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In this study, we consider high-order nonlinear ordinary differential equations with the initial and boundary
conditions. These kinds of differential equations are essential tools for modelling problems in physics, biology,
neurology, engineering, ecology, economy, astrophysics, physiology and so forth. Each of the mentioned problems
are described by one of the following equations with the specific physical conditions: Riccati, Duffing, Emden-
Fowler, Lane Emden type equations. We seek the approximate solution of these special differential equations by
means of a operational matrix technique, called the Laguerre collocation method. The proposed method is based on
the Laguerre series expansion and the collocation points. By using the method, the mentioned special differential
equations together with conditions are transformed into a matrix form which corresponds to a system of nonlinear
algebraic equations with unknown Laguerre coefficients, and thereby the problem is approximately solved in terms
of Laguerre polynomials. In addition, some numerical examples are presented to demonstrate the efficiency of the
proposed method and the obtained results are compared with the existing results in literature.
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1. Introduction

In this study, we are concerned with the use of La-
guerre polynomials to solve some special nonlinear prob-
lems, which involve high-order nonlinear ordinary dif-
ferential equations with the initial and boundary con-
ditions. In recent years, it is well known that there exists
an increasing interest in the application of the models
to nonlinear problems in biology, physics and engineer-
ing. Also, the numerical solution methods of problems
of these types have been developed very rapidly and in-
tensively by many authors [1–5]. Here, the basic ideas
of the mentioned studies are developed and applied to
the high-order nonlinear ordinary differential equations
in the form

m∑
k=0

n∑
r=0

Qk,r (x)y
r (x)

+

m∑
k=1

n∑
r=1

Pk,r (x)y
(k) (x) = f(x), (1)

under the mixed conditions
1∑

k=0

[
ajky

(k)(0) + bjky
(k)(b)

]
= λj , j = 0, 1, (2)

where Qk,r (x), Pk,r (x) and f(x) are functions defined
on interval 0 ≤ x ≤ 1; a, b, λj are suitable constants.
The aim of this study is to get the approximate solution
as the truncated Laguerre series defined by
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y(x) =

N∑
n=0

anLn(x), (3)

where Ln(x) denotes the Laguerre polynomials; an
(0 ≤ n ≤ N) are unknown Laguerre polynomial coeffi-
cients, and N is chosen as any positive integer such that
N ≥ m.

2. Properties of Laguerre polynomials

A total orthonormal sequence in L2(−∞, b] or
L2[a,+∞) can be obtained from such a sequence in
L2[0,+∞) by transformations x = b − s and x = s + a,
respectively. Applying the Gram-Schmidt process to
the sequence defined by

{
e−x/2, xe−x/2, x2 e−x/2, . . .

}
in

L2[0,+∞), we obtain an orthonormal sequence en. This
sequence is given by

en(x) = e−x/2Ln(x), n = 0, 1, 2, ...

where Ln(x) are Laguerre polynomials defined by

Ln(x) =
ex

n!

dn

dxn
(xn e−x), n = 1, 2, 3..., or

Ln(x) =

n∑
r=0

(−1)r

r!

(
n

r

)
xr (4)

3. Fundamental relations

In the present study, an approximate solution in terms
of linear combination of Laguerre polynomials is assumed
in the form (3). For our purpose, let us consider Eq. (1)
and find the matrix forms of the equation. Firstly, we
can write Laguerre polynomials (4) in the matrix form
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LT (x) = HXT (x)⇒ L(x) = X(x)HT , (5)

where L(x) = [L0(x)L1(x)...LN (x)], X(x) = [1x...xN ], A = [ a0 a1 . . . aN ]T and

H =



(−1)0
0!

(
0

0

)
0 0 · · · 0

(−1)0
0!

(
1

0

)
(−1)1

1!

(
1

1

)
0 · · · 0

(−1)0
0!

(
2

0

)
(−1)1

1!

(
2

1

)
(−1)2

2!

(
2

2

)
· · · 0

...
...

...
. . .

...

(−1)0
0!

(
N

0

)
(−1)1

1!

(
N

1

)
(−1)2

2!

(
N

2

)
· · · (−1)N

N !

(
N

N

)



.

Then we set the approximate solution defined by a
truncated Laguerre series (3) in the matrix form

y(x) = L(x)A. (6)
By using the relations (5) and (6), the matrix relation is
expressed as

y(x) = X(x)HTA. (7)
Also, the relations between the matrix X(x) and its
derivatives X

′
(x), X

′′
(x), X

′′′
(x), . . .X(k)(x) are

X
′
(x) = X(x)BT , X

′′
(x) = X(x)(BT )2,

X
′′′
(x) = X(x)(BT )3, . . . ,X(k)(x) = X(x)(BT )k (8)

where

B =


0 0 0 . . . 0

1 0 0 . . . 0

0 2 0 . . . 0
...

