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ABSTRACT

A large class of solutions for second-order irrotational perturbations is derived in the
framework of the Lagrangian theory of gravitational instability of a homogeneous and
isotropic universe investigated in earlier papers. The solutions are evaluated in detail
for perturbations in a flat background universe. The form of the solutions is designed
for use in studies of the formation of large-scale structure from generic initial
conditions. Some general remarks on the properties of the solutions are made. The
result is illustrated by a special case and discussed. In particular, it is found that sheet-
like structures stay compact after shell-crossing (as in the competing ‘adhesion
model’), and that the collapse of first objects occurs earlier (as expected from
numerical simulations) in the second-order approach. Both these properties
compensate shortcomings of the “Zel’dovich approximation’. In contrast to the ‘adhe-
sion model’, the nth-order Lagrangian perturbation solutions also describe internal
structures of self-gravitating pancakes (=2n+ 1 stream systems) in terms of the nth
orbit crossings within pancakes.

Key words: instabilities — methods: analytical - galaxies: clustering - cosmology:

theory - large-scale structure of Universe.

1 OVERVIEW

In a recent paper (Buchert 1992, henceforth B92), the
Lagrangian theory of gravitational instability of Friedman-
Lemaitre cosmologies was investigated and solved up to the
first order of the deviations from homogeneity. It was shown
that the “Zel’dovich approximation’ (Zel'dovich 1970, 1973)
can be considered as a subclass of first-order irrotational
perturbation solutions in this theory. These solutions were
first given in an earlier paper (Buchert 1989), in which it was
demonstrated that the first-order solutions provide exact
solutions in the case of plane-symmetric inhomogeneities as
well as in a special three-dimensional case, where an in-
variant definition of the solution class is the vanishing of two
eigenvalues of the peculiar-velocity gradient.

In the present paper, we push this theory to the second
order. We restrict ourselves to irrotational perturbations. We
derive a large class of second-order solutions, evaluate it in
the case of a flat Friedman background, and express the result
in terms of the initial conditions for the peculiar velocity and
peculiar acceleration. This approximation is then discussed

and illustrated in a special two-dimensional case and com-
pared to the first-order approximation.

We obtain a description that is applicable to studies of the
formation of large-scale structure from generic initial condi-
tions. Thus the present work provides an improved approxi-
mation for non-linear gravitational instability, which takes
into account important aspects of the tidal action of self-
gravitating ‘dust’ continua in the non-linear regime. In parti-
cular, this approximation compensates shortcomings of
ZeYdovich’s approach concerning, e.g., the formation of first
objects and the compactness of sheet-like structures after
shell-crossing.

In the Eulerian framework, the second-order perturbation
theory has been solved and discussed by, for example,
Peebles (1980, section IL18 and references therein) and
Grinstein & Wise (1987). Other related articles concern
Lagrangian perturbations of a stationary perfect fluid
{(Lynden-Bell & Ostriker 1967; Friedman & Schutz 1978
and references therein). A parallel attempt to set up the
Lagrangian perturbation theory in Friedman-Lemaitre back-
grounds was pursued by Moutarde et al. (1991), and
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included a comparison of a third-order example with a-

numerical simulation. Recently, the latter work has been
extended to second-order perturbation solutions for non-flat
background models by Bouchet et al. (1992), who also dis-
cussed applications.

2 THE EULER-POISSON SYSTEM IN
LAGRANGIAN FORM FOR GENERAL AND
IRROTATIONAL FLOWS

In the Lagrangian description, integral curves x=f(X, ) of
the velocity field ¢(x, ¢) are introduced:

S-ufo, X=X (1)

These curves are labelled by the Lagrangian coordinates X,.
We can express all fields, such as the Eulerian coordinates x
(which are now construed as an additional vector field in
Lagrangian space), the velocity v, the gravitational field
strength g, and the density o, in terms of the field of trajec-
tories f as follows:

x=f(X, 1), (2a)
v=f(X, 1), (2b)
g=f(X.1), (2¢)
o=p(X)J1, Ji=det[f, (X, 1)]. (2d)

The comma in the subscript denotes, partial differentiation
with respect to the Lagrangian coordinates, the dot denotes
the Lagrangian time derivative d/d:=9,|, +o-V,=0,|; the
comma and the dot commute.

Recall that mass conservation is guaranteed by (2d) irre-
spective of any equations that the trajectories f might obey.
The Euler-Poisson system can be cast into a set of four
evolution equations for the single dynamical variable f
{compare B92 for all details, especially for the equivalence of
the Lagrangian and the Eulerian forms of the equations):

N fs for o) _ .
€pql; QAN:MWN»X,«V Ov Nmm\u Awma_quv
W @A\M: \_Y \mv _ — N . o
mm Cogix X ) N ARGIXE B(X)>0
(3d,e)

(indices run from 1 to 3, if not otherwise explicitly stated,;
henceforth, V, denotes the nabla operator with respect to the
Lagrangian frame that commutes with the dot).

