasi-homogeneity. We shall discuss this issue later in section 5.
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Plugging Eq. (2.27) into Eqs. (2.24-2.26) we have:

εijkΨ
′

k,j = εijkΨl,jΨ
′

l,k +Ψi,n εnjk
(

Ψl,jΨ
′

l,k −Ψ′

k,j

)

, (2.29)

εijkΨ
′′

k,j = εijkΨl,jΨ
′′

l,k +Ψi,n εnjk
(

Ψl,jΨ
′′

l,k −Ψ′′

k,j

)

, (2.30)

α(η)[JF − 1] =
[

(1 + Ψl,l)δij −Ψi,j +Ψc
i,j

]

Ψ′′

j,i . (2.31)

Similar to above we have defined Ψc
i,j ≡ 1/2 εilmεjpqΨp,lΨq,m. Eqs. (2.29-2.31) with JF > 0

is the closed set of Lagrangian evolution equations in the peculiar-system approach.

2.3 The perturbation ansatz

The full- and peculiar-systems are highly non-linear, thus it is common to seek approximate
solutions in terms of perturbative series.

2.3.1 Full-system approach

First we proceed with the ansatz for the full-system, i.e., Eqs. (2.21-2.23). We expand the
perturbation p(q, t) into a series, and factorise out the spatial and temporal dependence.
Additionally, we decompose the inhomogeneous deformation p(q, t) of the nth order into
purely longitudinal contributions, which we denote by Ψ(n)(q) ≡ ∇qφ

(n)(q), and purely
transverse contributions,2 denoted by T (n)(q) ≡ ∇q × A(n)(q); the temporal parts of the
nth-order correction are denoted by qn(t) or q

T
n (t):

p(q, t) = ǫ q1(t)Ψ
(1)(q) + ǫ2q2(t)Ψ

(2)(q) + ǫ3q3(t)Ψ
(3)(q) + ǫ4q4(t)Ψ

(4)(q)

+ ǫ3qT3 (t)T
(3)(q) + ǫ4qT4 (t)T

(4)(q) . (2.32)

The parameter ǫ is supposed to be small and dimensionless. In the most general cases,3

nontrivial solutions of the irrotationality condition (i.e., ∇q × T (n) 6= 0) of Eq. (2.17) and
Eq. (2.18) occur the first time at the order of ǫ2 and are henceforth required for higher-order
solutions. It should be pointed out that in addition to longitudinal (i.e., potential) modes,
Lagrangian transverse modes also affect the growth of density perturbations. Additional to
the above perturbation ansatz, we set the initial density ρ0 (on the RHS in Eq. (2.19)) to be

ρ(q, t0) = ρ(t0) [1 + ǫδ(q, t0)] , (2.33)

without loss of generality, where ρ(t0) and δ(q, t0) denote the initial background density and
the initial density contrast, respectively. In section 4 we shall need the above equation in
order to set up the initial data.

2.3.2 Peculiar-system approach

The perturbative treatment of Ψ is quite analogous to the above. However, because of
the LHS in Eq. (2.31), we need the explicit expansion of the Jacobian as well. This is
clearly a (technical) disadvantage in comparison with the evolution equations in the full-
system approach, where the Jacobian cancels out (but only in the absence of a cosmological
constant).

2The Lagrangian transverse parts are mandatory in the Lagrangian frame to guarantee irrotationality in
the Eulerian frame.

3See the general second-order solution for irrotational flows given in [15].
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The Jacobian of the transformation between the Eulerian and Lagrangian frame depends
on the displacement field Ψ(q, η),

JF (q, η) ≡ det [δij +Ψi,j] = 1 + Ψi,i +
1

2
[Ψi,iΨj,j −Ψi,jΨj,i] + det [Ψi,j] . (2.34)

Note that this is an exact relation, i.e., valid for the exact displacement field Ψ. As stated
above, the exact Ψ(q, η) is expanded in a series. As we shall see, the spatial parts of the per-
turbations agree with the spatial parts in Eq. (2.32) at each order, so we keep the previously
introduced notation for them, but relabel the temporal parts to D(η), E(η), etc.:

Ψ(q, η) = ǫD(η)Ψ(1)(q) + ǫ2E(η)Ψ(2)(q) + ǫ3F (η)Ψ(3)(q) + ǫ4G(η)Ψ(4)(q)

+ ǫ3FT (η)T
(3)(q) + ǫ4GT (η)T

(4)(q) .(2.35)

In the following we suppress the explicit temporal and spatial dependences. From Eq. (2.35)
we can approximate the Jacobian by:

JF (q, η) = 1 + ǫD µ
(1)
1 + ǫ2D2 µ

(1)
2 + ǫ2E µ

(2)
1 + ǫ3F µ

(3)
1 + 2ǫ3DE µ

(1,2)
2

+ǫ3D3 µ
(1)
3 + 2ǫ4DF µ

(1,3)
2 − ǫ4DFTΨ

(1)
i,j T

(3)
j,i

+ǫ4Gµ
(4)
1 + ǫ4E2 µ

(2)
2 +

1

2
ǫ4D2E εiklεjmnΨ

(1)
k,mΨ

(1)
l,nΨ

(2)
j,i , (2.36)

and the ath scalars µ
(n)
a ≡ µ

(n)
a (q) are defined by

µ
(n)
1 ≡ Ψ

(n)
i,i , (2.37)

µ
(n)
2 ≡ 1

2

(

Ψ
(n)
i,i Ψ

(n)
j,j −Ψ

(n)
i,j Ψ

(n)
j,i

)

, (2.38)

µ
(n)
3 ≡ det

[

Ψ
(n)
i,j

]

=
1

6
εikl εjmnΨ

(n)
j,i Ψ

(n)
m,kΨ

(n)
n,l , (2.39)

and specifically

µ
(m,n)
2 ≡ 1

2

(

Ψ
(m)
i,i Ψ

(n)
j,j −Ψ

(m)
i,j Ψ

(n)
j,i

)

. (2.40)

Note that µ
(m,n)
2 = µ

(n,m)
2 for any tensor Ψ

(n)
i,j and not only for longitudinal fields as pointed

out incorrectly in [38], since it only consists of interchangable dummy indices.

The above scalars will also be used for the spatial parts of the nth-order perturbations
in p, since they are identical.

2.4 The perturbation equations in Lagrangian form for an EdS background

As before, we start with the perturbation equations in the full-system approach. We first
concentrate on solving the source equation, Eq. (2.23), and write down the perturbative
irrotationality condition for the velocity field, Eq. (2.21). Afterwards, in section 2.4.2, we
perform the same steps for the peculiar-system.
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2.4.1 Full-system approach

Inserting the ansatz, Eq. (2.32) and Eq. (2.33) into Eq. (2.23), we obtain the following set of
equations to be solved:

ǫ0
{

4πGρ0 + 3äa2
}

= 0 , (2.41)

ǫ1
{

[

a2q̈1 + 2äaq1
]

µ
(1)
1 + 4πGρ0δ0

}

= 0 , (2.42)

ǫ2
{

[

a2q̈2 + 2äaq2
]

µ
(2)
1 +

[

2q1q̈1a+ äq21
]

µ
(1)
2

}

= 0 , (2.43)

ǫ3
{

[

a2q̈3 + 2äaq3
]

µ
(3)
1 + 2 [äq1q2 + aq1q̈2 + aq̈1q2]µ

(1,2)
2 + 3q̈1q

2
1µ

(1)
3

}

= 0 , (2.44)

ǫ4
{

[

a2q̈4 + 2äaq4
]

µ
(4)
1 +

[

äq22 + 2aq̈2q2
]

µ
(2)
2 + εilmεjpq

[

q̈2
q21
2

+ q̈1q1q2

]

Ψ
(1)
p,lΨ

(1)
q,mΨ

(2)
j,i

! + 2 [äq1q3 + aq̈1q3 + aq1q̈3]µ
(1,3)
2 −

[

äq1q
T
3 + aq̈1q

T
3 + aq1q̈

T
3

]

Ψ
(1)
i,j T

(3)
j,i

}

= 0 . (2.45)

Note that in the fourth-order part there is the occurrence of the transverse perturbation T (3);
thus, in order to solve this equation we have to constrain it with the irrotationality condition.
Inserting the ansatz into Eq. (2.21), the third- and fourth-order parts are:

ǫ3
{

[

aq̇T3 − ȧqT3
]

εijkT
(3)
k,j − [q1q̇2 − q̇1q2] εijkΨ

(1)
l,j Ψ

(2)
l,k

}

= 0 , (2.46)

ǫ4
{

[

aq̇T4 − ȧqT4
]

εijkT
(4)
k,j − [q1q̇3 − q̇1q3] εijkΨ

(1)
l,j Ψ

(3)
l,k !

