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Abstract

Given a Lagrangian sphere in a symplectic 4-manifold (M,ω) with b+ = 1,
we find embedded symplectic surfaces intersecting it minimally. When the
Kodaira dimension κ of (M,ω) is −∞, this minimal intersection property turns
out to be very powerful for both the uniqueness and existence problems of
Lagrangian spheres. On the uniqueness side, for a symplectic rational manifold
and any class which is not characteristic and ternary, we show that homologous
Lagrangian spheres are smoothly isotopic, and when the Euler number is less
than 8, we generalize Hind and Evans’ Hamiltonian uniqueness in the monotone
case. On the existence side, when κ = −∞, we give a characterization of classes
represented by Lagrangian spheres, which enables us to describe the non-Torelli
part of the symplectic mapping class group.
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1 Introduction

For a symplectic 4-manifold (M,ω), symplectic surfaces and Lagrangian sur-
faces are of complementary dimensions. Thus we can ask what can be said
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about their intersection pattern. Welschinger investigated this problem for a
Lagrangian torus L in [58], where he proves that the class [L] pairs trivially
with any effective class, and a symplectic sphere with positive Chern number
can be isotoped symplectically away from L.

In the case when L is a Lagrangian sphere in S2×S2 with a product symplec-
tic form, Hind [23] constructed two transverse foliations of symplectic spheres
where each sphere intersects L in a single point. This is used to show that every
such L is Hamiltonian isotopic to the antidiagonal. For a Lagrangian sphere L
in a symplectic Del Pezzo surface with Euler number at most 7, Evans showed
in [15] that it can be displaced from certain symplectic spheres with positive
Chern number up to Hamiltonian isotopy, and applied this displacement result
to prove the uniqueness of Hamiltonian isotopy class of Lagrangian spheres.

In section 3, we generalize Evans’ displacement result in two ways, the first
being

Theorem 1.1. Let L be a Lagrangian sphere in a symplectic 4-manifold (M,ω),
and A ∈ H2(M ; Z) with A2 ≥ −1. Suppose A is represented by a symplectic
sphere C. Then C can be isotoped symplectically to another representative of
A which intersects L minimally.

In this paper all surfaces are smooth, embedded, connected, and oriented.
We say that two closed surfaces intersect minimally if they intersect trans-
versely at |k| points where k is the homological intersection number.

The second generalization is for symplectic surfaces of arbitrary genus in
manifolds with b+ = 1. To state it let Eω be the set of ω−exceptional classes:

{E ∈ H2(M,Z) : E is represented by an ω-symplectic (−1) sphere}.

Theorem 1.2. Suppose (M,ω) is a symplectic 4-manifold with b+ = 1 and L

is a Lagrangian sphere. Assume A ∈ H2(M,Z) satisfies ω(A) > 0, A2 > 0 and
A · E ≥ 0 for all E ∈ Eω. Then there exists a symplectic surface in the class
nA intersecting L minimally for large n ∈ N.

One consequence of Theorem 1.2 is that we are able to effectively perform
the Lagrangian-relative inflation procedure when b+ = 1 (Section 5).

This turns out useful in dealing with a variety of questions, especially the
existence of Lagrangian spheres. To approach this question, it is convenient to
introduce the following definition.

Definition 1.3. A class ξ is called Kω-null spherical if ξ2 = −2,Kω(ξ) = 0
and it is represented by a smooth sphere. Here Kω is the symplectic canonical
class.

We classify K-null spherical classes in any (M,ω) with κ = −∞. Recall
that κ(M,ω) is the Kodaira dimension of (M,ω) (see for example [32]). κ
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takes values in the set {−∞, 0, 1, 2}, and κ(M,ω) = −∞ exactly when (M,ω)
is symplectic rational or ruled. The classification of Kω-null spherical classes,
together with the Lagrangian-relative inflation, enables us to further show that
the obvious necessary condition for the existence of a Lagrangian sphere in
(M,ω) is also sufficient.

Theorem 1.4. Let (M,ω) be a symplectic 4-manifold with κ = −∞. ξ ∈
H2(M ; Z) is represented by a Lagrangian sphere if and only if ξ is Kω-null
spherical and ω(ξ) = 0.

On the other hand, as in [15], Theorem 1.1 is useful in establishing unique-
ness results for rational manifolds. A rational manifold is CP 2#kCP 2 or
S2 × S2. When M is a rational manifold (M,ω) is called a symplectic ra-
tional manifold. A symplectic rational manifold (M,ω) which is monotone, i.e.
[ω] = Kω, is also called a symplectic Del Pezzo surface.

Theorem 1.5. Let (M,ω) be a symplectic rational manifold with Euler number
χ ≤ 7, and ξ a Kω-null spherical class with ω(ξ) = 0. If ξ is not characteristic
when χ = 6, then Lagrangian spheres in ξ are unique up to Hamiltonian isotopy.

This was due to Hind ([23]) in the case of S2 × S2, and to Evans ([15]) for
symplectic Del Pezzo surfaces with Euler number up to 7. Notice that this is
equivalent to the transitivity of the Hamiltonian group action on the space of
homologous Lagrangian spheres. The proof of Theorem 1.5 will be presented
in Section 6. We believe that the uniqueness still holds when χ = 6 and ξ

is characteristic. However, the condition χ ≤ 7 in Theorem 1.5 is necessary,
demonstrated by Seidel’s twisted Lagrangian spheres in symplectic Del Pezzo
surfaces with χ ≥ 8 ([51]).

Further, we prove:

Theorem 1.6. Let (M,ω) be a symplectic rational manifold, and ξ a Kω-null
spherical class with ω(ξ) = 0. If ξ is not characteristic when χ = 6, then
Lagrangian spheres in ξ are unique up to smooth isotopy.

In the monotone case this was again due to Evans ([17]). We expect the
extra condition being non-characteristic when χ = 6 will eventually be removed.
In fact, we are not aware of examples of homologous but not smoothly isotopic
Lagrangian spheres in any symplectic 4-manifolds. For Lagrangian tori, such
examples in a primitive homology class were first constructed by Vidussi in [57],
and null-homologous ones were further constructed by Fintushel and Stern in
[18].

We also conjecture the following version of uniqueness.

Conjecture 1.7. For any two homologous Lagrangian spheres L1 and L2 in a
symplectic rational manifold (M,ω), there exists φ ∈ Symph(M,ω) such that
φ(L1) = L2.
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In other words, the Torelli part Symph(M,ω), which is the subgroup of
Symp(M,ω) acting trivially on homology, should also act transitively on the
space of Lagrangian spheres in a fixed homology class. Evans [16] calculated
explicitly the homotopy type of Symph(M,ω) when (M,ω) is a symplectic Del
Pezzo surface with χ ≤ 8 (also known to M.Pinnsonault). In particular, when
χ ≤ 7, it is connected thus agreeing with Ham(M,ω). In our upcoming work
[39] we will extend the connectedness to the non-monotone case.

It turns out that we are able to calculate the non-Torelli part of the sym-
plectic mapping class group from Theorem 1.4. Recall that each Lagrangian
sphere L gives rise to a symplectomorphism, well defined up to isotopy (see [51]
and 2.1.1), which is denoted by τL and called the Lagrangian Dehn twist along
L.

Theorem 1.8. Let (M,ω) be a symplectic 4-manifold with κ = −∞. Then the
homological action of Symp(M,ω) is generated by Lagrangian Dehn twists. In
other words, for any f ∈ Symp(M,ω), there are Lagrangian spheres Li such
that f∗ = (τL1)∗ ◦ (τL2)∗ ◦ · · · ◦ (τLr)∗.

In the homological level, Theorem 1.8 could be viewed as a symplectic ver-
sion of a classical theorem of M. Noether, which asserts that a birational auto-
morphism of CP 2 (also known as plane Cremona map) can be decomposed into
a series of ordinary quadratic transformations (see [1] for a complete account).

Acknowledgement: The authors would like to thank Richard Hind for his in-
terest in our work and innumerable inspiring comments, as well as pointing
out an error in an earlier draft. We would also like to thank Robert Gompf,
Jonathan Evans, Chris Wendl, Ke Zhu, Weiyi Zhang and Chung-I Ho for help-
ful conversations. After the paper was completed, we received a manuscript
by V.V.Shevchishin [48], where he also proved Theorems 1.4 and 1.8 using a
different approach.

2 SFT of Lagrangian S2

2.1 Geometry of T ∗S2

We first recall some standard facts of T ∗S2. Consider the embedding of the
unit sphere in R3, which induces a symplectic embedding of T ∗S2 into T ∗R3 =
R3 × R3. In terms of the coordinates (u, v) ∈ R3 × R3, T ∗S2 is thus given by
equations ([51], [15]):

{(u, v) ∈ R3 × R3 : |u| = 1, u · v = 0)}, (2.1)
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and the symplectic form is the restriction of ωcan = dλcan =
∑
dvjduj on

R6, where the Liouville form λcan =
∑
vjduj is also well-defined. (2.1) pro-

vides a Lagrangian splitting of the tangent bundle of T ∗S2 into the horizontal
u−direction and the vertical v−direction.

Here is another useful model. Consider the affine quadric Q = {z2
1+z2

2+z2
3 =

1} ⊂ C3. In terms of u = Re z ∈ R3 and v = Im z ∈ R3, Q is described by
|u|2 − |v|2 = 1, u · v = 0. Therefore (u, v) → (− u

|u| , v|u|) is a diffeomorphism
from Q to T ∗S2. Moreover, if we restrict ωcan on R6 to Q, the diffeomorphism
is in fact a symplectomorphism.

2.1.1 Symplectomorphisms of T ∗S2

The symplectomorphism group of T ∗S2 contains some compact subgroups. For
each l > 0, denote T ∗l S

2 to be the open disk bundle with |v| < l, and Hl

the sphere bundle of length l. The isometry group of S2, SO(3), acts on
(T ∗S2, ωcan) as symplectomorphisms preserving each Hl.

The Hamiltonian function Z(u, v) = 1
2 |v|

2 generates a circle action on T ∗S2,
agreeing with the cogeodesic flow. If we apply the symplectic cut operation in
[31] to T ∗l S

2 along Hl, we obtain S2×S2 with a monotone symplectic form (see
for example [3]). In other words, T ∗1 S

2 embeds into a monotone S2×S2 as the
complement of the diagonal ∆.

The mapping class group of the compactly supported symplectomorphism
group of (T ∗S2, ωcan) is non-trivial. In fact, it is the infinite cyclic group
generated by a model Dehn twist of the zero section ([50]).

To define the model Dehn twist, consider the Hamiltonian function T (u, v) =
|v| on T ∗S2\{zero section}, whose Hamiltonian vector field is the unit field
(v/|v|, 0). The induced circle action is

σt(u, v) = (cos(t)u+ sin(t)
v

|v|
, cos(t)v − sin(t)|v|u).

Notice that σπ is the antipodal mapA(u, v) = (−u,−v), which extends smoothly
over the zero section. Now choose a function ρ : R → R satisfying ρ(t) = 0
for t � 0 and ρ(−t) = ρ(t)− t. The Hamiltonian flow of ρ(T ) is σtρ′(|v|)(u, v).
Since ρ′(0) = 1/2, the time 2π map extends smoothly over the zero section
as the antipodal map. The resulting compactly supported symplectomorphism
τ(u, v) of T ∗S2 is called a model Dehn twist.

There is a smooth isotopy with compact support from τ2 to the identity,
but no such symplectic isotopies exist.

2.1.2 Contact geometry of sphere bundles

The length l sphere bundle Hl = {|v| = l} is a contact manifold with contact
form λcan. At the point (u, v) the contact plane distribution ξ = kerλcan is
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spanned by (u× v, 0) and (0, u× v).
The Reeb vector field at (u, v) is the vector field (v, 0). Thus there are two

dimensional simple Reeb orbits, all with the same period, and they foliate Hl.
This is a special case of a Reeb flow of Morse-Bott type. In particular, the
Reeb flow agrees with the cogeodesic flow of S2 with round metric.

The vector fields (u× v, 0) and (0, u× v) provide a global trivialization Φ of
ξ. With respect to Φ, the action of the Reeb flow on ξ along any Reeb orbit in
Hl is considered as a path of matrices in sp(2,R), whose Maslov index is defined
to be the Conley-Zehnder index of the orbit ([13], [49]). From the calculation
in [23] (see also [15]), simple Reeb orbits have Conley-Zehnder index 2.

Hl is in fact a contact-type hypersurface in T ∗l+εS
2, where the Liouville

vector field is (0, v). In particular, T ∗l S
2 = {|v| ≤ l} is a Liouville domain with

convex boundary Hl.

2.1.3 Cylindrical coordinates

To apply SFT, we need to change to cylindrical coordinates. Consider a dif-
feomorphism Ψ : T ∗S2 → T ∗S2, (u, v) → (u, ψ(|v|)v/|v|), where ψ : [0,∞) →
[0,∞) is a smooth increasing function such that ψ(s) = s for s small, and
φ(s) = es for s > r. Ψ is the identity near the zero section, and (T ∗S2,Ψ∗ωcan)
is a symplectic manifold with one positive cylindrical end. Let ω = Ψ∗ωcan.

Then (T ∗l S
2, ω) is still a Liouville domain, with the Liouville field given by

the unit field η = (0, v/|v|) for |v| > r. Moreover, (T ∗S2, ω) is the (cylindrical)
symplectic completion of (T ∗l S

2, ω).
On Hl, the contact form is λl = ψ(l)

l λ, and the Reeb vector field at (u, v) is
Rl = ( l

ψ(l)v, 0).