One class of solutions of the Euler-Poisson system (3) is
formed by the homogeneous and isotropic Friedman-Lemai-
tre models:

S X, t)=alt) X. (4a)
Inserting f;; into equations (3), we obtain for the function a(#)
the single equation

3da’ ~a*A=—4nGpy, Oy = constant > 0, (4b)

the first integral of which is given by Friedman’s differential
equation

d”+ constant _8nGpy+A
2 - ’
a 3

(4c)

where py;= gya ~3 is the background density.
For irrotational flows we can prove the following Lemma.
In the Lagrangian picture, the vorticity, or the angular
velocity @:=(1/2)V, X v, has to be written in terms of the
flow field f(X, t) as follows:

1 O fi, fi fo)

AKX ) =2 €y B g 5a,b,
)= 3y, o, X 7 (sabc)
(Note: the components of @ can be expressed in terms of the
antisymmetric tensor components w; used here as w,=
S\Nvmis\x.v

Lemma. For irrotational flows the Euler-Poisson system
(3a,b,c,d,e,f) can be replaced by equations (3d, e,f) and

(5d,e,f)
In order to prove this Lemma we have to verify the sufficient
implication w;(X, t)=0=(3a,b,c). In the Eulerian picture,

equations (5d,e,f) imply the existence of a potential S(x, ¢),
v=V,S. Using equations (2b,c), we have

w;=0.

3 1 X
=V |=|S+=(V.8)7|.
g {3, N?v

This equation implies V, X g=@, which is equivalent to
(3a,b,c). Qed.

Note that this implication holds for any trajectory, since it
is based on equations (2) only. It expresses a purely kine-
matical property of the flow.

We now derive a large class of second-order solutions of
the Lagrangian perturbation theory at the background solu-
tions (4). The reader who is interested in applications of the
solutions only may move directly to Section 5.

3 THE LAGRANGIAN THEORY OF
GRAVITATIONAL INSTABILITY:

SECOND-ORDER SOLUTIONS FOR
IRROTATIONAL PERTURBATIONS

3.1 Second-order perturbation approach at a Friedman-
Lemaitre background

Henceforth, we restrict all considerations to the case in
which the velocity field has a potential. We consider fto be a
superposition of a homogeneous isotropic deformation and a
vector function p for the inhomogeneous deformation of the
medium as follows:

S(X, t)=a(t) X+ p(X, 1),
pPHX, 1):=0,

p(X, 1) =ep(X, 1) +e2p?X, 1),

a(t,):=1, PH(X,1):=0, (6)

where ¢ is assumed to be a small parameter. Note that the
first-order solutions provide exact solutions if certain con-
straints on the initial conditions are fulfilled (see Buchert
1989), and that they agree well with numerical N-body
simulations of the full system until shortly after the first shell-
crossings.

To derive the second-order solutions, we proceed as
follows. We consider the source equation (3d) only and solve
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this equation for longitudinal perturbations, i.c. p=V 1. We
then insert this solution into the remaining evolution equa-
tions (5d, e, f) to determine the constraints (cf. the Lemma).
Inserting the ansatz (6) into equation (3d) and sorting
terms that are linear and quadratic in &, we obtain two partial
differential equations involving expressions that are linear,
Z|pY) and £[p"?], and quadratic, ¢[p'"], in the perturba-
mocm Foﬁvmmo the appendix in B92; I(p'=12) and I(p'V),
H(p") denote the first and mmooza scalar invariants of the
tensor gradients of p''=?' and pY, respectively; the initial
density perturbation is split according to 6 = gy + 091

(3da?—a’A)+ eL[pW+ e £ [p?]+ ¢ p)
=—4nGo(X)=:—4n G|y + 65V + 2652, (7)

with

LpI:=(2da —a?A) I[p'"]+ a2I[p"),

" s, ph’, X,
—aA)) T p+ a2 170 s <7e]
AQ “ v F _ “ :Wn Cabe @Ak_, Mﬂwu va

=(d—aA ) H[p"V)+ a{H[pW)-21[p"]}.

The homogeneous deformation (4) solves these equations for
N»:u 1L,2)= @,

We now consider any longitudinal part { p} of the perturba-
tions only {(denoted by the curly brackets around p). For
technical reasons we introduce the vector fields {A}, {A, A}
and {B, C}, which have the following properties. For given

i=1,2;

elp:=

arbitrary vector fields A, B and C, let 7(A), 7(A,A) and
T (B, C) denote scalar functions such that
AT(A)=1I(A), AT(A,A)=2"1I(A, A),
aB,, C,, X,
AT(B,C)= 2. €u (B € X (8a,b,¢)

a,b,c QAN:MWNVNwV )

According to a theorem by Brelot, such scalars are guaran-
teed always to exist; see Friedman (1963). They are not,
however, uniquely defined. The gradients of these scalars
then provide a longitudinal part of the given vector fields
(note that the field {A} — A, for example, is transverse accord-
ing to our construction):

[AE=V,7(A),  V,{AI=HA)=2A,, Y, x{Al=0;
. (9a)
{A, A=V, T(AA), QO.T»K:MNEA\»V
EAx:HW M.\r:. IM..UT?.\,\»\L . Vox{A,A}=0;
(9b)
{B, C}:=V,9(B, C),
_ @Awnu Qvu Mmmv —
<c.ﬁwu ﬁ.v - :Wa Eabe ®Ak: NNV \va ’ 40 8 wuu Qw
(9¢)

Note that the linear or the quadratic expressions enclosed
in curly brackets are distributive and commutative in the
sense that we can make use of the following assignments:
{A+ B, C}<{A, Ci+{B, C}, {A,B}<{B,A}. These assign-
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ments are not, however, bijective mappings, since the poten-
tials 7~ are not uniquely defined. Likewise, we can write

{A}=V,7(A4)=V.A; ' [(A),
{A,A}=V,T7(A,A)=V,A; 2II(A, A),

JaB,, C,, X,)
B,C}=V,7(B,C)=VA]! |@
," M ° A :Mnmv OAN:XNVMAMV

(cf. Grinstein & Wise 1989).