! −
[

q1q̇
T
3 − q̇1q

T
3

]

εijkΨ
(1)
l,j T

(3)
l,k

}

= 0 . (2.47)

As mentioned above, the irrotationality of the acceleration field follows from the irrotation-
ality of the velocity field, as can be easily checked by time differentiating Eq. (2.46) and
Eq. (2.47) and comparing it directly with the perturbation equation of Eq. (2.22).

2.4.2 Peculiar-system approach

The peculiar equations, by construction, start at the order O(ǫ1). Inserting the ansatz,
Eq. (2.35), and the Jacobian, Eq. (2.36), into the source equation Eq. (2.31), delivers:

ǫ1
{

[

D′′ − αD
]

µ
(1)
1

}

= 0 , (2.48)

ǫ2
{

[

E′′ − αE
]

µ
(2)
1 −

[

αD2 − 2DD′′
]

µ
(1)
2

}

= 0 , (2.49)

ǫ3
{

[

F ′′ − αF
]

µ
(3)
1 + 2

[

D′′E +DE′′ − αDE
]

µ
(1,2)
2

! +
[

3D′′D2 − αD3
]

µ
(1)
3

}

= 0 , (2.50)

ǫ4
{

[

G′′ − αG
]

µ
(4)
1 +

[

2E′′E − αE2
]

µ
(2)
2

! + εilmεjpq

[D2E′′

2
+D′′DE − α

D2E

2

]

Ψ
(1)
p,lΨ

(1)
q,mΨ

(2)
j,i

! + 2
[

D′′F +DF ′′ + αDF
]

µ
(1,3)
2 −

[

D′′FT +DF ′′

T − αDFT

]

Ψ
(1)
i,j T

(3)
j,i

}

= 0 . (2.51)
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With the irrotationality condition of the peculiar-velocity, Eq. (2.29), we obtain:

ǫ3
{

F ′

T εijkT
(3)
k,j −

[

DE′ −D′E
]

εijkΨ
(1)
l,j Ψ

(2)
l,k

}

= 0 , (2.52)

ǫ4
{

G′

T εijkT
(4)
k,j −

[

DF ′ −D′F
]

εijkΨ
(1)
l,j Ψ

(3)
l,k

! −
[

DF ′

T −D′FT

]

εijkΨ
(1)
l,j T

(3)
l,k

}

= 0 . (2.53)

Again, one may obtain the irrotationality of the peculiar-acceleration by time differentiating
Eqs. (2.52-2.53).

2.5 Remark

Before we discuss the solutions of the aforementioned sets of equations we wish to say a few
words on their usage in the current literature.

Eqs. (2.29-2.31) are also reported in [38], however the irrotationality condition for the
peculiar-velocity (and hence for the peculiar-acceleration as well) is flawed. Specifically, once

the tensor T
(n−1)
i,j is nonzero, their expression for T (n) is false. T

(n−1)
i,j (q) 6= 0 means that

the inhomogeneous deformation tensor Ψi,j(q, η) consist also of an antisymmetric part, i.e.,
in the most general case T (2) 6= 0 and thus T (3+k) is not correct, with k ∈ N0.

The corrected irrotationality condition for the peculiar-velocity in [38] must read:

εijk
[

(1 + Ψn,n) δlj −Ψl,j +Ψc
l,j

]

Ψ′

k,l = 0 , (i = 1, 2, 3) . (2.54)

Eg. (2.54) is equivalent to Eq. (2.29), as can be seen by decomposing an arbitrary tensor Ψi,j

into a symmetric and an antisymmetric part and evaluating both equations. Note that the
subsequent perturbative calculation simplifies clearly with the usage of Eq. (2.29).

Finally, we would like to stress again, that Lagrangian and Eulerian transverse mo-
tions are not the same, since both frames are connected by a non-linear transformation (see
Eq. 2.28). In reference [42] the Eulerian irrotationality condition was not solved, and as a
wrong consequence they concluded that the Lagrangian transversality is zero at all orders,
as long as the motion is irrotational in the Eulerian frame. In order to avoid confusion with
this issue in the following, we shall refer to ‘irrotational’ only with respect to the Eulerian
frame, whereas we reserve ‘transverse’ to the Lagrangian frame.

3 From general initial conditions to ‘Zel’dovich type’ initial conditions

The general solution in Lagrangian perturbation theory consists of solving the above set of
equations with (3+1) initial condition functions. However, for an irrotational fluid we have
to specify only two initial potentials, one for the peculiar-velocity u(q, t0)≡∇q S1(q, t0), and
the other for the peculiar-acceleration gpec(q, t0)≡∇q S2(q, t0) (where the latter is linked to
the density contrast via the Poisson equation).

In [3] it has been shown that under the consideration of the most general ansatz for
the integral curves of the full-velocity field f , one may express the solutions in terms of the
general initial conditions setting. For example, in the full-system approach the first-order
integral curves f (1) read in terms of the initial conditions:

f (1) = aq + b1(t)u
D(q, t0) t0 + b2(t)u

R(q, t0) t0 + b3(t)g
D
pec(q, t0) t

2
0 , (3.1)
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where we have decomposed the peculiar-velocity in a curl-free part uD and a divergence-free
part uR, i.e., u = uD+uR, and similar for gpec, but in this formulation the vortical part

of gpec is zero, thus gpec = gD
pec. The explicit time coefficients bi(t) are not needed for this

demonstration, but see Eq. (23a) in [3].
To avoid formally lengthy expressions for the solutions we impose a functional de-

pendence on the two initial potentials S1 and S2. The simplest classes of such functional
constraints, that we call ‘Zel’dovich-type’ initial conditions, only prescribe one initial poten-
tial [15], e.g. S1 = S2 ≡ S. In the following, we describe two different settings, which are
consistent within the Zel’dovich approximation and are thus appropriate for studying the
inhomogeneities of the large-scale structure: the slaved initial conditions and the inertial
initial conditions.

Slaved initial conditions. We require the following parallelity condition between the
initial peculiar-velocity u(q, t0) and the initial peculiar-acceleration gpec(q, t0) (note that, in
general, parallelity allows for an arbitrary scalar proportionality function):

u(q, t0) = gpec(q, t0) t0 . (3.2)

From this it follows that uD(q, t0) = gDpec(q, t0) t0 and uR(q, t0) = gR
pec(q, t0) t0 = 0. Thus,

the integral curves (3.1) reduce to the expression

f
(1)
Z1 = aq + [b1(t) + b3(t)] u

D(q, t0) t0 . (3.3)

Since gpec(q, t0) is non-vanishing, we have ∇q · gpec(q, t0) ∝ δ0 initially, where the initial

density contrast figures in the exact expression δ = (1 + δ0)/J
F − 1.

