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We introduce novel classes of higher-order spatial optical solitons in analogy with Laguerre-Gaussian

and Hermite-Gaussian linear eigenmodes. We reveal that stable higher-order optical solitons can exist in

nonlocal nonlinear media in the various forms of soliton necklaces and soliton matrices. Modulational

instability can lead to nontrivial transformations between energetically close solitons with different

symmetries through the intermediate states resembling generalized Hermite-Laguerre-Gaussian modes.
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Recent experimental observations of the existence,

stability, and interactions of spatial optical solitons in

nematic liquid crystals [1] and lead glasses [2] stimulate

further theoretical studies of intriguing properties of the

self-trapped optical beams in media with nonlocal non-

linear response. Some earlier theoretical results described

the basic properties of nonlocal optical solitons [3], as well

as analyzed the stabilization against symmetry breaking

instability of vortex solitons [4], rotating dipole solitons

[5–7], and azimuthons [8–10]. Very recently, novel experi-

mental results on the generation of dipole, tripole, and

quadrupole solitons, as well as necklace beams [11] have

been presented [12].

In any realistic nonlinear medium with a local response

[13], higher-order optical solitons and vortices are known

to be unstable [14]. Nonlocality can suppress the azimuthal

instability, and it can also support multisoliton bound states

[15] and otherwise nonstationary structures, such as dipole

solitons. Since the ringlike solitons resemble the structure

of the Laguerre-Gaussian (LG) linear modes, and the tri-

pole solitons resemble the Hermite-Gaussian (HG) optical

beams, it is natural to ask whether the counterparts of other

well-known linear optical modes [16,17] exist in nonlinear

media. In particular, we are interested in exploring what

kind of soliton ‘‘rings’’ and ‘‘matrices’’ can be supported

and stabilized by nonlocal nonlinear medium.

In this Letter, we start from a set of linear optical LG and

HG waveguide modes to construct higher-order spatial

solitons in nonlocal nonlinear media in the form of soli-

ton clusters: necklaces and matrices. We identify those

novel types of solitons as Laguerre-nonlocal (LNnm) and

Hermite-nonlocal (HNnm) spatial solitons with distinct

differences in their symmetry. In this approach, the

multiple-ring soliton necklaces LNnm are characterized

by the number of radial nodes n and the topological index

m. Similarly, the indices of the soliton matrices HNnm

determine the number of nodes in two orthogonal direc-

tions. Using the variational approach [18] and numerical

minimization of the error functional [19], we find analyti-

cally and numerically broad classes of higher-order local-

ized states and demonstrate that only a few of them are

energetically separated from each other. In general, local-

ized states with different symmetries coexist, i.e., they

have the same power and energy. While the lower-order

energetically separated states (e.g., dipoles) become stable

when the nonlocality parameter (or the beam power) ex-

ceeds a certain threshold value, the power of the higher-

order solitons can coincide and nontrivial effects of reviv-

als and transformations are observed.

We consider the propagation of paraxial optical beams

with scalar field envelope E in the medium with nonlocal

Gaussian response described by the nonlinear Schrödinger

(NLS) equation [13], i@zE � �H =�E� being its

Hamiltonian representation. Stationary states can be found

in a generic form as E�x; y; z� � U�x; y� exp�ikz� with the

Lagrangian L � �kP�H , where the integrals of mo-

tion are the power, P � R jUj2dr, and Hamiltonian,

 H �
Z �

jrUj2 � 1

2
jUj2

Z

e�jr�r
0j2 jU�r0�j2dr0

�

dr: (1)

Physical variables absorb the transverse scale of nonlocal-

ity � as follows, ~z � z�2, ~r � r�, and ~E � ����
�

p
E=�. Note

that the power, ~P � �P, and the orbital angular momen-

tum, ~M � �M, do not depend on �, here M �
Im

R
U�jr�rUjdr. However, the soliton constant and

the Hamiltonian scale as ~k � k=�2 and ~H � �H =�2.