2.2 Lagrangian S2 and good almost complex struc-

tures

Let L ⊂ (M,ω) be a Lagrangian two sphere. From the Weinstein neighborhood
theorem, the Lagrangian sphere L has a neighborhood U symplectomorphic to
(T ∗2rS

2, ωcan) for some small r > 0. Denote the symplectomorphism by Ξ. Let
Ul = Ξ−1(T ∗l S

2) for l < 2r, and Wl = M\Ul be the complement of Ul.
In particular, H = ∂Ul is a contact-type hypersurface with contact form

λ = Ξ−1
∗ λl.

2.2.1 J0
t on T ∗S2

Following [23], we make a specific choice of ω−compatible almost complex struc-
ture J0 on T ∗S2 as follows: near the zero section, J0(X, 0) = (0, X); and for
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|v| > r,

J0|(u,v)(v, 0) = (0,
ψ(l)
l
v), J0|(u,v)(u× v, 0) = (0, u× v).

J0 is SO(3)-invariant, and J0 is adjusted in the sense that, for |v| > r, it is
∂
∂s−invariant, sending the Liouville field to the Reeb field.

Choose l ∈ (r, 2r). When restricted to the Liouville domain (T ∗l S
2, ω),

J0|
T ∗l S

2 is adjusted in the collar neighborhood r < |v| ≤ l, and its cylindrical

completion is canonically identified with (T ∗S2, J0).
We need to further consider a deformation J0

t of J0. Let Vt = [−t− ε, t+ ε]
and βt : Vt → [−ε, ε] be a strictly increasing function with βt(s) = s + t on
[−t−ε,−t−ε/2] and βt(s) = s−t on [t+ε/2, t+ε]. Define a smooth embedding
ft : Vt ×Hl → T ∗S2 by:

ft(s,m) = (βt(s) + l,m).

Let J̄t be the ∂
∂s−invariant almost complex structure on Vt × Hl such that

J̄t( ∂∂s) = Rl and J̄t|ξ = J0|ξ. Glue the almost complex manifold (T ∗S2\ft(Vt×
Hl), J0) to (Vt×Hl, J̄t) via ft to obtain the family of almost complex structures
J0
t on T ∗S2.

Notice that each J0
t agrees with J0 away from the collar l− ε < |v| < l+ ε.

And on this collar, it agrees with J0 on ξ, while J0
t |(u,v)(v, 0) = (0, dβ

−1
t
ds |s=|v|−l

ψ(l)
l v).

On the other hand, via ft, J0
t restricted to T ∗l S

2 is the same as J0 on T ∗l+tS
2.

In particular, J0
∞ can be viewed an almost complex structure on T ∗S2, which

is in fact equal to J0.

2.2.2 Neck-stretching on M

We say that an almost complex structure J on M is adjusted to H = ∂Ul with
respect to the Liouville vector field Ξ−1

∗ (η), if in a tubular neighborhood of H,
J is invariant under the flow Ξ−1

∗ (η), J(Ξ−1
∗ (η)) is the Reeb vector field on H,

and J preserves the contact plane field ζ defined by the contact structure iηω.
Following [17] consider the following Fréchet manifold of adjusted almost

complex structures:

J = {J ∈ Jω : J = Ξ−1
∗ J0 on U}. (2.2)

Given J ∈ J , define

Jt = J on X\U, Jt = Ξ−1
∗ J0

t on U.

Notice that Jt is in fact the neck-stretching of the adjusted J along ∂Ul with
respect to Ξ−1

∗ (η). Fix a sequence {ti ∈ R : ti → +∞}, we further define a
sequence of Fréchet manifolds of adjusted almost complex structures:

J (i) = {J ∈ Jω : J = Ξ−1
∗ J0

ti in U}.
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From the explicit description of Jti in 2.2.1, we can reverse the neck-stretching,
thus there is a diffeomorphism Pi : J (i)→ J .

When i → ∞ the neck-stretching process results in an almost complex
structure J∞ on the union of symplectic completions W and U of W and Ur.
W and U are two open symplectic manifolds with cylindrical ends, with (U, J∞)
being (T ∗S2, J0). J∞ on the cylindrical end of W can be described explicitly:
one simply extends η in the obvious way, and endows an η-adjusted almost
complex structure which still restricts to J on ζ as above.

To describe the limits of pseudo-holomorphic curves under the deformation
Jt, we need another open symplectic manifold. Let SH be the symplectization
of the contact manifold H. We endow SH again the η-adjusted almost complex
structure as on the cylindrical ends of W and U , and also denote it by J∞.

2.3 Finite energy holomorphic curves

Suppose S is a closed Riemann surface and Γ ⊂ S an ordered finite set of
punctures.

Let (Z, ω) be any of the three symplectic 4-manifolds W , U , or SH, each
equipped with the adjusted almost complex structure J∞. Denote E+ (E−) to
be the positive (negative) end, which is allowed to be empty.

Notice that, since J0
∞( ∂∂s) = Rl, and ξ is J0

∞−invariant, the real trivializa-
tion Φ of ξ on Hl canonically induces a complex trivialization of the complex
rank 2 bundle (TZ, J∞) along E±, which we still denote by Φ.

Suppose u : S\Γ → Z is a proper map. u is called simple if it does not
factor through a multiple cover.

Let u± be the restriction to u−1(E±). Then u± has the form (a±, v±) in
coordinates R±×H. Consider the set C of functions φ± : R± → R with integral
1.

The λ−energy of a map u : S\Γ→ Z is defined by

Eλ(u) = sup
φ±∈C

(
∫
u−1(E+)

(φ+ ◦ a+)da+ ∧ v∗+λ+
∫
u−1(E−)

(φ− ◦ a−)da− ∧ v∗−λ).

The energy of u is then given by

E(u) =
∫
u−1(Z\(E+∪E−))

u∗ω + Eλ(u).

u is called a finite energy map if E(u) < ∞. Since we are in the Morse-Bott
situation, i.e the Reeb flow on E± is Morse-Bott, finite energy J∞−holomorphic
curves are asymptotic to periodic orbits in E± ([11]).

Suppose S has genus g, and u has s+ positive punctures converging to
γ+
k , 1 ≤ k ≤ s+, s− negative punctures converging to γ−k , 1 ≤ k ≤ s−. Two
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such maps u and u′ are called equivalent if there is a biholomorphism h :
(S,Γ)→ (S′,Γ′) such that u = u′ ◦ h.

Each u is associated with a CR operator, and u is called (SFT) regular if
the operator is surjective ([15]). Denote the index of this operator by index(u).
To state the index formula, suppose n+

i = cov(γ+
i ) and n−j = cov(γ−j ), where

cov(γ) denotes the multiplicity of γ over a simple Reeb orbit. Since each Reeb
orbit is in a 2 dimensional manifold and has CZ index 2, following the compu-
tation on [23] and [11], we have:

index(u) = −(2− 2g) + 2s+ 2cΦ
1 ([u]) +

s+∑
k=1

2cov(γ+
k )−

s−∑
k=1

2cov(γ−k ). (2.3)

Here cΦ
1 (TZ) is the relative first Chern class of (TZ, J∞) relative to the trivi-

alization Φ along the ends, [u] is the relative homology class of u ([15]).
The following is a very special case of a theorem due to Wendl, which states

that for certain u, the SFT regularity is automatic.

Theorem 2.1 (Wendl, [59]). Suppose (W,J) is a 4-dimensional almost complex
manifold with cylindrical end modelled on contact manifolds foliated by Morse-
Bott Reeb orbits, and u : (S,Γ)→ W is a embedded pseudo-holomorphic curve
with punctures. If

index(u) > 2g + 2|Γ| − 2, (2.4)

then u is regular.

2.3.1 Regular holomorphic curves in W

We discuss the SFT transversality in W .

Remark 2.2. It is well-known, for example by Remark 3.2.3 in [45] that, to
achieve transversality for the moduli space of pseudo-holomorphic curves, it
suffices to consider the space of ω−compatible almost complex structure which
is fixed on an open set, provided that every pseudo-holomorphic curve repre-
senting the class passes through its complement.

Recall that a Baire set is the countable intersection of open and dense sets.
Since no punctured pseudo-holomorphic curves can lie completely inside U , the
arguments to prove Theorem 5.22 in [15] also proves:

Proposition 2.3. Using notations in Section 2.2, there exists a Baire set in
J̄W ⊂ J̄ such that for any J ∈ J̄W , J∞ is SFT regular in the sense that every
finite energy J∞−holomorphic curve u is regular.

We will need variations of other standard transversality results about pseudo-
holomorphic curves, where the above observation will be crucial.
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2.3.2 Genus 0 curves in SH with a single simple asymptote

In SH we will encounter curves as in the following lemma.

Lemma 2.4. Suppose u : C → SH is a J∞−holomorphic curve of genus 0 in
SH with one positive end asymptotic to a simple Reeb orbit. Then u is a trivial
cylinder.

Proof. The proof is contained in Lemma 7.5 [15] (see also [23], [12]). We briefly
recall the main points. Since each Reeb orbit is non-trivial in π1(H) and C has
genus 0, there has to be at least one negative puncture. On the other hand,
since Eλ(u) ≥ 0 and all Reeb orbits have the same period, u has at most one
negative puncture, which has to be simple. Thus u is a trivial cylinder.

2.3.3 J0−holomorphic planes in T ∗S2

In T ∗S2 we need to consider embedded holomorphic planes with one (positive)
end asymptotic to a simple Reeb orbit.

As mentioned, on T ∗S2, J∞ is the same as J0. Notice that J0 interchanges
the two summands of the Lagrangian splitting of the tangent bundle of T ∗S2.
Thus det(TT ∗S2, J0) is canonically trivialized since the Lagrangian horizontal
two plane bundle is orientable. The expected dimension of the moduli space
of embedded J0−holomorphic plane u with one (positive) end asymptotic to a
simple Reeb orbit is thus given by

index(u) = −2 + 2 + 2 = 2. (2.5)

This follows from the general index formula (2.3), and the vanishing of cΦ
1 for

all punctured curves in T ∗S2.
It is proved in Lemmas 8 and 9 and Section 4 in [23] that if J̃0 is close

to J0 and any embedded J̃0−holomorphic planes with one simple puncture is
regular, then J̃0 enjoys the following properties:

(1) There are two J̃0-foliations Fα and Fβ in T ∗S2, such that there is a one-
one correspondence from simple Reeb orbits to planes in each foliation;

(2) Each element in Fα (Fβ, resp.) intersects the zero-section at a single point
positively (negatively, resp.).

We will call the planes in Fα (Fβ, resp.) α-planes (β-planes, resp.).
One consequence of (2.5) is that we can appeal to Wendl’s Theorem 2.1 to

conclude that each embedded J0−holomorphic planes with one simple puncture
is regular. In particular, J0 also satisfies the above properties. Furthermore,
we have
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Lemma 2.5. A J0-holomorphic plane in T ∗S2 asymptotic to a simple Reeb
orbit belongs to either Fα or Fβ. Moreover, an α-plane and a β-plane intersect
transversally if they do not share the same asymptote.

Proof. The proof is largely similar to Lemma 8 in [23]. One could think of
T ∗S2 topologically as a neighborhood of ∆̄, the anti-diagonal in S2 × S2. The
complement is then a disk bundle over ∆ the diagonal, of which the boundary
of disk fibers coincides with the simple Reeb orbits in T ∗S2. One can then glue
these disks to elements in Fα and Fβ, resulting in two foliations in S2×S2, with
classes [S2× pt] and [pt×S2], respectively. Suppose we have a J0-holomorphic
plane P in U asymptotic to some simple Reeb orbit γ, which does not belong
to either Fα nor Fβ, it must intersect some Pα ∈ Fα and Pβ ∈ Fβ positively,
where Pα and Pβ have asymptotes γα, γβ which are different from γ. Now P ,
Pα and Pβ can all be capped in S2 × S2 by the above procedure, resulting in
three spheres intersecting only in U . By construction, the sphere formed by
capping P has positively intersection with both [S2 × pt] and [pt × S2], but
intersects ∆ at a single point, which leads to a contradiction.

The second assertion can be proved similarly, for if γα 6= γβ, the capped
sphere does not have intersection in the complement of T ∗S2, so they must
intersect inside T ∗S2 for homological reason.

Remark 2.6. If we do not appeal to Wendl’s automatic transversality result,
instead of J0, we could simply use a fixed J̃0 satisfying the properties above
throughout the paper.

2.3.4 SFT compactness

Following [23] we briefly recall the relevant compactness results in the symplec-
tic field theory adapted to our case. For detailed expositions on the subject,
we refer the readers to [12] and [11].

Let M∞ = W ∪SH∪U , and J∞ be the almost complex structure defined as
in section 2.2. Let Σ be a Riemann surface with nodes. A level-k holomorphic
building consists of the following data:

(i) (level) A labelling of the components of Σ\{nodes} by integers {1, · · · , k}
which are the levels. Two components sharing a node differ at most by 1
in levels. Let Σr be the union of the components of Σ\{nodes} with label
r.

(ii) (asymptotic matching) Finite energy holomorphic curves v1 : Σ1 → U ,
vr : Σr → SH, 2 ≤ r ≤ k − 1, vk : Σk → W . Any node shared by Σl

and Σl+1 for 1 ≤ l ≤ k − 1 is a positive puncture for vl and a negative
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puncture for vl+1 asymptotic to the same Reeb orbit γ. vl should also
extend continuously across each node within Σl.