Using (6), (7) and (9), the remaining equations to be solved
can now be written as families of ordinary differential
equations (labelled by X) with constant coefficients along
each trajectory. We express the first- and second-order parts
of the source terms 86~ %2 through the divergence of the
initial field strength perturbations ji=1-2/¢ ) and obtain

.. ..(1)
)+ (2 8- a fipty =20 (102
a a
and
.. .(2)
@y (2 2 Alp® Hq (¢)}
(P} p {p} pe
1)1 . ..
L S a—an)ip,p+ al ) pl | (100)
a
For convenience, we choose 96"'=06 and 65! =0. The
quadratic perturbation is chosen such that {#2/(z,)}= 0 (cf.

equation 6). (Recall that in the Lagrangian picture the density
is not a dynamical variable; consequently, it need not be
written in perturbed form.)

To solve equations (10), we use the first-order solutions
given in B92, where it was shown that the solution of (10a)
for longitudinal perturbations can be given in terms of three
linearly independent, time-dependent functions, g;, ¢, and
q,, and two vector functions of Lagrangian coordinates, Q,
and Q,, as follows (we drop the superscript D in this paper):

P =q,{Q}+ g, Q) + QLWT

where P=-0,— 0, mwoo_m_om the choice of Lagrangian
coordinates such that {p"(X, 1,)} = 0 (for the equations the
time-dependent functions must obey, see below).

Since the principal part of equation (10a) is identical to
that of equation (10b), the homogeneous solution of equation
(10b) has a similar form to the first-order solutions (11a) of
(10a):

(PRt = @:{R} + @{ R} + q,{R,}.

The three quadratic coefficients R,, £=1,2, p, have to be
determined in terms of the first-order coefficient functions
Q, and Q, as mo:oém We compute the mmooba order part of
the velocity {p'?} and the acceleration {?} relative to the
background (cf. Section 3.2) and obtain two equations for the
quadratic coefficients by the requirement that the coefficient
functions must vanish. The third equation is given by the
requirement {p@(X, ¢,)}=0, which defines the Lagrangian
coordinates according to our assumption (cf. equation 6).
This is explicitly done in an example in Section 4.

(11a)

(11b)
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In order to determine a particular solution of the second-
order equation (10b), we apply the formula

(B D=1 | )| gl EE
~gin)| arg (0 ' C% 2]

with V -{G}:= — @, where

{Gh:=t(d—aA)(a}{Q1, Qi+ 4:0:{ D, O} + 4, (P, Oi}
+q,9,{Q1, Q1+ g3 0y, O} + Qw@ﬁw Q,}
+4,4,{01, P+ 4,9,{Q,, P+ q{P, P})
+a(§,9:{Q1, Q)+ §,9,{D, Qi)+ G,9,{P, Q)
+ G190, 01, Qb+ G0 Q,, Qo) + nw.nﬁ:w Q!
+9&&@?3+@NQ\LQN,E+N~.§Q&N P}).

The constant M is determined by inserting the full solution
{p'?}={p{Z5} +{p{i} into equation (10b).

(11c)

Theorem

A large class of solutions for second-order Lagrangian
irrotational perturbations at a homogeneous and isotropic
background has the form

FAUX, t)=a(t) X+ e{pM (X, 1)} + e} p*A(X, 1)},
with

{PUUX, 1)} = g,() { @ (X)}+ q,(1) { Go( X} + (1) {P(X)},
{PAX, ) =P X, ) +{PFL(X, 1)}

(cf. equations 11). The functions ¢,, £=1,2, p, are linearly
independent solutions of the first-order equation (10a) and
obey the following equations:

NMI\/ q:+4,=0, =12

NM|> q,+4,=4,(t)—qt,)]a™?,  £=1,2

(see B92). All coefficient functions that depend on Lagrang-
ian coordinates are fully determined by the longitudinal
coefficient functions {Q,}=:V Q,, {Q,}=:V Q, of the first-
order solutions. In general, they are not expressible in closed
form and have to be calculated from initial conditions by
solving elliptic boundary value problems (cf. equations 8).
{(An exception is presented in the following Corollary.) The
generality of the solution with respect to the whole class of
irrotational flows is restricted by the functional relationship
V.Q,=#(V _Q,), with arbitrary .

To prove this theorem, we have to insert the solution into
equations (10). (Note: the equations that the time-dependent
functions obey have been corrected; see the Erratum to B92
given in Appendix B.) In general, two scalar functions of
three variables (e.g. the velocity potential and the gravita-
tional potential) can be given independently for irrotational
perturbations. Insertion of the solution into the constraint
equations (5d,e,f) and retention of terms up to the second
order shows that the gradients of the two initial potentials Q,

and Q,, or the velocity potential and the gravitational poten-
tial, respectively, have to be functionally dependent. This is
(apart from irrotationality) the only restriction on initial
conditions. (The constraint equations are listed in Appendix
A) Q.ed.

Remarks. For most applications, the above-mentioned
restriction is demanded anyway (see Section 5). The splitting
of the perturbation function into a transverse part and a
longitudinal part implies no restriction of generality. The
non-uniqueness of this splitting expresses the fact that we
have some gauge freedom in deriving the solutions. Repre-
sentations of the solution that are different from the one
presented might exist.