One-dimensional solitons.—In local media, the only

stationary scalar solution is a fundamental soliton, while

nonlocality allows us to compensate the soliton repulsion

stabilizing multihump solitons [20], similar to nonlinear

modes in confining potential [21]. We notice that in the

linear limit U ! 0, such modes correspond to the diffract-

ing HG modes

 Un�x� � A exp��x2=2a2�Hn�x=b�; (2)

where the integer index n determines the number of

nodes across the Gaussian envelope and Hn�t� �
��1�net2dne�t2=dtn is the Hermite polynomial. We use

Eq. (2) as the ansatz in the nonlinear problem (1) and
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derive variational solutions using the standard Ritz mini-

mization procedure [18] with the variational parameters A,

a, and b (b � 1 for n � 0, 1). Numerical solutions for

different n are shown in Fig. 1.

Laguerre-Nonlocal solitons.—The variational ansatz for

the LNnm solitons can be constructed using the separation

of variables in the cylindrical coordinates, U�x; y� �
Rnm�r��cosm’� ip sinm’�, where the radial envelope

Rnm with n nodes solves the nonlinear ordinary differential

equation [5]. Parameter p 2 	0; 1
 determines the depth

of azimuthal modulation (p � 1 for m � 0) as well as

the angular momentum, M � 2mpP=�1� p2�. Further

simplification of this method was implemented in

Refs. [7,10] for the radially symmetric vortices with p �
1, and here we extend it to the general case p � 1. Radial

envelope is sought in the form

 Rnm�x; y� � Arm exp��r2=2a2�Lm
n �r2=b2�

with the generalized Laguerre polynomial Lm
n �t� �

1
n!
t�metdn�tn�me�t�=dtn. The results in terms of the soliton

power P vs propagation constant k and Hamiltonian H vs

P are plotted in Fig. 2(a) for several different LNnm

solitons.

The singular LNnm solitons with m � 0 occupy the

continuous bands in the diagrams in Fig. 2(a) which we

obtain by varying the modulation parameter p. Thus, soli-

ton necklaces with p � 0 and vortex solitons with p � 1

form the lower and the upper-energy edges of the bands.

For the lowest-order single-ring LN0m necklaces the bands

are quite narrow, while their width diverges quickly with

the number of rings. Note that solitons with different

values of p are physically separated within the band by

the conservation of the angular momentum M.

Hermite-nonlocal solitons.—Separation of variables

U�x; y� � X�x�Y�y� in Eq. (1) leads to two coupled one-

dimensional subsystems for the envelopes X and Y which

can be, in general, complex. Indeed, the more general

family of the HN solitons will include singular solutions

with nontrivial phase and nonzero angular momentum,

similar to the LN solitons. However, their structure is

expected to contain multiple phase dislocations and, for

simplicity, here we consider only real envelopes X�x� �
Un�x� and Y�y� � Um�y� given by Eq. (2) with independent

parameters. Deriving variational equations, we establish

the relations between the parameters of one-dimensional

envelopes which give the final parameters of two-

dimensional ‘‘soliton matrices.’’ Variational solution

serves as a good guess for further use in numerical relaxa-

tion method; two examples of exact HNnm solitons are

presented in Figs. 2(e) and 2(f). Exact envelopes U�x; y�
were obtained with relaxation procedure [19] which con-

sist of numerical minimization of the error functional,
R jfj2dr, generated at the right hand side of stationary

NLS equation, kUtr � �H =�Utr � f, so that f ! 0

when the trial function approaches solution Utr ! U.