Now for a given stretching family {Jti} as previously described, as well
as Jti-curves ui : S → (M,Jti), we define the Gromov-Hofer convergence as
follows:

A sequence of Jti-curves ui : S → (M,Jti) is said to be convergent to a level-
k holomorphic building v in Gromov-Hofer’s sense, using the above notations,
if there is a sequence of maps φi : S → Σ, and for each i, there is a sequence of
k − 2 real numbers tri , r = 2, · · · , k − 1, such that:

(i) (domain) φi are locally biholomorphic except that they may collapse cir-
cles in S to nodes of Σ,

(ii) (map) the sequences ui ◦ φ−1
i : Σ1 → U , ui ◦ φ−1

i + tri : Σr → SH,
2 ≤ r ≤ k − 1, and ui ◦ φ−1

i : Σk → W converge in C∞-topology to
corresponding maps vr on compact sets of Σr.

Now the celebrated compactness result in SFT reads:

Theorem 2.7 ([12]). If ui has a fixed homology class, there is a subsequence tim
of ti such that utim converges to a level-k holomorphic building in the Gromov-
Hofer’s sense.

3 Minimal intersection

In this section we prove Theorems 1.1 and 1.2. There are two main ingredients,
the symplectic Seiberg-Witten theory which produces embedded, connected
pseudo-holomorphic submanifolds for a class of compatible almost complex
structures suitable for applying symplectic field theory. Via neck stretching
the symplectic field theory then produces in the limit the desired symplectic
surfaces which intersect L minimally.

3.1 Embedded and nodal pseudo-holomorphic sub-

manifolds

We first introduce some notations. All surfaces in this section are closed. Given
a class e ∈ H2(M,Z), let ηω(e) be the ω−symplectic genus of e:

ηω(e) =
e · e+Kω(e) + 2

2
. (3.1)

This is exactly the genus of a connected embedded ω-symplectic surface in class
e (if there is one) from the adjunction formula.

Also define the dimension of e

13



d(e) =
−Kω(e) + e · e

2
. (3.2)

d(e) is the expected dimension of the moduli space of embedded pseudo-holomorphic
curve of genus ηω(e) in the class e. In terms of ηω(e), d(e) can also be expressed
as:

d(e) = −Kω(e) + ηω(e)− 1.

Suppose C is a compact, connected, pseudo-holomorphic submanifold of M .
Then C has the structure of a Riemann surface and it represents a nonzero class
[C]. Moreover, there is a canonically associated elliptic operator

DC : Γ(N)→ Γ(N ⊗ T 1,0C), (3.3)

where N is the normal bundle of C. DC is called the normal operator of C and
the index of DC is exactly given by d([C]).

Fix a set Ω of d([C]) distinct points. If Ω ⊂ C, then we can define the
operator

DC ⊕ evΩ : Γ(N)→ Γ(N ⊗ T 1,0C)⊕ (⊕p∈ΩN |p).

The index of DC ⊕ evΩ is 0. And the kernel of DC ⊕ evΩ should be thought
of as giving a sort of Zariski tangent space to the space of pseudo-holomorphic
embeddings of C inM containing the subset Ω (as a point in the space of smooth
embeddings). C is called (J,Ω) non-degenerate if the operator DC ⊕ evΩ has
trivial cokernel (and also trivial kernel).

DC is a real CR operator on (C,N). For such operators, there is the fol-
lowing automatic transversality result.

Theorem 3.1 ([26], [27]). Let Σ be a Riemann surface of genus g, and let
L be a complex line bundle over Σ. Let D be a real CR operator. Suppose
c1(L) ≥ 2g − 1, then cokerD = 0.

We will show in the next two subsections that in two situations, given a
class e, there is a Baire set of pairs (J,Ω) for which there are connected
J−holomorphic submanifolds of genus ηω(e) through Ω. The Baire prop-
erty is shown by first setting up universal models of various type of pseudo-
holomorphic curves, and then exploiting the Fredoholm properties of D in con-
junction with the Sard-Smale theorem and the Gromov compactness theorem
to rule out unwanted behavior for generic pairs (J,Ω).

We also need to generalize to the case of a nodal pseudo-holomorphic sub-
manifold in the sense of Sikorav ([53]). Let Σ = ∪Σi be a nodal Riemann
surface, where Σi are the irreducible components. A J−holomorphic map
f : Σ→ (M,J) is said to be nodal if f has distinct tangents along two branches
at each node. For our purpose, we call a nodal curve f a nodal submanifold if f
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is an embedding on each Σi. Thus a nodal submanifold is a union of embedded
submanifolds intersecting transversally. Let Ci = f(Σi).

For a nodal submanifold, the analogue of (3.3), D∪Ci , is defined in Section
4 in [53] in terms of the normalization of Σ. D∪Ci is elliptic and its index is
simply given by

∑
i d([Ci]).

In this case, for each i, fix a subset Ωi ⊂ Ci with d([Ci]) distinct points and
not containing any of the nodes. Then the operator D∪Ci ⊕ ev∪Ωi is an elliptic
operator with index zero, and f is called non-degenerate if D∪Ci ⊕ ev∪Ωi has
trivial cokernel.

The automatic transversality in this context, Corollary 2 in [53], implies
that D∪Ci ⊕ ev∪Ωi is onto if

−Kω([Ci]) > 0, for each i. (3.4)

3.1.1 Symplectic spheres

Suppose C is an embedded symplectic sphere with self-intersection at least −1.
In this case

d([C]) = −Kω([C])− 1, [C] · [C] = −Kω([C])− 2. (3.5)

The following should be well known. We present some details in view of the
generalization to certain configurations, Proposition 3.4.

Proposition 3.2. Let (M,ω) be a symplectic 4-manifold, e ∈ H2(M ; Z) with
e2 ≥ −1 a class represented by an embedded symplectic sphere C. Then there
is a path connected Baire subset Te of Jω ×Md(e) such that a pair (J,Ω) lies in
Te if and only if there is a unique embedded J−holomorphic sphere in the class
e containing Ω. Here Md is the space of d−trples of distinct (but unlabeled)
points in M . Consequently, any symplectic sphere in the class e is isotopic to
C.

Proof. Pick an almost complex structure J ∈ Jω such that C is J-holomorphic
and Ω ⊂ C.

Following [4] (Lemma 4 and formula (15)) and [27], let P = −
∑

zi∈Ω zi be
the divisor of C and Ñ = N ⊗ P . Then there exists a real CR operator on
(C, Ñ),

D̃C : Γ(Ñ)→ Γ(Ñ ⊗ T 1,0C),

with the property that cokerD̃C
∼= coker(DC ⊕ evΩ). Notice that, by (3.5),

c1(Ñ) = c1(N)− d([C]) = e · e− d(e) = −1.

From Theorem 3.1, D̃ is surjective.
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Notice that d(e) ≥ 0. Moreover, from the positivity of intersections and the
fact that e · e = d(e) − 1, C is the only connected J-sphere in e containing Ω.
Since D̃ is surjective, C is regular with respect to (J,Ω). Thus we conclude
that the genus 0 Gromov-Witten invariant of e passing through d(e) points is
±1, in particular, nonzero.

A marked P1 is a pair (P1, {zi}) where {zi} is a set of unordered, distinct
points. Now introduce the universal genus zero moduli space P associated
to e, which is the space of J−holomorphic embedding u : (P1, {zi}d(e)

i=1 ) →
(M,J) with [u] = e for some J ∈ Jω, modulo the automorphism of P1. P
is a Frechet manifold ([45]). Moreover, the natural map π to Jω × Md(e),
(u, J, {zi})→ (J, {u(zi)}) is Fredholm. The argument above simply means that
π is an isomorphism onto its image.

Similarly, for each possible singular type c, introduce the auxiliary universal
moduli space Pc. Each Pc is again a Frechet manifold and the projection
πc : Pc → Jω ×Md(e) is Fredholm ([45]) with index at most −2. Notice that
the image of π and the union of the images of πc cover Jω ×Md(e) by the non-
triviality of the Gromov-Witten invariant. Since each πc has negative index,
the complement of the image of πc is exactly the set of regular values of πc,
hence is Baire. This implies the image of π is Baire.

Now we show that the image of π is path connected. Let (J ′,Ω′) be in the
image of π. The Sard-Smale theorem implies that along a generic path (Jt,Ωt)
connecting (J,Ω) and (J ′,Ω′), for each t, (Jt,Ωt) is either a regular value of
projections π and πc, or it is a singular value for one of the projections but the
cokernel has dimension 1. Since each πc has index −2 and π has no singular
values, each (Jt,Ωt) lies in T .

Finally, notice that the path connected set T maps onto the space of sym-
plectic spheres in the class e.

For our application we need to take one step forward.

Definition 3.3. We call an ordered configuration of symplectic spheres ∪Ci a
stable spherical symplectic configuration if

1. [Ci] · [Ci] ≥ −1 for each i,
2. for any pair i, j with i 6= j, [Ci] 6= [Cj ], and [Ci] · [Cj ] = 0 or 1.
3. they are simultaneously J−holomorphic for some J ∈ J .
The homological type refers to the set of homology classes [Ci].

Notice that, by local positivity of intersection, 2 and 3 imply that Ci and
Cj are either disjoint or intersect transversally at one point. In particular, it
is a J−nodal submanifold. Further, since Ci · Ci ≥ −1, the condition (3.4) is
satisfied by (3.5).
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If we follow the arguments above, replacing Theorem 3.1 by Corollary 2 in
[53], we obtain:

Proposition 3.4. Suppose there is a stable spherical symplectic configura-
tion ∪iCi with type D. Then there is a path connected Baire subset TD of
Jω×

∏
iMd([Ci]) such that a pair (J,Ωi) lies in TD if and only if there is a unique

embedded J−holomorphic D−configuration with the i−th component contain-
ing Ωi. Consequently, stable spherical symplectic configurations with the same
homological type are isotopic.

3.1.2 Gromov-Taubes invariants when b+ = 1

Given a class e and a pair (J,Ω) in Jω×Md(e), introduce the set H ≡ H(e, J,Ω)
whose elements are the unordered sets of pairs {(Ck,mk)} of disjoint, connected,
J−holomorphic submanifold Ck ⊂ M and positive integer mk, which are con-
strained as follows:

1. If ek is the fundamental class of Ck then dk ≡ d(ek) ≥ 0.
2. If dk > 0, then Ck contains a subset Ωk ⊂ Ω consisting of precisely dk

points.
3. The integer mk = 1 unless Ck is a torus with trivial normal bundle.
4.

∑
kmkek = e.

Notice that (3.2) and (3.1) imply that

• the only negative square components are spheres with square −1;

• a square 0 component is either a sphere or a torus;

To define the Gromov-Taubes invariant of a class e, a notion of admissibility
of pair is introduced in [54]. The Gromov-Taubes invariant GT (e) of e is then a
suitably weighted count of H(e, J,Ω) for an admissible (J,Ω), which is delicate
at the presence of a toridal component with multiplicity higher than 1. When
b+ = 1, we will see that there are simple homological conditions to avoid such
components.

It is rather involved to fully describe the precise meaning of admissible pairs,
especially at the presence of a toridal component with multiplicity higher than
1. In fact, in the case d(e) = 0, Ω is the empty set, we are simply talking about
the admissibility of J alone. Furthermore, if there are no toridal components,
J is admissible if H(e, J) is a finite set, and each submanifold in a member of
H(e, J) is non-degenerate.

It is also shown in [54] that the set of admissible pair is Baire. The ar-
gument is similar to the one in Proposition 3.2. In fact, by Remark 2.2, the
intersection with each J (i) is still Baire in J (i) since U contains no closed
pseudo-holomorphic curve.
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When C is a symplectic sphere with self-intersection at least −1, it is easy to
show that GT ([C]) = 1 using arguments in Proposition 3.2. In general, when
b+ = 1, due to Taubes’ SW⇒GT [55] and the Seiberg-Witten wall crossing
formula, there are plenty of classes with non-trival GT invariant, and most of
them are represented by connected embedded symplectic surfaces ([36], see also
[7], [42], [34]) :

Proposition 3.5. Let (M,ω) be a symplectic 4-manifold with b+ = 1 and
canonical class Kω. Let A ∈ H2(M ; Z) be a class satisfying the following prop-
erties:

• A2 > 0 and ω(A) > 0;

• A− PD(Kω) is ω-positive and has non-negative square;

• A · E ≥ 0 for all E ∈ Eω.

Then A has non-vanishing GT invariant and A is represented by a connected
embedded symplectic surface.

Lemma 3.6. Let (M,ω) be a symplectic 4-manifold with b+ = 1. Suppose
e ∈ H2(M ; Z) is a class with ηω(e) ≥ 2, e·E ≥ 0 for all E ∈ Eω, and GT (e) 6= 0.
Then for any admissible (J,Ω), A has a connected J−holomorphic representa-
tive of genus ηω(e).

Proof. Suppose (J,Ω) is admissible. Let C be a J−holomorphic submanifold
contributing to GT (e). The condition that e · E ≥ 0 for all E ∈ Eω ensures
C has no negative-square components. Since b+(M) = 1, if C is disconnected,
then all the components are homologous and have square 0. Thus C is either
a union of spheres with square 0, or a union of tori with square 0. However,
this contradicts the assumption that ηω(e) ≥ 2 from the adjunction formula.
Therefore C is a connected genus ηω(e) surface as claimed.

