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Abstract

Physics–informed neural networks (PINNs) leverage neural–networks to find the solutions of partial differential equa-
tion (PDE)–constrained optimization problems with initial conditions and boundary conditions as soft constraints.
These soft constraints are often considered to be the sources of the complexity in the training phase of PINNs. Here,
we demonstrate that the challenge of training (i) persists even when the boundary conditions are strictly enforced,
and (ii) is closely related to the Kolmogorov n–width associated with problems demonstrating transport, convection,
traveling waves, or moving fronts. Given this realization, we describe the mechanism underlying the training schemes
such as those used in eXtended PINNs (XPINN), curriculum regularization, and sequence–to–sequence learning. For
an important category of PDEs, i.e., governed by non–linear convection–diffusion equation, we propose reformulating
PINNs on a Lagrangian frame of reference, i.e., LPINNs, as a PDE–informed solution. A parallel architecture with
two branches is proposed. One branch solves for the state variables on the characteristics, and the second branch
solves for the low–dimensional characteristics curves. The proposed architecture conforms to the causality innate to
the convection, and leverages the direction of travel of the information in the domain. Finally, we demonstrate that
the loss landscapes of LPINNs are less sensitive to the so–called “complexity” of the problems, compared to those in
the traditional PINNs in the Eulerian framework.

Keywords: Deep learning, Kolmogorov n–width, Partial differential equations, Method of characteristics,
Lagrangian frame of reference, Physics-informed neural network

1. Introduction

The evolution of many physical phenomena and engineering systems can be derived from first principles leading
to governing equations in the form of partial differential equations (PDEs). Although analytical solutions of many
of non–linear PDEs are seldom known, development of numerical methods has made approximation of the solution
possible. One of the paradigms of solving for a state of the system is through optimization. A solution satisfies the
governing PDE,

R (w (x, t)) :=
∂w (x, t)
∂t

− N (w (x, t)) = 0, (1)

where w (x, t) is the state parameter on a spatial domain of x ∈ Ω and t ∈ [0,T ] with appropriate boundary and initial
conditions. Therefore, finding a solution of a PDE, w∗, is equivalent to finding a minimizer of the residual equation,
i.e.,

w∗ = argmin
w

R (w (x, t)) , (2)
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subject to boundary and initial conditions as constraints. Iterative methods are traditionally used to find minimizers of
high–dimensional non–linear residual equations.

On the other hand, in the absence of the governing equations, where the phenomena/task cannot be described
using first principles, machine learning (ML) methods such as artificial neural networks (ANNs) are recognized to
be compelling. Therefore, the application of ANNs to solve the systems with known governing equations seem to
be superfluous. Nevertheless, in recent years, these paradigms have merged in physics–informed neural networks
(PINNs) [1], such that ANNs are trained to find the minimizer of PDE–constrained optimization.

Despite the maturity of the developed numerical methods of solving PDEs, the flexibility in implementation,
readily available adjoints via automatic differentiation, and the low inference cost of PINNs have made it an appealing
tool [2], especially in inverse problems and inverse design [3], ill–posed/conditioned problems [4], and control [5].

However, the training phase of PINNs, equivalent to solving the PDEs, faces some challenges [6–14]. The inno-
vations and attempts to improve the accuracy of the PINNs can be classified into two categories. In the first category,
the ANN architecture and loss are targeted to improve the training behavior. In [8], it is shown that the eigenval-
ues of the Neural Tangent Kernels (NTKs) of different loss components explains the training behavior. Accordingly,
penalty weights in the loss function are adaptability determined at each iteration of the training. Similarly in [9],
the unbalanced gradients of the components of the loss is associated with training failure, and annealing the learning
rate is proposed. It is also demonstrated that the architecture of the network can meaningfully change the stiffness
of the gradients in the learning phase, and therefore it is suggested that a specialized architecture can be beneficial
to specific problems [9]. Subsequently, reformulating the constraints using Augmented Lagrangian method (ALM)
[15] demonstrates a flatter/smoother loss landscape, and therefore leads to a more favorable training behavior [13],
compared to the originally proposed penalty terms [1]. Notably, the loss landscape of PINNs are less smooth com-
pared to purely data–driven ANNs [10, 13]. The raggedness of loss landscape explains why PINNs are more prone
to converge to an unfavorable local minima. Such challenge depends on both the governing equations, and system
parameters [6, 10, 13].

