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Laguerre Filters — An Introduction

Tomas Oliveira e Silva

Abstract — In this tutorial paper we present a generalization
of the transversal filter, called Laguerre filter, and study ome
of its more remarkable properties. This filter is obtained by
replacing each delay of the transversal filter by a first order
all-pass section, and by applying a first order low-pass filte
(with the same pole used in the all-pass sections) to the fitte
input signal. Both the transversal and the lattice forms of he
Laguerre filter are discussed. We also deduce the stationar-
ity conditions of the mean-square error of a Laguerre filter
(transversal or lattice) with respect to its pole position.

Resumo — Neste trabalho apresentamos uma generalizag
dos filtros transversais, os chamados filtros de Laguerre, ese
tudamos algumas das suas propriedades mais rinteis. Estes
filtros s&o obtidos substituindo cada atraso dos filtros trans-

which are difficult to implement. In an attempt to solve
this problem, in [8] each delay of the transversal filter was
replaced by an all-pass filter. This preserves many of the
properties of transversal filters and gives rise to contirsdo
time (and discrete-time) generalizations of the transalers
filters that have infinite impulse responses. If the all-pass
filter is chosen properly, these filters are usually able te pr
duce acceptable approximations of systems with long im-
pulse responses with a much smaller number of parameters
that a transversal filter.

The Laguerre filter, which is another generalization of the
transversal filter, has its roots in the pioneering work of
Wiener and Lee concerning the synthesis of electric net-
works using Laguerre functions [9], [10]. The early papers

about this subject used truncated Laguerre series to approx
imate the impulse response of a given continuous-time sys-
tem [11]-[18]. The discrete-time counterparts of these pa-
pers, based on the Laguerre sequences [19]-[21], appeare
some years later, and gave rise to the so-called Laguerre fil-
ters [22]-[30]. In the last few years Laguerre models (or
filters) were applied successfully to several problemsén th
automatic control field [31]-[37], [24], [38]-[40]. Otheer
cent applications of the Laguerre functions and sequences
in signal processing can be found in [41]-[43].
|. INTRODUCTION The main advantage of the Laguerre filter in relation to the

The transversal filter and some other filter structures re-transversal filter is that the former is an IR filter with one
lated with it, such as the lattice filter, are very popular a.ldjustable. multiple pole and_ the latter is a.FIR filter with a
among the models of linear systems, specially if adapta—f'xed multiple pole at the origin. As we will see Ia.te.r on,
tion of its parameters is desired [1]-[3]. Some application if the pole _of the Laguerre f|IFer is placed at the origin t_he
where these filters have attained considerable success in-2guerre filter degenerates into the transversal filter, i.e
clude, among others, system identification, linear predic- W& May consider the Laguerre filter to be a generalization
tion, channel equalization, and echo cancellation. The rea Of the transversalfilter. By adjusting the pole positionif t
son for this success is, besides the simplicity of the tramsy ~ L@guerre filter it is possible to control the rate of decay of
sal filter structure, the unimodality of its error surfacega IS impulse response, which is quite useful to provide good
the existence of fast and efficient adaptive algorithms to ad @PProximations of systems with long impulse responses.
just its parameters [1]-[4]. Due to space limitations we will only discuss in this pa-
The principal problem of the transversal filter, which is per the discrete-time Laguerre filters. Similar results can
also related to its advantages, is that its impulse responsée easily obtained for the continuous-time Laguerre filters
has a finite duration (it is a FIR filter). For this reason, when which are left as an exercise to the interested reader (see
this filter is used to approximate a system with a long (pos- also [44]). For the same reason we will also not discuss
sibly infinite) impulse response the minimum number of de- here the adaptation of the weights and of the pole of La-
lays of the filter required to provide an acceptable approx- guerre filters.

imation can be quite high. This problem can be partially The structure of this paper is the following. In section Il we
solved using filters with an infinite impulse response (IIR review some mathematical material necessary for the un-
filters). However, these filters have their own problems, derstanding of this paper. In section Il we describe briefly
specially if output error models are used [5], [6]. Among the main properties of transversal filters. These filters are
these are possible multimodal error surfaces [7], and pos-then generalized in section IV, giving rise to the so-called
sible instability problems related to the adaptation of the Laguerre filters. As these filters have one additional pa-
poles of these filters [6]. rameter, the Laguerre pole position, which affects consid-
Another disadvantage of the transversal filter is that erably their performance, we present in subsection IV-A a
its continuous-time (analog) version requires delay lines simple condition that the optimal value of this parameter

versais por uma secgo passa tudo de primeira ordem e pre-
processando o sinal de entrada do filtro com um filtro passa
baixo de primeira ordem (com o mesmo plo das sec@es passa
tudo). Sdo estudadas as formas transversal e “lattice” do fil-
tro de Laguerre. Deduzimos tamkem as condi@es de estacio-
naridade do erro quadratico médio de um filtro de Laguerre
(forma transversal ou “lattice”) em relagdo a posigo do seu
polo.
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must satisfy. In section V we introduce the lattice form of The Fourier transform of a sequenggk) belonging to/?
the Laguerre filter, which is the base of another proof of is defined by
the “optimality” condition for the Laguerre pole position.
In section VI we present a simple example that illustrates . = ok
. . ! . F(el®) = Zf(k)e jwk
some of the results of this paper. Finally, in section VIl we
summarize the contents of this paper and describe briefly k=0

other generalizations of transversal filters. The functionF (e/) is a square-integrable function, in the

sense of Lebesgue, on the unit circle [48].