In [15, 16, 43] it has been pointed out that the above restriction is appropriate for mod-
elling the large-scale structure: gravitational instability supports the tendency for density
perturbations to grow along potential flows—as long as one restricts the problem to irrota-
tional flows. These so-called slaved initial conditions are thus a dynamical outcome of the
Eulerian linear perturbation theory, where the growing mode supports the above parallelity
condition. Consequently, this class of initial conditions is well-motivated, and under this
initial assumption parallelity is then exactly preserved by the first-order Lagrangian solu-
tion. Physically, this setting implies initial density- and velocity perturbations, which is in
accordance with the prediction of standard inflationary theories. This initial condition is also
commonly used in N -body simulations.

With the constraint Eq. (3.2) we only need to specify one potential initially, and set
u(q, t0) := ∇qS(q, t0) and, thus,

gpec(q, t0) = ∇qS(q, t0) t0 . (3.4)

According to the initial density-perturbation which is specified to be ρ0 = ρ0 (1 + ǫδ0) we have
to relate the initial potential S(q, t0) to the potential φ(1)(q) of the longitudinal perturbations:
Ψ(1)(q) ≡ ∇qφ

(1)(q). We shall do so by using Poisson’s equation for Eq. (3.4). The slaved
initial conditions shall be used in the following section 4.
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Inertial initial conditions. Another class of initial conditions is to require that

gpec(q, t0) = 0 , (3.5)

which can be considered as a ‘Zel’dovich-type’ class as well. From this it follows that
uR(q, t0) = 0 and gD

pec(q, t0) = 0. Then, the integral curves (3.1) become

f
(1)
Z2 = aq + b1(t)u

D(q, t0) t0 . (3.6)

We call this class inertial initial conditions, since the initial acceleration is vanishing. In
contrast to the slaved initial conditions this implies that there is no initially prescribed
density perturbation, because Poisson’s equation dictates a vanishing source term initially
(see Eq. (4.3)). Instead we demand an initial homogeneous background density ρ(t0), and
the evolving density perturbations are produced solely by initial velocity perturbations [15].
As before we can then set initially the peculiar-velocity to u(q, t0) := ∇q S(q, t0). In this
case, mass conservation is given by the exact setting δ = 1/JF − 1.4 We shall use inertial
initial conditions to solve the equations in the peculiar-system approach (see section 5).

Although inertial initial conditions are of the ‘Zel’dovich-type’, it is difficult to justify
their physical motivation. The main reason is because it is nowadays believed that the CMB
fluctuations are of adiabatic nature, and the (non-relativistic) counter-part of adiabatic initial
perturbations would rather correspond to slaved initial conditions. However, as we shall see
in the upcoming sections, only decaying modes change, whereas the fastest growing modes
coincide with the use of both initial conditions.

In an expanding universe, the physical significance of the decaying modes is usually
negligible, because they are dominated by the fastest growing mode. However, in the highly
non-linear regime, decaying modes can affect the clustering via their coupling to growing
modes [16]. (Also, since the equations and solutions are time-reversable, their application
backward in time exchanges the role of the importance of growing and decaying modes.)
Restricting the general initial conditions setting is mainly motivated by simplification. There
is a price to pay for these restrictions when one is interested in the structural details at highly
non-linear stages at small scales, but this regime lies in the realm of N -body simulations.

4 Solutions of the perturbation equations for an EdS background:

full-system approach

In this section we solve the perturbation equations with the use of the slaved initial conditions,
see Eq. (3.2).

4.0 The zero-order solution

To find the solution for the homogeneous and isotropic background, Eq. (2.41), one has to
solve the Friedmann equation for the cosmic scale factor a(t). In the case of an EdS universe
we have:

a(t) =

(

t

t0

)2/3

. (4.1)

4With slaved initial conditions we may, however, assume an initial quasi-homogeneity, and hence approxi-
mate mass conservation by δ ≃ 1/JF−1, because of numerical smallness of the initial conditions. Alternatively,
we may choose a different set of Lagrangian coordinates to render this form of the integral exact, but this
will introduce formal complications. Zel’dovich’s original model implicitly supposed slaved initial conditions,
while the initial density contrast was approximated by zero in the density integral.
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Using the Friedmann equation again we can write the prefactor 4πGρ0 in Poisson’s equation
as 2/(3t20).

4.1 The first-order solution

Using the above result and the longitudinal ansatz Ψ(1)(q) ≡ ∇qφ
(1)(q), Eq. (2.42) reads:

[

q̈1 + 2
ä

a
q1

]

∆qφ
(1) = − 2

3t20a
2
δ0 . (4.2)

Comparing with Poisson’s equation for the initial potential S(q, t0), namely

∆qS(q, t0)/t0 = − 2

3t20
δ0 ≡ ∇q · gpec(q, t0) , (4.3)

we can read off the connection between the spatial dependence and the initial conditions.
The solution is then

[

q̈1 + 2
ä

a
q1

]

=
1

a2t20
; ∆qφ

(1)(q) ≡ µ
(1)
1 = ∆qS(q, t0) t0 . (4.4)

The solution of the time-evolution under the restriction Eq. (3.2) can be found by the formal
requirement q1(t0)=0, and the condition that the coefficient functions of the peculiar-velocity
and peculiar-acceleration are equal to 1 at t = t0 [16]: q̇1(t0) = 1/t0. The temporal solution
is then

q1 =
3

2

[

a2 − a
]

. (4.5)

4.2 The second-order solution

After separating the spatial part from the temporal part of Eq. (2.43) we have:

[

a2q̈2 + 2äaq2
]

= −
[

2q1q̈1a+ äq21
]

; µ
(2)
1 = µ

(1)
2 . (4.6)

This linear ordinary differential equation can be solved and is found to be

q2 =

(

3

2

)2 [

−3

7
a3 +

6

5
a2 − a+

8

35
a−1/2

]

, (4.7)

with the restrictions q2(t0)=0 and q̇2(t0)=0. The same restrictions are used for the higher-
order solutions as well.

4.3 The third-order solution

Eq. (2.44) consists of two separate spatial parts with its temporal parts, the first of which
describes a coupling between first- and second-order perturbations, the second is dependent
on cubic first-order perturbations. As suggested in [15] the third-order displacement is split
into two longitudinal parts, arising from these two specific dependencies and then solved
piecewise. Thus, the solution of Eq. (2.44) consists in solving the two sets of equations,
which we label with 3a and 3b. Additionally, we have the occurrence of a transverse solution
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at the third order from Eq. (2.46), which we label with 3c and separate it into spatial and
temporal parts as well. The three sets of equations then read:

[

q̈3a + 2
ä

a
q3a

]

= −3q̈1
q21
a2

; µ
(3a)
1 = µ

(1)
3 ,

[

q̈3b + 2
ä

a
q3b

]

= −2

[

ä

a2
q1q2 + q1

q̈2
a

+
q̈1
a
q2

]

; µ
(3b)
1 = µ

(1,2)
2 , (4.8)

[

q̇T3c −
ȧ

a
qT3c

]

=

[

q1
a
q̇2 −

q̇1
a
q2

]

; εijkT
(3c)
k,j = εijkΨ

(1)
l,j Ψ

(2)
l,k .

As mentioned earlier the purely longitudinal parts are µ
(n)
1 ≡ ∆qφ

(n). The purely transverse

part can be written in terms of a vector potential, i.e., T
(3c)
k ≡ εklm∂qlA

(3c)
m , where one degree

of freedom may be cancelled by employing the Coulomb gauge. Using the same restrictions
as before, we obtain for the temporal parts of the three above equations:

q3a =
(

3
2

)3 [−1
3a

4 + 9
7a

3 − 9
5a

2 + a− 16
105a

−1/2
]

,

a

q3b =
(

3
2

)3 [10
21a

4 − 66
35a

3 + 14
5 a

2 − 2a+ 16
35a

1/2 + 16
105a

−1/2
]

,

a

qT3c =
(

3
2

)3 [−1
7a

4 + 3
7a

3 + 1
5a

2 − a+ 8
7a

1/2 − 8
35a

−1/2
]

.