Furthermore, assume that d(e) ≥ 1. Let {Ui}d(e)
i=1 be a sequence of pairwisely

disjoint Darboux chart. We consider the class of almost complex structures
F{Ui} ⊂ Jω which is fixed and integrable on Ui. By Remark 2.2, there is an
admissible pair (J̃ , Ω̃ = {xi}) with J̃ ∈ F{Ui} and xi ∈ Ui. In particular, there
is a connected embedded J̃−holomorphic curve C̃ through {xi} with [C̃] = e.

For any such J̃ ∈ F{Ui}, let p : (M ′, J̃{xi})→ (M,J) be the complex blow-up
of (M, J̃) at xi. Denote each exceptional sphere by Cxi and its neighborhood
corresponding to Ui by U ′i . One can then endow M ′ with a symplectic form ω′

compatible with J{xi}. (see Lemma 7.15 in [44]). Denote also F ′{Ui} ⊂ Jω′ to
be the corresponding set of almost complex structures.

Lemma 3.7. Given the same assumption in Lemma 3.6 and consider (M ′, J{xi})
as above. Let Ei = [Cxi ], i = 1, · · · , d(e) and A′ = A −

∑
1≤i≤d(e)Ei. Then
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GTω′(A′) 6= 0, and for J in a Baire subset of F{Ui}, A′ is represented by a
connected J{xi}−holomorphic surface of genus ηω(A), intersecting each Cxi
transversally at one point.

Proof. Now −Kω′(A′) = −Kω(A)−d(e) and ηω′(A′) = ηω(A). Since d(A′) = 0,
from the blow-up formula, Corollary 4.4 in [37], A′ also has nontrivial GT
invariant.

Since the only J ′−holomorphic curves contained in ∪U ′i are Cxi , by Remark
2.2, the intersection of admissible almost complex structures on (M ′, ω′) with
F ′{Ui} is a Baire set in F ′{Ui}.

To check the generic connectedness, by Lemma 3.6 we only need to verify the
homological condition A′·E ≥ 0 for any E ∈ Eω′ . But as is shown above, there is
a connected embedded J̃−holomorphic C̃ ⊂M , thus its proper transformation
C̃ ′ ⊂ M ′ is J{xi}-holomorphic with [C̃ ′] = A′. Notice also that every E has
a J{xi}−holomorphic representative since exceptional classes always have non-
trivial GW invariant. Since the genus of C̃ ′ is positive, it is different from any
component of E. By positivity of intersections, we have [C̃ ′] · E ≥ 0.

Finally, since F ′{Ui} and F{Ui} are canonically identified via complex blowing
up the xi and complex blowing down the Cxi , we obtain the required Baire
subset of F{Ui}.

3.2 Proof of Theorems 1.1 and 1.2

We are ready to prove Theorem 1.1 and 1.2. For the convenience of exposition,
we first investigate the behavior of generic J-holomorphic representatives in
class A in neck-stretching, when the class A satisfies

−Kω(A) = 1− ηω(A). (3.6)

Firstly, regarding the fixed class A, we claim that there is a Baire set
Jreg(A) ⊂ J such that for each J ∈ Jreg, Jti is GT admissible for each i,
and J∞ is regular in the sense of SFT for W . By Proposition 2.3 there is a
Baire subset J ′reg ⊂ J , such that for J ∈ J ′reg, J∞ is SFT regular. Recall from
2.2.2, J (i) = {J |J = J0

ti in U} and Pi is the identification of J (i) with J .
We have mentioned that, as all closed pseudo-holomorphic curves have to pass
through M\U , there is a Baire subset J (i)′ ⊂ J (i) such that each member is
GT admissible. One then takes Jreg(A) = ∩nPn(J ′n) ∩ J ′reg.

Fix J ∈ Jreg(A). By Lemma 3.6 there is a sequence of connected embedded
Jti-holomorphic submanifolds Cti . If Cti does not intersect L for some i <

∞, the theorem follows. Now we assume that each Cti intersects L. This
assumption will eventually lead to a contradiction when [L] · [C] = 0 and is
automatically satisfied if [L] · [C] 6= 0.
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By Theorem 2.7, there is a k−leveled curve C∞ as a Gromov-Hofer limit
of {Cti}∞i=0: the piece in M\Ul, which we call CW or the W -part; the piece in
the symplectization of ∂Ul = RP 3 consisting of k− 2 levels, which we call CSH
or the SH-part; the piece in Ul, which we call CU or the U -part. Let us first
examine the W -part.

Lemma 3.8. Suppose (3.6) is satisfied. Then CW is a, possibly unbranched cov-
ering, irreducible genus-ηω(A) curve, and all asymptotic Reeb orbits are simple.
Moreover, let C̄W be the underlying simple curve, then the limits of punctures
of C̄W are pairwisely distinct.

Proof. By the maximum principle, CW is non-empty. Let ui : Bi →W, 1 ≤ i ≤
q, be the irreducible components of CW and gi the genus of Bi. Suppose ui is
a degree mi multiple cover of ūi : B̄i →W .

Notice that
cΦ

1 = 0 in U and S

implies that ∑
1≤j≤q

cΦ
1 (TW )([uj ]) = −Kω(A). (3.7)

From the description of Gromov-Hofer convergence in 2.3.4, we clearly have∑
1≤j≤q gj ≤ ηω(A). (3.6) then implies that∑

1≤j≤q
cΦ

1 (TW )([uj ]) ≤ 1−
∑

1≤j≤q
gj .

If q > 1, there must be some component, say B1, with

cΦ
1 (TW )([u1]) ≤ −g1. (3.8)

By (2.3), we have

index(ū1) = −(2− 2g(B̄1)) + 2s̄−1 + 2cΦ
1 (TW )([ū1])−

s̄−1∑
k=1

2cov(γ̄k) (3.9)

Here s̄−1 is the total number of punctures of ū1 and the γ̄k are the asymptotic
Reeb orbits. By our choice of J , index(ū1) ≥ 0, thus we must have

cΦ
1 (TW )([ū1]) ≥ 1− g(B̄1). (3.10)

Notice that cΦ
1 (TW )([u1]) = m1c

Φ
1 (TW )([ū1]). Since 2s̄−1 −

∑s̄−1
k=1 2cov(γ̄k) ≤ 0,

by (3.8) we have
g1 ≤ m1(g(B̄1)− 1).

But this is impossible by the Riemann-Hurwitz formula
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(g1 − 1) ≥ m1(g(B̄1)− 1). (3.11)

This contradiction shows that CW is irreducible, namely, given solely by u1,
when J ∈ Jreg. By (3.10) and (3.7), we have

1− ηω(A) = m1c
Φ
1 (TW )([ū1]) ≥ m1(1− g(B̄1)).

Since g1 ≤ ηω(A), we have by (3.11), that

ηω(A) = g1.

Notice that this also means u1 is an unbranched covering. Now return to (3.10),
we find that

(ū1) = 2s̄−1 −
s̄−1∑
k=1

2cov(γ̄k) ≥ 0. (3.12)

Hence we conclude that each γ̄k is a simple Reeb orbit. Since u1 is an
unbranched covering, each of its puncture also converges to one of the simple
Reeb orbits, γ̄k.

One also sees from (3.9) and (3.12) that CW must have genus g and all
asymptotes are simple.

Since the Reeb orbits form a two dimensional Morse-Bott family, the last
statement follows from the transversality of puncture evaluation of C̄W (Theo-
rem 5.24 [15]).

Now we look at the S-part CSH .

Lemma 3.9. Each component of CSH is a trivial cylinder asymptotic to a
simple Reeb orbit.

Proof. CSH has k− 2 levels. Let τi : Di → SH be an irreducible component of
first level of CSH . Since CW is connected and already has genus ηω(A), Di is of
genus g and has a unique positive puncture since the domain of C∞ is obtained
by collapsing a genus g surface. Moreover, due to the asymptotic matching
condition between two levels, this unique positive puncture of τi is asymptotic
to a simple Reeb orbit since all the asymptotes of C̄W are simple. Thus τi must
be a trivial cylinder by Lemma 2.4. Similarly each component in higher level
of CSH must be a cylinder as well (In fact, there can only be one level of trivial
cylinders in CSH by the finite automorphism requirement of C∞, but we do not
need this more precise description).

For the U -part CU , in turn, Lemma 3.9 implies that all the positive punc-
tures of CU are simple due to the asymptotic matching condition between two
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levels. Moreover, each component Fi is of genus 0 and has only one positive
puncture, again due to the constraint g(C∞) = g. Thus each Fi is a plane with
one simple positive puncture. From Lemma 2.5 and Lemma 3.8, the U -part is
a union of some α- and β-planes.

Lemma 3.10. If CW is not a multiple cover, the U -part consists of either all
α-planes or all β-planes.

Proof. The proof is similar to [15] Lemma 7.8. As is explained in Lemma 2.5,
an α-plane and a β-plane do not intersect only if they have the same asymptotic
Reeb orbit. This must be the case to avoid self-intersection of the holomorphic
building C∞ which contradicts the embeddedness for Cti at some i <∞.

Therefore, if the U -part has at least one α-plane and one β-plane, all planes
must asymptote to the same Reeb orbit. If CW is not a multiple cover, since the
CSH part consists of trivial cylinders, this is impossible by the last statement
of Lemma 3.8.

Proof of Theorem 1.2: It is straightforward that when n ∈ N is large, under the
assumption of Theorem 1.2 the multiple class nA has the following properties:
d(nA) > 0, GT (nA) 6= 0, and it is represented by a connected symplectic
surface with genus at least 2.

We adapt Welschinger’s idea in [58] and adopt the notations in Section 3.1.2
here. Choose Darboux charts Ui ⊂W , i = 1, · · · , d(nA), and consider F{Ui} as
in the paragraphs preceding Lemma 3.7. Now choose xi ∈ Ui and an arbitrary
J ∈ F{Ui}, A′ = nA −

∑
1≤i≤d(e)Ei as in Lemma 3.7. By Lemma 3.7 and the

arguments in the paragraph following (3.6), there is a Baire set Jreg(nA) ⊂
J ∩F{Ui} such that for each J ∈ Jreg(nA), (J{xi})tj is GT admissible for each
j and there is a connected embedded (J{xi})tj -holomorphic curve C ′j in the
class A′. Moreover, (J{xi})∞ is regular in the sense of SFT for the symplectic
completion of p−1(W ).

Now let us analyze the limit building C ′∞.
Notice that −Kω(A′) = 1 − ηω(A′), so Lemma 3.8 could be applied. Also,

from the fact that Cxi ∩ U = ∅ and A′ · Ei = 1, we have Cxi ∩ C ′W = 1.
Therefore the W -part of C ′∞ cannot be a multiple cover. Therefore, by Lemma
3.10, C ′∞ intersects L transversally at finitely many points, where either all the
local intersections are positive or all of them are negative. This implies that for
some j <∞, there is an embedded (J{xi})tj -holomorphic curve C ′tj in the class
A′ with the same intersection property. Notice that C ′tj intersects transversally
with each Cxi at one point. One then obtain the desired curve C in the class
A by complex blowing down the (disjoint) exceptional curves Cxi .
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Remark 3.11. When κ = −∞, given A in Theorem 1.2, we can actually find a
symplectic surface intersecting L minimally in the class A, rather than nA for
large n, if we further assume that η(A) ≥ 2 and A2 ≥ η(A) − 1. Here η(A) is
the symplectic genus (see Section 4). This is because, by [33] one could achieve
the non-triviality of GT invariants as long as A2 ≥ η(A) − 1. And if the class
A is reduced (see Section 4 for the rational case and [33] the general case),
one only needs easily verified conditions ηω(A) ≥ 2 and A2 ≥ ηω(A) − 1 since
ηω(A) = η(A).

Proof of Theorem 1.1: We first deal with the case of −1 sphere C. By Propo-
sition 3.2, there is a Baire set Jreg([C]) ⊂ J such that for each J ∈ Jreg([C]),
there is a unique embedded Jti−holomorphic sphere in the class [C] for each i,
and J∞ is regular in the sense of SFT for W . Notice that d([C]) = 0, and since
C has genus 0, its W -part under neck-stretching does not admit a non-trivial
unbranched cover. Therefore we can apply Lemma 3.10 as in the proof of The-
orem 1.2 to produce a Jti−holomorphic sphere Cti intersecting L minimally.
Cti is symplectic isotopic to C by the last statement of Proposition 3.2.

For a symplectic sphere C with non-negative square, we follow the strategy
above by first introducing Ui and FUi . By applying Remark 2.2 and Proposition
3.2 to M and [C], there is a pair (J̃ , Ω̃ = {xi}) with J̃ ∈ F{Ui}, xi ∈ Ui, and
an embedded J̃−holomorphic sphere C̃ through {xi} with [C̃] = [C]. Let
(M ′, J{xi}, ω

′), Cxi , Ei = [Cxi ], U
′
i , F ′Ui , i = 1, · · · , d(e) be as in Lemma 3.7.

The class A′ = [C]−
∑

1≤i≤d(e)Ei is represented by an ω′−symplectic−1 sphere,
for instance, the proper transform of C̃, thus Proposition 3.2 still holds for A′.