In the second category, prior knowledge/property of the system is enforced. For instance, in hyperbolic systems,
e.g., inviscid Burgers’ equation, total variation diminishing (TVD), and entropy inequalities can be imposed in ad-
dition to artificial viscosity [16]. In [6], the flux term of non–linear convection diffusion had to be modified to help
with the accuracy of the solution. However, such solutions are PDE specific, and are not applicable to all the chal-
lenging test cases. Approaches such as curriculum learning (training on a simple problem and transferring the learned
weights to the harder problems) [10], adaptive sampling (in both space and time) [14], or a very similar sequence–
to–sequence learning (decomposing the temporal domain) [10] can be applied to a wider range of problems without
any prior assumptions. Note that sequence–to–sequence learning [10] or adaptive sampling [14] are different than
of the parallel–in–time decomposition of the temporal domain, where different networks, each corresponding to one
of the temporal subdomains, are trained [11]. In many of the aforementioned studies, the same network is shown
to be capable of expressing a more accurate solution, given additional considerations in the loss and training. Such
experiments demonstrate that the used architectures are expressive enough, and therefore, the challenge lies in the
training regime. It is argued that all such challenges can be more naturally overcome by respecting the underlying
spatio–temporal causality [12]. One natural approach to impose such causality is by prioritizing the earlier time steps
in the training phase [12].

Moreover, the type of the differential operators, i.e., parabolic, hyperbolic, or elliptic, is believed to describe
the difficulty in discovery of the minima. In the case of elliptic and parabolic PDEs, the generalization error, i.e.,
the difference between a global minimizer of the loss and the solution to the PDEs, converges to zero under certain
conditions, given enough number of data points [17]. However, similar results are lacking for hyperbolic equations.
More importantly, the optimization error, i.e., the difference between the global and local minima given some data
points, is poorly understood.

Table 1 summarizes challenging test cases and the proposed remedies. While chaotic systems, e.g., turbulent
flow, and Lorenz 63, and higher order derivatives in governing equations, are known to be challenging since the
earliest formulation of PINNs [12], they merely cannot explain the difficulty in training of non–chaotic systems, e.g.,
advection/convection, reaction, reaction-diffusion, Poisson’s, or wave equations.

Although the previous studies have described some of the difficulties and dynamics of the training phase, there is
no universal theory on convergence rate or a priori measure of success of the training, and the present error estimators
need to be tightened for practical non–linear systems [20]. In this paper, we provide some evidence that connects
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Table 1: Identified challenging problems in the training of PINNs.

Study PDEs Domain Test case Proposed remedy
[6] Convection–diffusion 1D Buckley–Leverett Introducing viscosity

[14]

Reaction–diffusion
Adsorption/

desorption –
surface diffusion

1D
2D
3D

Allen-Cahn
Cahn-Hilliard

Time adaptive
(sampling/marching),
and mini–batching,
and regularizing the

loss components

[7] Euler 1D Sod’s shock tube
Characteristic form,

Oversampling the shock
[18] Convection–diffusion 1D Buckley–Leverett Tuning the flux term

[9]
Helmholtz

Klein–Gordon
Navier– Stokes

2D
1D
2D

N/A
N/A

Lid–driven cavity
(Re = 100)

Annealing
the learning rate

[11]
Advection

Shallow-water Spherical Traveling feature Parallel in
time decomposition

[10]
Convection

Reaction
Reaction-diffusion

1D Challenging
in specific regimes

Curriculum
regularization, or

Sequence–to–sequence
learning

[19]
Inviscid Burgers’

Convection–diffusion 1D
Shock

Rarefaction and
shock

Enriching the data–set,
and artificial viscosity

[8] Wave 1D Traveling wave Adaptive penalty

[12]
Lorenz 63

Kuramoto–Sivashinsky
Navier–Stokes

R3

1D
2D

N/A
Regular and chaotic

Decaying turb-
ulence (Re = 100)