Coexistence of HN and LN solitons.—We introduced

above two distinct families of solutions, but the compari-

son of two H �P� diagrams in Figs. 2(a) and 2(b) suggests

that it is not always possible to separate them energetically

and to distinguish between ‘‘lower-’’ and ‘‘higher-order’’

solitons. For the radially symmetric LN-solitons with p �
1, the variational solutions provide a very good approxi-

mation of the integral characteristics [7] (power and

Hamiltonian), and here we confirm this result for soliton

necklaces LNnm with p � 0 and low-order soliton matrices

HNnm. Indeed, for a given value of k, the power of exact

solutions in Fig. 2(c)–2(f) differs from variationally pre-

dicted values in Figs. 2(a) and 2(b) within a remarkable 1%

of accuracy, while differences in Hamiltonian values are

within 10%.

However, for higher-order HN solitons, such as HN22

soliton matrix in Fig. 3 (top), the profiles of exact solutions

deviate from our ansatz. For low power in Fig. 3(a), the

HN22 soliton attains a shape of a square array of 9 out-of-

phase spatially well-separated solitons, the square being

stretched by its corners. At intermediate powers, as in

Fig. 3(b), the shape is fairly close to the HG ansatz. With

further increase of the power, the square geometry is

 

FIG. 1 (color online). Variational parameters of the one-

dimensional HNn solitons, Eq. (2). The index n is shown next

to the curves.

 

FIG. 2 (color online). (a,b) Variational diagrams and (c–

f) exact profiles for (a, c, d) Laguerre- and (b, e, f) Hermite-

nonlocal solitons. Solitons in (c–f) have the power P ’ 200.
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gradually lost [there is still a nonzero peak at the origin of

the ‘‘matrix’’ HN22 in (c)], and at approximately P � 250,

the soliton matrix HN22 disappears by ‘‘fusion’’ with 8-

soliton necklace LN04 (see Fig. 3(d)). The change of the

geometry of the HN22 solutions slows down our relaxation

procedure; it is in contrast to the LN04 solitons in Fig. 3

(bottom), for which the variational ansatz provides an

excellent approximation.

Two major conclusions can be drawn from Fig. 3. First,

the high-order HNnm solitons can exist in a limited domain

(P � Pmax and k � kmax), which implies that there should

be an upper limit for the number of solitons in the matrix,

N � Nmax, here N � �n� 1��m� 1�. Second, despite dif-

ferences in their geometry, the soliton matrix HN22 and

soliton necklace LN04 belong, in fact, to the same general

family of solitons.

For deeper understanding of the soliton coexistence, we

recall the so-called generalized Hermite-Laguerre-

Gaussian HLGnm�x; y;�� modes in linear media [16].

Two sets of modes, the LG and HG beams, appear as two

particular realizations of the HLG family attained for the

limiting values of the parameter �. The idea of such

generalization is that for the intermediate values of �,

any HLG beam also represents a self-similar and structur-

ally stable solution. Thus, we expect that, similar to the LN

and HN solitons, there is a greater variety of nonlinear

states parameterized by some structural parameter, such as

modulational parameter p for the LN-solitons. Indeed,

while our ansatz  cosm’� ip sinm’ [5] represents ex-

actly the HLGnm modal beam for n � 0 and m � 1 only

[16], it is no longer the case for higher-order HLG modes.

Particularly important will be to trace the continuation

M> 0 for HN solitons which is offered by HLG modes

with astigmatic transformations through the parameter �.

The results on nonlinear generalized HLG beams will be

presented elsewhere.

Mode conversion.—We use variational solutions as in-

put profiles for the direct simulation of the beam propaga-

tion. At the initial stage, the beams oscillate slightly [6]

because the variational profiles differ from the stationary

solutions. When the soliton is stable, these oscillations

(internal modes) slowly decay with propagation [5]. In

the region of instability, we observe different scenarios of

soliton dynamics, depending on their power. Apart from

the breakup into several fundamental solitons at low power

(as in local media) or irregular dynamics for stronger

nonlocality, we describe below the quasiperiodic dynamics

with soliton revivals and mode transformations.

First, we consider the transformation of the radially

symmetric LN10 soliton into the structure resembling

LN02 (or HN11) quadrupole [see column (c) of Fig. 4].