Now apply Remark 2.2 to M ′ and A′, then Proposition 3.2 and the ar-
guments in the first paragraph of the present subsection imply that, there
is a Baire set Jreg([C]) ⊂ J ∩ F{Ui} with the following property: for each
J ∈ Jreg([C]), there is a unique embedded (J{xi})tj−holomorphic sphere C ′tj in
the class A′ for each j, and (J{xi})∞ is regular in the sense of SFT for the sym-
plectic completion of p−1(W ). Moreover, C ′tj intersects transversally with each
Cxi at one point. Now, just as in the end of the proof of Theorem 1.2, for some
j, p(C ′tj ) is the desired symplectic sphere in the class A, where p : M ′ → M is
the complex blowing down map. Moreover, p(C ′tj ) is symplectic isotopic to C
by the last statement of Proposition 3.2.

Remark 3.12. One easily sees that the above proof works for finitely many
Lagrangian spheres that are pairwisely disjoint. It is not clear to the authors
whether the theorem holds when they do intersect.

On the other hand, by choosing subsequences succesively, one may push off
certain symplectic configurations. In particular, the following will be used in
the proof of Theorem 1.5.
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Corollary 3.13. Let L be a Lagrangian sphere in a symplectic 4-manifold
(M,ω), and D = {A1, · · · , An} a homology type of a stable spherical symplectic
configuration. If each Ai pairs trivially with [L]. Then there is a symplectic
D−configuration disjoint from L.

Remark 3.14. Further, we expect to be able to deform a contractible family
of symplectic spheres to be disjoint from a given Lagrangian sphere. Such
a result would be useful in proving Conjecture 1.7 on the uniqueness up to
symplectomorphism (see Remark 5.2 and 6.4.2). The family being contractible
is necessary: as pointed out to us by R. Hind, if one takes a representative of
the generator of π1(Symp(S2, σ)), the graph of this generator as a circle family
of symplectic spheres in a monotone S2×S2 cannot be isotoped away from the
antidiagonal.

4 K-null spherical classes when κ = −∞
It is in general difficult to determine whether a spherical class has a Lagrangian
spherical representative. We are able to completely solve this problem for
rational and ruled manifolds in Section 5.2. In this section we first derive
some preliminary results.

4.1 Rational manifolds

We fix some notations: in this section M is CP 2#nCP 2 with n ≥ 1. Let E and
L be the sets of integral homology classes represented by smoothly embedded
spheres of square −1 and −2 respectively.

An orthogonal basis {H,E1, · · · , En} of H2(M ; Z) is called standard if H2 =
1 and Ei ∈ E . We fix a standard basis in this section.

Let K be the set of symplectic canonical classes of M . For any sequence
{δi}, i = 0, ..., n with δi = 0 or 1, let K{δi} be the Poincáre dual of

−3H + (−1)δ1E1 + (−1)δ2E2 − · · ·+ (−1)δnEn.

Then K{δi} ∈ K. When δi = 0 for any i, we simply denote it by K0, i.e.

K0 = PD(−3H + E1 + · · ·+ En).

4.1.1 E ,L, symplectic genus and D(M)

We review some facts about E ,L, D(M) and the notion of symplectic genus.
Let D(M) be the geometric automorphism group of M , i.e. the image of the

diffeomorphism group of M in Aut(H2(M ; Z)). We say two classes in H2(M ; Z)
are equivalent if they are related by D(M).
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It is shown in [33] that D(M) is generated by a set of spherical reflections.
For γ ∈ H2(M ; Z) with γ2 = γ · γ = ±1 or ±2, there is an automorphism
R(γ) ∈ Aut(H2(M ; Z)) called the reflection along γ,

R(γ)(β) = β − 2(γ · β)
γ · γ

γ.

If γ ∈ E or L, by Proposition 2.4 in Chapter III in [19], R(γ) ∈ D(M), and we
call it a spherical reflection.

Another fact is that D(M) acts transitively on K ([36]).
To define the symplectic genus of e ∈ H2(M ; Z) first introduce the subset

Ke of K:

Ke = {K ∈ K|there is a class τ ∈ CK such that τ · e > 0}.

Here CK = {[ω]|ω is a symplectic form, Kω = K} is the K-symplectic cone. It
is shown in [36] that CK is completely determined by the set of K-exceptional
spherical classes

EK = {E ∈ E|K(E) = −1}.

More precisely,

CK = {τ ∈ H2(M ; R)|τ2 > 0, τ(E) > 0 for any E ∈ EK}.

The following is a useful observation.

Lemma 4.1. If ξ = aH −
∑
biEi ∈ H2(M ; Z) with a > 0 then K{δi} ∈ Kξ.

Proof. Notice that for any K{δi}, one could easily find τ ∈ CK{δi} by requiring
τ(H) � 0, but keeping the corresponding signs of Ei in τ opposite to that of
K{δi}. Such a construction follows from the easy observation that classes in
EK{δi} are obtained by changing the corresponding signs of those in EK and
Theorem 4 of [36].

By possibly even enlarging τ(H) further, since a > 0, one could also assure
that τ(ξ) > 0. Therefore, K{δi} ∈ Kξ.

For K ∈ Ke define the K−symplectic genus ηK(e) to be 1
2(K(e) + e2) + 1.

Finally, the symplectic genus of class e is defined as:

η(e) = max
K∈Ke

ηK(e).

By Lemma 3.2 in [33], η(e) has the following basic properties:

(1) η(e) is no bigger than the minimal genus of e, and they are both equal
to ηω(e) in (3.1) if e is represented by an ω−symplectic surface for some
symplectic form ω;
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(2) Equivalent classes have the same η.

Note that in [33] these properties are stated for classes with positive square,
but the proof actually covered all cases.
We have the following assertions characterizing E and L in terms of the sym-
plectic genus, as well as the action of D(M) on E and L.

Proposition 4.2 ([33], Lemma 3.4, Lemma 3.6(2)). For e with e · e = −1 or
−2, η(e) = 0 if and only if e is not equivalent to a reduced class.

Moreover, for e with e · e = −1, η(e) = 0 if and only if e ∈ E, Any class in
E is equivalent to either Ei or H − Ei − Ej for some 1 ≤ i, j ≤ n. If n 6= 2, it
is equivalent to Ei.

Similarly, for e with e · e = −2, η(e) = 0 if and only if e ∈ L. Any class in
L is equivalent to either Ei −Ej or H −Ei −Ej −Ek for some 1 ≤ i, j, k ≤ n.
If n 6= 3, it is equivalent to Ei − Ej.

Here a class ξ = aH −
∑n

i=1 biEi with a ≥ 0 and b1 ≥ b2 ≥ · · · ≥ bn ≥ 0 is
called reduced ([20], [28]) if

a ≥ b1 + b2 + b3.

4.1.2 K−null spherical classes and DK(M)

For K ∈ K let DK(M) be the isotropy subgroup of K of the transitive action
of D(M) on K. We say two classes are K−equivalent if they are related by
DK(M).

By definition 1.3, ξ ∈ H2(M ; Z) is a K-null spherical class if ξ ∈ L and
K(ξ) = 0. Hence the set of K−null spherical classes is denoted by LK .

We now study the interactions of LK and DK(M). Due to the transitivity
of the action of D(M) on K (c.f. [36]), we will restrict to the case K = K0

without loss of generality.
First of all, if γ ∈ LK0 , then R(γ) ∈ DK0(M), and we call it a K0-twist.
Secondly, notice that DK0 acts on EK0 and LK0 .
To go further, we need to understand EK0 . It is clear that Ei ∈ EK0 .

Moreover, for any symplectic form ω with Kω = K0, the GT invariant of H or
any E ∈ EK0 is non-trivial. By the positivity of intersection, we have

Lemma 4.3. Suppose ξ = aH −
∑
biEi is in EK0, then a ≥ 0 and bi ≥ 0. If

a = 0, then ξ = Ei for some i.

It is clear that reflections R(Ei−Ej) and R(H−Ei−Ej−Ek) are K0-twists.
With this understood, we see that Proposition 1.2.12 in [46] can be stated as
follows,
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Proposition 4.4. Any class in EK0 can be transformed to either Ei or H −
Ei − Ej for some 1 ≤ i, j ≤ n via K0-twists. If n 6= 2, it is K0−equivalent to
Ei via K0-twists.

As a consequence, we have

Corollary 4.5. Suppose b−(M) = n ≥ 2. If {E′i}ki=1, k ≤ n−2, is an orthogo-
nal subset of EK0, then there exists φ ∈ DK0(M), generated by K0-twists, such
that φ(E′i) = Ei, 1 ≤ i ≤ k.

Proof. The statement is vacuous if n ≤ 2 and easily verified for n = 3. We
apply induction on n. From Proposition 4.4, there exists φ̃ ∈ DK0(M) such
that φ̃(E′1) = Ei. One then further compose the K0-twist f = R(Ei − E1) so
that E′1 is eventually sent to E1. Noting that

f(φ̃(E′i)) · E1 = f(φ̃(E′i)) · f(φ̃(E′1)) = E′i · E′1 = −δ1i,

we are reduced to the case n− 1 by restricting our attention to the last (n− 1)
exceptional classes (and k is reduced by 1 as well).

Remark 4.6. Note that this is not true when k = n − 1. Take n = 2. Then
H − E1 − E2 is not equivalent to E1 or E2 since it is characteristic but Ei is
not.

Proposition 4.7. DK0(M) is generated by K0-twists.

Proof. For φ ∈ DK0(M), apply Corollary 4.5 to φ(Ei), 1 ≤ i ≤ n − 2, there is
a K0-twist f such that f(φ(Ei)) = Ei.

Consider Fn−1 = f(φ(En−1)) and Fn = f(φ(En)). Fn−1 and Fn are orthog-
onal to Ei, 1 ≤ i ≤ n − 2, since f(φ(Ej)) · Ei = Ej · Ei = 0 for i ≤ n − 2
and j > n − 2. It is easy to see that the only such classes in EK0 are
H −En−1 −En, En−1, En. Since Fn−1 · Fn = 0, it has to be that {Fn−1, Fn} =
{En−1, En}. By composing f with the K0−twist R(En − En−1) if necessary,
one obtains the desired inverse of φ generated by K0-twists, which means φ is
also generated by K0-twists.

We now prove an analogue of Proposition 4.4 for LK0 . We start with

Lemma 4.8. Suppose ξ = aH −
∑
biEi ∈ H2(M ; Z) is in LK0, If a > 0 then

η(ξ) = ηK0(ξ) and bi ≥ 0.

Proof. For any ξ ∈ LK0 , ηK0(ξ) = 0 and the minimal genus is 0 as well.
By Lemma 4.1, if ξ = aH −

∑
biEi ∈ H2(M ; Z) with a > 0, then ηK{δi}(ξ)

is defined. Recall from the minimal genus assumption and the fact that the
symplectic genus is no bigger than the minimal genus, 0 = ηK0(ξ) ≥ ηK{δi}(ξ)
for any choice of {δi}. But this holds only if bi ≥ 0 for all i, hence the conclusion
follows.
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Following Evans [15], we make the following definition.

Definition 4.9. A class is called binary if it is of the form Ei−Ej , and ternary
if it is of the form H − Ei − Ej − Ek, 1 ≤ i, j, k ≤ n.

Clearly, binary and ternary classes are in LK0 . In the rest of our paper, we
denote R(H − Ei − Ej − Ek) by Γijk for short.

Proposition 4.10. For ξ ∈ LK0, either ξ is K0−equivalent to a binary or
ternary class. Further, if either n 6= 3, or n = 3 but ±ξ 6= H − E1 − E2 − E3,
then ξ is K0−equivalent to the binary class E1 − E2.

Proof. Let ξ = aH−
∑
biEi. When a = 0 it is easy to conclude that ξ is binary.

Let r be the number of nonzero bi. An easy calculation verifies the case when
r ≤ 3. Thus we assume r > 3 with a > 0 by possibly reversing the signs of ξ
(simply do a reflection with respect to ξ). By Lemma 4.8, we may assume that
b1 ≥ b2 ≥ · · · ≥ bn ≥ 0.

Now we write down the reflection Γ123 explicitly:

Γ123(ξ) = (2a− b1 − b2 − b3)H −
∑

ciEi,

where ci = bi for i > 3.
If 2a− b1− b2− b3 < 0, consider the class −Γ123(ξ) ∈ LK0 . In this case, the

leading coefficient of −Γ123(ξ) is bigger than 0. However, since r > 3, one must
have −cr = −br < 0, a contradiction to Lemma 4.8. Thus, 2a− b1− b2− b3 ≥ 0

Moreover, from Lemma 4.2, ξ is not reduced hence one must have b1 + b2 +
b3 > a. Combining these facts, we have

0 ≤ 2a− b1 − b2 − b3 < a.

Also notice that Γ123(ξ) verifies all conditions of Lemma 4.8, thus ci > 0
still holds. One could then repeat the above process and use induction on the
coefficient H · ξ until r ≤ 3 or a = 0.

Remark 4.11. The algorithm reducing a K-null spherical classes is also valid
for exceptional classes. In this case, one gets an explicit K0-equivalence from
an exceptional class to Ei when n ≥ 3 or possibly H − E1 − E2 when n = 2.
This is also used in [46].

4.1.3 (K,α)−null spherical classes and DK,α(M)

In this section we fix a class α in the K−symplectic cone CK .

Definition 4.12. A (K,α)−null spherical class is a K−null spherical class
which pairs trivially with α.
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ReflectionsR(ξ), for ξ a (K,α)−null spherical class, are called (K,α)−twists.
We also define DK,α(M) to be the subgroup of DK(M) preserving α. One has
the following easy observation:

Lemma 4.13. If φ ∈ DK then

• φ induces a bijection from LK,α to LK,φ−1(α).