II. NOTATION, DEFINITIONS, AND SOME USEFUL The inner product between any two sequengés) and
FACTS ABOUT HILBERT SPACE THEORY AND g(k), of £2 is defined by

LEAST MEAN-SQUARE APPROXIMATIONS

The majority of the definitions and results presented in this . =
section can be found in [45], [3], [46]-[48]. (F(k).g(k)) = kz(:) F(k)g(k).

We will denote matrices and vectors respectively by upper B

and lower case bold letters. The indexes of the elementsBecause bothF(¢i*) and G(e’*) are square-integrable
of matrices and vectors will start from zero and not from functions on the unit circle we may also evaluate this in-
one. The lettek will be the discrete time variable. The ner product by the formula (Parseval’s theorem)
Kronecker’s delta will be denoted by; (it is equal to one

e ) .
if i = j and equal to zero otherwise). (F()g (k) = % F(e)G* (¢1%) du.
A. The Hilbert spacé®
In particular,
A Hilbert space is an inner product space which is a com-
plete metric space with respect to the metric induced by 1 [f7 9
its inner product [46]. This means that a Hilbert space is (f(k).f(K)) = o~ /7r |F(e?)]” dw. (1)

a linear vector space, possibly of infinite dimension, with
an inner product operation defined between any two of its A get of sequences d@f is said to be complete #ny se-
elements (an inner product space). This inner product isquence of that Hilbert space can be approximated arbitraril
used to define the norm of an element of that space (NOrMye|| (in the norm induced by the inner product) by a linear
induced by the inner product), which is simply the square ¢ompination of the sequences of that set. If these sequences

root of the inner product of that element with itself. This are orthonormal (both orthogonal and normal) then the set
norm is used in turn to define a distance (metric) between;g ¢alled an orthonormal basis 6.

any two elem_ents of that space (a metric space), that is the | o¢ {£:(k)}=5 be an orthonormal basis 6. Then, any
norm of the dlffere_nc_e betwegn these two _elements. The résequence (k) belonging tof? can be expanded in the form
maining characteristic of a Hilbert space is that the metric (orthonormal expansion)

space is complete (or closed). This means that any conver-

gent (Cauchy) sequence of elements of that space converges 400
to an element of that space. Two elements of a Hilbert space g(k) = Z cifi(k)
are said to be orthogonal if their inner product is zero. An i=0

element of a Hilbert space is said to be normal if its norm ) o
is equal to one. For an introductory exposition of Hilbert Whereci = (g(k), fi(k)) are the Four|erco+eofof|0|ents otk)
spaces we refer the reader to [46]. with respect to the orthonormal sgf; (k) } =5 .

The problem of finding the best approximation of an ar- The canonlca! bfis of’ is the qrthonormal Set of se-
bitrary element of a Hilbert space by an element of a (lin- quences{é(yl’f—z) i=o Whered(k —i) = d; are the pu'lse
ear) subspace of that Hilbert space is solved by the princi_sequences_ (these_ sequences are nonzero only fori).

ple of orthogonality (a consequence of the projection theo- The canonical bas;s is the simplest example of a complete
rem [46], [47]), which states that the error of the (unique) orthonormal set of"

Esﬁt approximation is orthogonal to the subspace in QUS| giochastic processes

Let X andY be two real random variables with zero mean
and finite variance. The inner product between these two
Yandom variables is defined by their covariance (or correla-
tion), i.e., by

A real sequencg (k) belongs to the Hilbert spadg, the
space of all square-summable causal sequences, if and onl
if [46]
+oo
X,)Y)=EXY
Z fZ(k) < 0. < s > [ ]
k=0 whereE]-] denotes mathematical expectation. In particular,

X,X) = Var[X] is the variance (mean-square value) of
Note that all absolutely summable causal sequences beloné’ ) ar[X] ( q )

to ¢2 [45], i.e., the impulse responses of all causal stable
linear systems belong to this Hilbert space. 1The symboj (not to be confused witfi) denotes the square root-ofl .
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Let z(k) and y(k) be two real wide-sense stationary (k) H(q) y(k)
stochastic processes with zero mean and finite variance. _ , _ _
Fig. 1 - Block diagram of a causal stable system with tranifaction

The cross—cor_relaupn function between these two stochas—H () = 5°°° h(i)2—7. The symbolq is the advance operator, i.c.,
tic processes is defined by i=0

qlz(k)] = =(k + 1), andg~! is its inverse (the delay operator). The

output of this system is given by the convolutionag(fc) with h(k), i.e.,
Ryy(1) = Elz(k + m)y(k)]. by y(k) = 37 h(i)a(k — i) = H(q)a(k).

Because these stochastic processes are wide-sense-station

ary their cross-correlation does not depend on the time vari Becausef{ (=) converges uniformly and is bounded on the
ablek. The cross-power spectral density betweeh) and it circle if the system is stable (remember thét) is in

y(k) is the Fourier transform ok, (), given by this case an absolutely summable sequence), it is easy tc
verify that if (k) has zero mean and finite variance then so
+00 ; . o
B,y (1) = Z Ruy(7) 737, will y(k). Therefore, the variance gfk) is given by
- W0 = o [ ) Bl @)
It should be stressed that this expression must be used with ’ 2r J_,

care, because it may not converge for some values(oh _ _
a set of measure zero). K, (7) is an absolutely summable L&t F'(2) andG(z) be two stable linear systems excited
sequenceé,, (e}*) can be considered to be tharansform  eSpectively by the stochastic processgs) andy(k), as-

of R,,(7) evaluated on the unit circle. (Note that in this sumed to be correlated, with outputs:) = F'(¢)z(k) and
cased,, (=) need not be analytic on the unit circle. With- v(k) = G(q)y(k), respectively. The inner product between
out stronger conditions the best that can be said is that it%(k) andv(k) is given by

converges uniformly there.) too

Itis possible to recover.the cross-correlation functiamfr (u(k)w(k)) = Z FOE[(k —i)y(k — 1)]g(j)
the cross-spectral density by the formula