The corresponding H �P� diagram in Fig. 4(a) features

crossing of these two modes, and also indicates that the

double-ring fundamental soliton LN10 exists always within

the band of the quadrupole mode LN02. We argue that

energy crossing of the two states is responsible for the

mutual transformation of these two modes observed in

Ref. [7]. As the next step, we simulate the propagation of

the quadrupole soliton in Fig. 4(d) and observe remarkable

 

FIG. 4 (color online). (a,b) Energy crossings chosen from the

overlapping of two (H , P) diagrams in Figs. 2(a) and 2(b).

Examples of the propagation dynamics of (c) LN10 soliton with

P � 100, (d) HN11 (quadrupole, same as LN02) with P � 75,

(e) LN20 with P � 250, and (f) HN22 with P � 210.

 

FIG. 3 (color online). Coexistence of HN22 matrix (top row,

dashed line) and LN04 necklace (bottom row, solid line).

Variational (lines) and exact (dots and profiles) solutions are

shown for k � 2:12 (a), 11.5 (b), 30.34 (c), and 54.45 (d).
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similarities between the two; the latter includes periodic

transformations to the LN02 as well as revivals. Thus, when

two states cross, we expect and indeed observe mutual

transformations of solitons, despite the sharp differences

of their symmetry and stability.

The diagram in Fig. 4(a) also includes the ‘‘four-soliton

vector’’ HN30 and the tripole HN20 [12]. In the region of

powers in Fig. 4(a), both soliton vectors disintegrate into

repelling fundamental solitons; thus, we do not observe

any transformations involving other states. For higher

powers, the soliton vectors become energetically isolated

and stable; note however that the tripole was shown to be

unstable in media with thermal nonlinearity [10].

Next, we show in Figs. 4(b), 4(e), and 4(f) another

example of soliton transformations. The energy diagrams

of four different solitons in Fig. 4(b) remain very close

after crossing, and consequently, we observe mutual trans-

formations among three of them. Namely, a double-ring

fundamental soliton LN20 in Fig. 4(e) undergoes complex

dynamics where we could clearly identify periodic appear-

ance of LN12 and HN22 states, followed by soliton revival.

Similarly, the 3� 3 ‘‘soliton matrix’’ HN22 in Fig. 4(f)

transforms quasiperiodically to LN20 mode. Interestingly,

we do not observe appearance of the eight-soliton necklace

LN04, while its transformation to the matrix HN22 takes

place (e.g., for P � 220, not shown), before it became

stable at P � 250 [cf. Figure 3(b)]. Note also that crossed

states appear largely distorted by their internal vibrations.

This observation suggests that overlapping of soliton in-

ternal modes, in addition to crossing of stationary states,

must determine mutual soliton transformations.

We considered above the transformations between states

with zero vorticity as the simplest example. Because of the

conservation of angular momentum, the transformations

between singular states will be accompanied by their rota-

tion, as in Ref. [5]. Furthermore, it is expected that a

variety of ‘‘solitonic molecules’’ or clusters will increase

dramatically in the rotating grid [8,17], and novel states

with multiple vortices, or ‘‘vortex clusters,’’ will appear

[9]. Quasiperiodic topological transformations within self-

localized beams promise to bring many novel exciting

phenomena.

Conclusions.—We have introduced novel classes of

higher-order spatial optical solitons in the form of the

soliton necklaces and soliton matrices stabilized by the

nonlocal nonlinearity. These higher-order solitons repre-

sent generalization of the well-known Laguerre-Gaussian

and Hermite-Gaussian linear modes in the case of non-

linear media. A rich variety of the stationary states found

both analytically and numerically allows for nontrivial

mutual transformations induced by modulational instabil-

ity when the soliton powers become close or coincide.

These soliton transformations are manifested as periodic

robust oscillations between two or more spatially localized

states with distinctly different symmetries.
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