Causal training of loss,
and/or transformer

architecture

[13] Poisson’s 1D
2D

High wave–number
forcing

Enforcing the
constraints by ALM

[16]
Euler

Convection–diffusion 1D Sod’s shock tube
Buckley–Leverett

TVD, and
entropy inequalities

Ours
Convection–diffusion

Viscous Burgers’ 1D Traveling feature,
Traveling shock Lagrangian PINN

the dimensionality of solution, in the Kolmogorov n–width sense, to the difficulties in the training phase. Moreover,
we explain how the previous remedies connects to the presented description of complexity. Subsequently, we add an
unrecognized complex test case, to the existing list of table 1, i.e., the Burgers’ equation in the presence of a shock
sweeping the domain (traveling shock). Specifically, we demonstrate that in the cases where the shock sweeps long
distances, the network fails to train, a similar behavior as seen for convection equation [10]. We emphasize that PINN
is successfully applied to viscous Burgers’ equation where a stationary shock forms [1].

Finally, we focus on an important category of the recognized challenging cases, i.e., convection–diffusion prob-
lems. We propose Lagrangian physics–informed neural networks (LPINNs) to conform to the “causality” in the
system. LPINNs’ architecture is informed by the direction of travel of information in the domain, i.e., along the char-
acteristic curves. In this architecture the solution is to be learned with an inherently reduced dimensionality, a simpler
task for any of ML architectures.

The paper is organized as follows. In section 2, some of the challenging cases of training of PINNs are discussed.
In section 3, we focus on an important canonical set of problems governed by non–linear convection–diffusion equa-
tion, and review the traditional architecture of PINNs, and propose LPINNs in section 3.1 and section 3.2, respec-
tively. These architecture are compared with numerical experiments in section 4, and the conclusions is followed in
section 5.
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2. Kolmogorov n–width of the Failure Modes of PINNs

In this section, we connect the dimensionality of the problem to the training difficulties in PINNs. Specifically, we
provide numerical evidence to connect the decay of singular values of the snapshots to the difficulties in the training
phase. This measure corresponds to transport phenomena, convection, traveling waves, and moving fronts. Although
limited attempts were made to quantify connection of dimensionality and slow convergence of some specific classes of
ML architectures [21, 22], many of the questions regarding the choice of activation functions, norms, and architecture
remains open [21]. Formal investigations of such questions are out of the scope of the present paper.

In approximation theory, Kolmogorov n–width is a measure of how close n–dimensional subspaces can approxi-
mate the solution manifold,M [23]. The following definitions briefly explains this measure [24].

Definition: Let M be a normed linear space and M̃n any n-dimensional subspace of M. For each x ∈ M,
δ
(
x,M̃n

)
shall denote the distance of the n-dimensional subspace M̃n from x, defined by

δ
(
x;M̃n

)
= inf

{
‖x − y‖X : y ∈ M̃n

}
. (3)

If there exist a y∗ ∈ M̃n for which δ
(
x,M̃n

)
= ‖x − y∗‖, then y∗ is the best approximation of x from M̃n. Extending

the concept from a single element of x to S, a given subset ofM, the deviation of S from M̃n is defined as

δ
(
S;M̃n

)
= sup

x∈S
inf

y∈M̃n

‖x − y‖, (4)

representing the worst element of x ∈ S approximated in M̃n.
Definition: Kolmogorov n–width ofM, dn (M), is defined as

dn (S;M) := inf
M̃n

δ
(
S;M̃n

)
, (5)

where the infimum is taken over all n–dimensional subspaces (M̃n) of the state space,M.
In the context of Petrov–Galerkin projection schemes, n–width correlates with the best achievable rate of conver-

gence for a given snapshots [25]. The connection between singular value decomposition (SVD) of the Hankel operator
and the Kolmogorov n–width is rigorously established [26, 27]. It is shown that Kolmogorov n–width is equivalent
to the (n + 1)st Hankel singular value [28]. The aforementioned studies strictly connected the singular values of the
snapshots to convergence of linear subspaces. The extension of such results to non–linear manifolds, such as those
discovered through training of PINNs, has not been established yet. However, we numerically evaluate whether the
rate of decay of singular values could be used as a simple a priori guideline to the complexity of the training phase of
PINNs.