Corollary 1

The following class of second-order solutions can be written
in closed form. This class is obtained by replacing the general
vector fields defined in (9) by special vector fields as follows.
For arbitrary vector fields A, B, C, we perform the replace-
ments

{A}=A4,
{A, A}~ AV, A)—(A'V ) A,
wwu ﬁ.wlvx.;wﬁqo leAw40v QQ‘T NNﬂﬁAqo.wv|AQ.<OV wH_u

Ait+A,=1.
We then have, from (9),
V. A=I(A), V,xA=0;

Vo [A(V,-A)=(A'V,) A]=2-1I(A),
V. X[A(V,"A)=(AV,)]= AX AA;

QO.N;wAQO.QVIAw.QOV QH._TNLQAQOQV.IAﬁ.quNM

@Awﬁ Q? anv
= M €abc 9
a,b,c mAk_ukuuNuv

Vo X (4,[B(V, C)=(B-V,) C]+ A,[C(V, B)~(C-V,) B])
=A(BXA,C)+A(CXA,B).

Thus the potential property of the flow is preserved if the
following constraints are satisfied:

V., XA=0, V., XB=0, vV, xC=0;
AXAA=0, A(BXA,C)+A(CXAB)=0.

This Corollary tells us that certain additional constraints
have to be fulfilled to assure that the second-order solutions
that include the replacements still provide irrotational flows.
This is non-trivial, since vector functions of the form
A(V -A)—(A-V,) A are not curl-free in Lagrangian space. In
general, these terms also introduce vorticity in Eulerian
space. For special initial conditions, however, the terms have
zero vorticity. In this case, the solutions preserve the poten-
tial property of the velocity field, which can be demonstrated
by computing the vorticity with the help of equations (5a,b,c)
using the constraints given in Corollary 1. Note that, initially,
the vorticity in Lagrangian space has to vanish. If it does not,
well-known vorticity theorems show that the potential pro-
perty is destroyed.

The advantage of the replacements defined in Corollary 1
for the Jocal description of perturbations has already been
demonstrated in the first-order solutions and their applica-
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tions (see B92): we can directly map any generic field without
explicitly solving the Poisson equations (8) for given initial
conditions. In the second-order case, this advantage can (for
generic initial conditions) only be obtained at the cost of
vorticity generation. A more detailed discussion of this issue
is given in Section 5.

3.2 The Lagrangian theory in a frame comoving with the
background

For application of the perturbative solutions as models for
the formation of large-scale structure, we define the ‘comov-
ing Eulerian frame’ and the ‘peculiar fields’ as comoving
deviations from the Hubble velocity and the Hubble acce-
leration. This corresponds to a choice of Eulerian coordin-
ates ¢:=x/a(¢). In the Lagrangian picture, we introduce the
‘comoving’ orbit F:

1 pX,1)
t

q=FX, t)=— f(X,t)=X+ )

a(t)

p=epV+e2p, (12)

All fields continue to be represented in the same Lagrangian
frame X if we define a(z,):=1 (equation 6). In this comoving
picture, we introduce the peculiar velocity # and the peculiar
acceleration w as usual:

v=f=dF+u, u:=aF; (13a)

, . d
w:=2dF+aF=u+- u.
a

g=f=daF+w, (13b)

Note that the convective derivative with respect to v is
equivalent to the convective derivative with respect to u/a in
the comoving picture:

d
L=V, =3+,

ar’ (13¢)

4 EXAMPLE: A PANCAKE MODEL FOR
SECOND-ORDER IRROTATIONAL
PERTURBATIONS OF A FLAT UNIVERSE

In this example, we present a large class of second-order
solutions for inhomogeneous irrotational deformations of a
flat background universe. Setting (constant=0; A =0} in
equation (7b), we obtain

(14)

With the ansatz q,(¢)=(¢/t,)", n=1,2, p, we seek solutions

for the time-dependent functions in the homogeneous

solutions {p{L) } and {p{Z,.}. We obtain
4 1 2

:_lwu ENIIW. zmlw

(see B92). The linear inhomogeneous deformation {p()}

reads

(15)

4/3 -1/3 2/3

! AR5

QX+ {G(X)}+|--

‘. Py . (16)
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(B92). Using (16), we can express the initial perturbation
fields in terms of the initial conditions for the peculiar velo-
city U:=u(X, t,) and the peculiar acceleration W:=w(X,1,)
as follows:

@TWAS N0+Wo Wi, (17a)
Q= -2 (Ui, + ] W, (17b)
Pi= 10, -(0.)= 3 Wi (17¢)

{B92). According to (11b), the homogeneous solution of the
second-order perturbation can be written

4/3 -1/3 2/3

! ! LR,(x. (18)

2y 1L s t
Pronl = || (RAX+ () (R (2

We now evaluate the particular solution {p{Z,}. We have to
calculate the time-dependent coefficient functions of the

quadratic coefficients in (11c). We denote these by

1 t Ve

ND:PH% NI “ nﬁo.:
o 0

For the power indices r, we obtain

4 1 2
~.©T©_|WV ro,0,~ |Ww \.©~Lv|wu
1
70,0~ |W 4 70,,0,= ~ Ng Fo,r=— Hv
2
Tr.o, Hw , Fpg,=—1, rpp=0. (19)

After integration (cf. equation 11c¢), and determination of the
integration constant M to M = — 5/(3¢,), we obtain

2

@y 3 0.1
ﬁmvvm:v.l HA@@T@L P +N2©T©Nv

(o]

1/3 -4/3

~1e 0l

" (20)

+10:, 0|

0

From this solution, together with the homogeneous parts
{pil.} and {p{2.}, we compute the initial velocity and acce-
leration relative to the Hubble flow and determine the quad-
ratic coefficients of the homogeneous second-order solution
(18)to

{R,}=

wlw

1 9
AQTQL+H Q@TQNT.WQVQ_S.T& AQ?QNT
(21a)

(01,0175 (10, 0 +12:, Q)+ 12,2,
(21b)

ES

{Ry}= 3

W
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1

(R)=—3 (BPI==2{0,, Q)3 (0, Q.