(4.9)

4.4 The fourth-order solution

The fourth-order part of the source equation, Eq. (2.45), consists of five separate spatial
parts with their respective temporal parts. Analogous to the last section we label them with
4a−4e. The fourth-order part of the irrotationality condition, Eq. (2.47), consists of two types

of spatial parts, the first type arises from longitudinal perturbations only, i.e., εijkΨ
(1)
l,j Ψ

(3)
l,k ,

whereas the second type results from a mixing term of longitudinal-transverse perturbations,

i.e., εijkΨ
(1)
l,j T

(3)
l,k . Due to the fact that the third-order longitudinal perturbations include the

solutions 3a and 3b, we obtain two terms contributing to the first type, which we label with
4f and 4g. The second type occurs only once which we label with 4h. The eight sets of
equations to be solved then read:

[

q̈4a + 2
ä

a
q4a

]

= −
[

ä

a2
q22 + 2

q̈2
a
q2

]

; µ
(4a)
1 = µ

(2)
2 ,

[

q̈4b + 2
ä

a
q4b

]

= −
[ q̈2
2a2

q21 +
q̈1
a2

q1q2

]

; µ
(4b)
1 = εilmεjpqΨ

(1)
p,lΨ

(1)
q,mΨ

(2)
j,i ,

[

q̈4c + 2
ä

a
q4c

]

= −2

[

ä

a2
q1q3a +

q̈1
a
q3a +

q1
a
q̈3a

]

; µ
(4c)
1 = µ

(1,3a)
2 ,

[

q̈4d + 2
ä

a
q4d

]

= −2

[

ä

a2
q1q3b +

q̈1
a
q3b +

q1
a
q̈3b

]

; µ
(4d)
1 = µ

(1,3b)
2 ,

[

q̈4e + 2
ä

a
q4e

]

=

[

ä

a2
q1q

T
3 +

q̈1
a
qT3 +

q1
a
q̈T3

]

; µ
(4e)
1 = Ψ

(1)
i,j T

(3c)
j,i ,
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and

[

q̇T4f −
ȧ

a
qT4f

]

=

[

q1
a
q̇3a −

q̇1
a
q3a

]

; εijkT
(4f)
k,j = εijkΨ

(1)
l,j Ψ

(3a)
l,k ,

[

q̇T4g −
ȧ

a
qT4g

]

=

[

q1
a
q̇3b −

q̇1
a
q3b

]

; εijkT
(4g)
k,j = εijkΨ

(1)
l,j Ψ

(3b)
l,k , (4.10)

[

q̇T4h −
ȧ

a
qT4h

]

=

[

q1
a
q̇T3c −

q̇1
a
qT3c

]

; εijkT
(4h)
k,j = εijkΨ

(1)
l,j T

(3c)
l,k .

Using the same restrictions as before, we obtain for the temporal parts of the eight sets of
equations:

q4a =
(

3
2

)4 [− 51
539a

5 + 4
7a

4 − 258
175a

3 + 12
5 a

2 − 48
49a

3/2

! − a+ 96
175

√
a+ 16

385a
−1/2 − 16

1225a
−2

]

,

a

q4b =
(

3
2

)4 [ 13
154a

5 − 46
105a

4 + 33
35a

3 − 6
5a

2 + 12
35a

3/2 + 1
2a− 8

35

√
a− 4

1155a
−1/2

]

,

a

q4c =
(

3
2

)4 [14
33a

5 − 44
21a

4 + 144
35 a

3 − 4a2 + 2a− 32
105

√
a− 32

231a
−1/2

]

,

a

q4d =
(

3
2

)4 [−20
33a

5 + 64
21a

4 − 216
35 a

3 + 32
5 a

2 − 4a+ 128
105

√
a+ 128

1155a
−1/2

]

,

a

q4e =
(

3
2

)4 [− 1
11a

5 + 8
21a

4 − 18
35a

3 + a− 32
35

√
a+ 32

231a
−1/2

]

,

a

qT4f =
(

3
2

)4 [−1
6a

5 + 16
21a

4 − 9
7a

3 + 4
5a

2 + 1
2a− 16

21

√
a+ 16

105a
−1/2

]

,

a

qT4g =
(

3
2

)4 [ 5
21a

5 − 116
105a

4 + 66
35a

3 − 4
5a

2 − 48
35a

3/2 + a+ 32
105

√
a− 16

105a
−1/2

]

,

a

qT4h =
(

3
2

)4 [− 1
14a

5 + 2
7a

4 − 3
7a

3 + 6
5a

2 − 24
7 a

3/2 + 9
2a− 16

7

√
a+ 8

35a
−1/2

]

.

(4.11)

5 Solutions of the perturbation equations for an EdS background:

peculiar-system approach

As promised above, we solve the perturbation equations in this section with inertial initial
conditions, see Eq. (3.5).

5.1 The first-order solution

The first-order part of the peculiar-source equation, Eq. (2.48), is

D′′(η)∆qφ
(1) = α(η)D(η)µ

(1)
1 , (5.1)

with α = 6/η2. We fix the constants of the temporal solution D(η) such that the normal-
isation coincides with the one obtained by linear SPT. Formally this can be achieved by
the requirement that D(η0) = 0, and that the coefficient function of the peculiar-velocity
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is initially equal to −5: u(q, η0) = 1/a(η0)D
′(η0)∇qφ

(1) = − 5
η0
∇qφ

(1). The full solution is
then

D = a− a−3/2 ; ∆qφ
(1)(q) ≡ µ

(1)
1 = −1

5
∆qS(q, η0) η0 , (5.2)

with the initial condition u(q, η0) = ∇qS(q, η0).

5.2 The second-order solution

Using Eq. (5.1) we can rewrite the second-order solution of Eq. (2.49) as

µ
(2)
1 = µ

(1)
2 ; E′′ − αE = −αD2 . (5.3)

Then we obtain

E = −3

7
a2 +

5

4
a− 2a−1/2 +

10

7
a−3/2 − 1

4
a−3 , (5.4)

with the restrictions E(η0) = 0 and E′(η0) = 0. The same restrictions are used for the
higher-order solutions as well.

5.3 The third-order solution

Analogous to section Eq. (4.3) the third-order solution consists of two longitudinal (a and b)
and one transverse solution (c). Using the lower-order results we can write the solutions of
Eq. (2.50) and Eq. (2.52) as follows:

F ′′

a − αFa = −2αD3 ; µ
(3a)
1 = µ

(1)
3 ,

F ′′

b − αFb = −2αD
[

E −D2
]

; µ
(3b)
1 = µ

(1,2)
2 , (5.5)

F ′′

c = −αD3 ; εijk T
(3c)
k,j = εijk Ψ

(1)
l,j Ψ

(2)
l,k .

For the three time-evolution functions we obtain under the same restrictions as above:

Fa = −1
3a

3 + 75
11a− 9a1/2 + 25

3 a
−3/2 − 6a−2 + 2

11a
−9/2 ,

Fb = −10
21a

3 − 15
14a

2 − 25
11a+

30
7 a

1/2 + 5
14a

−1/2 − 100
21 a

−3/2

+5
2a

−2 + 5
7a

−3 − 5
22a

−9/2 ,

F T
c = −1

7a
3 + 9a1/2 + 375

28 a
−1/2 − 3

2a
−2 + 1

12a
−9/2 − 125

6 .