,j7=0
L i S e [ [T et jw ,
R.y(1) = %[ TP, (1Y) dw. = .Zof(z) {% /777 e Dy (€2¥) dw| g(j)
i i,j=
Due to the aforementioned possible convergence problems _ 1 HF ING* () B (e19) d 3
of @, (e)*) this integral must be evaluated with cdre. 27 ). ()G () By () duo. (3)

The functionsR,.(7) and ®,,(e)*) are called respec-
tively autocorrelation and power spectral density of the
stochastic process(k). Note that the variance af(k) is

This formula will be useful later on. Note that (2) is a spe-
cial case of (3).

given by C. Least mean-square approximations
1 [f jw Consider the problem of the approximation of a random
Var[z(k)] = Rz (0) = Gy /_F ©uu () dw. variableY by a linear combination of + 1 other random
variablesX, ..., X, correlated withy, such that the vari-

Let H(z) be the transfer function of a stable linear system, ance (mean-square) of the approximation error is as small
(k) its input, andy (k) its output. The input-outputrelation s possible. LeY’, be the approximation df, given by

of this system has to be expressed in the time domain when n

x(k) (and hencey(k)) is a stochastic process, because is is Y, = Zmei’

not clear how to apply-transforms to this kind of signals =0

(see figure 1). It is easy to verify that the power spectral

density ofy(k) is given by [45] and letE,, = Y —Y,, be the approximation error, whose
variance is¢,, = (E,,E,). This approximation problem
By (1°) = | H(e9)]” B (e3). is naturally formulated and solved in the context of Hilbert

spaces, in this case the Hilbert space of random variables
2Note that in this case(k) andy(k) are sequences of random variables. With zero mean and finite variance [47].
We will reserve the letterg, g, andh, to represent nonrandom sequences.  |n our specific problem the Subspace where the approxi-

3strictly speaking, the above integral should be replacetheyollow- : ; : ; : :
ing Stielties integral [47] mation lies is composed of all linear combinations of the

. random variableX, . .., X,,, and the principle of orthog-
Ray(7) = %/ 19T A, () onality states that
where ) (Ep,Xi) =0, i=0,...,n. (4)
Wy (W) :/ Doy (V) dv These equations are usually called normal equations and

_ o _ , _ can be deduced without resorting to Hilbert space theory,
is the cross-spectral distribution function. This forraali accounts for

possible impulses (Dirac delta distributions)dn.,, (eJ*’) without resort- equating the part|al denva_ttwes@,t with respectto eQ.Ch of
ing to the theory of distributions. We will avoid such teatalities here. thew,, ;'s to zero. Assuming that the normal equations are
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satisfied the (least) mean-square error of the approximatio
is given by

n
&n = <En7Y> = <Y,Y> - anyi <YaXl> (5)
i=0 Fig. 2 - Model of the approximation of a general systdii{z), by another
system,H,, (z). The objective of the approximation is the minimization

The normal equations (4) can be put together in only one °f the variance ot (k) by adjusting some parameters/f, ().
equation, of the form

-
z(k) x(k —1) x(k —n)

(Xo0,X0) -+ (X0,Xn) Wn,0 (Y, Xo)

Wn,0 Wn,1 s Wn,n

This equation can be written in the condensed form yn (k)

R"W" = Pn, with obvious definitions for the Square, ma- Fig. 3 - Transversal filter of ordet (with n delays). The output of this fil-
trix R,,, and for the vectorsv,, andp,,. The matrixR,, is teris given by, (k) = > wy,; x(k—i), and is used to approximate

symmetric and nonnegative definite. This second fact is aa given desired signal,(k), correlated withz(k).
trivial consequence of

WIR, Wy, = (Y,,Yy) > 0 (6) systems. This situation is depicted in figure 2. Applying (2)
pemEn e = to this case gives for the variance«f(k) the formula
A very important case of the approximation problem stud- 1 [t ‘ o ‘
ied here occurs whefi;, X ;) = 6;;. In this case{ X;}1_, §n = %/ |H(e)¥) — Hp(e')|” @ou(e’) dw. (7)

is an orthonormal set arid,, is then + 1 x n + 1 identity

matrix, which implies thatv, ; = (Y, X;) £ ¢, does not We are interested in the comparison of this formula with the
depend om. The best approximation f6 is then given by  following ¢2 inner product

the simple formula L

|H(el*) — Hy(e))| dw. (8)

2 ).
Y, = Z ¢ X,
i=0 If ®,.(el*) is an essentially bounded Lebesgue measurable

. function on the interva|—=, +7] and if (8) converges to
and the least mean-square error of the approximation is;aro whem goes to infinity then (7) will also converge to

given by zero. For example, this will happen, . (7) is absolutely
ZL summable and it (k), the impulse response df,,(z),
= (YY) - ch is a linear combination of the first + 1 sequences of a
=0 complete set of2 (Obviously, each one of the sequences
Note thaty,, = Y,,_1 + ¢, X,,, and that¢,, = &,_1 — ¢2, of that set must be absolutely summable, otherdigéz)
with the initial valuest_; = 0and¢_; = (Y,Y). could be unstable.) For a general power spectral density the

same result holds iff,, (e!*) converges tad (e!*) for all
frequencies wheré . (e/*) has a Dirac delta distribution.
For example, this will happen if the complete set used to
form h,, (k) is the canonical basis df.

