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Abstract. Data on molecular interactions is increasing at a tremendous
pace, while the development of solid methods for analyzing this network
data is lagging behind. This holds in particular for the field of compara-
tive network analysis, where one wants to identify commonalities between
biological networks. Since biological functionality primarily operates at
the network level, there is a clear need for topology-aware comparison
methods. In this paper we present a method for global network align-
ment that is fast and robust, and can flexibly deal with various scoring
schemes taking both node-to-node correspondences as well as network
topologies into account. It is based on an integer linear programming
formulation, generalizing the well-studied quadratic assignment problem.
We obtain strong upper and lower bounds for the problem by improv-
ing a Lagrangian relaxation approach and introduce the software tool
natalie 2.0, a publicly available implementation of our method. In an
extensive computational study on protein interaction networks for six
different species, we find that our new method outperforms alternative
state-of-the-art methods with respect to quality and running time. An
extended version of this paper including proofs and pseudo code is avail-
able at http://arxiv.org/pdf/1108.4358v1.

1 Introduction

In the last decade, data on molecular interactions has increased at a tremendous
pace. For instance, the STRING database [24], which contains protein protein
interaction (PPI) data, grew from 261,033 proteins in 89 organisms in 2003 to
5,214,234 proteins in 1,133 organisms in May 2011, more than doubling the num-
ber of proteins in the database every two years. The same trends can be observed
for other types of biological networks, including metabolic, gene-regulatory, sig-
nal transduction and metagenomic networks, where the latter can incorporate
the excretion and uptake of organic compounds through, for example, a micro-
bial community [21, 12]. In addition to the plethora of experimentally derived
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network data for many species, also the structure and behavior of molecular
networks have become intensively studied over the last few years [2], leading to
the observation of many conserved features at the network level. However, the
development of solid methods for analyzing network data is lagging behind, par-
ticularly in the field of comparative network analysis. Here, one wants to identify
commonalities between biological networks from different strains or species, or
derived form different conditions. Based on the assumption that evolutionary
conservation implies functional significance, comparative approaches may help
(i) improve the accuracy of data, (ii) generate, investigate, and validate hypothe-
ses, and (iii) transfer functional annotations. Until recently, the most common
way of comparing two networks has been to solely consider node-to-node cor-
respondences, for example by finding homologous relationships between nodes
(e.g. proteins in PPI networks) of either network, while the topology of the two
networks has not been taken into account. Since biological functionality pri-
marily operates at the network level, there is a clear need for topology-aware
comparison methods. In this paper we present a network alignment method that
is fast and robust, and can flexibly deal with various scoring schemes taking both
node-to-node correspondences as well as network topologies into account.

Previous Work. Network alignment establishes node correspondences based
on both node-to-node similarities and conserved topological information. Sim-
ilar to sequence alignment, local network alignment aims at identifying one or
more shared subnetworks, whereas global network alignment addresses the over-
all comparison of the complete input networks.

Over the last years a number of methods have been proposed for both global
and local network alignment, for example PathBlast [14], NetworkBlast
[22], MaWISh [16], Graemlin [8], IsoRank [23], Graal [17], and SubMAP
[4]. PathBlast heuristically computes high-scoring similar paths in two PPI
networks. Detecting protein complexes has been addressed with Network-
Blast by Sharan et al. [22], where the authors introduce a probabilistic model
and propose a heuristic greedy approach to search for shared complexes. Koyutürk
et al. [16] use a more elaborate scoring scheme based on an evolutionary model to
compute local pairwise alignments of PPI networks. The IsoRank algorithm by
Singh et al. [23] approaches the global alignment problem by preferably match-
ing nodes which have a similar neighborhood, which is elegantly solved as an
eigenvalue problem. Kuchaiev et al. [17] take a similar approach. Their method
Graal matches nodes that share a similar distribution of so-called graphlets,
which are small connected non-isomorphic induced subgraphs.

In this paper we focus on pairwise global network alignment, where an align-
ment is scored by summing up individual scores of aligned node and interaction
pairs. Among the above mentioned methods, IsoRank and Graal use a scoring
model that can be expressed in this manner.