(5.6)

5.4 The fourth-order solution

The solutions of the source equation, Eq. (2.51), and of the irrotationality condition, Eq. (2.53)
can be written as follows:

G′′

a − αGa = α
[

2D2E −E2
]

; µ
(4a)
1 = µ

(2)
2 , a

G′′

b − αGb = α

[

D4

2
−D2E

]

; µ
(4b)
1 = εiklεjmnΨ

(1)
k,mΨ

(1)
l,nΨ

(2)
j,i , a

G′′

c − αGc = −2α
[

DFa − 2D4
]

; µ
(4c)
1 = µ

(1,3a)
2 , a

G′′

d − αGd = −2α
[

DFb − 2D2E + 2D4
]

; µ
(4d)
1 = µ

(1,3b)
2 , a (5.7)

G′′

e − αGe = −αD4 ; µ
(4e)
1 = Ψ

(1)
i,j T

(3c)
j,i a ,

GT
f
′′

= −2αD4 ; εijk T
(4f)
k,j = εijk Ψ

(1)
l,j Ψ

(3a)
l,k , a

GT
g
′′

= −2αD2
[

E −D2
]

; εijk T
(4g)
k,j = εijk Ψ

(1)
l,j Ψ

(3b)
l,k , a

GT
h
′′

= −αD
[

D3 + Fc

]

; εijk T
(4h)
k,j = εijk Ψ

(1)
l,j T

(3c)
l,k .

– 15 –



We then obtain for the temporal parts of above sets of equations:

Ga = − 51
539a

4 + 25
42a

3 − 75
112a

2 − 4a3/2 + 2125
231 a− 300

49 a
1/2 + 25

7 a
−1/2 − 51

14a
−1

−250
231a

−3/2 + 25
8 a

−2 − 25
49a

−3 − 2
3a

−7/2 + 25
77a

−9/2 − 3
112a

−6 ,

a

Gb = − 13
154a

4 − 5
24a

3 − 6
7a

3/2 + 2375
924 a− 45

28a
1/2 + 27

56a
−1 − 125

66 a
−3/2

+45
28a

−2 − 1
12a

−7/2 − 10
77a

−9/2 + 1
28a

−6 ,

a

Gc = −14
33a

4 − 450
77 a

2 + 4
3a

3/2 + 125
14 a+ 100

33 a
−1/2 − 27a−1 + 1500

77 a−3/2

+25
6 a

−3 − 52
11a

−7/2 + 16
77a

−6 ,

a

Gd = −20
33a

4 + 25
21a

3 + 150
77 a

2 + 80
21a

3/2 − 4000
231 a+

75
7 a

1/2 − 1150
231 a

−1/2 + 75
7 a

−1

+250
231a

−3/2 − 50
7 a

−2 − 50
21a

−3 + 85
33a

−7/2 + 50
77a

−9/2 − 20
77a

−6 ,

a

Ge = − 1
11a

4 + 4a3/2 − 125
21 a+ 9a−1 − 250

33 a
−3/2 + 2

3a
−7/2 − 1

21a
−6 ,

a

GT
f = −1

6a
4 + 4a3/2 + 2500

33 a−1/2 − 36a−1 + 8
7a

−7/2 − 1
11a

−6 − 625
14 ,

a

GT
g = − 5

21a
4 − 5

14a
3 − 20

7 a
3/2 + 45

7 a
1/2 − 8125

231 a
−1/2 + 225

14 a
−1 + 45

28a
−2

−5
7a

−7/2 − 5
21a

−9/2 + 5
44a

−6 + 625
42 ,

a

GT
h = − 1

14a
4 − 18

7 a
3/2 + 125

6 a− 1125
28 a1/2 + 27

2 a
−1 − 125

6 a−3/2

+375
56 a

−2 + 29
84a

−7/2 − 1
24a

−6 + 625
28 ,

(5.8)

respectively.
The above solutions will be used in the following section. For our purpose, i.e., setting

up the relation to SPT, only the fastest growing modes will be relevant.

6 Practical realisation and exact relationship between LPT and SPT

In this section we explicitly link the perturbative series between LPT and SPT. Note that
we still restrict to an EdS universe and to the Zel’dovich-type subclasses of the general
Lagrangian solutions. As mentioned above, these subclasses consist of the slaved and the
inertial initial conditions.

Commonly, the dynamical quantities of the irrotational solutions in SPT are the density
contrast and the peculiar-velocity divergence, so it is convenient to use in the following the
peculiar-system approach only. In the latter we call Ψ the (gravitational induced) displace-
ment field.

6.1 The LPT series in Fourier space

We seek a series solution of the form

Ψ̃(k, t) =

∞
∑

n=1

[

Ψ̃
(n)

(k, t) + T̃
(n)

(k, t)
]

, (6.1)
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where a tilde denotes Fourier quantities, and we explicitly neglect the perturbation parameter
ǫ. Eq. (6.1) is the complementary series of Eq. (2.35) in Fourier space for the displacement
field. Then, using the solutions of section 5, it is possible to write the Fourier transform

of the spatial nth-order perturbations Ψ̃
(n)

(k) and T̃
(n)

(k) times the fastest temporal parts
∝ Dn(t) as5

Ψ̃
(n)

(k, t) = −iDn(t)

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! × S(n)(p1, . . . ,pn) δ̃
(1)(p1) · · · δ̃(1)(pn) , (6.2)

and

T̃
(n)

(k, t) = −iDn(t)

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! × S
(n)
T (p1, . . . ,pn) δ̃

(1)(p1) · · · δ̃(1)(pn) , (6.3)

where we have employed the shorthand notation p1···n = p1 + p2 + · · · + pn, S
(n) and S

(n)
T

are symmetrised vectors arising from longitudinal and transverse perturbations, respectively
(see appendix A.3). δ̃(1)(p) is the Fourier transform of the linear density contrast evaluated
at t0. We derive the above expressions in detail in appendix A.

It is important to be conscious of the origin of the linear density contrasts on the RHS in
Eqs. (6.2-6.3), since they include a specific limit. To see this we revisit the mass conservation:

δ(x, t) =
1

JF (q, t)
− 1 , with x(q, t) = q +Ψ(q, t) . (6.4)

Linearisation of this (for any displacement exact) Lagrangian expression implies for the spa-
tial part

δ(1)(x) ≈ −∆qφ
(1)(q) , (6.5)

with Ψ(1)(q) ≡ ∇qφ
(1)(q). In the ZA, the displacement field is very small, so it is appropriate

to use the limit x ≈ q, however neglecting the inherent non-linearity of the Lagrangian
approach in this step. Thus, the quantities x and q in Eq. (6.5) are interchangeable, and this
reads in Fourier space

δ̃(1)(p) ≈ p2φ̃(1)(p) , (6.6)

at the linear order. The n linear density contrasts in Ψ̃
(n)

and in T̃
(n)

result from n times the

usage of Eq. (6.6). Stated in another way, Ψ̃
(n)

and T̃
(n)

are affected by this approximation
at any order, but strictly speaking, only because the above linear approximation is used n
times. We call this setting the initial position limit (IPL).6

In [5, 44] the same setting was used implicitly in order to derive the longitudinal solution
Eq. (6.2) up to the third order in LPT.

5D(t) is the fastest growing mode solution of the linear growth function in the peculiar-system approach,
see Eq. (5.2). For an EdS universe it is D(t) = a(t).

6Given an arbitrary tensor function T (x, t) with the trajectory F ≡ x(t) = q + Ψ(q, t). Then the IPL is
TIPL(x, t) := limΨ→0 T (x, t) = T (q, t), which is a first-order approximation to T (F−1(x, t), t).
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6.2 Exact relationship between the density contrast and the displacement field

In SPT, the series of the Fourier transform of the density contrast can be formally written
as

δ̃(k, t) =

∞
∑

n=1

δ̃(n)(k, t) . (6.7)

Solving the Eulerian equations of motion order by order in SPT, the resulting nth-order
density contrast in Fourier space reads:

δ̃(n)(k, t) = Dn(t)

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! × F (s)
n (p1, . . . ,pn) δ̃

(1)(p1) · · · δ̃(1)(pn) , (6.8)

where the F
(s)
n ’s are the symmetrised SPT kernels given by the well-known recursion relation

[8, 45], and are explicitly given in [33] for n ≤ 4.