Note that (7) may be null even when (8) is non-null if
®,.(e7¥) vanishes on a set 6f 7, +n] with nonzero mea-

From a given linearly independent sgX;}I* , it is pos-
sible to construct an orthogonal SgX?}? , whereX? =
Z;.:O b;; X; with the restrictionb;; = 1, using the Gram-
Schmidt orthogonalization procedure [49]. Note that the
constants;; are such tha(Xf’,Xf} =0for0 <j < i,

which in turn implies thatX? X ;) = 0 also for0 < j <. sure, i.e., ifz(k) is a band limited process. This can-
Remembering the orthogonality principle of best approxi- not happen if®, (/) is strictly positive for (almost) all
mations in Hilbert spaces it is easy to verify thgt is pre- ¢ [, +n], a condition usually called persistence of ex-
cisely the error of the best approximation®f by a linear citation (of infinite order) [50].

combination of the random variablég), ..., X; 1.

IIl. THE TRANSVERSAL FILTER

D. Approximations of linear systems Consider the transversal filter of figure 3. The weights of

Consider the problem of the approximation of a given sta- this filter that minimize the variance of the error of the ap-
ble and causal systetH (z) by another stable and causal Pproximation of a given desired signg(k), correlated with
systemH,,(z). (The exact form offf,,(z) is irrelevantto ~ x(k), by y, (k) satisfy the Wiener-Hopf equations [3] (cf.
the present discussion.) Both systems are excited by thehe normal equations (4))
same stochastic procesék) and the objective of the ap- n
proximation is to minimize the variance of the error signal , _ _ ) = _
en(k), which is the difference between the outputs of both ; wni (k= Dalk = 7)) = {yk).o(k =)
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for 0 < j < n. These equations can be put in the form

9)

where the elements @&,,, which can be computed easily
using (3), are given by

<.%'(k - Z)ax(k _j)>
1 [t

Rnwn = Pn

Tij

ejw(jfi)q)m(ejw) dw

10
o) (10)
(0 < i,j < n), and where those qi,, are given by

(y(k)x(k — 1))
1 +m

Di

e D, (1) dw

(0 < i < n). Note thatr;; only depends o — j|. This
means that the elements of each diagon@gfare equal,
i.e., R, is a symmetric Toeplitz matrix. It is possible to
explore the Toeplitz structure of this matrix to solve (9),
as done for example in the Levinson algorithm [3], [49].
This gives rise to the so-called lattice filters, which wel wil
discuss later on in the context of Laguerre filters.

The smallest and largest eigenvaluesiof play an im-
portant role not only in the resolution of the Wiener-Hopf
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tral density in the first of these two formulas it is easy to
conclude that

inf q)mz(ejw) S )\min(Rn) S )\max(Rn) S sup q)mz(ejw)

(11)
where the infimum and supremum are over all values of
in the interval—m, +7]. In particular, if the power spectral
density®,,,.(¢*) is bounded away from zero (persistence
of excitation), then\,,in (R,,) > 0, i.e.,R,, is non-singular.
In that case the Wiener-Hopf equations have only one solu-
tion, irrespective of the value of.

IV. THE LAGUERRE FILTER

Consider again the transversal filter of figure 3. Denote by
H (z) the transfer function of the (stable and causal) system
that produceg(k) when excited by:(k). Applying the re-
sults of subsection 1I-D to the transversal filter it becomes
clear that this filter is indirectly trying to approximateeth
impulse response dfl (z) by the firstn + 1 sequences of
the canonical basis of. Unfortunately, these sequences
are extremely localized in time. Hence, the quality of the
approximation will be very poor (for small) when the im-
pulse response dff (z) is very long (e.g., when it decays
slowly to zero). Note, however, that because the canonical
basis is a complete set 6t the approximation error can be
made arbitrarily small by using a sufficiently large(cf.

equations, where they define the numerical stability of the section 1I-D).
system of normal equations [49], but also in the conver- It is possible to use other complete sets¢dfto build a
gence speed of certain adaptive algorithms of the weights of*‘transversal-like” filter. In order for the filter to be prawl

transversal filters [3]. Fortunately, it is easy to obtamsie

to use each sequence of that set should be easy to genera

bounds for these eigenvalues if we restrict the input signal digitally, i.e., it should have a rationattransform. Proba-
of the transversal filter to have an absolutely summable au-bly the simplest set of such sequences (besides the canoni

tocorrelation function (less restrictive results can benft

cal basis) is the set of the Laguerre sequences [19], which

in [51]). In this case the power spectral density convergesis a complete orthonormal set 6% [20]. The z-transforms

uniformly (and is bounded) on the intenale [—7, +].

A well know method to compute the smallest and largest

eigenvalues of a symmetric matrix, in this cdig, is to

evaluate the minimum and maximum values of the Rayleigh

quotient [49]:

T
w'R,w
. nftnWn
)\min(Rn) = min T T,
wn#0 W, Wy,
T
w'R,w
ntnWn
Amax(Rp) = max —"———
w,#0 W, Wy,

wherew,, is an arbitrary nonnull vector with+1 elements.

In our concrete case it is easy to verify that (cf. (6) and (2))
1 [T E P ,
w,R,w, = — Wpie Y Puyp(e’) dw,
21 J i=0

and that (because the functions“? are orthonormal in the
interval [—7, +7])

Using trivial lower and upper bounds for the power spec-

of these sequences are given by [21]

1 >0 (12)
whereu is a free (real) parameter, the Laguerre pole posi-
tion, with modulus smaller that one. Note that(z,0) =

z~%, i.e., the sequences of the canonical basi¢*adire a
special case of the Laguerre sequences. Also interesting i
the fact that fori > 0

Liy1(z,u) = A(z,u)Li(z,u) (13)
with )
2T —u
Alz,u) = 1 w1

i.e., these sequences can be generated in cascade, startir
with a first order low-pass sectiolL{(z, u)), followed by
first order all-pass sectionsgl(z, u)).