Contribution. We present an algorithm for global network alignment based on
an integer linear programming (ILP) formulation, generalizing the well-studied
quadratic assignment problem (QAP). We improve upon an existing Lagrangian
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c(v1, v2) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if v1 = A and v2 = a,

1, if v1 = B and v2 = b,

1, if v1 = C and v2 = c,

1, if v1 = D and v2 = d,

0, otherwise.

w(v1, v2, w1, w2) =

⎧
⎪⎨

⎪⎩

10, if (v1, w1) ∈ E1

and (v2, w2) ∈ E2,

0, otherwise.
G1 = (V1, E1) G2 = (V2, E2)
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Fig. 1. Example of a network alignment. With the given scoring function, the alignment
has a score of 4 + 40 = 44.

relaxation approach presented in previous work [15] to obtain strong upper and
lower bounds for the problem. We exploit the closeness to QAP and generalize
a dual descent method for updating the Lagrangian multipliers to the general-
ized problem. We have implemented the revised algorithm from scratch as the
software tool natalie 2.0. In an extensive computational study on protein in-
teraction networks for six different species, we compare natalie 2.0 to Graal
and IsoRank, evaluating the number of conserved edges as well as functional
coherence of the modules in terms of GO annotation. We find that natalie 2.0
outperforms the alternative methods with respect to quality and running time.
Our software tool natalie 2.0 as well as all data sets used in this study are
publicly available at http://planet-lisa.net.

2 Preliminaries

Given two simple graphs G1 = (V1, E1) and G2 = (V2, E2), an alignment
a : V1 ⇁ V2 is a partial injective function from V1 to V2. As such we have that an
alignment relates every node in V1 to at most one node in V2 and that conversely
every node in V2 has at most one counterpart in V1. An alignment is assigned a
real-valued score using an additive scoring function s defined as follows:

s(a) =
∑

v∈V1

c(v, a(v)) +
∑

v,w∈V1
v<w

w(v, a(v), w, a(w)) (1)

where c : V1 × V2 → R is the score of aligning a pair of nodes in V1 and V2

respectively. On the other hand, w : V1 × V2 × V1 × V2 → R allows for scoring
topological similarity. The problem of global pairwise network alignment (GNA)
is to find the highest scoring alignment a∗, i.e. a∗ = argmax s(a). Figure 1 shows
an example.

NP-hardness of GNA follows by a simple reduction from the decision problem
Clique, which asks whether there is a clique of cardinality at least k in a given
simple graph G = (V, E) [13]. The corresponding GNA instance concerns the
alignment of the complete graph of k vertices Kk = (Vk, Ek) with G using the

http://planet-lisa.net
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scoring function s(a) = |{(v, w) ∈ Ek | (a(v), a(w)) ∈ E}|. Since an alignment
is injective, there is a clique of cardinality at least k if and only if the cost of
the optimal alignment is

(
k
2

)
. The close relationship of GNA with the quadratic

assignment problem is more easily observed when formulating GNA as a mathe-
matical program. Throughout the remainder of the text we use dummy variables
i, j ∈ {1, . . . , |V1|} and k, l ∈ {1, . . . , |V2|} to denotes nodes in V1 and V2, respec-
tively. Let C be a |V1| × |V2| matrix such that cik = c(i, k) and let W be a
(|V1| × |V2|) × (|V1| × |V2|) matrix whose entries wikjl correspond to interaction
scores w(i, k, j, l). Now we can formulate GNA as

max
x

∑

i,k

cikxik +
∑

i,j
i<j

∑

k,l
k �=l

wikjlxikxjl (IQP)

s.t.
∑

l

xjl ≤ 1 ∀j (2)

∑

j

xjl ≤ 1 ∀l (3)

xik ∈ {0, 1} ∀i, k (4)

where the decision variable xik indicates whether the i-th node in V1 is aligned
with the k-th node in V2. The above formulation shares many similarities with
Lawler’s formulation [19] of the QAP. However, instead of finding an assignment
we are interested in finding a matching, which is reflected in constraints (2)
and (3) being inequalities rather than equalities. As can be seen in (1) we only
consider the upper triangle of W rather than the entire matrix. An analogous
way of looking at this, is to consider W to be symmetric. This is usually not the
case for QAP instances. In addition, due to the fact that biological input graphs
are typically sparse, we have that W is sparse as well. These differences allow
us to come up with an effective method of solving the problem as we will see in
the following.