• f → φ−1 ◦ f ◦ φ defines an isomorphism from DK,α to DK,φ−1(α) taking
R(ξ) to R(φ(ξ)).

• α has a positive lower bound on EK which is attained by some K-exceptional
class.

The third assertion is a consequence of Gromov compactness and the well-
known fact that, for any E ∈ EK , GT (E) 6= 0 with respect to any symplectic
form ω representing α. We are now ready to prove the following:

Proposition 4.14. D(K0,α) is generated by (K0, α)−twists.

Proof. We will use induction on n and a trick due to Martin Pinsonnault [47].
For n ≤ 3 this is easy to verify directly by listing all exceptional classes.

If n ≥ 3 choose {E′i}
n−2
i=1 ⊂ EK0 such that E′1 has minimal α-area, and E′i has

minimal α-area among exceptional classes orthogonal to Ej for all j < i. By
Corollary 4.5, there is ψ ∈ DK0(M) such that ψ(E′i) = Ei. By Lemma 4.13 we
can assume that E′i = Ei, so that among the basis elements {H,E1, · · · , En},
E1, · · · , En−2 enjoys the above minimality property.

Let f ∈ D(K0,α). If one could find a series of (K0, α)−twists such that
their composition φ satisfies φ ◦ f(E1) = E1, one can then include φ−1 into our
decomposition of f . Since E1 is orthogonal to φ ◦ f(Ei) for i 6= 1, one can then
use induction on these classes. Therefore it suffices to look for such a φ in the
rest of the proof.

Notice first that

α(H − Ei − Ej − Ek) ≥ 0, i > j > k. (4.1)

This is clear from the construction: since the K0-exceptional class (H − Ei −
Ej) · El = 0, for all l < k and k ≤ n− 2, we have α(H − Ei − Ej) ≥ α(Ek)

Assume f(E1) = aH −
∑
briEri . Notice that f(E1) ∈ EK0 and α(f(E1)) =

α(E1). If a = 0 then f(E1) = Ek for some k and E1−Ek ∈ LK0,α. In particular,
R(E1 − Ek) ∈ DK0,α and we can choose φ = R(E1 − Ek).

If a 6= 0, by Lemma 4.3, a > 0 and bi ≥ 0. Suppose br1 ≥ br2 ≥ · · · ≥ brn ≥
0. Now apply Γr1r2r3 ,

Γr1r2r3(f(E1)) = f(E1) + (a− br1 − br2 − br3)(H − Er1 − Er2 − Er3)
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From Lemma 4.2, a− br1 − br2 − br3 < 0. By (4.1), α(H−Er1 −Er2 −Er3) ≥ 0,
thus

α(E1) = α(f(E1)) ≥ α(Γr1r2r3(f(E1))).

By the choice of E1, we must have α(H − Er1 − Er2 − Er3) = 0. This means
that H − Er1 − Er2 − Er3 ∈ LK0,α and Γr1r2r3 ∈ DK0,α(M).

Now from Remark 4.11, by repeating the above operations we eventually
have an equivalence between E1 and Ek for some k. Denote their composition
to be φ̃.

If k = 1 we let φ = φ̃. If k 6= 1, then α(Ek) = α(E1) and we let φ =
R(E1 − Ek) ◦ φ̃.

4.2 Irrational ruled manifolds

It is clear that a minimal symplectic irrational ruled manifold does not admit
any Lagrangian spheres. Thus, in this subsection, M = (Σh×S2)#nCP 2. Any
non-minimal genus h ruled manifold is of this form. Define E ,L,K, D(M) as
above. For K ∈ K also define DK(M), EK ,LK and K−null spherical class as
above.

A standard homology basis consists of {T, F,E1, · · · , En}, with the following
algebraic properties:

T · F = 1, T 2 = F 2 = T · Ei = F · Ei = 0, E2
i = −1, 1 ≤ i ≤ n. (4.2)

Geometrically, T is represented by a surface with genus h, F the class of a
fiber, and {Ei} a maximal collection of orthogonal exceptional classes in E .
The standard canonical class is then K0 = PD(−2T + (2h− 2)F +

∑
Ei).

D(M) is characterized as the subgroup of Aut(H2(M ; Z)) preserving F up
to sign ([19]). Due to the transitive action of D(M) on K shown in [36], we
may again restrict to the case Kω = K0.

Lemma 4.15. EK0 = {Ei, F − Ei, i = 1, ..., n}.
LK0 = {±(F − Ei − Ej),±(Ei − Ej), 1 ≤ i < j ≤ n}.

Proof. First of all, if ξ = aT + bF +
∑
ciEi is represented by a sphere, then

a = 0. This follows from the fact that a sphere does not have a nonzero degree
map to a positive genus curve.

With this understood, it is easy to determine EK0 and LK0 using (4.2).

For α ∈ CK0 we define DK0,α, (K0, α)−twist as before.

Lemma 4.16. DK0,α is generated by (K0, α) twists.
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Proof. As in the rational manifold case, we do induction on n = b−(M) + 1.
When n = 1, since φ(F ) = ±F , it is easier to see that DK0 , and hence

DK0,α, is trivial.
In general when n ≥ 2, for φ ∈ DK0,α we consider its action on EK0 . Let

E be the exceptional class with minimal α area, the induction is immediate
if φ(E) · E = 0, in which case we simply compose φ with the (K0, α)− twist
R(E − φ(E)) to reduce to a lower n case.

Otherwise, φ(E) = F−E by Lemma 4.15. In this case 2α(E) = ω(F ). Since
two classes A and F−A are either both in EK0 or neither, the minimality of α(E)
forces all other exceptional spheres to have the same area as E. Since n ≥ 2, it is
clear that one could send F −E back to E via a composition of (K0, α)−twists,
for example, the (K0, α)− twist R(E′ − E) followed by R(F − E′ − E), where
E′ is another exceptional standard basis element orthogonal to E. Again we
are able to reduce to a lower n case.

5 Lagrangian spherical classes when b+ = 1

Theorem 1.2 allows us to effectively apply a Lagrangian-relative version of
inflation procedure in this section. Together with Proposition 4.10, this enables
us to classify Lagrangian spherical classes in symplectic 4-manifolds with κ =
−∞. We also give the proof of Theorem 1.8 in 5.3.

5.1 Lagrangian relative inflation

The inflation procedure was first introduced by Lalonde [29] and proved useful
in many fundamental problems in symplectic geometry (see [30] for example).

The inflation construction in [29], together with Theorem 1.2, gives

Lemma 5.1 (Inflation Lemma). Let L be a Lagrangian sphere in a sym-
plectic 4-manifold with b+ = 1. Let A be a class in H2(M ; Z) satisfying the
condition in Theorem 1.2. Assume also that A · [L] = 0. Then there is a closed
form ρ on M in class PD(A) supported away from L so that

βt = ω + tρ, t ≥ 0,

is symplectic. In particular, L remains Lagrangian for any βt.

The proof is straightforward: note in [29], ρ is supported near a symplectic
surface in class A. Therefore, if such a symplectic surface is disjoint from the
given Lagrangian sphere L, L remains Lagrangian in the course of the inflation
procedure. Now Theorem 1.2 provides the desired symplectic surface.
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We first apply Lemma 5.1 to study symplectic ball embeddings in the com-
plement of a Lagrangian sphere. P. Biran and O. Cornea studied Lagrangian
relative embeddings in [10] (called mixed packing there), where the size of max-
imal ball embeddings is found in some cases.

In our case of a Lagrangian sphere L in a symplectic 4-manifold with b+ = 1,
Lemma 5.1 enables us to show that packing problems in the complement of L
can often be answered in the same way as for the ordinary packing problems.
Here is one example. Biran showed in [8] that in any closed symplectic 4-
manifold with an integral symplectic form, the symplectic packing problem is
stable via inflation on a Donaldson hypersurface. For a symplectic 4-manifold
(M,ω) with b+ = 1 and ω integral, the class n[ω] for n large satisfies the
conditions in Theorem 1.2 for an arbitrary given Lagrangian sphere. Thus
Lemma 5.1 can be applied to such a class and hence Biran’s stability result is
also valid for M\L.

Remark 5.2. It would be useful to prove the following parameterized version
of Lemma 5.1, which would be the analogue of Lemma 1.1 in [42]: Given a
path ωt, 0 ≤ t ≤ 1, of symplectic forms on M with b+ = 1 and a sphere L
Lagrangian for each ωt. Let A be a class in H2(M ; Z) satisfying the conditions
in Theorem 1.2. Assume also that A · [L] = 0. Then there is a path ρt of closed
forms on M in class PD(A) supported away from L so that

βt = ωt + κ(t)ρt, 0 ≤ t ≤ 1,

is symplectic whenever κ(t) ≥ 0. In particular, L remains Lagrangian for any
βt.

Lemma 1.1 in [42] is used to show that the ball embedding space

Eλ̄,k(M,ω) = {ψ|ψ :
k∐
i=1

(B4(λi), ωstd) ↪→ (M,ω)}

with λ̄ = (λ1, . . . , λk), is connected. Substituting Lemma 1.1 in [42] by its L
relative version as above in appropriate places, we would be able to obtain the
connectedness of the relative ball embedding space.

5.2 Existence of Lagrangian spheres

In this subsection we present the proof of Theorem 1.4. We begin with some
general discussions of Lagrangian spheres in a non-minimal symplectic 4-manifold
with b+ = 1.

5.2.1 Non-minimal 4-manifolds with b+ = 1 and κ ≥ 0

We begin with the following two persistence results.
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Lemma 5.3. Let (M,ω) be a symplectic 4-manifold with b+(M) = 1, [ω] ∈
H2(M ; Q). Let (M,ω) be the one point blow up of (M,ω) with size a, and ι :
H2(M ; Z)→ H2(M,Z) the canonical injection. If L ⊂ (M,ω) is a Lagrangian
sphere, then there is a Lagrangian sphere in (M,ω) in the class ι([L]).

Proof. By the uniqueness of blow ups (Corollary 1.3 in [42]), we can place the
ball of size a anywhere in (M,ω). If the ball is disjoint from L, we are done.
Otherwise, first choose a ball of size a′ < a and disjoint from L, we obtain a
blow up (M,ω′) with a Lagrangian L̄ from L. Let p : M →M be a topological
blow down map which contracts the exceptional sphere. Consider the class
βl,δ = l([p∗ω] − (a + δ)PD(E)) for δ > 0. Clearly, βl,δ([L̄]) = 0. Since the
Kω−symplectic cone CKω is open, we can assume that βl,δ is in CKω by choosing
δ small. If a+ δ is further assumed to be a rational number, then there exists
l ∈ Z+ such that βl,δ satisfies the conditions in Lemma 5.1. Applying Lemma
5.1 to such a βl,δ and L̄, we find that L̄ remains Lagrangian in (M,ω′′), where
ω′′ is a symplectic form in the class [p∗ω]− aPD(E) up to a rescale. The proof
is finished by again invoking the uniqueness of blow ups.

If E is the class of the exceptional sphere, this lemma can be viewed as the
persistence of Lagrangian spheres under a symplectic deformation on M in the
E direction, which can also be proved via the inflation construction along a
symplectic surface with negative self intersection as in [38].

Lemma 5.4. Let (M,ω) be a symplectic 4-manifold with b+(M) = 1, [ω] ∈
H2(M ; Q). If there are two orthogonal exceptional classes E1, E2 ∈ Eω with
equal symplectic area a, then there is a Lagrangian sphere in the binary class
E1 − E2.

Proof. Let us first consider a local model: the two point blow up of a standard
ball with equal size t > 0. This can be identified with the complement of a
line in CP 2#2CP 2 with a symplectic form τ with [τ ] = PD(H − tE1 − tE2).
Notice that (CP 2#2CP 2

, τ) is symplectomorphic to a one point blow up of a
monotone S2 × S2 with size 1− 2t. If we apply Lemma 5.3 to the antidiagonal
La in this monotone S2 × S2, we find a Lagrangian sphere in (CP 2#2CP 2

, τ)
in the class E1 − E2 = ι([La]). In addition, such a Lagrangian sphere can be
made disjoint from an embedded H-class sphere in CP 2#2CP 2 by Theorem
1.1. We therefore obtain a Lagrangian sphere in our local model.

In general, let (M,ω) be obtained by symplectically blowing down two dis-
joint spheres in E1 and E2 in (M, ω̄) and adopt notations in Lemma 5.3. We
shrink both balls corresponding to E1 and E2 to size ε� 1. By the uniqueness
of ball-embeddings (in case of absence of a Lagrangian sphere, see Remark 5.2),
we may place the two tiny balls V1 and V2 in a Darboux chart. Our local model
analysis above ensures that there is a Lagrangian sphere L in the blow-up of the
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chart around V1 and V2. Consider the class Bb = PD(p∗ω)− bE1 − bE2 where
b is a positive rational number slightly larger than a = ω(Ei), i = 1, 2. Since
the Kω−symplectic cone CKω is open, we can further assume that PD(Bb) is in
CKω . Clearly, Bb · (E1 − E2) = 0. Thus for some large integer lb, lbBb satisfies
the conditions in Lemma 5.1. Now the conclusion follows from inflating along
a symplectic surface in class Bb as in the proof of Lemma 5.3.