Replacing the “backbone” of the transversal filter, that
generates the first + 1 canonical sequences 6f when
excited byd(k), by the equivalent structure that generates
the firstn + 1 Laguerre sequences (when exciteddloy))
we obtain the Laguerre filter shown in figure 4. This filter
structure was introduced in [22] and was studied with some
detail in [24]. We will assume, unless stated otherwise, tha
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Z‘(k) V1—u? . qilfu % qilfu 0
1—ug—1 1—ug—1 1—uq—1
-0.9 ———— T+ P =
xo(k,u) z1(k,u) zn(k,u) O — /// //// //
0.5 ——————— // e / )
wn,0(w) wn,1(u) wn,n (u) i — / e /
+ + ‘/ /// // ’
+ + |
b)) ()() % | / !
=) un (k) " / // /
|
Fig. 4 - Laguerre filter of orden (with n sections). This filter is stable if f// e /
and only ifju] < 1. Foru = 0 the Laguerre filter degenerates into the / //// -
familiar transversal filter. ‘ T — ‘ w
-1 // " +m
-~ /]
. . g / e /1
for each value of, the weights of this filter are computed / / /o
such thaty,, (k, ) is the best approximation, in the mean- / / Y
square sense, to a given desired sigifa). This explains / 4 //
why these weights are functionsofn figure 4. ! / // /
The output of an order Laguerre filter excited by a real ‘/ e //
wide-sense stationary stochastic proce&s) with zero- T - t—m

mean is given by
n Fig. 5 - Graph of the frequency transformatian— 6 for several val-
k . k ues ofu. Note that there exists a one to one correspondence between
Yn(k,u) = Z Wni(u) i (K, u) and6. The inverse transformatiofh — w, which appears in (18), can be
1=0 visualized easily by replacing by —u. Foru > 0 this inverse transfor-
mation compresses the low frequencies andufer. 0 it compresses the

where high frequencies.
For each value of; the optimal set of weights of this filter and that )
can be computed from the normal equations do — L—u
. 11— ueiw|?
Zw”ﬂ'(“) (zi(k,u),x;(k,u)) = (y(k),z;(k,w)) (14) It is then trivial to verify thatr;;(u) can also be given
=0 by [24]
. . . —+7 .
(0 < j < n). These equations can be put in the form rii(u) = %/ 000 (fj:gﬁ) do, (18)
i —T
R, (u) Wy (u) = pn(u) (15)

which only differs from (10) in the argument of the power
spectral density of:(k). This very important result can be
used to determine immediately bounds for the eigenvalues
() = /H ( v _ )ji Dpp(e39) (1 — u?) dw of R, (u) based on those for the matrR,, appearing in

iJ

where the elements &, (u) are given by

the transversal filter case. Because (17) represents only a
distortion of the frequency scale (see figure 5) it turns out
that (11) is also valid for this case, i.e., the lower and uppe
bounds for the eigenvalues &, (u) are exactly the same
T edw ! B, (e19) VT — 02 dw as those folR,, and do not depend on. Also, some re-
pi(u) = / ( > ‘ 27(1 — uel®) sults concerning the asymptotic eigenvalue distributibn o
R, whenn — oo (see [51] or [52] for details) can be

(0 < i < n). These expressions can be obtained easily adapted with very little effort to the matric@, (u).

from (3). Similarly to the transversal filter casg; (u) de-
pends only or}i — j|, i.e.,R,,(u) is a Toeplitz matrix. We
will explore this fact in the next section.

It is possible to simplify considerably the expression for The variance of the error signal of a Laguerre filter, i.e.,
ri;(u) using the change of frequency variable— 6 de- its mean-square error (MSE), is a function:of In order
fined by the bilinear transformation [24] to minimize this function we need to deduce its stationarity
condition and then to solve it. One of the solutions of this
condition will be the optimal value af, for which the MSE
attains its global minimum.

The MSE of a Laguerre filter of orderis given by

1 — uel 27 1 — uei«|

—T

(0 <i,j < n), and where those qf,,(u) are given by

1 — uelv

—T

A. Stationarity condition of the MSE of a Laguerre filter
with respect ta: [30]

: el —u
el = —
1 — uelv

(16)

It is easy to verify that whew goes from—= to +, 6 also

goes from—r to 4+ (see figure 5), that En(u) = (en(k,u),en(k,u)).
iw el? 1y Assume for the moment that the weights of the Laguerre
e = (17) filter are arbitrary, i.e., that they do not depend.«cemd that

T 1+ uel?’
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they do not need to satisfy the normal equations. Then, thethis will happen ifz(k) satisfy the persistence of excitation

partial derivative of the MSE with respectaas given by (a
prime denotes differentiation with respect to this vargbl

& (u,wy) = —2iwm (en(kyu),zi(k,u))  (19)
i=0

condition.
It is possible to prove that [53]

i.e., T;(u) is the inverse of the first Cholesky factor of
R;(u) [49]. For notational convenience we will denote the

wherew,, is a vector whose elements are the weights of glement of the last line and column®f (u) by ¢; (u). Note

the Laguerre filter. Notice that the stationarity condition
of &,(u, w,) require (19) to be zero, and they also force

thatt;(u) = 1 forall i if and only if &, (el*) = 1 forall w,
i.e., if and only ifz(k) is white noise with unitary variance.

the normal equations to be satisfied. This latter condition Note also that; (u) is strictly positive, and that the element
would have been unnecessary if we had assumed that th§, the same position on the Iower—triangularmatﬂxl(u)

weights where computed from the normal equations for jg 1/t:(u)

each value ofy. (This assumption would have made the
analysis of the problem much more difficult.)
Because of the remarkable formula [30]

(’L + I)Li+1(27 u) — Z'Li,l(z, U)
1—wu? ’

Li(z,u) = (20)
the derivative ofr; (k, u) = L;(¢,w)z(k) with respect ta:
is given by

(Z + 1)Ii+1(l€, U) — ’L'Il',l(k, U)
1—wu? '

2 (k,u)

3

(21)

Applying this formula in (19) and simplifying the result
with the normal equations (14) we obtain

Wn,n (w) (en (K, 1) ni1 (k,w))
1—u?