3 Method

The relaxation presented here follows the same lines as the one given by Adams
and Johnson for the QAP [1]. We start by linearizing (IQP) by introducing
binary variables yikjl defined as yikjl := xikxjl and constraints yikjl ≤ xjl and
yikjl ≤ xik for all i ≤ j and k �= l. If we assume that all entries in W are positive,
we do not need to enforce that yikjl ≥ xik + xjl − 1. In Section 5 we will discuss
this assumption. Rather than using the aforementioned constraints, we make use
of a stronger set of constraints which we obtain by multiplying constraints (2)
and (3) by xik:

∑

l �=k

yikjl =
∑

l �=k

xikxjl ≤
∑

l

xikxjl ≤ xik, ∀i, j, k, i < j (5)

∑

j>i

yikjl =
∑

j>i

xikxjl ≤
∑

j

xikxjl ≤ xik, ∀i, k, l, k �= l (6)
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We proceed by splitting the variable yikjl (where i < j and k �= l). In other words,
we extend the objective function such that the counterpart of yikjl becomes
yjlik. This is accomplished by rewriting the dummy constraint in (6) to j �= i.
In addition, we split the weights: wikjl = wjlik = (w′

ikjl/2) where w′
ikjl denotes

the original weight. Furthermore, we require that the counterparts of the split
decision variables assume the same value, which amounts to

max
x,y

∑

i,k

cikxik +
∑

i,j
i<j

∑

k,l
k �=l

wikjlyikjl +
∑

i,j
i>j

∑

k,l
k �=l

wikjlyikjl (ILP)

s.t. (2), (3) and (4)
∑

l
l �=k

yikjl ≤ xik ∀i, j, k, i �= j (7)

∑

j
j �=i

yikjl ≤ xik ∀i, k, l, k �= l (8)

yikjl = yjlik ∀i, j, k, l, i < j, k �= l (9)
yikjl ∈ {0, 1} ∀i, j, k, l, i �= j, k �= l (10)

We can solve the continuous relaxation of (ILP) via its Lagrangian dual by
dualizing the linking constraints (9) with multiplier λ:

min
λ

ZLD(λ) , (LD)

where ZLD(λ) equals

max
x,y

∑

i,k

cikxik +
∑

i,j
i<j

∑

k,l
k �=l

(wikjl + λikjl)yikjl +
∑

i,j
i>j

∑

k,l
k �=l

(wikjl − λjlik)yikjl

s.t. (2), (3), (4), (7), (8), (10)

Now that the linking constraints have been dualized, one can observe that the re-
maining constraints decompose the variables into |V1||V2| disjoint groups, where
variables across groups are not linked by any constraint, and where each group
contains a variable xik and variables yikjl for j �= i and l �= k. Hence, we have

ZLD(λ) = max
x

∑

i,k

[cik + vik(λ)]xik s.t. (2), (3) and (4) (LDλ)

which corresponds to a maximum weight bipartite matching problem on the so-
called alignment graph Gm = (V1∪V2, Em). In the general case Gm is a complete
bipartite graph, i.e. Em = {(i, k) | i ∈ V1, v2 ∈ V2}. However, by exploiting
biological knowledge one can make Gm more sparse by excluding biologically-
unlikely edges (see Section 4). For the global problem, the weight of a matching
edge (i, k) is set to cik + vik(λ), where the latter term is computed as
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vik(λ) = max
y

∑

j
j>i

∑

l
l �=k

(wikjl + λikjl)yikjl +
∑

j
j<i

∑

l
l �=k

(wikjl − λjlik)yikjl (LDik
λ )

s.t.
∑

l
l �=k

yikjl ≤ 1 ∀j, j �= i (11)

∑

j
j �=i

yikjl ≤ 1 ∀l, l �= k (12)

yikjl ∈ {0, 1} ∀j, l. (13)

Again, this is a maximum weight bipartite matching problem on the same align-
ment graph but excluding edges incident to either i or k and using different edge
weights: the weight of an edge (j, l) is wikjl +λikjl if j > i, or wikjl−λjlik if j < i.
So in order to compute ZLD(λ), we need to solve a total number of |V1||V2| + 1
maximum weight bipartite matching problems, which, using the Hungarian al-
gorithm [18, 20] can be done in O(n5) time, where n = max(|V1|, |V2|). In case
the alignment graph is sparse, i.e. O(|Em|) = O(n), ZLD(λ) can be computed
in O(n4 log n) time using the successive shortest path variant of the Hungarian
algorithm [7]. It is important to note that for any λ, ZLD(λ) is an upper bound
on the score of an optimal alignment. This is because any alignment a is feasible
to ZLD(λ) and does not violate the original linking constraints and therefore
has an objective value equal to s(a). In particular, the optimal alignment a∗