1
+A©§Q_$Imﬁ©?©~w. (21c)
We finally write down the full solution f€ in terms of the
initial vector functions @, and Q,, which can be related to
the initial conditions for the peculiar velocity and peculiar
acceleration according to (17); henceforth, ¢ is assumed to be

absorbed into the amplitudes of the initial conditions:

2/3 4/3 -1/3

t

t t

) (L ! !
rexo=[] x+ ] e+ (7] e
1\’ VY 3
"\ (—{@i-{@:h)+ A —12100 Q4
4/3
1] |50, 0+ s (2, e, 0

9 1
+§6§©L + P lM@:@;

1 1
IM Q@T@&+ﬁ©~v©_$lmAQ?QL

1\l
+A~|o MQ@:@&+AQ?QLV
1\ 4 1
+ANIO mﬁmrﬁﬂvlaQ@?@&+ﬁ©~v©&
2 ARG |
+wﬂ©?©m + Nlo IWAQ?Q&. (22a)
From the general solution (2d), the density is given by:
p(X, t)=6(X)(det{f 2(X, t)))~". (22b)

The initial conditions =06, ~[1/(4nG)|V,- W, W=:~V_¢
and U=:V_ ¥ can be expressed in terms of two functions of
three variables (the peculiar-gravity potential ¢ and the pecu-
liar-velocity potential &), which can be given independently,
if the solution is general. The constraint equations from the
integrability conditions (5d, e, f) introduce the following addi-
tional relation which has to be fulfilled:

45&" %!AQO .Qv ANNOV

In particular, relation (22¢) implies V,Q, =#(V Q,), which
simplifies the general form (22a). Special models using
restricted initial conditions that satisfy (22c¢) are discussed in
Section 5.

5 DISCUSSION AND ILLUSTRATION

5.1 Restricted models as generalizations of Zel’dovich’s
approximation

In the discussion of the first-order solutions in B92, we
looked at different possibilities to restrict the solutions such

that only one initial field has to be given. Two such possible
restrictions were considered to represent Zel'dovich’s appro-
ximation (Zel'dovich 1970, 1973). In this spirit, we now
define second-order models with similar restrictions on
initial data.

One possibility to restrict solutions (22) is to require that

{Oi}=~{Q,}> WX)=0; F=0. (23a)
Inserting (23a) into the general orbit ANNV_ we obtain

£\ -1

3
FS(X,1)=X+ R LU

3\ 20\ 1 1 [s\78

+ —_—
14 \¢, 40 \t, 2 2\,

43 [V 1\ 9
+|| —_—— ] —

70\ “sli) |25 U UKL, (23b)

o~

i.e. the density is initially given by the homogeneous back-
ground density, and the fluctuations are produced solely by
velocity perturbations.

A second possibility is to require the following condition
to hold at the initial time:

{Qo) = 0={U(X)}= W(X)1,; (24a)

This relation between the initial peculiar-velocity field and
the initial peculiar-acceleration field implicitly holds in
Zel'dovich’s ansatz. Initially, there is a density perturbation
proportional to the velocity perturbation. The following
physical argument prefers this assumption to restriction
(23a): calculating the asymptotic large-time behaviour of the
orbits (22a), ie. neglecting the decaying solutions in the
deformation field, we find that (up to a constant displace-
ment vector of order ¢2) the peculiar velocity is related to the
peculiar acceleration as {u}=wr. Thus at some sufficiently
late time #; the two fields tend to be parallel, and we practi-
cally have {u(X,t5)}=w(X,t5)t;. This corresponds to
assumption (24a) for the initial conditions. We stress, how-
ever, that relaxing of constraint (22c) might destroy this
property for independent initial conditions. The same is true
for rotational initial conditions. Inserting (24a) into the
general orbit (22), we obtain an extension of Zel'dovich’s
mapping into the second-order regime:

£\ 3
Fo(X,t)=X+ - —1[5 U,
3\ 3(ey” 1 a4 [\
+ === +=|=] -=+—|=
14 \z, 5\, 2 35\
9
X {UX), U(X) 22 (24b)

[For a related discussion of restrictions (23) and (24), see
Buchert (1989), section 4.2.1, and B92.] Note that the con-
stants, e.g. —1/2 in equation (24b), can simply be trans-
formed away by introducing a different Lagrangian frame
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(see B92). Here we use a Lagrangian frame that coincides
with a rectangular grid of the background at the initial time
t,. This is useful because, for example, the initial conditions
can be given on an undeformed grid.