& (u)=—-2(n+1) . (22)

We emphasize that this formula is only valid if the normal

equations are satisfied. Hence, the weights are again func

tions of u, i.e., they are again computed from the normal
equations. (In fact, this formula is the total derivative of
&, (u).) Equating this formula to zero gives the stationarity
condition of the MSE with respect to

The next step is to find the value of the only complicated
term of (22): (e, (k,u),z,+1(k,u)). In order to do so we
need to orthonormalize the signalgk, u).

Let z§(k,u),...,z9(k,u) be the orthonormalized sig-
nals obtained by applying the Gram-Schmidt orthogo-
nalization algorithm (with normalization) to the signals
xo(k,u),...,z;(k,u). The linear transformation per-
formed by this algorithm can be expressed by

x?(k,u) = Ti(u) x;(k,u) (23)

where
Xi(kvu) = [Io(k,u) ZCZ(]{I,’U,)]T
is a vector holding the original signals, and where

xf(k,u) = [‘Tg(k’u) x(i)(k’u)]T

is the corresponding vector holding the orthonormalized

signals. The matrixT;(u) is a lower-triangular ma-
trix. It will be nonsingular if and only if the signals
xo(k,u),...,z;(k,u) are linearly independent (we will as-
sume this condition to hold in the sequel). For example,

Because the signais (k, «) are obtained by a linear com-
bination of the signals;(k,u), j =0, ..., 4, itis clear that
the output of a Laguerre filter of ordercan also be given
by the orthonormal expansion

Yn(k, u) = Z Cl(u) z3 (k, u)
=0
with ¢;(u) = (y(k),z¢(k,u)). Note that; (u) does not de-
pend omn. Itis also clear that the error signal of a Laguerre
filter of ordern + 1 is given by

(24)

ent1(k,u) = en(k,u) — cnyr(u) xy 1 (k,u).
This formula implies that

<en(l€,u),xn+1(k,u)> = (en+1(kz,u),xn+1(kz,u)>
e () () 2 ()

The last normal equation for the Laguerre filter of order

n + 1 gives{epy1(k,u),xnt1(k,u)) = 0. Itis also clear
that

Wy 1 (0) X1 (k, )
C£+1(U) x%+1(kv u)

with obvious definitions for the vectorsv, ;(u) and
cn+1(u). Due to (23) and to the special form @, 1 (u)
it is then easy to verify that

Yn+1 (k’ u)

Cnt1(w) = Wnt1 ny1(u)/torr(u). (25)

Due to the special form of',,}, (u) and to the orthonor-
mality of the signals:? (k, u) it is also easy to verify that

<x$1+1 (k,u),wni1(k,u)) =1/t 1 (u).
Putting all these facts together gives

wn+1,n+1 (U)
t121+1 (u)

Applying this formula in (22) we obtain

<€n(k, u)vfo-l (kv ’U,)> =

2(n+ 1) wypn(w) Whti1,n41(w)
(1 —u?) 13, (u)

Therefore, the stationarity points of the MSE with respect
to u satisfy the simple condition [30]

& (u) = (26)

Wnn (W) Wpt1 nt1(w) = 0. 27)
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This condition is a generalization of the condition presént
in [26] for the particular case whergk) = (k) (which
is the deterministic signal equivalent to white noise).
is interesting to verify that ifv,, ,(u) = 0 then&, (u) =
&n—1(u), and that ifw,41n41(u) = 0 then§,(u)
&nt1(u). Hence, in each stationary point@f(«) the graph
of this function touches the graph ¢f_1(u) and/or of
&n+1(u). We will illustrate this phenomenon in section VI.
It is important to stress that usually,t not alwaysthe lo-
cal minima of¢,, (u) satisfy the conditionsu,, ,,(u) # 0
andwy,41,n+1(u) = 0, in which case,,_1(u) > &,(u)
€n+1(u)'

For simple and efficient ways of solving approxi-
mately (27) we refer the reader to [54]. Basically, we ap-
proximatew; ;(u) by a truncated Taylor series or by a Padé
approximant, and then find the zeros of that approximation.
The derivatives ofv; ;(u) required to form these approxi-
mations can be computed differentiating (15) and using (20)
to simplify the result.

It

V. THE LAGUERRE LATTICE FILTER[55]

As promised earlier we are going to explore the Toeplitz
structure of the matriR,,(u). This will give rise to the
lattice form of the Laguerre filter. The following line of
reasoning is a simple generalization of the ideas that led
to the standard lattice filter. These ideas can be found in
any good book about adaptive filter theory, such as [1]-[3].
Another important work related to the material presented
hereis [8]. As before, we assume that the signg(s, ) of

the Laguerre filter are linearly independent. To simplifg th
notation we will use the definition, _ ;| (u) = r;5(u) when
referring to the elements of the Toeplitz matRx, (u).