In figs. 1 to 4, the snapshots of the solution and the corresponding singular value decays are plotted for given
snapshots of convection equation,

∂w
∂t
− c

w
∂x

= 0, (6)

reaction equation,
∂w
∂t
− ρw (1 − w) = 0, (7)

reaction–diffusion equation,
∂w
∂t
− ν

∂2w
∂x2 − ρw(1 − w) = 0, (8)

and Burgers’ equation,
∂w
∂t
− w

w
∂x

= ν
∂2w
∂x2 . (9)

where the state variable w = w(x, t) exists in the domain (x, t) ∈ [xa, xb] × [0,T ], and the PDEs are equipped with
initial conditions w(x, 0) = w0(x), and appropriate boundary conditions at xa, and xb. Convection speed, viscosity, and
reaction coefficient are denoted by c, ν, and ρ, respectively.
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(c) Singular value spectra

Figure 1: Convection equation. In 1a and 1b, dark red and dark blue represent +1 and −1, respectively. In 1c, the black triangle and blue rectangle
markers represent c = 0 (success mode) and c = 50 (failure mode), respectively.

The successful and failing regimes of eqs. (6) to (8) were investigated in [10]. We identify Burgers’ equation
eq. (9), in certain regimes, as an additional challenging test case for PINNs. In each of these experiments, the solution
of the governing equation is depicted in the space–time domain, and the corresponding singular value spectra are also
compared, where σi is the ith singular value of the snapshots of the solution.

In [10], it was shown that PINNs for convection become hard to train for c > 10 (failure modes). Subsequently,
the cases with c = 0 and c = 50 are compared in fig. 1. It is clear that σ2/σ1 increases quickly as c increases. For the
reaction equation, the decay of singular values becomes slower as ρ increases, in a similar trend, the PINNs are more
difficult to train as ρ increases. For the cases of reaction–diffusion in [10], all cases show similar slow rate of decay of
singular values, and in a similar trend, training in all the cases encounters difficulties. Finally, we consider Burgers’
equation, a case successfully solved in early studies of PINNs [1]. However, in that case, a viscous shock forms and
collapses on its place, without traveling in the domain. In this paper, to impose the shock moving through the domain,
the initial condition is offset from zero. Similar to the convection case, the rate of decay of singular values decreases
as the speed of the shock is increased. Subsequently, similar challenges in training of PINNs for Burgers’ equation in
convection–dominated regimes is observed. In such cases, the shock travels in the domain before collapsing/diffusing
(see section 4.3).

These experiments show that although the neural networks (NNs) can express a non–linear manifold, the dimen-
sionality of the solution on the linear optimal subspace of singular vectors can still inform the convergence behavior
of PINNs, for comparable governing equations. However, the singular value spectra between two different governing
equations do not explain difficulty of the training, e.g., collapsing shock has a slower rate of decay of singular values
compared to convection with high speed and yet the training phase is well–behaved. Nevertheless, in all cases the
network is hard to train at the presence of traveling features, such as shock, fronts, and gradients.

Some of the successful remedies in [7, 10, 11] can be explained by breaking the Kolmogorov n–width, a recognized
paradigm in finite element method of solving PDEs [29, 30], data assimilation [31], NNs–based reduced order models
(ROMs) [32–34], projection-based ROMs [30, 35–43], flexDeepONet [44], and projection–based ROMs on NN–
based manifolds [45, 46]. To demonstrate the effect of the proposed remedies on the rate of decay of (normalized)
singular values, we consider the synthetic data of fig. 5a, representing a traveling shock. The snapshot is constructed
on Nx = 256 spatial grid points and Nt = 500 time steps.

It is shown that in PINNs, accuracy can be increased by over–sampling the traveling shock, in contrast to the
uniformly sampled data [7]. Here, at each time level 25 data points are sampled (i) randomly and uniformly, (ii)
randomly but weighted where the probability of sampling is proportional to the absolute value of the gradient of
the data. As in fig. 5b, while sampled data has a lower rank compared to the full data, the first singular values of
the data remains unchanged when sampled uniformly (a property used in randomized singular value decomposition).
However, the rate of decay of the singular values increases by over–sampling the shock.