Corollary 5.5. Suppose (M,ω) is a minimal symplectic manifold with b+ = 1,
[ω] ∈ H2(M,Q). Suppose (M, ω̄) is a k point symplectic blow-up of (M,ω) with
Ei, i = 1, ..., k, the corresponding exceptional class, and the canonical injective
map is denoted as: ι : H2(M ; Z) → H2(M ; Z). Then ξ ∈ H2(M ; Z) is a
Lagrangian spherical class if

(1) either ξ ∈ Im(ι) and ι−1(ξ) is Lagrangian spherical,

(2) or ξ = Ei − Ej for some i, j, i.e. ξ is binary, and ω(ξ) = 0.

If κ(M) ≥ 0, these are the only Lagrangian spherical classes of (M,ω).

Proof. (1) and (2) follow directly from Lemmas 5.3 and 5.4 respectively.
To show these are the only Lagrangian spherical classes when κ(M) ≥ 0,

suppose ξ = ξ′ −
∑k

i=1 aiEi is represented by a Lagrangian sphere L̄, where
ξ′ ∈ Im(ι).

If ai = 0 for all i, then apply Theorem 1.1 to find disjoint exceptional
spheres in the classes Ei, which are also disjoint from L̄. This shows that ξ′ is
a Lagrangian spherical class of (M,ω).

Now assume some ai 6= 0. The reflection R(ξ) thus sends E1 to aξ′ −∑
i>1 aiEi−(a2

1−1)E1. Such a class is an exceptional class of (M, ω̄). However,
from the uniqueness of the minimal model for symplectic manifolds with κ ≥ 0
([40]), aξ′ −

∑
i>1 aiEi − (a2

1 − 1)E1 = Ej for some j. This shows ξ′ = 0 and ξ

is indeed binary.

5.2.2 Rational manifolds

Proof of Theorem 1.4, rational manifold case: The case of S2×S2 is well-known
and so we focus on blow-ups of CP 2 below.

Due to the transitive action of D(M) on K mentioned in Section 4, and
using definition 4.12, we are reduced to prove the following Proposition.

Proposition 5.6. Suppose M = CP 2#nCP 2 with {H,E1, · · · , En} a standard
basis, and ω is a symplectic form with Kω = K0 = PD(−3H +E1 + · · ·+En).
Then ξ ∈ H2(M ; Z) is represented by a Lagrangian sphere if and only if ξ is
(K0, [ω])−null spherical.
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Proof. The conditions are clearly necessary. In the case n = 2, up to sign,
the only K0−null spherical class is the binary class ξ = E1 − E2. And if ξ is
(K0, [ω])−null spherical, then E1 and E2 must have equal symplectic area. Thus
the existence of a Lagrangian sphere has been argued in the first paragraph of
Lemma 5.4.

Let us then suppose that n > 3. One notices that in this case ξ can also
be assumed to be binary. This is because, from Proposition 4.7, there is a
self-diffeomorphism φ of M , which induces a K0-twist on homology and sends
ξ to a binary class, and we could just consider φ∗(ξ) in (M, (φ−1)∗ω). Without
loss of generality we could further assume ξ = E1 − E2. If ω(ξ) = 0, then, up
to scaling, PD([ω]) = 3H −

∑
biEi with b1 = b2 = b > 0.

Blowing down a collection of disjoint exceptional spheres in the classes Ei
with i ≥ 3, we obtain M ′ = CP 2#2CP 2 with a symplectic form ω′ in the
class [ω] = PD(3H − bE1 − bE2). As just shown, there is a Lagrangian sphere
L ⊂ (M ′, ω′) in the class E1−E2. Now apply Lemma 5.3 to obtain the desired
Lagrangian sphere back in (M,ω) by performing n− 2 blow-ups.

Finally let us suppose that n = 3. A K0−null spherical class is either binary
or the ternary class ξ = H−E1−E2−E3. The binary case can be treated in the
same way as in the case n > 3. So let us assume that ξ = H−E1−E2−E3. Let
(M̄, ω̄) be a one point blow up of (M,ω), E4 the new exceptional class, and ι

the canonical map. Notice that b−(M̄) = 4 and ι(ξ) is (K0, [ω̄])−null spherical,
thus there is a Lagrangian L̄ ⊂ (M̄, ω̄) in the class ι(ξ). By applying Theorem
1.2 to L̄ and E4, we conclude the proof by blowing down an exceptional sphere
in class E4 disjoint from L̄.

Now the proof of Theorem 1.4 in the rational manifold case is complete.

5.2.3 Irrational ruled manifolds

Proof of Theorem 1.4, irrational ruled manifold case: Similar to the rational case,
it reduces to the following statement.

Proposition 5.7. Suppose M = (Σh × S2)#nCP 2 with {T, F,E1, · · · , En} a
standard basis, and ω is a symplectic form with Kω = K0 = PD(−2T (2h −
2)F +E1 + · · ·+En). Then ξ ∈ H2(M ; Z) is represented by a Lagrangian sphere
if and only if ξ is (K0, [ω])−null spherical.

Proof. We use the cut and paste procedure in [40] to reduce it to the rational
manifold case.

We can view (M,ω) as a symplectic genus 0 Lefschetz fibration over Σh with
n reducible fibers, each consisting of a pair of exceptional spheres in the classes
Ei and F − Ei. Denote the projection by π and the image of the reducible
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fibers by B. View Σh as assembled from a 4h-sided polygon with the vertices
going to x0 ∈ Σh, the edges going to a 2h−wedge of loops Λh. Since B is a
finite set, we can assume that B ∩ Λh = ∅.

We cut M along π−1(Λh) to obtain a genus 0 Lefschetz fibration V over
a two disk D with n reducible fibers. Recall from Lemmas 4.13 and 4.14 in
[40] that with a symplectic deformation supported near an arbitrarily small
neighborhood of x0, (M,ω) can be assumed to be a symplectic product in a
neighborhood of π−1(Λh). Therefore we can compactify (V, ω) into a genus 0
Lefschetz fibration (V̄ , ω̄) over S2 with n reducible fibers by adding a fiber F0.

Notice that V is diffeomorphic to (S2×D2)#nCP 2, and V̄ is diffeomorphic
to (S2 × S2)#nCP 2=(CP 2#CP 2)#nCP 2. Moreover, in the standard basis
representation, F corresponds to H −E1, and Ei corresponds to Ei. In partic-
ular, a (K0, [ω])−null spherical class corresponds to either H −E1−Ei−Ej or
Ei − Ej , 2 ≤ i < j ≤ n.

We have shown there are Lagrangian spheres in (V̄ , ω̄) in these classes.
What remains to prove is that there are Lagrangian spheres disjoint from the
symplectic sphere F0. This is true due to Theorem 1.1, since [F0] = H−E1 is a
square 0 class, orthogonal to H−E1−Ei−Ej and Ei−Ej for any 2 ≤ i < j ≤ n.

5.3 Homological action

We are now ready to prove Theorem 1.8.

Proof. Let (M,ω) be a symplectic 4-manifold with κ = −∞. Further assume
that a standard basis is chosen. As mentioned in the proof of Theorem 1.4,
fixing the canonical class causes no loss of generality. Thus we assume that
Kω = K0.

On the one hand, if f ∈ Symp(M,ω), then f∗ ∈ DK0,[ω](M). On the
other hand, Theorem 1.4 implies any (K0, [ω])-twist is realized by a Lagrangian
Dehn twist. With this understood, Theorem 1.8 is simply a consequence of
Proposition 4.14, Lemma 4.16, and Theorem 1.4.

Corollary 5.8. If (M,ω) is monotone, the representation of the symplectic
mapping class group on H2(M ; Z), namely, the Torelli part, is DKω(M).

Remark 5.9. Corollary 5.5 also has its counterpart, which asserts that, when
b+(M) = 1 and κ(M) ≥ 0, the homological action of Symp(M, ω̄) is generated
by the homological action of Symp(M,ω) and binary Lagrangian reflections.

It would be interesting to know whether for any minimal (M,ω) with b+ = 1
and κ(M) ≥ 0, the homological action of Symp(M,ω) is generated by La-
grangian Dehn twists.
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6 Uniqueness of Lagrangian spheres in ra-

tional manifolds

The present section is devoted to the proof of Theorem 1.5. We begin by
reviewing two basic uniqueness results of Hind for S2 × S2 and T ∗S2.

6.1 Review of Hind’s results

6.1.1 S2 × S2 via symplectic cut

For S2 × S2 we have the uniqueness up to isotopy in [23]:

Theorem 6.1 (Hind). Lagrangian spheres in a monotone S2 × S2 are unique
up to Hamiltonian isotopy.

From the connectedness of Symp(S2×S2, σ⊕σ) by Gromov [22], Theorem
6.1 is equivalent to

Proposition 6.2. Lagrangian spheres in a monotone S2 × S2 are unique up
to symplectomorphisms.

We here offer an argument for this weaker version of uniqueness using an
idea from Hind [24] turning the Lagrangian uniqueness problem into a sym-
plectic uniqueness problem via symplectic cut. Such an argument is useful
for the uniqueness of Lagrangian RP 2 in rational manifolds (see 6.4.1). Some
preparations are in order.

Denote by A, B ∈ H2(S2 × S2; Z) the classes of two product factors on
S2 × S2. Let Ωλ be the product symplectic form π∗1σ+ (1 + λ)π∗2σ with λ > 0.
Let Jλ be the space of Ωλ-tamed almost complex structures. The following is
due to Abreu and McDuff:

Theorem 6.3 ([2], Proposition 2.1, Corollary 2.8). Suppose l − 1 < λ ≤ l,
l an integer. Then Jλ admits a stratification {Uk}0≤k≤l with the following
properties:

(1) For any J ∈ Uk, the class A − kB is represented by a unique embedded
J-holomorphic sphere;

(2) Each Uk is connected.

As a consequence, we have the following claim:

Proposition 6.4. The space of symplectic spheres with self-intersection −2k
in (S2 × S2, ωλ) is non-empty and connected if λ > k − 1.
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Proof. A symplectic sphere with self-intersection −2k is in the class A−kB, and
it exists if and only if λ > k − 1. For two such symplectic spheres Ci, i = 0, 1,
there are almost complex structures Ji ∈ Uk such that Ci is Ji-holomorphic
for i = 0, 1. By Theorem 6.3 (2), there is a path Jt in Uk connecting J0 and
J1. By Theorem 6.3 (1), there is a unique sphere Ct with self-intersection −2k
for each Jt. This path of symplectic spheres is continuous due to Gromov’s
compactness.

Proof of Proposition 6.2: Given two Lagrangian spheres L1, L2 in S2×S2 with
a monotone symplectic form ω. By Weinstein’s neighborhood theorem one can
fix two symplectic embeddings φ1, φ2: T ∗r S

2 → S2 × S2 for some small r > 0.
For each i, consider the geodesic flow on S2 with the standard round metric.
By performing symplectic cut on (S2×S2, ω) along the boundary of the image
of φi, we obtain a pair of S2×S2 for each i: one comes from φi(T ∗r S

2), equipped
with the standard monotone symplectic form of size r; and the other one comes
from the complement of φi(T ∗r S

2), equipped with symplectic form ωi and a
symplectic (−2)-sphere Σi. Clearly, [ω0] = [ω1].

It follows from the uniqueness of homologous symplectic structures in [30]
and Proposition 6.4, there is a symplectomorphism of pairs:

ι : ((S2 × S2, ω1),Σ1)→ ((S2 × S2, ω2),Σ2),

where ι sends a neighborhood of Σ1 symplectomorphically to one of Σ2. Via
symplectic sum ([21]), which is the exact inverse of symplectic cut (as pointed
out by Gompf), ι leads to a symplectomorphism of pairs Ψ : ((S2×S2, ω), L1)→
((S2 × S2, ω), L2).

6.1.2 T ∗S2 and the symplectic mapping class group

Further exploring the symplectic cut approach in 6.1.1, we obtain an alterna-
tive proof of Hind’s Lagrangian sphere uniqueness in T ∗S2 below via Seidel’s
description of the compactly supported symplectomorphism group of T ∗S2.

Theorem 6.5 (Hind, [24]). Lagrangian spheres in (T ∗S2, ωstd) are unique up
to Hamiltonian isotopy.

Proof: Via the negative Liouville flow and scaling we can isotope any La-
grangian in (T ∗S2, ωstd) into one in (T ∗1 S

2, ωstd). Further, via the identification
(T ∗1 S

2, ωstd) = (S2 × S2, ω0)\∆, where ω0 is a monotone form and ∆ is the di-
agonal of S2 × S2, it suffices to show the the uniqueness of Lagrangian spheres
in (S2 × S2, ω0)\∆.
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Given two Lagrangian spheres L1, L2 ∈ (S2×S2, ω0)\∆, we first claim that
there is φ ∈ Sympc(T ∗1 S2, ωstd) such that φ(L1) = L2, where Sympc denotes
the compactly supported symplectomorphism group.

Without loss of generality we assume L2 = ∆̄, which is the antidiagonal,
corresponding in turn to the zero section of T ∗S2. By Proposition 6.2, there is
Ψ ∈ Symp(S2 × S2, ω0), such that Ψ(L1) = L2. Ψ may not fix ∆, but notice
that Ψ(∆)∩ ∆̄(= L2) = ∅. Since the complement of ∆̄ is canonically identified
with a symplectic disk bundle over the diagonal, by [25] there is a symplectic
isotopy Φ̃t : S2 → (S2 × S2, ω0) fixing ∆̄ and connecting the two symplectic
spheres Ψ(∆) and ∆. In particular, Φ̃t ◦Ψ(∆) is disjoint from ∆̄ for each t.