In order to orthogonalize the signals(k, u) it is useful

to consider the problem of the minimization of the vari-
ance of the following signals, with the restrictiong(v) =
bzo(u) =1:

x{(kz, u) = Z a;j(u) z; (k,u); (28)
7=0
a}(k,u) = 1 bij(u) wi—j(k; u). (29)

=0

As explained in subsection II—Gc,{(k, u) will be orthogo-
nal tox; (k,u) for 0 < j < i, andz®(k, u) will be orthogo-
nal toz,;(k,u) for 0 < j < 4. This implies that the signals
2t (k,u) are the result of the Gram-Schmidt orthogonaliza-
tion procedure applied to the signalgk, v). We will de-
note the standard deviation (the square root of the varjance
of &/ (k,u) by o/ (u), and that oft? (k, u) by o?(u). Both
of these standard deviations are strictly positive becaese
have assumed that the signal$k, u) are linearly indepen-
dent.

It is simple to verify that the augmented normal equatfons
for these two problems are (in the following two equations

4The augmented normal equations are the equations (4) apdi(%)-
gether in only one equation.
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we have omitted, for aesthetical reasons, the dependence on
u of all variables)

To r; a;o 0

: . (30)
(09)?
Due to the symmetry of these two problems it is clear that
a;j(u) = b;;(u) forall ¢ > 0 and for0 < j < ¢, and that
crzf(u) = o¥(u) = o(u) also for alli > 0.
The reason why the signais‘;(k,u) are also useful is re-
lated to the special form of (30), that implies that

T 70 aii  bio 0

1 0 o? A

To Ti4+1 ;1 (0774 0 0
: =1t (B

Tit+1 To Qi5 Q41 0 0

Ai 01-2

Note thatA;(u) ando;(u) can be computed as soon as the
coefficientss;; (u) are know.

From (31) it is very easy to obtain the order update formu-
lae for the weights,;; (v) (and also for the weights; (u)),
which are

aiv1,5(u) = aij(u) + Kipr () aiipa1—;(u)

for0 < j <i+1, with k1 (u) = —A;(u)/0?(u), and
with a@; ;+1(u) £ 0. The application of these formulae
in (28) and in (29), together with (13), gives

and
oy (k) = A, w) 2 (k,u) + ki (w) 2] (k, u),

with ) (k,u) = xl(k,u) = xo(k,u). These recursion
equations define part of the Laguerre lattice filter. It imals
easy to show that

u xl? u ;Cf u
ki+1(u) = _<A(q7 ) ZU;’ )’ ) (k’ )>’
o7 (u)
and that
oy (u) = [1 = K7y (w)] oF (w).

From this last formula we conclude, df. ;1 (u) > 0, that
|ki+1(u)| < 1. This implies that the inverse Laguerre lat-
tice filter is stable [56]. The coefficients(u) are some-
times called reflection coefficients.

Itis clear that the output of the Laguerre filter is given by
the orthogonal expansion (compare with (24))

n

Yn(k,u) = di(u) 2} (k,u)

=0

where

di(u) = W

g;
does not depend on. This formula defines the joint-
process part of the Laguerre lattice filter, shown in figure 6.
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af (k,u)
k1 (u)
V1—u2
z(k) — 171uq71 [
ki1(u)
- qiliu
lfuq*1
b (k, u)

(
)

Fig. 6 - Laguerre lattice filter of ordet. Foru = 0 this is the familiar lattice filter.

A. Stationarity condition of the MSE of a Laguerre lattice
filter with respect ta, [55]

We start by normalizing the signat$(k, u), obtaining the
signals
ay (k. u)

xf(k,u) = i)

This formula implies thaty;; (v) = 0 for j = ¢ and also for
j <1i—1. Because

Ci(u) = <y(k)’x?(k’ u)>

it is then clear that

/

ci(u) = aii—1(u) cim1(u) + o iv1(u) cia (u).

(33)

Using these signals the output of the Laguerre filter can also

be given by (this is a repetition of (24))

yn(k,u) = Z ci(u) z?(k,u)
i=0
with ¢;(u) = o;(u) d;(u), and its MSE is given by

§n(u)

(k) (k) =D el (w).
=0

Because

st = 3 Pt

=0

xj(k,u)

it is not very difficult to show, using (21), that

i+1

Y ;aw)wﬂw (32)

with

(1 +1)oiy1(u)

(1 u?)oi(u)
The exact value of the othes;;’s will not be needed. It will
prove useful to change the upper limit of the summation
in (32) fromi + 1 to co. This is accomplished with the
definitionayj (u) = 0 for j > i + 1.

Differentiating the orthonormality condition

Q41 (u) =

<CL‘?(/€, u),xf;(k, u)> = (Sij

with respect tau and using (32) it is easy to verify that for
alli,j >0
Q4 (u) + ozjl-(u) =0.

The derivative of the MSE with respect#as given by

Using (33) andw; ;—1(u) = —a;_1,(u) this summation
becomes a telescopic series (!) whose sum is

En(u) = =20 ni1(u) en(u) cppr (u).

Note that this formula is in accord with (26) because
t;(u) = 1/0;(u). Itis then very easy to verify that

2(n+1) 0714 (u) dn(u) dny (u) '

. =- 34
A = (34)

Hence, the stationarity condition is
dp(u) dpy1(u) = 0. (35)

Note how easily this condition can be interpreted: the MSE
of a Laguerre lattice filter has a stationary point with respe
tow if and only if the last weight used to compute the output
signal vanishes and/or the first unused weight vanishes.
Although (35) could also have been obtained much more
easily from (27) and (25), its deduction given above is en-
tirely based on the Laguerre lattice filter, and is interagti

in its own right.