In order to find the link between the above series and the displacement field, we use
again mass conservation, i.e., Eq. (6.4). In Fourier space this is7

δ̃(k, t) ≡
∫

d3x eik·xδ(x, t) =

∫

d3q eik·q
(

eik·Ψ(q,t) − 1
)

. (6.9)

To get the last expression we used d3x = |∂x/∂q|d3q, with |∂x/∂q| ≡ JF . Taylor expanding
the above equation and explicitly using the LPT series, i.e., Eqs. (6.1-6.3), we can sum up
all specific contributions and associate them to their respective nth-order density contrasts.
The result is then

δ̃(n)(k, t) = Dn

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! ×X(s)
n (k;p1, . . . ,pn) δ̃

(1)(p1) · · · δ̃(1)(pn) , (6.10)

where we have defined the symmetrised kernels X
(s)
n ’s, which can be found in appendix B for

n ≤ 4. The Dirac-delta in Eq. (6.10) fixes k = p1···n and, as a result,

X(s)
n (k;p1, . . . ,pn)

∣

∣

∣

k=p1···n

= F (s)
n (p1, . . . ,pn) , (6.11)

valid at least up to the fourth-order in perturbation theory. As an important conclusion,
Eq. (6.9) leads to identical expansions either in SPT or LPT.

6.3 Exact relationship between the (peculiar-)velocity divergence and the dis-
placement field

Similar considerations can be made for the peculiar-velocity divergence. In Eulerian space
the peculiar-velocity is u = dx/dτ , where dτ = dt/a is the conformal time, and as before
x = q+Ψ. For an EdS universe the time dependence of the fastest growing mode is ∝ an to
nth order in perturbation theory, therefore d/dτE(τ)Ψ(2)(q) = 2HE(τ)Ψ(2)(q), and similar
for higher orders, where H is the conformal Hubble parameter. Furthermore, the divergence

7The expression δ̃(k, t) =
∫
d3q exp{ik ·q+ik ·Ψ}[1−JF ] is identical to Eq. (6.9), and leads to a somewhat

different expansion but equivalent results.
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of the peculiar-velocity is defined by ∇x · u(x, τ) ≡ θ(x, τ). Up to the fourth order in LPT
the peculiar-velocity divergence is then

θ(x, τ) = HD∇x ·Ψ(1)(q) + 2HE∇x ·Ψ(2)(q) + 3HF ∇x ·Ψ(3)(q)

+4HG∇x ·Ψ(4)(q) . (6.12)

To proceed it is useful to transform the divergences into Lagrangian coordinates, i.e., ∂/∂x =
|∂x/∂q|−1∂/∂q. Then, Eq. (6.12) translates to

JF θ(x, τ)

H = JF [JF
ij ]

−1
(

DΨ
(1)
j,i (q) + 2EΨ

(2)
j,i (q) + 3FΨ

(3)
j,i (q) + 4GΨ

(4)
j,i (q)

)

, (6.13)

where [JF
ij ]

−1 = 1/(2JF ) εilmεjpqJ
F
plJ

F
qm, with JF

ij = δij + Ψi,j. As before commas denote
derivatives with respect to Lagrangian coordinates q. The Fourier transform of θ(x, τ)/H is

θ̃(k, τ)

H(τ)
=

∫

d3q JF eik·q+ik·Ψ(q,τ) θ(x, τ)

H(τ)
, (6.14)

where we have used d3x = |∂x/∂q|d3q, and JF θ(x, τ)/H(τ) is given by Eq. (6.13). We seek
a perturbative solution of the form

θ̃(k, τ) =

∞
∑

n=1

θ̃(n)(k, τ) . (6.15)

Taylor expanding Eq. (6.14) and using the LPT results, i.e., Eqs. (6.2, 6.3), we obtain for the
nth-order peculiar-velocity divergence:

θ̃(n)(k, τ) = −HDn

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! × Y (s)
n (k;p1, . . . ,pn) δ̃

(1)(p1) · · · δ̃(1)(pn) , (6.16)

where the symmetrised kernels Y
(s)
n up to the fourth order are given in appendix B. Then

similar to the above we find

Y (s)
n (k;p1, . . . ,pn)

∣

∣

∣

k=p1···n

= G(s)
n (p1, . . . ,pn) , (6.17)

with G
(s)
n given by SPT recursion relation. Thus, the prediction of the peculiar-velocity

divergence agrees with its counterpart in SPT, which is:

θ̃(n)(k, t) = Dn(t)

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! × G(s)
n (p1, . . . ,pn) δ̃

(1)(p1) · · · δ̃(1)(pn) . (6.18)

The SPT kernels G
(s)
n up to the fourth order are given in [33] as well.
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7 Discussion and conclusions

We have calculated solutions of the Lagrangian perturbation theory (LPT) for an irrotational
fluid up to the fourth order. The derivation is shown in two separate approaches, and
we call them the full-system- and the peculiar-system approach. They are solved for two
sets of ‘Zel’dovich-type’ initial conditions: for the full-system approach we use the slaved
initial conditions, where the initial parallelity between the peculiar-velocity and the peculiar-
acceleration is assumed; for the peculiar-system approach we use the inertial initial conditions,
where the initial peculiar-acceleration is set to zero. Both scenarios are appropriate for
studying the large-scale structure.

Solutions up to the fourth order have been found for the first time in [22] (in the full-
system approach), whereas one of the current authors independently derived the solutions in
the peculiar-system approach.

In section 6 we transform the nth-order solution into Fourier space, see Eqs. (6.2-6.3).
These solutions contain only the fastest growing mode and consist of integrals over n linear
density contrasts. It is important to note that these results are derived in the so-called
initial position limit (IPL), in which it is assumed that the aforementioned linear density
contrast δ(1)(x) is evaluated in the vicinity of the initial Lagrangian position, i.e., in the
limit x ≈ q. Stated in another way, since the displacement field is small in the Zel’dovich
approximation, we can evaluate the results in this limit, and the resulting Poisson equation
for the displacement potential assumes therefore the linearised form ∆qφ

(1)(q) ≈ −δ(1)(q).
Working in the IPL requires a small displacement, the starting assumption of the LPT
series, but it nevertheless implies that we neglect the inherent non-linearity of the Lagrangian
approach in this step. Strictly speaking, only the linear displacement potential and the linear
displacement field are affected by this approximation, but due to the reason that the nth order
displacement field is dependent on n displacement potentials, this approximation carries over
to any order. This procedure is implicitly assumed in the current literature when working in
Fourier space.

Then, we express the Eulerian dynamical variables, i.e., the density contrast and the
peculiar-velocity divergence in terms of the gravitational induced displacement field Ψ: the
predictions in Fourier space yield identical expressions for the LPT and SPT series at each
order in perturbation theory in the IPL. However, this does not imply, that the convergence of
the series in SPT and LPT is identical, rather the above subclasses of the general Lagrangian
solution can be used to mimic the SPT series, as long as one restricts to the IPL. Additionally,
the IPL suggests that there is no proper distinction between the Fourier transform on Eulerian
space and on Lagrangian space. Relaxing the IPL would thus result in SPT and LPT
solutions in separated Fourier spaces, whereas these spaces are connected via a non-linear
transformation. This scenario may lead to an even better approximation of the Eulerian
variables in terms of LPT. However, this issue is beyond the scope of this paper and we leave
it as a future project.
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A Preparing the solutions for practical realisation

Our goal in this appendix is to derive Eqs. (6.2-6.3). To do so, we first have to transform
our spatial nth-order solutions, ∇q ·Ψ(n)(q) ≡ ∆qφ

(n)(q) and ∇q ×T (n), into Fourier space.

Then, in appendix A.2 and A.3, we obtain the full nth-order solutions Ψ̃
(n)

(k, t) and T̃
(n)

(k, t)
by multiplying the fastest growing mode solution with its spatial nth-order solution.