is also feasible to ZLD(λ) and hence a∗ ≤ ZLD(λ). Since the two sets of prob-
lems resulting from the decomposition both have the integrality property [6],
the smallest upper bound we can achieve equals the linear programming (LP)
bound of the continuous relaxation of (ILP) [9]. However, computing the small-
est upper bound by finding suitable multipliers is much faster than solving the
corresponding LP. Given solution (x, y) to ZLD(λ), we obtain a lower bound on
s(a∗), denoted Zlb(λ), by considering the score of the alignment encoded in x.

3.1 Solving Strategies

In this section we will discuss strategies for identifying Lagrangian multipliers
λ that yield an as small as possible gap between the upper and lower bound
resulting from the solution to ZLD(λ).

Subgradient Optimization. We start by discussing subgradient optimization,
which is originally due to Held and Karp [10]. The idea is to generate a sequence
λ0, λ1, . . . of Lagrangian multiplier vectors starting from λ0 = 0 as follows:

λt+1
ikjl = λt

ikjl −
α · (ZLD(λ) − Zlb(λ))

‖g(λt)‖2
g(λt

ikjl) ∀i, j, k, l, i < j, k �= l (14)

where g(λt
ikjl) corresponds to the subgradient of multiplier λt

ikjl , i.e. g(λt
ikjl) =

yikjl−yjlik, and α is the step size parameter. Initially α is set to 1 and it is halved
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if neither ZLD(λ) nor Zlb(λ) have improved for over N consecutive iterations.
Conversely, α is doubled if M times in a row there was an improvement in either
ZLD(λ) or Zlb(λ) [5]. In case all subgradients are zero, the optimal solution
has been found and the scheme terminates. Note that this is not guaranteed to
happen. Therefore we abort the scheme after exceeding a time limit or a pre-
specified number of iterations. In addition, we terminate if α has dropped below
machine precision.

Dual Descent. In this section we derive a dual descent method which is an
extension of the one presented in [1]. The dual descent method takes as a starting
point the dual of ZLD(λ):

ZLD(λ) = min
α,β

∑

i

αi +
∑

k

βk (15)

s.t. αi + βk ≥ cik + vik(λ) ∀i, k (16)
αi ≥ 0 ∀i (17)
βk ≥ 0 ∀k (18)

where the dual of vik(λ) is

vik(λ) = min
μ,ν

∑

j
j �=i

μik
j +

∑

l
l �=k

νik
l (19)

s.t. μik
j + νik

l ≥ wikjl + λikjl ∀j, l, j > i, l �= k (20)

μik
j + νik

l ≥ wikjl − λjlik ∀j, l, j < i, l �= k (21)

μik
j ≥ 0 ∀j (22)

νik
l ≥ 0 ∀l. (23)

Suppose that for a given λt we have computed dual variables (α, β) solving
(15) with objective value ZLD(λt), as well as dual variables (μik, νik) yielding
values vik(λ) to linear programs (19). The goal now is to find λt+1 such that
the resulting bound is better or just as good, i.e. ZLD(λt+1) ≤ ZLD(λt). We
prevent the bound from increasing, by ensuring that the dual variables (α, β)
remain feasible to (15). This we can achieve by considering the slacks: πik(λ) =
αi + βk − cik − vik(λ). So for (α, β) to remain feasible, we can only allow every
vik(λt) to increase by as much as πik(λt). We can achieve such an increase by
considering linear programs (19) and their slacks defined as

γikjl(λ) =

{
μik

j + νik
l − wikjl + λikjl , if j > i,

μik
j + νik

l − wikjl − λjlik , if j < i,
∀j, l, j �= i, l �= k, (24)

and update the multipliers in the following way.

Lemma 1. The adjustment scheme below yields solutions to linear programs
(19) with objective values vik(λt+1) at most πik(λt) + vik(λt) for all i, k.
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λt+1
ikjl = λt

ikjl + ϕikjl

[

γikjl(λt) + τik

(
1

2(n1 − 1)
+

1
2(n2 − 1)

)

πik(λt)
]

− ϕjlik

[

γjlik(λt) + τjl

(
1

2(n1 − 1)
+

1
2(n2 − 1)

)

πjl(λt)
] (25)

for all j, l, i < j, k �= l, where n1 = |V1|, n2 = |V2|, and 0 ≤ ϕikjl , τjl ≤ 1 are
parameters.
We use ϕ = 0.5, τ = 1, and perform the dual descent method L successive times.