Now we extend Φ̃t to a symplectic isotopy of a neighborhood U of Ψ(∆)
which we still denote as Φ̃t (Ex. 3.40 in [44]), and require that Φ̃t(U) be still
disjoint from ∆̄ for all t. We then trivially extend Ψ̃t to φ̃t, a symplectic
isotopy on a neighborhood U ′ of Ψ(∆) ∪ ∆̄, which restricts to Φ̃t on U and
to the identity near ∆̄. Since H1(U ′; R) = 0, H2(S2 × S2, U ′; R) injects into
H2(S2×S2; R). By the argument proving Banyaga’s isotopy extension theorem
(see for example [44], Theorem 3.19), φ̃t extends to a global symplectic isotopy
φt of (S2 × S2, ω0), where φ0 = id, φ1(L1) = L2, and φ1|∆ = id.

Consider φ′ = φ1 ◦ Ψ ∈ Symp(S2 × S2, ω0). Since φ′ is the identity on ∆,
it induces a compactly supported symplectomorphism φ of (T ∗1 S

2, ωstd) up to
isotopy, mapping L1 to the zero section L2.

From Seidel’s description of Sympc(T ∗1 S
2, ωstd) in [50], φ = τn ◦ η1, where

τ is the Lagrangian Dehn twist along the zero section L2, and ηt, t ∈ [0, 1]
with η0 = id is a compactly supported symplectic isotopy. Now it is clear that
τn ◦ ηt(L2) is a path connecting L1 to the zero section since τ fixes the zero
section.

6.2 Proof of Theorem 1.5

For k ≥ 0 we will denote by Vk the manifold (S2 × S2)#kCP 2. When k ≥ 1,
Vk = CP 2#(k + 1)CP 2. Due to Theorem 6.1 and the fact that CP 2#CP 2 has
no spheres with self-intersection −2, we only need to prove Theorem 1.5 for Vk
with k = 1, 3, and k = 2 but [L] not characteristic. By Proposition 4.10, we
may further assume that [L] is the binary class E1 − E2.

Throughout this subsection, J0 denotes the complex structure obtained from
a generic k-point complex blow-up of CP 1×CP 1. Without loss of generality, we
may assume ω is a Kähler form compatible with J0. This follows from Proposi-
tion 4.8 in [35] that the symplectic cone is the same as the J0-compatible cone
in H2(Vk,R) when k ≤ 8, as well as the uniqueness of homologous symplectic
forms in [42].

To prove Theorem 1.5, we apply Theorem 1.1 and follow the approach in
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[15] where the monotone case is settled. For some of the details one is referred
to Section 9 of [15] and 4.2 of [17].

For the binary class E1 −E2, the following stable symplectic sphere config-
uration type (Definition 3.3) DE1−E2 is introduced in [15]:

• {H − E1 − E2, H} when k = 1,

• {H − E1 − E2, H − E3, E3} when k = 2,

• {H − E1 − E2, H − E3 − E4, E3, E4} when k = 3.

Since (Vk, J0) is a generic blow up, it is clear that there is a J0−holomorphic
DE1−E2 configuration C0.

Lemma 6.6. Suppose L is a Lagrangian sphere in (Vk, ω) with k ≤ 3 and
[L] = E1 − E2. Then L can be Hamiltonian isotoped off C0.

Proof. From Corollary 3.13, in the complement of the given Lagrangian sphere
L, we can find a DE1−E2-configuration C.

By Corollary 3.4, C0 and C are symplectically isotopic. Following the proof
of Theorem 9 in [17], with a small perturbation along the isotopy, we may
assume the symplectic spheres in the configuration intersect ω-orthogonally
during the isotopy. Thus, by the symplectic neighborhood theorem, we can
extend this isotopy to a neighborhood of the configuration. From the fact that
C and C0 have trivial H1, as in the proof of Theorem 6.5, we obtain an ambient
Hamiltonian isotopy Ψt taking C to C0. In particular, L is Hamiltonian isotopic
to Ψ1(L) which is disjoint from C0.

Proposition 6.7. Suppose there is a Lagrangian sphere L in (Vk, ω) with k ≤ 3
and [L] = E1 − E2. When [ω] is a rational, the complement of C0 contains a
unique Lagrangian sphere up to Lagrangian isotopy.

Proof. By Lemma 6.6 we can assume that the Lagrangian sphere L is in the
complement of C0, so the complement of C0 contains at least one Lagrangian
sphere.

We will discuss the case k = 3. The cases k = 1, 2 are similar. Up to scaling,
we can write PD([ω]) = aH−E1−E2− b3E3− b4E4 since ω([L]) = 0. Further,
a > 1 + bi since ω(H − E1 − Ei) > 0 for i = 3, 4. Rewrite

PD([ω]) = (H−E1−E2)+(a−1)(H−E3−E4)+(a−1−b3)E3 +(a−1−b4)E4.

Notice that a, bi ∈ Q+ since [ω] is assumed to rational. Since all coefficients are
rational and positive, there is a large integer l, such that PD([lω]) is represented
as an positive integral combination of {H−E1−E2, H−E3−E4, E3, E4}, say,
with coefficients u, v, w, z ∈ Z+.
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If C0 = CH−E1−E2 ∪ CH−E3−E4 ∪ CE3 ∪ CE4 , consider the divisor F =
uCH−E1−E2 +vCH−E3−E4 +wCE3 +zCE4 . There is a holomorphic line bundle L
with a holomorphic section s whose zero divisor is exactly F . Take an hermitian
metric and a compatible connection on L such that the curvature form is just
lω. φ = −log|s|2 defines a plurisubharmonic function with −d(dφ ◦J0) = lω on
the complement U0 of the C0.

Notice that U0 is the same as the complement U in Proposition 4.2.1 in
[17], which is shown to be biholomorphic to the affine quadric there. The rest
of the argument is exactly as in the proof of Proposition 4.2.1 in [17], reducing
to Theorem 6.5, the uniqueness in (T ∗S2, ωstd).

Consider the finite type Stein structure (J0, φ/l) on U0. Define h : R→ R to
be the function h(x) = ex−1 and φh = h◦φ. By Lemma 3.1 in [9] and Lemma
6 in [52], (U0, J0, φh) is a complete Stein manifold of finite type with Kähler
form ωh = −d(dφh ◦ J0). Suppose a sublevel set Y = φ−1[0, k] contains all the
critical points of φ. View (Y, ω) as a Liouville domain, and let (Ŷ , ω̂) be its
symplectic completion. By Lemma 2.1.5 in [17], (U0, ωh) is symplectomorphic
to (Ŷ , ω̂).

Since the affine quadric Q has a complete finite type Stein structure inher-
ited from C3, it follows from Lemma 2.1.6 in [17] that (U0, ωh) is symplecto-
morphic to (Q,ωcan). Combining all the symplectomorphisms, we find that the
Liouville manifold (Ŷ , ω̂) is symplectomorphic to (T ∗S2, ωstd).

Given any two Lagrangian spheres L0, L1 in the complement of C0, they
lie in a sublevel set Y of φ containing all the critical points. We obtain an
isotopy Lt in (Ŷ , ω̂) by Hind’s Theorem 6.5. Contract the isotopy Lt into the
sublevel set Y using the negative Liouville flow on (Ŷ , ω̂). The endpoints of
the contracted isotopy are also connected in Y to L0 and L1 respectively by
the positive Liouville flow. Therefore, one gets the desired Hamiltonian isotopy
between L0 and L1 in Y ⊂ U0.

Proof of Theorem 1.5: As mentioned in the beginning of this subsection, we
could assume that M = Vk with k = 1, 2, 3, ω is a Kähler form compatible with
J0, and ξ = E1 − E2.

Suppose L0 and L1 are two Lagrangian spheres in the class ξ. By Lemma
6.6 they are Hamiltonian isotopic respectively to two Lagrangian spheres, still
denoted by L0 and L1, in the complement U0 of C0. We will show that L0 and
L1 are Lagrangian isotopic in U0, and hence in (Vk, ω). As argued in Theorem
6.5, this implies that L0 and L1 are Hamiltonian isotopic.

Again we will discuss the case k = 3. By rescaling the symplectic form,
we could still assume the ω-area of E1 and E2 is rational. View (V3, ω) as a
three point blow-up of a monotone (S2×S2, τ), then as the three disjoint com-
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ponents of C0, CH−E1−E2 , CE3 , CE4 are all exceptional, corresponding to three
ball embeddings h12, e3, e4 in (S2×S2, τ). Let L̃0 and L̃1 be the corresponding
Lagrangians in (S2 × S2, τ).

Via the correspondence of ball-embeddings and symplectic forms in the
blown-up manifolds, one may deform ω to ω′ near CH−E1−E2 , CE3 , CE4 such
that their ω′-areas become rational. In fact, from the continuity of ball em-
beddings, such a deformation can be chosen to correspond to a slightly larger
ball-embeddings h′12, e′3 and e′4 in (S2 × S2, τ). Further, we may assume that
the larger embedded balls are still disjoint from L̃0 and L̃1. And when such a
perturbation is chosen small enough, J0 is still tamed by ω′ so that the config-
uration C0 is still symplectic with respect to ω′.

Notice that L0 and L1 remain Lagrangian in (Vk, ω′). Notice also that [ω′]
is rational, so we have a Lagrangian isotopy between L0 and L1 in (V3, ω

′) by
Proposition 6.7. It is important to observe that such an isotopy can be chosen
to lie inside the complement of the ω′−symplectic configuration C0.

In particular, the isotopy does not intersect the spheres CH−E1−E2 , CE3 , CE4 .
In turn it gives rise to an isotopy between L̃0 and L̃1 in the complement of the
images of h′12, e′3 and e′4. Since h′12, e′3 and e′4 are extensions of h12, e3 and
e4, the isotopy between L̃0 and L̃1 lie in the complement of the images of h12,
e3 and e4. Therefore it gives rise to an isotopy between L0 and L1 in the
complement of the spheres CH−E1−E2 , CE3 , CE4 in (Vk, ω).

6.3 Smooth isotopy

Proof of Theorem 1.6: By Proposition 4.10, we again assume that we are in
the binary case E1 − E2. Given two Lagrangian spheres Li, following [17],
consider the classes Ej , j ≥ 3. From Theorem 1.1, for each i, we can find a set
of disjoint symplectic spheres in Ej , which are also disjoint from Li. Applying
Proposition 3.4 to these two stable spherical symplectic configurations as above,
we can assume that Li are both disjoint from a set of disjoint symplectic spheres
Si in Ej , j ≥ 3.

Blow down Si we obtain (CP 2#2CP 2, ω′) with balls Bj disjoint from Li.
Let Lt be a Lagrangian isotopy between Li in (CP 2#2CP 2, ω̃) from Theorem
1.5. Viewed as a smooth isotopy, we can assume that Lt is transversal to
the centers xj of Bj , thus avoiding xj . Let B′j ⊂ Bj be a smaller ball not
intersecting Lt. Let φ be a diffeomorphism from U ′, the complement of ∪B′j to
U , the complement of ∪Bj , which is identity near Li. Then φ(Lt) is a smooth
isotopy between Li in U . Blowing up at xj by cutting Bj , we get back to (M,ω)
and a smooth isotopy between Li therein.
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6.4 Some remarks on uniqueness

We end the paper with some discussions about uniqueness.

6.4.1 Lagrangian RP 2

The argument in 6.1.1, with (−2)-spheres replaced by (−4)-spheres, can be used
to prove that any two Lagrangian RP 2 in (CP 2, ωstd) are symplectomorphic.
From Gromov’s connectedness of Symp(CP 2, ωstd) in [22], we then obtain a
new proof of the following result of Hind ([24]).

Theorem 6.8 (Hind). Any two Lagrangian RP 2 in CP 2 are Hamiltonian iso-
topic to each other.

6.4.2 Uniqueness up to symplectomorphisms

Conjecture 1.7 states that, for any two homologous Lagrangian spheres L1 and
L2 in a symplectic rational manifold (M,ω), there exists φ ∈ Symph(M,ω)
such that φ(L1) = L2. It implies the disconnectedness of homologically trivial
symplectormophism groups in the cases when there are non-isotopic Lagrangian
spheres.

We outline a possible approach to Conjecture 1.7. One easily reduces the
problem to the binary case as in the proof of Theorem 1.4. Without loss of
generality, let [Li] = E1 − E2.

For each pair (M,Li), by Theorem 1.1, away from Li, there is a set of disjoint
(−1) symplectic spheres C li , l = 3, ..., k + 1, with [C li ] = El for l = 3, ..., k, and
[Ck+1
i ] = H − E1 − E2. Blowing down the Cl yields two (k + 1)-tuples of

(M̃i, L̃i, B
l
i), i = 1, 2, 3 ≤ l ≤ k + 1. Here M̃i is a symplectic S2 × S2, L̃i a

Lagrangian sphere, and Bl
i a symplectic ball corresponding to C li .

By [30] there is a symplectomorphism Ψ : M̃1 → M̃2. From Theorem
6.2, there is a symplectomorphism sending Ψ(L̃1) to L̃2. Composing these
two symplectomorphisms one obtains a symplectomorphism between the pairs
(M̃i, L̃i), which we still denote as Ψ. The conjectured connectedness of relative
symplectic ball embedding in Remark 5.2 implies that the k − 2 balls Ψ(Bl

1)
can be further displaced by an L̃2-preserving Hamiltonian isotopy to the balls
Bl

2. This gives a symplectomorphism between the (k + 1)-tuples (M̃i, L̃i, B
l
i),

which in turn descends to a symplectomorphism between the pairs (M,Li).

6.4.3 Lagrangian T 2
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