In general, the initial conditions have to be calculated by
solving Poisson equations. The mapping (24b), for example,
can be written in terms of the peculiar-velocity potential &
as follows (note that V, ¢ = —V &1 in this case):

£\ 3
FL(X,1)=X+ - -1 mﬂz&_i:@

I A RN A R SR A I
14 ¢, 5\, 2 35\,

9

X7 v,.7(Xx) 2, (24¢)

in which the first- and second-order peculiar potentials are to
be solutions of Poisson equations, the sources of which are
calculated iteratively with the initial potential #(X) (cf. equa-
tions 8):

D%QEHM.QMMVNHNAM\;_LW (25a)

2
Dl =2 (P =22 ).

i ik

A=

(25b)

According to Corollary 1, a simplification can be obtained in
the special case in which V %1 and V_#'? can be written in
a closed form that is directly dependent on the initial poten-
tial #(X):

v, 7=V %

V,.#2=V PAF)—(V,L V)V, F;
VXAV, F=0.

(26a)

(26b)

In the first Poisson equation, the use of & instead of ¥
implies no restriction of generality in the sense that the addi-
tion of harmonic functions y, A,y = 0 will not affect physical
quantities such as the density field. The choice of y cor-
responds to the gauge freedom explained in Section 3
{Remarks). In the second Poisson equation, however,
replacement (26b) cannot be used without loss of generality.
Nevertheless, it turns out that the simplified form (26b) can
serve as a good approximation even for generic initial condi-
tions. This helps to circumvent the use of Poisson solvers (see
Section 5.3).

5.2 General remarks on properties of the solutions

In the following, we make some remarks on the implications
of the theorem for properties of the solutions presented.

Corollary 2

The flow field for the presented class of second-order
Lagrangian irrotational perturbations is curl-free with
respect to the Lagrangian frame.

The proof follows from the form of the solutions (theorem),
using the definition equation (1) for the integral curves of the
velocity field. Qed.
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Although, in general, the irrotationality with respect to the
Lagrangian frame is more restrictive than the irrotationality
with respect to the Eulerian frame, this implies (besides the
functional dependence 22c) no further restriction of the
generality of the solutions, since we obtain a solution for any
initial velocity potential. The stronger condition of irrota-
tionality in Lagrangian space might not hold for general irro-
tational second-order flows. Moreover, it might also not hold
if the solutions are non-separable with respect to Lagrangian
coordinates and time, a property that is expected for the
general exact solution. In the case of the perturbation theory,
the solutions are separable by construction.

Corollary 3
The singularities of the presented solutions are Lagrangian.

Proof: it has been demonstrated in B92 that the first-order
solutions for irrotational perturbations can be considered as
a family of Lagrangian mappings from Lagrangian to Eule-
rian space. We now show that the presented class of solutions
does not destroy the Lagrangian property.

Recall that the motion of the fluid naturally describes a
manifold as the three-dimensional hypersurface in six-
dimensional phase space that is generated by the flow, i.e. by
the collection of all trajectories. Let us introduce the Lagran-
gian coordinates X; as local coordinates on this manifold,
and the Eulerian coordinates as local coordinates in real
space. The family of mappings
7, R~ R, X-x=f9X; 1)
defines a family of Lagrangian mappings if the two-form
Q=3,dx; AdX, vanishes on the manifold 7x,. In that case,
the manifold generated by the flow lines is Lagrangian
according to Arnol'd’s theory (Arnold, Gusein-Zade &
Varchenko 1985). This family of mappings specialized to the
first order is Lagrangian, since it can be written as a family of
gradients x=V Y(X; t) (see B92), which implies vanishing of
the form Q. The same can be said for mapping (22a),
because the second-order coefficients of the longitudinal
part of the perturbations also have zero vorticity in Lagran-
gian space according to Corollary 2. Q.ed.

Note that in the Lagrangian perturbation approach the
solutions separate with respect to Lagrangian coordinates
and time by construction. Thus the above consideration
applies to any order of the perturbation theory as far as the
Lagrangian longitudinal part of the perturbations is con-
cerned. We stress, however, that the general mapping (which
might not separate with respect to Lagrangian coordinates
and time) might be non-Lagrangian, and the perturbation
expansion might not converge to the general solution. Also,
relaxation of constraints (22¢) might introduce vorticity in
Lagrangian space.

5.3 Illustration

We take as an illustration the special solutions (24¢) as an
extension of Zel'dovich’s mapping into the second-order
regime, and restrict the problem to two spatial dimensions.
We present a realization of a particular density field (mapped
by 200? particles). We use as the initial condition for the
peculiar-velocity potential & the following periodic function,
which can be regarded as illustrating principal features of the
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topology of the large-scale structure out of a truncated power (Mo & Buchert 1990). The amplitude u is chosen such that

spectrum: the rms density contrast (extrapolated linearly to the present
epoch) is 0,=2.0, ie. u=2/30,[1/(1+2,)] with z,=1000.

. We choose n = 3 for the illustration.

F=—aH cos(2nnX) cos(2nnY), neN (27) Ina mmnoc.a illustration we o<o_<o. a mm:ono. field generated
by a scalar field (the peculiar-velocity potential %) of Gaus-

2 (2nn)

Figure 1. Four redshift panels, Z=1, 0.5, 0.25 and 0, are shown in (a), (b), (c) and (d), respectively, for the first-order approximation (the
“Zel'dovich approximation’ in this case) (upper plots) and the second-order approximation (lower plots). The initial condition is a special
periodic function that maps principal elements of the large-scale structure such as sheets and clusters. At a stage shortly after the first shell-
crossing (in this normalization at z=1) (0, =2.0), the two approximations give similar results, except for a slight departure from the purely one-

dimensional infall on to sheets (as in the first-order case) orientated towards the clusters. The clusters themselves appear more compact and the
sheets much thinner in the second-order approximation, even at much later stages.
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sian random fluctuations:

kenax ki
max Kmax H_,

F=pu Y. ) —5{A(k)cos(kX)+ B(k)sin(kX)}, (28)
o oo | K|

|k2#0, Kk ,=2ml,  1=0,%1, 2.