Parallel–in–time decomposition [11] and sequence-to-sequence learning [10] decompose the temporal domain
into short time intervals. This strategy is similar to principal interval decomposition (PID) (in linear subspace),
applied to ROMs [40] and Long short–term memory (LSTM) networks [33], and effectively reduces the Kolmogorov
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Figure 2: Reaction equation. In 2a and 2b, dark red and white represent +1 and 0, respectively. In 2c, the black triangle and blue rectangle markers
represent ρ = 1 (success mode) and ρ = 10 (failure mode), respectively.
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Figure 3: Reaction–diffusion equation. In 3a and 3b, dark red and white represent +1 and 0, respectively. In 3c, the black triangle and blue rectangle
markers represent (ν, ρ) = (5, 2) (failure mode) and (ν, ρ) = (6, 5) (failure mode), respectively.

n–width of the data. Considering the synthetic data, the temporal domain is decomposed to 25 consecutive time
steps, significantly increasing the rate of decay of singular values as in fig. 5b. Subsequently, increasing the temporal
domain, decreases the rate of decay. Decomposition of the computational domain, in both space and time, is possible
using extended PINNs (XPINNs), originally developed to tackle the scalibility of PINNs [47].

Given the numerical evidence in this section, one paradigm to tame the training in PINNs is to reformulate the
problem on a manifold such that Kolmogorov n–width is decreased, or equivalently, the rate of decay of the singular
values is increased. For non–linear convection–diffusion flows, where convection dominates diffusion, such goal is
achievable by reformulating the governing equations on the characteristics curves [48, 49].

3. PINNs for Non–linear Convection–Diffusion

Consider the following scalar, one–dimensional convection–diffusion equation

R :=
∂w(x, t)
∂t

+ f1(x, t,w)
∂w(x, t)
∂x

− f2(x, t,w)
∂2w(x, t)
∂x2 = 0, (10)

in the domain (x, t) ∈ [xa, xb] × [0,T ], with initial conditions w(x, 0) = w0(x), and appropriate boundary conditions at
xa and xb.

To address the complexity of the training, the governing equation eq. (10), is reformulated in the Lagrangian frame
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Figure 4: Burgers’ equation. In 4a and 4b, dark red and dark blue represent c + 1 and c− 1, respectively. In 1c, the black triangle and blue rectangle
markers represent c = 0 (success mode) and c = 50 (failure mode), respectively.
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Figure 5: a. Synthetic traveling shock and the location of the samples, (i) uniform sampling (black triangles), and (ii) weighted sampling (red
circles), b. The corresponding singular value spectra of the uniformly sampled data (black triangles), the weighted sampled data (red circles), and
decomposed data in a limited temporal domain (blue squares).

of reference

Rx :=
dx
dt
− f1(x, t,w) = 0, (11a)

Rw :=
∂w
∂t
− f2(x, t,w)

∂2w
∂x2 = 0. (11b)

where x is the characteristic curves and w is the state variable on the characteristic curves. For the sake of simplicity of
the notations, we do not differentiate between the state variable on the Eulerian formulation (stationary grid, eq. (10))
and the Lagrangian formulation (moving grid, eq. (11)).

3.1. Traditional PINNs

A PINN architecture is composed of a densely connected ANN that minimizes a loss comprised of the residual
equation eq. (10) evaluated at the collocation points, data, and the initial and boundary points [1]. The output of the
network, is the state parameter, w,

w = N (u) = φm (Wmφm−1 (Wm−1 · · · φ1 (W1u + b1) · · · + bm−1) + bm) , (12)

where the input vector is the concatenation of the spatial and temporal location, i.e., u = [xi, ti]> ∈ Rd+1, where d
is the dimension of physical space, φi (.) is the activation function at the ith-layer, W1 ∈ Rw×(d+1), Wi ∈ Rw×w,∀i ∈
{2, · · · ,m − 1}, and Ww ∈ Rd×w are the weights, and b1 ∈ Rw,∀i ∈ {1, · · · ,m − 1}, and bm ∈ Rd are biases. The
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γ(x)