Overall Method. Our overall method combines both the subgradient optimiza-
tion and dual descent method. We do this performing the subgradient method
until termination and then switching over to the dual descent method. This
procedure is repeated K times.

We implemented natalie in C++ using the LEMON graph library
(http://lemon.cs.elte.hu). The successive shortest path algorithm for maximum
weight bipartite matching was implemented and contributed to LEMON. Special
care was taken to deal with the inherent numerical instability of floating point
numbers. Our implementation supports both the GraphML and GML graph
formats. Rather than using one big alignment graph, we store and use a differ-
ent alignment graph for every local problem (LDik

λ ). This proved to be a huge
improvement in running times, especially when the global alignment graph is
sparse. natalie is publicly available at http://planet-lisa.net.

4 Experimental Evaluation

From the STRING database v8.3 [24], we obtained PPI networks for the fol-
lowing six species: C. elegans (cel), S. cerevisiae (sce), D. melanogaster (dme),
R. norvegicus (rno), M. musculus (mmu) and H. sapiens (hsa). We only con-
sidered interactions that were experimentally verified. Table 1 in the appendix
shows the sizes of the networks. We performed, using the BLOSUM62 matrix, an
all-against-all global sequence alignment on the protein sequences of all

(
6
2

)
= 15

pairs of networks. We used affine gap penalties with a gap-open penalty of 2 and
a gap-extension penalty of 10. The first experiment in Section 4.1 compares the
raw performance of IsoRank, Graal and natalie in terms of objective value.
In Section 4.2 we evaluate the biological relevance of the alignments produced by
the three methods. All experiments were conducted on a compute cluster with
2.26 GHz processors with 24 GB of RAM.

4.1 Edge-Correctness

The objective function used for scoring alignments in Graal counts the number
of mapped edges. Such an objective function is easily expressible in our frame-
work using s(a) = |{(v, w) ∈ E1 | (a(v), a(w)) ∈ E2}| and can also be modeled
using the IsoRank scoring function. In order to compare performance of the
methods across instances, we normalize the scores by dividing by min(|E1|, |E2|).
This measure is called the edge-correctness by Kuchaiev et al. [17].

http://lemon.cs.elte.hu
http://planet-lisa.net
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Table 1. Characteristics of input networks considered in this study. The columns
contain species identifier, number of nodes in the network, number of annotated nodes
thereof, and number of interactions.

species nodes annotated interactions

cel (c) 5,948 4,694 23,496
sce (s) 6,018 5,703 131,701
dme (d) 7,433 6,006 26,829
rno (r) 8,002 6,786 32,527
mmu (m) 9,109 8,060 38,414
hsa (h) 11,512 9,328 67,858

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

c-
s

c-
d

c-
r

c-
m

c-
h

s-
d

s-
r

s-
m

s-
h

d-
r

d-
m

d-
h

r-
m

r-
h

m
-h

IsoRank (α=1)
GRAAL
IsoRank
natalie

0

2000

4000

6000

8000

10000

12000

14000

16000

c-
s

c-
d

c-
r

c-
m

c-
h

s-
d

s-
r

s-
m

s-
h

d-
r

d-
m

d-
h

r-
m

r-
h

m
-h

IsoRank (α = 1)
GRAAL
IsoRank
natalie

Fig. 2. Performance of the three different methods for the all-against-all species com-
parisons (15 alignment instances). Missing bars correspond to exceeded time/memory
limits or software crashes. Left plot: Edge correctness, right plot: running times (sec.).

As mentioned in Section 3, our method benefits greatly from using a sparse
alignment graph. To that end, we use the e-values obtained from the all-against-
all sequence alignment to prohibit biologically unlikely matchings by only con-
sidering protein-pairs whose e-value is at most 100. Note that this only applies to
natalie as both Graal and IsoRank consider the complete alignment graph.
On each of the 15 instances, we ran Graal with 3 different random seeds and
sampled the input parameter which balances the contribution of the graphlets
with the node degrees uniformly within the allowed range of [0, 1]. As for Iso-
Rank, when setting the parameter α—which controls to what extent topological
similarity plays a role—to the desired value of 1, very poor results were ob-
tained. Therefore we also sampled this parameter within its allowed range and
re-evaluated the resulting alignments in terms of edge-correctness. natalie was
run with a time limit of 10 minutes and K = 3, L = 100, M = 10, N = 20. For
both Graal and IsoRank only the highest-scoring results were considered.