The amplitudes A and B are Gaussian random numbers with
a standard deviation of 1 around the mean value 0; g, is the
largest wavelength of the perturbations 27 [k, " /.., related

to the cut-off wavelength 2% /k,,, = 1/2q,. We choose ¢,=2
in accord with the normalization of the special model above.
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The initial point process on a regular grid is displaced
according to mapping (24c), and is shown in Fig. 1 in four
consecutive redshift panels for the initial condition (27) in
comparison with the corresponding first-order solution (the
“Zeldovich approximation’, in this case). One redshift panel
is shown for the corresponding comparison in the generic
field {28) in Fig. 2. In both cases, the closed-form expressions
{26) have been used to calculate the initial conditions. Note,
however, that for the second illustration artificial vorticity is
generated, but this is negligible for the density field. A
detailed comparison of the Lagrangian perturbation solu-

Figure 1 - continued
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tions with a numerical simulation is postponed until a forth-
coming paper.

5.4 Discussion

Looking at Figs 1 and 2 we find that the overall picture of the
large-scale density field is principally unchanged, but that the
thickening of sheet-like structures has not progressed so far

SAMPLE 1/1

» NG = 40000

Figure 2. Similar to Fig. 1, but for a generic initial fluctuation field.
{(Upper and lower plots are as in Fig. 1.) The same effects as
described in the caption to Fig. 1 can be seen. The evolutionary
stage is z = 0.5 for the same fluctuation amplitude as in Fig. 1.

in the second-order solution (compare the numerical simula-
tion by Melott & Shandarin 1989). This compensates for a
shortcoming of the first-order solutions (or Zel'dovich’s
approach, respectively), for which the ‘adhesion model’
(Gurbatov, Saichev & Shandarin 1989) was invoked to
compensate. On the other hand, the clusters appear rounder
and more compact, this being especially visible in Figs 1 and 3.

Another property of the solutions concerns the collapse
time of first objects. The collapse occurs earlier in the

5000

\\
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N 7' ,,
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«‘\‘ /

X
) ,Avw.w«\»\\

2000

1000

35

NN VN N
—
iy

2000

77

v, /;

7
7/
Y

1000

Figure 3. A family of trajectories corresponding to the model pre-
sented in Fig. 1 is shown for the first-order (upper panel) and
second-order (lower panel) approximations. The trajectories end in
the Eulerian space-time section (y=0.5, ¢) centred at a cluster.
These plots illustrate that the three-stream system that develops
after the first shell-crossing performs a self-oscillation due to the
action of self-gravity.
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second-order theory, an effect that is expected from numeri-
cal simulations {e.g. Evrard 1990). Note that the first-order
solutions are exact for the case of maximally anisotropic
motions (Buchert 1989), which is a bad approximation for
the first collapsing objects, which form as a result of nearly
spherically symmetric infall [see e.g. Blanchard, Buchert &
Klaffl (1993) for a detailed discussion of the time evolution
of first collapsing objects in the Zel’dovich approximation’
and the spherical top-hat model]. To prepare initial condi-

3000

2000

1000

3000
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tions for numerical simulations, the second-order approxi-
mation (in the form 24c) is therefore more appropriate than
the first-order (Zel’dovich) approximation.

Since the second-order solutions not only accelerate the
first shell-crossings, but also describe the internal structure
of pancakes that results from a second shell-crossing, which
occurs after the first one (see Figs 3 and 4), we can expect
that higher order Lagrangian perturbations will produce
multiple stream-crossings as observed in numerical simula-

3000 4 —y————— T —T—T— T T

2000 b

1000 u

1000

Figure 4. (a) The set of critical points on a slice through the Lagrangian manifold at Y=0 for different times {the ‘bifurcation diagram’) is
shown for the first-order (upper panel) and second-order (lower panel) approximations. At the critical points the Jacobian of the transformation
from Lagrangian to Eulerian space vanishes. (b) The image of the projection of the critical set in Eulerian space (the ‘caustic’) shows that the
second-order approximation implies a second shell-crossing inside the pancakes [upper and lower panels as in (a)]. The study suggests that
higher order Lagrangian perturbations add higher moments of self-oscillations to the multiple-stream system, which in turn can be used to
estimate the critical times of breakdown of a solution at a given order.
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tions of the Euler-Poisson system (e.g. Doroshkevich et al.
1980) or the Vlasov-Poisson system (Shukurov 1982; Melott
1983). The comparison of simulations for ‘dust’ matter with
a Vlasov-type description of collisionless matter also shows
that solutions of the Euler-Poisson system provide a good
approximation for a collisionless medium even after several
shell-crossings. The difference is reflected in the finiteness of
the density peaks in a Vlasov-type description (due to
velocity dispersion acting on smaller scales) compared to the
singularities showing up in a pure ‘dust’ description. It is
known that, for regular (i.e. non-‘dust’) initial conditions, the
Vlasov-Poisson system does not develop singularities
(Pfaffelmoser 1992). We finally note that the singularities
occur in the transformation from Lagrangian to Eulerian
space. Since the Lagrangian representation (which relies only
on the flow field as the only dynamical variable) does not
break down, we can follow the trajéctories into regions of
multistream flow. Only at Eulerian images of critical points
on the Lagrangian manifold is the density field not defined.
In order to obtain the correct Eulerian density field, one has
to add the moduli of the densities of the individual streams in
Eulerian space. This can be achieved numerically by using
the ray-tracing method (see Buchert & Bartelmann 1991),
or, in simple cases, by performing the transformation to
Eulerian space analytically.

