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Abstract

In [7] Oprea gave an improved version of Chen’s inequality for Lagrangian
submanifolds of CP

n(4). For minimal submanifolds this inequality coincides
with a previous version proved in [5]. We consider here those non-minimal 3-
dimensional Lagrangian submanifolds in CP

3(4) attaining at all points equal-
ity in the improved Chen inequality. We show how all such submanifolds may
be obtained starting from a minimal Lagrangian surface in CP

2(4).

1 Introduction

In the early nineties Chen [4] introduced a new invariant, called δM , for a Riemannian
manifold M . Specifically, δM : M → R is given by:

δM(p) = τ(p) − (inf K)(p),

where (inf K)(p) = inf
{

K(π) | π is a 2-dimensional subspace of TpM
}

, with K(π)

being the sectional curvature of π, and τ(p) =
∑

i<j K(ei ∧ ej) denotes the scalar
curvature defined in terms of an orthonormal basis {e1, . . . , en} of the tangent space
TpM of M at p. In the same paper, he discovered, for submanifolds of real space
forms, an inequality relating this invariant with the length of the mean curvature
vector H . A similar inequality was proved in [5] and [6] for n-dimensional Lagrangian
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submanifolds of a complex space form M̃n(4c) of constant holomorphic sectional
curvature 4c. Indeed, it was shown that

δM ≤ (n−2)(n+1)
2

c
4

+ n2

2
n−2
n−1

‖H‖2 . (1)

Note that, for n = 2, both sides of the above inequality are zero.
Let CP n(4) denote complex projective n-space of constant holomorphic sectional

curvature 4. For n ≥ 3, Lagrangian submanifolds of CP n(4) attaining at every point
equality in (1) were studied in, amongst others, [5], [6], [1] and [2]. In particular,
in [5] and [6], it was shown that such submanifolds are minimal, and in [1] and
[2] a complete classification was obtained of 3-dimensional Lagrangian submanifolds
of CP 3(4) attaining at each point equality in (1). Such submanifolds are obtained
starting from minimal surfaces with ellipse of curvature a circle in the unit 5-sphere.

However, Oprea [7] has recently shown that the inequality (1) is not optimal,
and, for n ≥ 3, can be improved to

δM ≤ (n−2)(n+1)
2

c
4

+ n2

2
2n−3
2n+3

‖H‖2 . (2)

This explains why a Lagrangian submanifold of CP n(4) attaining at every point
equality in (1) must be minimal, since both inequalities coincide in this case.

2 Classification

Let M be a Lagrangian submanifold of CP n(4). A careful analysis of Oprea’s
arguments shows that equality in (2) is obtained at a point p ∈ M if and only
if there exists an orthonormal basis {e1, e2, . . . , en} of the tangent space TpM such
that the symmetric cubic form C on M constructed using the second fundamental
form h, the complex structure J and the Riemannian metric < , > on CP n(4) given
by

C(X, Y, Z) =< h(X, Y ), JZ >,

has the following form,

< h(e2, e2), Je2 > = − < h(e3, e3), Je2 > (3)

4 < h(e2, e2), Je1 >= 4 < h(e3, e3), Je1 > =< h(e1, e1), Je1 >= 3 < h(ej, ej), Je1 >,
(4)

where j ∈ {4, . . . , n}, and all other components of C are zero unless they can be
obtained from the above using the symmetric nature of C.

In this paper we show that the inequality (2) is optimal, and we show how to
construct all non-minimal Lagrangian submanifolds of CP 3(4) which attain every-
where equality in (2) (the classification in the minimal case having been found in
[5] and [6]).

We now assume that M is a non-minimal Lagrangian submanifold of CP 3(4)
attaining at all points equality in the improved Chen inequality (2). Then C satisfies
(3) and (4) at all points. Thus, using the notation and terminology of [9], M is a
non-minimal submanifold of Type 2 with the additional condition that λ1 = 4λ2 6= 0,
where λ1 =< h(e1, e1), Je1 > and λ2 =< h(e2, e2), Je1 >. We have chosen the above
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orthonormal basis {e1, e2, e3} so that the notation agrees with [9], and, in particular,
the plane for which the minimal sectional curvature is attained is that spanned by
e2 and e3.

Since M is Lagrangian, there is a horizontal lift E0 : M → S7(1) ⊂ R8 = C4 to
the unit 7-sphere [8], and if dE0 denotes the derivative of E0, we put Ej = dE0(ej),
for j = 1, 2, 3. We will often identify a point of M with its image under E0.