A.1 Fourier analysis

In this appendix we prepare the Lagrangian solutions for their use in Fourier space. Let us
start with our Fourier convention,

Ã(k) =

∫

d3x eik·xA(x) , A(x) =

∫

d3k

(2π)3
e−ik·xÃ(k) . (A.1)

As mentioned earlier, the nth-order longitudinal perturbation Ψ(n)(q) can be written in
terms of a potential ∇qφ

(n)(q). In Fourier space this means

− i piφ̃
(n)(p) = Ψ̃

(n)
i (p) . (A.2)

We shall first focus on the net longitudinal contributions. The spatial part of the nth-order
perturbation, e.g. Eqs. (5.3, 5.5, 5.7), yields:

φ̃(n)(p) = − 1

p2

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − p)

×κn(p1, . . . ,pn) φ̃
(1)(p1) · · · φ̃(1)(pn) . (A.3)

In above equation we employed the shorthand notation p1···n = p1 + p2 + · · · + pn, and the
kernels κ(n) are given by:

κ2(p1,p2) = −1

2

[

p21p
2
2 − (p1 · p2)

2
]

,

κ3a(p1,p2,p3) = −1

6
εikl p1ip2kp3l εjmn p1jp2mp3n ,

κ3b(p1,p2,p3) = −κ2(p2,p3)
κ2(p1,p23)

p223
,

κ4a(p1,p2,p3,p4) = −κ2(p1,p3)κ2(p2,p4)
κ2(p13,p24)

p213p
2
24

,

κ4b(p1,p2,p3,p4) = −6κ3a(p1,p2,p34)
κ2(p3,p4)

p234
, (A.4)

κ4c(p1,p2,p3,p4) = −κ3a(p2,p3,p4)
κ2(p1,p234)

p2234
,

κ4d(p1,p2,p3,p4) = −κ3b(p2,p3,p4)
κ2(p1,p234)

p2234
,

κ4e(p1,p2,p3,p4) = − [(p1 · p2)(p234 · p34)− (p1 · p34)(p234 · p2)]

! × (p1 · p234)
p2 · p34

p2234p
2
34

κ2(p3,p4) .
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It is worthwile to make the derivation of κ4e explicit. In order to write an expression for φ̃(4e),
we first note that the Fourier transform of the transverse part (last expression in Eq. (5.5))
can be written as

i
(

p× T̃
(3c)

)

i
=

∫

d3p1d
3p2d

3p3
(2π)9

(2π)3δ
(3)
D (p123 − p)

(p1 · p23)

p223
(p1 × p23)i

×κ2(p2,p3)φ̃
(1)(p1) φ̃

(1)(p2) φ̃
(1)(p3) . (A.5)

Since T (3) is purely transverse, we can write it as a curl of a vector potential, i.e., T
(3)
j =

εjlmA
(3)
m,l. Using this, Eq. (A.5) reads:

p2Ã
(3)
i − pi

(

p · Ã(3)
)

= −
∫

d3p1d
3p2d

3p3
(2π)9

(2π)3δ
(3)
D (p123 − p)

(p1 · p23)

p223

× (p1 × p23)i κ2(p2,p3)φ̃
(1)(p1) φ̃

(1)(p2) φ̃
(1)(p3) . (A.6)

The second term on the LHS may be removed by an appropriate choice of gauge, however,
this term will vanish anyway. Using Eq. (5.7), we can write:

φ̃(4e)(p) = − 1

p2

∫

d3p1d
3p2

(2π)6
(2π)3 δ

(3)
D (p12 − p)(p1 · p2)p1jεjlmp2lφ̃

(1)(p1) (A.7)

×
[

{

− 1

p22

∫

d3p3 d
3p4 d

3p5
(2π)9

(2π)3 δ
(3)
D (p345 − p2)

(p3 · p45)

p245

× (p3 × p45)m κ2(p4,p5)φ̃
(1)(p3) φ̃

(1)(p4) φ̃
(1)(p5)

}

+
p2m
p22

(p2 · Ã
(3)

(p2))

]

,

which yields κ4e.
Now we proceed with the derivation of the nth-order transverse perturbation. The

transversality requirement of T (n) in Fourier space reads:

T̃
(n)
j (p) = −i εjlm plÃ

(n)
m (p) . (A.8)

Using this and the transverse results in Eqs. (5.5,5.7), we can write

T̃
(n)

(p) = − 1

p2

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − p)

×ωn(p1, . . . ,pn) φ̃
(1)(p1) · · · φ̃(1)(pn) , (A.9)

where we have defined:

ω3c(p1,p2,p3) = [p1 (p123 · p23)− p23 (p123 · p1)] (p1 · p23)
κ2(p2,p3)

p223
,

ω4f (p1,p2,p3,p4) = [p1 (p1234 · p234)− p234 (p1234 · p1)] (p1 · p234)
κ3a(p2,p3,p4)

p2234
,

ω4g(p1,p2,p3,p4) = [p1 (p1234 · p234)− p234 (p1234 · p1)] (p1 · p234)
κ3b(p2,p3,p4)

p2234
,

ω4h(p1,p2,p3,p4) = [p1 (p1234 · p234)− p234 (p1234 · p1)]
p1 · ω

(s)
3c (p2,p3,p4)

p2234
. (A.10)
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It is important to note that the ω’s satisfy the condition:

p12···n · ωn(p1, . . . ,pn) = 0 . (A.11)

In the following it is also useful to symmetrise the above kernels. The symmetrisation pro-
cedure is [45]:

κ(s)n (p1, . . . ,pn) =
1

n!

∑

i∈Sn

κn(pi(1), . . . ,pi(n)) ,

ω(s)
n (p1, . . . ,pn) =

1

n!

∑

i∈Sn

ωn(pi(1), . . . ,pi(n)) . (A.12)

A.2 Time-evolution of the fastest growing mode for an EdS universe

For practical use (that will become clear below), we write the time-evolution of the fastest
growing mode in terms of the linear growth function D(t):

Da = −a Ga = − 51
539D

4 GT
f = −1

6D
4

Ea = −3
7D

2 Gb = − 13
154D

4 GT
g = − 5

21D
4

Fa = −1
3D

3 Gc = −14
33D

4 GT
h = − 1

14D
4 .

Fb = −10
21D

3 Gd = −20
33D

4

Fc = −1
7D

3 Ge = − 1
11D

4

(A.13)

For general cosmologies, Ωm 6= 1, ΩΛ 6= 0, one can also find approximate solutions of the
time-evolution, i.e., for Eqs. (5.4, 5.6, 5.8). For the first-order up to the third-order solutions
this is often performed by employing fitting factors. However, the impact of Ωm 6= 1 on the
perturbative kernels is very little and can often be neglected, and we assume that this is also
the case for the fourth-order solution.

A.3 Perturbative displacement fields

By using Poisson’s equation, the linear displacement potentials in Eqs. (A.3, A.9) can be
linked to (the spatial part of) the linear density contrast: p2φ̃(1)(p) ≈ δ̃(1)(p). This is the
initial position limit. Then, all we have to do is combine the results from the last two sections,

e.g., the Fourier transform of the second-order displacement fields is Ψ̃
(2)

(k, t) = E(t)Ψ̃
(2)

(k).
Using Eq. (A.2) we finally obtain the (symmetrised) result:

Ψ̃
(n)

(k, t) = −iDn(t)

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! × S(n)(p1, . . . ,pn) δ̃
(1)(p1) · · · δ̃(1)(pn) . (A.14)
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S(n) are the longitudinal perturbative vectors, themselves dependent on the symmetrised

nth-order kernels κ
(s)
n (see Eqs. (A.4)):

S(1)(p1) =
p1

p21
,

S(2)(p1,p2) =
3

7

p12

p212

κ
(s)
2

p21p
2
2

,

S(3)(p1,p2,p3) =
p123

p2123 p
2
1p

2
2p

2
3

[

1

3
κ
(s)
3a − 10

21
κ
(s)
3b

]

,

S(4)(p1,p2,p3,p4) =
p1234

p21234 p
2
1p

2
2p

2
3p

2
4

[

51

539
κ
(s)
4a − 13

154
κ
(s)
4b

! −14

33
κ
(s)
4c +

20

33
κ
(s)
4d +

1

11
κ
(s)
4e

]

,

(A.15)

where we have suppressed the dependences of κ
(s)
n ≡ κ

(s)
n (p1, . . . ,pn).