Figure 2 shows the results. IsoRank was only able to compute alignments for
three out of the 15 instances. On the other instances IsoRank crashed, which
may be due to the large size of the input networks. For Graal no alignments
concerning sce could be computed, which is due to the large number of edges in
the network on which the graphlet enumeration procedure choked: in 12 hours
only for 3% of the nodes the graphlet degree vector was computed. As for the last
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three instances, Graal crashed due to exceeding the memory limit inherent to 32-
bit processes. Unfortunately no 64-bit executable was available. On the instances
for which Graal could compute alignments, the performance—both in solution
quality and running time—is very poor when compared to IsoRank and natalie.
natalie outperforms IsoRank in both running time and solution quality.

4.2 GO Similarity

In order to measure the biological relevance of the obtained network alignments,
we make use of the Gene Ontology (GO) [3]. For every node in each of the six
networks we obtained a set of GO annotations (see Table 1 for the exact num-
bers). Each annotation set was extended to a multiset by including all ancestral
GO terms for every annotation in the original set. Subsequently we employed
a similarity measure that compares a pair of aligned nodes based on their GO
annotations and also takes into account the relative frequency of each annota-
tion [11]. Since the similarity measure assigns a score between 0 and 1 to every
aligned node pair, the highest similarity score one can get for any alignment is the
minimum number of annotated nodes in either of the networks. Therefore we can
normalize the similarity scores by this quantity. Unlike the previous experiment,
this time we considered the bitscores of the pairwise global sequence alignments.
Similarly to IsoRank parameter α, we introduced a parameter β ∈ [0, 1] such
that the sequence part of the score has weight (1−β) and the topology part has
weight β. For both IsoRank and natalie we sampled the weight parameters
uniformly in the range [0, 1] and showed the best result in Figure 3. There we can
see that both natalie and IsoRank identify functionally coherent alignments.
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Fig. 3. Biological relevance of the alignments measured via GO similarity

5 Conclusion

Inspired by results for the closely related quadratic assignment problem (QAP),
we have presented new algorithmic ideas in order to make a Lagrangian
relaxation approach for global network alignment practically useful and com-
petitive. In particular, we have generalized a dual descent method for the QAP.
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We have found that combining this scheme with the traditional subgradient
optimization method leads to fastest progress of upper and lower bounds.

Our implementation of the new method, natalie 2.0, works very well and fast
when aligning biological networks, which we have shown in an extensive study on
the alignment of cross-species PPI networks. We have compared natalie 2.0 to
those state-of-the-art methods whose scoring schemes can be expressed as special
cases of the scoring scheme we propose. Currently, these methods are IsoRank
and Graal. Our experiments show that the Lagrangian relaxation approach is
a very powerful method and that it currently outperforms the competitors in
terms of quality of the results and running time.

Currently, all methods, including ours, approach the global network alignment
problem heuristically, that is, the computed alignments are not guaranteed to be
optimal solutions of the problem. While the other approaches are intrinsically
heuristic—both IsoRank and Graal, for instance, approximate the neighbor-
hood of a node and then match it with a similar node—the inexactness in our
methods has two causes that we plan to address in future work: On the one hand,
there may still be a gap between upper and lower bound of the Lagrangian re-
laxation approach after the last iteration. We can use these bounds, however, in
a branch-and-bound approach that will compute provably optimal solutions. On
the other hand, we currently do not consider the complete bipartite alignment
graph and may therefore miss the optimal alignment. Here, we will investigate
preprocessing strategies, in the spirit of [25], to safely sparsify the input bipartite
graph without violating optimality conditions.

The independence of the local problems (LDik
λ ) allows for easy paralleliza-

tion, which, when exploited would lead to an even faster method. Another im-
provement in running times might be achieved when considering more involved
heuristics for computing the lower bound, such as local search. More functionally-
coherent alignments can be obtained when considering a scoring function where
node-to-node correspondences are not only scored via sequence similarity but
also for instance via GO similarity. In certain cases, even negative weights for
topological interactions might be desired in which case one needs to reconsider
the assumption of entries of matrix W being positive.
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