It follows from [9] that, for some suitable function b1,

DE1
E1 = 4λ2iE1 − E0, (5)

DEj
E1 = (b1 + iλ2)Ej , j = 2, 3, (6)

where D denotes the standard flat covariant derivative on C4. We also get from
(41), (42), (50) and (51) of [9] that the functions λ2 and b1 have zero derivative with
respect to E2 and E3, and from (40) and (46) of [9] that their derivatives in the E1

direction are given by

E1(λ2) = 2λ2b1, (7)

E1(b1) = −(1 + b2
1 + 3λ2

2). (8)

The following lemma is immediate from (5) and (6).

Lemma 1 The brackets [E1, E2], [E1, E3], [E2, E3] are linear combinations of E2

and E3.

In [9], submanifolds of the type we are considering are divided into 3 further
subcases depending on the relative values of a =< h(e2, e2), Je2 > and λ2. One of
these cases is easy to deal with, namely that in which a 6= 0 but a2 − 2λ2

2 = 0. In
this case, it follows from equations (33) - (45) of [9] that b1 = 0 which contradicts
(8). Hence this case cannot occur.

We now consider the other two cases, namely those where a = 0, or both a and
a2 − 2λ2

2 are non-zero. We introduce a function θ defined locally on M having zero
derivative with respect to E2 and E3 and satisfying E1(θ) = −λ2. It follows from
Lemma 1 that the integrability conditions of the this system for θ are satisfied, and
hence such a function θ exists.

We now consider the maps into S7(1) given by

V = (−(b1 + iλ2)E0 + E1)/
√

1 + b2
1 + λ2

2, (9)

W = eiθ(E0 − (−b1 + iλ2)E1)/
√

1 + b2
1 + λ2

2. (10)

It follows easily that DE2
V = DE3

V = 0 and DE1
V = 3λ2iV . This implies that V

is contained in the unit circle of a complex plane C, and, taking t as the standard
parameter along this circle, we also have that E1(t) = 3λ2. Hence, after applying a
translation if necessary, we may assume that θ = −t/3.

Lemma 2 The map W describes a minimal horizontal surface in the unit sphere
S5(1) of the orthogonal complement in C4 of the complex plane containing V .
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Proof: It is clear that W is orthogonal to V and iV , so the image of W is contained
in the indicated S5(1). We now use arguments similar to those employed for V
above to complete the proof. In fact,

DE1
W = 0,

DEj
W =

√

1 + b2
1 + λ2

2e
iθEj , j = 2, 3,

DE2
(DE2

W ) = b3DE3
W + iaDE2

W − (1 + b2
1 + λ2

2)W,

DE2
(DE3

W ) = −b3DE2
W − iaDE3

W,

DE3
(DE2

W ) = c2DE3
W − iaDE3

W,

DE3
(DE3

W ) = −c2DE2
W − iaDE2

W − (1 + b2
1 + λ2

2)W,

from which the proof of the lemma quickly follows. qed
We can now state and prove our classification theorem.

Theorem 1 Let M be a non-minimal Lagrangian submanifold of CP 3(4) which at-
tains equality at every point in Oprea’s improvement (2) of Chen’s inequality. Then
there is a minimal Lagrangian surface W̃ (z, z̄) in CP 2(4) such that M can be locally
written as [E0] where

E0(t, z, z̄) =
eit/3

√

1 + b2
1 + λ2

2

(0, W (z, z̄)) +
(−b1 + iλ2)

√

1 + b2
1 + λ2

2

(eit, 0, 0, 0),

where b1 and λ2 are solutions of the following system of ordinary differential equa-
tions:

db1

dt
= −

1 + 3λ2
2 + b2

1

3λ2

,
dλ2

dt
=

2

3
b1, (11)

and W is a horizontal lift to S5(1) of W̃ . Conversely any 3 dimensional Lagrangian
submanifold obtained in this way attains equality at each point in (2).

Proof: By [8], minimal horizontal surfaces in S5(1) correspond to minimal La-
grangian surfaces in CP 2(4). Solving (9) and (10) for E0, we find that, after applying
a suitable element of SU(4), the original immersion is the projection onto CP 3(4)
of the map E0 given above, where, from (7) and (8), b1 and λ2 are solutions of the
system (11). Conversely, it is clear that any submanifold obtained in this way has an
orthonormal basis of the tangent space at each point satisfying (3) and (4). Hence
equality is attained in (2) at each point. qed
Remarks (i) It is clear that λ2(1 + λ2

2 + b2
1) is a first integrand of the system (11).

(ii) An alternative method of proof would be to apply immediately Theorem 7 or
Theorem 9 of [9]. However the result in that case would have been less explicit.
(iii) Lagrangian immersions into CP n(4) constructed from a curve in S3(1) and a
lower dimensional Lagrangian immersion have been studied in [3].
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