Computing the transverse part T̃
(n)

(k, t) is then completely straightforward. From
Eq. (A.9) and Eq. (A.13) we obtain

T̃
(n)

(k, t) = −iDn(t)

∫

d3p1 · · · d3pn
(2π)3n

(2π)3δ
(3)
D (p1···n − k)

! × S
(n)
T (p1, . . . ,pn) δ̃

(1)(p1) · · · δ̃(1)(pn) , (A.16)

and the only non-vanishing S
(n)
T ’s are

S
(3)
T (p1,p2,p3) =

1

7

ω
(s)
3c

p2123 p
2
1p

2
2p

2
3

,

S
(4)
T (p1,p2,p3,p4) =

1

p21234 p
2
1p

2
2p

2
3p

2
4

[

1

6
ω

(s)
4f − 5

21
ω

(s)
4g +

1

14
ω

(s)
4h

]

,

(A.17)

up to the fourth order. The ω’s are given in Eqs. (A.10). It is important to note that

p12···m · S(n)
T (p1, . . . ,pn) only vanishes if m = n, due to transverseness.

B Kernels for the relationship between SPT and LPT

The symmetrised kernels for Eq. (6.10) are

X
(s)
1 (k;p1) = k · S(1)(p1) , (B.1)

X
(s)
2 (k;p1,p2) = k · S(2)(p1,p2) +

1

2
k · S(1)(p1)k · S(1)(p2) , (B.2)

X
(s)
3 (k;p1,p2,p3) = k ·

[

S(3)(p1,p2,p3) + S
(3)
T (p1,p2,p3)

]

+
1

6
k · S(1)(p1)k · S(1)(p2)k · S(1)(p3)

+
1

3

{

k · S(1)(p1)k · S(2)(p2,p3) + two perms.
}

, (B.3)
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X
(s)
4 (k;p1,p2,p3,p4) = k ·

[

S(4)(p1,p2,p3,p4) + S
(4)
T (p1,p2,p3,p4)

]

+
1

24
k · S(1)(p1)k · S(1)(p2)k · S(1)(p3)k · S(1)(p4)

+
1

3

{

1

2
k · S(2)(p1,p2)k · S(2)(p3,p4) + two perms.

}

+
1

4

{

k · S(1)(p1)k ·
[

S(3)(p2,p3,p4) + S
(3)
T (p2,p3,p4)

]

+ three perms.

}

+
1

6

{

1

2
k · S(1)(p1)k · S(1)(p2)k · S(2)(p3,p4) + five perms.

}

, (B.4)

and for Eq. (6.16)

Y
(s)
1 (k;p1) = k · S(1)(p1) , (B.5)

Y
(s)
2 (k;p1,p2) = −4

7

[

1− (p1 · p2)
2

p21p
2
2

]

+
1

2
k · S(1)(p1) +

1

2
k · S(1)(p2) . (B.6)

Y
(s)
3 (k;p1,p2,p3) =

1

3

{

k · S(2)(p1,p2) +
1

2
k · S(1)(p1)k · S(1)(p2)

−8

3
p12 · S(2)(p1,p2)k · S(1)(p3) + two perms.

}

+ 3p123 · S(3) − 3
κ(3a,s)

p21p
2
2p

2
3

+
18

7

κ(3b,s)

p21p
2
2p

2
3

, (B.7)

Y
(s)
4 (k;p1,p2,p3,p4) = −36

49

κ(4a,s)

p21p
2
2p

2
3p

2
4

+
6

7

κ(4b,s)

p21p
2
2p

2
3p

2
4

+
8

3

κ(4c,s)

p21p
2
2p

2
3p

2
4

− 80

21

κ(4d,s)

p21p
2
2p

2
3p

2
4

−4

7

κ(4e,s)

p21p
2
2p

2
3p

2
4

+ 4p1234 · S(4) +
1

4

{

− 2k · S(1)(p1)
κ(3a,s)(p2,p3,p4)

p22p
2
3p

2
4

+
8

7
k · S(1)(p1)

κ(3b,s)(p2,p3,p4)

p22p
2
3p

2
4

+
1

6
k · S(1)(p1)k · S(1)(p2)k · S(1)(p3)

+k ·
[

S(3)(p1,p2,p3) + S
(3)
T (p1,p2,p3)

]

+ three perms.

}

+
1

6

{

− 4

7
k ·S(2)(p1,p2)

[

1− (p3 · p4)
2

p23p
2
4

]

− 2

7
k ·S(1)(p1)k ·S(1)(p2)

[

1− (p3 · p4)
2

p23p
2
4

]

+ five perms.

}

+
1

12

{

k · S(1)(p1)k · S(2)(p2,p3) + eleven perms.

}

. (B.8)

The validity of Eq. (6.10) and Eq. (6.16) with the kernels given in appendix B has been
checked with Mathematica, and the respective code can be obtained upon request:
rampf@physik.rwth-aachen.de.
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ri Eulerian coordinate (i = 1, 2, 3) Eq. (2.2)

t cosmic time (d/dt =˙) Eq. (2.2)

qi Lagrangian coordinate (i = 1, 2, 3) Eq. (2.12)

η superconformal time (d/dη = ′ ) Eq. (2.6)

α(η) prefactor in the peculiar Poisson equation Eq. (2.6)

ρ(r, t) density field Eq. (2.2)

v(r, t) velocity field Eq. (2.3)

g(r, t) acceleration field Eq. (2.3)

xi comoving distance (i = 1, 2, 3) Eq. (2.6)

u(x, η) peculiar velocity Eq. (2.10)

gpec(x, η) rescaled peculiar acceleration field Eq. (2.24)

ρ(t) mean density Eq. (2.5)

δ(x, η) density contrast Eq. (2.1)

f(q, t) trajectory of the fluid particle Eq. (2.20)

F (q, η) peculiar trajectory of the fluid particle Eq. (2.27)

J Jacobian in the full-system approach Eq. (2.13)

JF Jacobian in the peculiar-system approach Eq. (2.26)

ρ0 initial density at q and t0 Eq. (2.16)

p(q, t) perturbation in the full-system approach Eq. (2.32)

pcij cofactor element of the perturbation p Eq. (2.23)

Ψ(q, η) perturbation in the peculiar-system approach Eq. (2.35)

(also called displacement field)

Ψc
ij cofactor element of the perturbation Ψ Eq. (2.31)

Ψ(n)(q) longitudinal perturbation to the nth order (≡ ∇qφ
(n)) Eq. (2.32)

T (n)(q) transverse perturbation to the nth order (≡ ∇q ×A(n)) Eq. (2.32)

ǫ small and dimensionless perturbation parameter Eq. (2.32)

qn(t) growth function of the nth order in the perturbation Eq. (2.32)

(full-system approach)

D(η), E(η), · · · linear growth function, second order growth function, · · · Eq. (2.35)

(peculiar-system approach)

µ
(n)
a (q) ath scalar to the nth order Eq. (2.37)

S(q, t0) initial potential Eq. (3.4)

S(n) perturbative vector arising from longitudinal perturbations Eq. (A.15)

S
(n)
T perturbative vectors arising from transverse perturbations Eq. (A.15)

Table 1. Used notation.

C Used notation

In Tab. 1 we give an overview of the notation used in this work.
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