R(xi, ti) Lr + Lic

N (.) AD L (.)

xi

ti

wi

Figure 6: The traditional PINNs architecture with periodic boundary condition.

weights and biases are learned to minimize the so–called physics informed loss, minimizing the residual equation and
the appropriate boundary and initial conditions, i.e.,

L = Lr +Lbc +Lic, (13)

where

Lr = λr
1
Nr

Nr∑
i=1

|R (xi, ti)|2 , (14a)

Lbc = λbc
1

Nbc

Nbc∑
i=1

∣∣∣∣B [w]
(
xi

bc, tbci
)∣∣∣∣

2
, (14b)

Lic = λic
1

Nic

Nic∑
i=1

∣∣∣∣w (x, 0) − g
(
xi

ic

)∣∣∣∣
2
, (14c)

and {ti
r ,xi

ic}
Nr
i=1 is the set of temporal and spatial coordinates of the collocation points where the residual is evaluated,

and {xi
ic}

Nic
i=1 , is the set of coordinates where the initial condition is known (g

(
xi

ic

)
at t = 0), and {ti

bc,x
i
ic}

Nbc
i=1 is a set of

temporal and spatial coordinates of the boundary points (B [w]
(
xi

bc, tbci
)
). The hyperparameters λr, λbc, and λic are

scalars tuned to enhance the convergence. Augmenting the loss using more data points leads to faster convergence,
especially in convection–dominated problems [19]. However, we intentionally refrain from using any data points to
evaluate the convergence of PINNs as a solver (no–data regime). To solve convection–diffusion equation, eq. (10) is
used as the residual term in eq. (14a).

In this paper, without loss in generality, we limit the spatial domain to one–dimensional (1D) space. The periodic
boundary condition is strictly enforced using a custom layer [11], and therefore λbc = 0. The custom layer in x ∈
[0, 2π] transforms the domain to a polar coordinate, i.e.,

γ (x) = [cos (x) , sin (x)]>, (15)

and out–put of this layer is fed into the traditional NN as described in eq. (12) with appropriate adjustment of the
dimension of the weight of the first layer, i.e., W1 ∈ Rw×(2d+1), increasing the number of network variables by only
w × d. Further discussion of strictly enforcing the boundary conditions can be found in [50].

3.2. Proposed Lagrangian PINNs

In this section, we describe the additional changes to the architecture of the traditional PINNs to conform with the
Lagrangian formulation to satisfy eq. (11). We propose a parallel architecture comprised of two branches. The first
branch solves for the characteristics curves and minimizes eq. (11a), i.e.,

x = Nx (u) = φm (Wmφm−1 (Wm−1 · · · φ1 (W1u + b1) · · · + bm−1) + bm) , (16)
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Figure 7: The proposed LPINNs architecture with periodic boundary condition.

and the second branch solves for the state parameter on the characteristics curves, and minimizes eq. (11b), i.e.,

w = Nw (u) = φm (Wmφm−1 (Wm−1 · · · φ1 (W1u + b1) · · · + bm−1) + bm) , (17)

where all the parameters are defined similar to the network in section 3.1. The two branches can be of different width,
and depth. The output of the network is the state parameter on the characteristics curves minimizing the loss, i.e.,

L = Lrx +Lrw +Lic, (18)

where Lrx and Lrx are the residual associated with eq. (11), and Lic is the loss associated with initial condition of both
the state and grid. Finally, one can interpolate the states from the Lagrangian to the Eulerian frame of reference, w∗,
if necessary. The proposed architecture is depicted in fig. 7.

We recognize the residual equations in eq. (11) can also be minimized in an architecture similar to that of the
traditional PINNs. However, the proposed two–branch architecture leverages the inherent low–dimensionality of the
characteristics [48], to build a shallow and efficient network to solve eq. (11a).