We emphasize that the second-order approximation
covers essential effects of the tidal action of the gravitational
field, which is completely neglected in the first-order appro-
ximation (see Peebles 1987; B92, section 6). The second-
order effects discussed here are related to a long-standing
controversy about the importance of tidal fields, non-radial
motions and small-scale substructure, or the so-called pre-
virialization effects in gravitational clustering (see Peebles
1990 and references therein). 17 years ago, Peebles & Groth
(1976) expressed their scepticism about the usefulness of the
isolated spherical top-hat model as a gauge for the growth
rate of inhomogeneities. These authors argued that tides and
non-radial motions, absent in the top-hat model but present
in the real Universe, will retard the growth of structures. The
N-body community responded that the predictions of the
top-hat model agree with N-body experiments (see e.g.
Evrard 1990). Peebles’ response to this was that N-body
simulations do not provide a convincing proof since they
may suffer from exactly the kind of problems diagnosed here,
namely that tidal actions start to be important quite early,
affecting the collapse of protoclusters strongly, while all N-
body simulations are initialized with the ‘Zel’dovich approxi-
mation’ at a rather late stage. A solution to this problem
could be found by studying the second-order approximation
in a quite general form, as derived here. We suggest initializ-
ing N-body simulations with the second-order approxima-
tion and looking for artefacts and transients generated by the
first-order approximation in the simulations. Melott (e.g.
Melott 1987) emphasized the importance of beginning
simulations at a highly linear stage to avoid this problem.

Thus the advantages of the second-order approach over
the first-order approximation concern in particular the treat-
ment of tidal forces, the formation of first collapsing objects,

the ‘adhesive’ action on sheet-like structures, and the com-’

pactness of clusters. The present investigation suggests that
higher order perturbations will subsequently add substruc-
ture to the pancakes (defined as three-stream systems of the

flow: Arnol’d 1982; Arnol’d, Shandarin & Zel'dovich 1982)
in terms of multiple streams, and will accelerate the collapse
of first objects in comparison with the first-order approxima-
tion. This extends the validity of the approximation to later
times and also to smaller scales. The stage until which the
nth approximation is valid could roughly be estimated as the
time just before the nth orbit-crossing sets in. In this regime
the Lagrangian perturbation theory is preferred to the ‘adhe-
sion model’, since the former describes the internal structure
of self-gravitating pancakes. Note that the ‘adhesion model is
not based on a description of self-gravity, and the momentum
in this model is not conserved (the ‘viscosity parameter’ v is
assumed to be spatially constant whereas, in the correspond-
ing equation that preserves momentum, the Navier-Stokes
equation with vanishing pressure, the kinematical viscosity v
depends on the density, v=#/p). This shows that the ‘adhe-
sion model’ has shortcomings in the case of the simultaneous
simulation of objects with different densities, which are over-
come by the Lagrangian perturbation theory.
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NOTE ADDED IN PROOF

A short discussion of the second-order solution for the
restriction (24a) is to be found in Buchert (1993a); for the

same restriction, the third-order solution is given by Buchert
(1993b).
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APPENDIX A

In this Appendix the constraint equations resulting from the
integrability conditions (5d, e, f) are listed.
We insert the ansatz for longitudinal perturbations

f=alt) X+{p}  {p}=eVp+ eV, p?
into equations {5a,b,c) and obtain, up to the second order,
w, = e2alyly 9, - P+l ply, — Pipl,
+ 9y, — 9B,ph) ]
w,=e2al§] syt — 9w+ v, — 9L,
+ SE&E%_ - S@JQ@L.
wy= e2al Yyl = 90w + 50wl — Y wd,
+ 9 ), — 9Ll
We insert the first-order solution in the form
V ypl=2,Y,9 Ve, +2,V,4112,
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where &(X) is the peculiar-velocity potential and ¢(X) the
peculiar-gravity potential (or, in general, any two functions of
three independent variables that are related to the initial con-
ditions), and z,(¢) and z,(¢) are functions of time, which
depend on the background solution a(z). We finally obtain

Q:HmNaAN._NNIN.NN_:,QA_H_V&__VI.m\mw%mmu+.m\mmu&mww
Ih\mmwﬁmmu+%@V§m~l.ﬂmwvﬁ@& 13
SNHmNaAN.HNNIN.NN_:%\M_HN%A,H_N_I.Qmw_&nwm+h\mwu§_~f
— S0+ F W~ £
SunmNiN._NNIN.NNH:%\M__W_&M“KI.w\mwmﬁnw_+h\mr&mm~
= F9,801+ W19, — S N80
The Wronskian Z,z,—Z,z; is non-zero for linearly in-
dependent solutions. Thus in order to fulfill the constraint
equations (5d,e,f) we have to assure a functional relationship

of the form V ¢!!'= # [V, #1)], or, without loss of generality
(see B92),

Vog=F(V,¥)

with arbitrary &. There is no restriction for the first-order
approximation.

APPENDIX B

Equation (13c) in B92 is correctly written as follows:
a . .. " _
2--A)q, %4, =g (t)—qt, a2, £=12.

The e-mail address given in the above paper has changed to
TOB @ ibma.ipp-garching.mpg.de.
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