VI. AN EXAMPLE

To illustrate the approximation capabilities of Laguerke fi
ters we used a Laguerre lattice filter with sections to ap-
proximate the output of a third order elliptic low pass filter
with the following transfer function

0.01624(1+ z71)(1 — 1.731327 1 + 272)
(1 —0.89572=1)(1 — 1.84452~1 4+ 0.9282272)’

H(z)
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parameter, which controls the rate of decay to zero of the
] filter's impulse response, allows this filter to provide good
-2 approximations to systems with slowly decaying impulse
—4] responses.

;: It is easy to devise algorithms to adapt the weights of La-
2 ] guerre filters similar to the LMS or the RLS developed for
é‘s I the transversal filter [1]-[3]. It is also easy to adapt the re
S -104 flection coefficients and joint-process weights of the La-
121 guerre lattice filters using a stochastic gradient approach
] similar to the one used for transversal filters [1]-[3]. Un-
N S A fortunately, it appears that it is not easy to generalize the
-1.0 -0.5 0.0 0.5 1.0 FTF and LSL fast adaptation algorithms [1]-[4] to the La-

Pole position of the Laguerre filter (u) guerre filter. Finally, it is possible to extend the adaptati

Fig. 7 - Normalized MSE (in dB) of the Laguerre lattice filtersorders (using a LMS scheme) to the Laguerre pole position. In this

from 0 (top) to 10 (bottom) as functions of.. The Laguerre filters were respect, the equations (26) and (34) are useful (spechaly t
used to approximate a low pass system excited by coloredszausoise. latter)

Note that these curves touch only at their local extremae Mitsto the bad

performance of the transversal filtar & 0) when compared to the best Besides the Laguerre functions there are other complete

Laguerre filter, i.e., with optimal, of the same order. 2 .
orthonormal sets of* whose sequences have rational
transforms. In this respect the Kautz functions [57] and

excited by colored Gaussian noise generated by feedingSéduences [21] are particularly useful. Replacing the La-
(pseudo) white Gaussian noise of unitary variance to a filter Juerre sequences by the Kautz sequences we obtain a

with transfer function Kautz filter, which appears to be very promising in the
approximation of systems with a dominant complex pole
05+ 15271 pair [58]-[62].
NE =0T
APPENDIX

The same signal was used as input of the Laguerre lat- i ) i
tice filter. The approximation was performed off-line us- 1 he followingCcode implements an algorithm to compute

ing 2500 samples of the input signal, previously recorded the coeffi_cients of the ort_honormal expansion (24)_ giyen the
from one realization of the (pseudo) white Gaussian pro- SYmmetric Toeplitz matriR,, (u) (more properly, its first
cess. To reduce the effects of the null initial conditiohs, t  ine) and the vectop,,(u). From these coefficients it is
first 500 samples were used only to initialize the Laguerre VEry easy to compute the MSE of the Laguerre lattice filters
lattice filter. The othe2000 samples were used to compute With up ton sections. Note that this algorithm is slightly
the reflection coefficientss(«)), the joint-process weights different than the usual Levinson algorithm [49] that selve

(d;(w)), and the MSEg;(u)) of the Laguerre lattice filters ~ the SystenR,, w,, = p,,. Here we are not interested,
of orders fromo to 10. (Remember that a Laguerre lattice but in the coefficients of the orthonormal expansion (24).

filter of ordern effectively contains all Laguerre lattice fil- [«
ters of lower orders.) The algorithm used to compute these +x Mdified Levinson al gorithm
coefficients is presented in the appendix. *k
The normalized MSE errécurves for the eleven Laguerre 7" I nputs: .

. . . L . n --- Nunber of sections
lattice filters are presented in figure 7. Note that conseeuti «x  r[0..n] --- Elenents of the first line
curves touch only where they have local extrema, which  =* of the R Toeplitz matrix
is in accord with (35). Although in this example all local ~ ** ojf[gils-n] --- Elenents of the p vector
minima (maxima) of/;(u) are associated with the condi-  ,, C'[OO. n] --- Weights of the orthonor mal
tion d;11(u) = 0 (d;(u) = 0) this is not always the case. *x expansi on

Figure 7 also shows that the MSE curve of a Laguerre filter ** Internal variabl es:

usually has local minima. This is an usual characteristic of - =77 Reflection coefficient of each

insufficient order IIR filters used in an output error config-  ««  s2 --- variance of orthogonal output
uration. * % signal of each section

*

!

VII. CONCLUSIONS typedef double real;

We have seen that the transversal filter can be generalized #define niax 10

to a filter structure, the Laguerre filter, which has one ad- i 4 nodLevi nson(int n,real =r,real =p real =c)

ditional free parameter that controls the filter's (mukipl {
pole position. Setting this parameter Ggouts the (mul- real k,s2,a[1 + nMax],b[1 + nMax];
tiple) pole of the filter at the origin, turning the Laguerre tnt i,
filter into a transversal filter. By adjusting properly this a[0] = 1.0;
s2 =r[0];
5That is, the MSE error divided by the variance of the signahdgep- c[0] = p[0] / sqrt(s2);

proximated:J; (u) = &; (u)/{y(k),y(k)). for(i = 1;i <= n;i++)
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{
a[i] = 0.0;
k = 0;
for(j =0;j] <i;j++)
k +=r[i - j] * a[jl;
k /= s2;
s2 *= 1.0 - k * k;
for(j =0 <=i;j++)
b[j] = aljl;
for(j =0 <= ij++)
afj] -=k = b[i - jl;
c[i] = 0.0;
for(j =0;j <=1i;j++)
c[i] +=a[i - jI * p[jl;
c[i] /=sqrt(s2);
}

}

This algorithm can be easily modified to generatediie)
coefficients of the Laguerre lattice filter. Itis only necass
to replace the divisions bgqgrt (s2) with divisions by
s2.
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