4. Experimental Results

In this section, the traditional PINN and the proposed LPINN are compared. The spatio–temporal grid is of size
(Nx,Nt) =

(
28, 100

)
for (x, t) ∈ [0, 2π] × [0, 1]. In the convection and convection–diffusion cases, the initial condition

is w0 = sin (2πx), and the numerical solutions in [10] are considered as the truth. In the the Burgers’ case, the initial
condition is w0 = sin (2πx) + c, and solution of a Fourier pseudo–spectral solver is considered as the truth.

In all cases, the PINNs have 4 hidden-layers, and the LPINNs have an additional shallow branch with 2 hidden-
layers. All activation functions are φ(.) = tanh(.), except those of the last layer, where activation is linear (identity).
The hyper–parameters in eq. (13) are λbc = 0, λic = 1000, and λr = 10. Adam optimizer [51] with 105 iterations and
learning rate of 0.01 are used for all the cases.

The error is defined as,

Error =
‖w − w∗‖2
‖w‖2

, (19)

where w is the truth, and w∗ is the output of the network (interpolated) on the Eulerian grid, both after removing the
boundary condition. A quadratic scheme is used to interpolate the output of LPINN to the Eulerian grid.
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Figure 8: Comparison of the error in PINN (dashed blue) vs. the proposed LPINNs (solid back) for the convection equation eq. (20).

4.1. Convection

Consider the inviscid convection equation,

∂w(x, t)
∂t

− c
w(x, t)
∂x

= 0, (20)

and its reformulation in the Lagrangian frame of reference,

dx
dt

= c, (21a)

∂w
∂t

= 0. (21b)

The solution to eq. (21) is straightforward. Equation (21b) dictates the grid points to move with the constant convection
velocity, c, while the state variable remains constant along the moving points, eq. (21b). The accuracy of PINN and
LPINN are compared for different convection velocity in fig. 8. Similar to [10], the error of PINN increases for larger
values of c, such that for c ≥ 20, the PINN cannot be trained. In case of the proposed LPINN, where the problem is
simply reformulated on the Lagrangian frame of reference, the error for all cases remains below 5%. Note that the
reported error is also comprised of the error originating from interpolating the predicted state from the moving grid of
the Lagrangian frame to the stationary grid of the Eulerian frame.

To evaluate the optimality of the trained network, the loss landscape of the network at the end of the training phase
is often used as a descriptive measure [6, 10, 13, 52]. To compute the loss landscape, the two dominant eigenvectors
of the Hessian of the loss with respect to the trainable parameters of the networks, δ and η, are computed using the
code provided in [53]. Subsequently, the network is perturbed along the eigenvectors and its loss, L′, is evaluated,
i.e.,

L′ (α, β) = L
(
θ + αδ + βη

)
, (22)

where (α, β) ∈ [−α0, α0]×
[
−β0, β0

]
. Finally, log (L′ (α, β)) is visualized in fig. 9, for c = {0, 30, 50} and for both PINN

and LPINN architectures. In fig. 9a, we recover the saddle shape of the loss landscape for small convection speed as
reported for PINN in [10]. Similarly, by increasing c, the landscape becomes less smooth (sharper, or more rugged),
implying the trained network is not at a minimizer (figs. 9b to 9c). In the case of LPINN (figs. 9d to 9f), the loss
landscapes are significantly smoother compared to their PINN counterparts (figs. 9a to 9c). Moreover, the landscape
is smooth (flat), even at high c, increasing the confidence that the obtained minimizer is a global one.

4.2. Convection-diffusion

Consider the viscous convection–diffusion equation,

∂w(x, t)
∂t

− c
w(x, t)
∂x

= ν
∂2w(x, t)
∂x2 , (23)
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(a) PINN, c = 0 (b) PINN, c = 30 (c) PINN, c = 50

(d) LPINN, c = 0 (e) LPINN, c = 30 (f) LPINN, c = 50

Figure 9: The (log of) loss landscape of convection equation given different convection speeds, c ∈ {0, 30, 50}. a-c. PINN, d-e. LPINN.
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Figure 10: Comparison of the error in PINN (dashed blue) vs. the proposed LPINNs (solid back) for the convection–diffusion equation eq. (23)
with different ν.

and its reformulation in the Lagrangian frame of reference,

dx
dt

= c, (24a)

∂w
∂t

= ν
∂2w
∂x2 . (24b)

Figure 10 compares the accuracy of PINN and the proposed LPINNs. Similar to the inviscid case discussed in
section 4.1, the error in PINNs increases by increasing c and they fail to train after a critical c. Similarly, the LPINNs
increases by increasing c, however, the error remains around 10%, even in the most challenging cases.
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Figure 11: Comparison of the error in PINN (dashed blue) vs. the proposed LPINNs (solid back) for the viscous Burgers’ equation eq. (25) with
different ν.
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Figure 12: Comparison of the proposed LPINN with pseudo–spectral solver for the viscous Burgers’ equation eq. (25) (ν = 0.01) at
t ∈ {0,T/3, 2T/3,T } (black circle, blue square, red triangle, blue diamond) for c = {30, 50}. PINN cannot be trained in both regimes.

4.3. Burgers’ equation
Consider the viscous Burgers’ equation,

∂w(x, t)
∂t

− w(x, t)
w(x, t)
∂x

= ν
∂2w(x, t)
∂x2 , (25)

and its representation on the Lagrangian frame,

dx
dt

= w(x, t), (26a)

∂w
∂t

= ν
∂2w
∂x2 . (26b)

While the traditional formulation of PINN is successfully demonstrated for Burgers’ equation [1], the examined
problem lack the main property of challenging cases for training, i.e., the large Kolmogorov n–width associated with
the travel of the shock as in fig. 4. In fig. 11, and in a similar to the trend in convection–diffusion equation, the
PINN fails to train for c ≥ 10, while the LPINN is trained for all cases. The higher error in this case compared
to the convection–diffusion equation is due to the higher interpolation error close to the shock. Note that in these
cases the viscosity, ν, is small enough to form the high gradient shock and is large enough to avoid the intersecting
characteristics. fig. 12 shows the accuracy of the proposed LPINN compared to the numerical solver at different
simulation time steps.

5. Conclusions

The contributions of this paperis threefold.
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1. We described the challenge of training of the traditional architecture of PINNs through the lens of approximation
theory using Kolmogorov n–width, and the rate of decay of singular values of the solution. This realization
explains many of the successful remedies in training of PINNs. More importantly, it can help with identifying
unknown challenging problems, and opens of a wide variety of possibility to address them.

2. We identified Burgers’ equation in the presence of traveling shocks as another challenging case. The complexity
of the training is explained based on our discussion of the irreducibly of the solution on a linear space.

3. We propose LPINN for 1D linear and non–linear convection–diffusion equations. The reformulation of the
equations on the characteristics automatically conforms to the direction of travel of the information in the
domain, and satisfies the expected causality. More importantly, the solution on the manifold is of lower di-
mension, i.e., low Kolmogorov n–width, and is less sensitive to the system parameters. Using the inherent
low–dimensionality of the characteristics [48], only a shallow branch is added to the traditional PINN to min-
imize the composite loss comprised of residual equations of characteristics, and the state variable on the char-
acteristics. While it is suggested that the condition number of the loss is a probable source of complexity in
training of PINNs [10], the proposed LPINN architecture is robust with respect to the condition number and
show convergence regardless.

Future work should investigate the problem with shocks where the characteristics intersect. In such cases, a van-
ishing viscosity approach or removing the triple point value using Rankine–Hugoniot condition seem to be straightfor-
ward solutions [54]. Similar strategies are even applied to PINNs in presence [18, 19]. An extension of the proposed
LPINN to higher spatial dimensions is possible using Radon transform [55]. In cases where characteristics curves
are not real, e.g., wave equation, a manifold can be identified by registration–based or feature tracking approaches,
e.g., [30, 32, 39, 56, 57], and to replace the mass–spring–damper grid models in arbitrary Lagrangian–Eulerian (ALE)
formulation of PINNs [58]. Specifically, an optimal and low–rank manifold can be constructed offline by identifying
an optimally morphing grid [32]. Moreover, LPINN architecture provides an opportunity for one–shot discovery of
an optimal manifold.
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