...
...

. . .
...

0 0 0 N 0

 .

By using the relations (7) and (8), we have the matrix
relation

y(k)(x) = X(x)(BT )kHTA. (9)
By substituting the Laguerre collocation points
defined by

xi =
b

N
i, i = 0, 1, ..., N (10)

into Eq. (9), we have

y(k)(xi) = X(xi)(B
T )kHTA, k = 0, 1, ...,m (11)

and the compact form of the relation (11) becomes
Y(k) = X(BT )kHTA , k = 0, 1, ...,m (12)

where

Y(k) =


y(k)(x0)

y(k)(x1)
...

y(k)(xN )

 , Y =


y(x0)

y(x1)
...

y(xN )

 .
Similarly, by substituting the Laguerre collocation points
(10) into the yr(x) and by using the relation (12), the
matrix relation is obtained


yr(x0)

yr(x1)
...

yr(xN )

 =


y(x0) 0 · · · 0

0 y(x1) · · · 0
...
0

...
0

. . .
· · ·

...
y(xN )


r−1 

y(x0)

y(x1)
...

y(xN )

 = (Ỹ )
r−1

Y

and

Ỹ = X̃B̃
T
H̃T Ã (13)

X̃ =


X 0 · · · 0

0 X · · · 0
...

...
. . .

...
0 0 · · · X

 , B̃T =


B 0 · · · 0

0 B · · · 0
...

...
. . .

...
0 0 · · · B

 , H̃T =


H 0 · · · 0

0 H · · · 0
...

...
. . .

...
0 0 · · · H

 , Ã =


A 0 · · · 0

0 A · · · 0
...

...
. . .

...
0 0 · · · A
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In addition, by substituting the Laguerre collocation
points (10) into the yr (x) y(k)(x) and by using the
relations (12) and (13), similarly, the compact form
(Ỹ)(r)Y(k) is obtained as [6]

(Ỹ )(r)Y (k) = X̃B̃
T
H̃T ÃX(BT )kHTA. (14)

4. Method of solution

We use the following matrix method based on the col-
location points (10) to obtain Laguerre polynomial so-
lutions of Eq. (1) under the mixed conditions (2). For
this purpose, by substituting the collocation points into
Eq. (1), we first have a system of equations. Then, by
means of the matrix relations (11)–(14), we can con-
vert this system to the following fundamental matrix
equation{

m∑
k=0

n∑
r=0

Qk,r(X̃B̃
T H̃T Ã)

r
X(B

T
)
k
HT

+

m∑
k=1

n∑
r=1

Pk,rX̃H̃
T (B̃T )

r
ÃX(B

T
)
k
HT

}
A = F,(15)

Qk,r =


Qk,r(x0) 0 · · · 0

0 Qk,r(x1) · · · 0
...

...
. . .

...
0 0 · · · Qk,r(xN )

 ,

F =


f(x0)

f(x1)
...

f(xN )

 ,

Pk,r =


Pk,r(x0) 0 · · · 0

0 Pk,r(x1) · · · 0
...

...
. . .

...
0 0 · · · Pk,r(xN )

 .
Briefly, this equation can also be written in the form
WA = F or [W;F], which corresponds to a system of
the (N + 1) nonlinear algebraic equations with the un-
known Laguerre coefficients an, n = 0, 1, ..., N , where

W =

m∑
k=0

n∑
r=0

Qk,r(X̃B̃
T
H̃T Ã)rX(BT )kHT

+

m∑
k=1

m∑
r=1

Pk,rX̃H̃
T
(B̃

T
)rÃX(BT )kHT .

Besides, using the relation (9) we find the fundamen-
tal matrix equation for the mixed conditions (2) as
follows;

UjA = λj or [Uj ;λj ] (16)
so that

UjA =

1∑
k=0

[
ajky

(k)(0) + bjky
(k)(b)

]
(BT )kHTA,

j = 0, 1, ...,m− 1.

Consequently, replacing the m rows of the augmented
matrix [W;F] by the rows of the matrix [Uj ;λj ], we have[

W̃ ;F̃
]
, or W̃A = F̃ , (17)

which is a system of nonlinear algebraic equations.
By solving the system (17), the unknown Laguerre co-
efficients are computed. Thus, the approximate solution
is found in the truncated Laguerre series (3) on the in-
terval [0, b].

5. Numerical experiments

In this section, we will consider three examples to illus-
trate the accuracy and efficiency of the presented method.
All results have been computed using the program writ-
ten in Maple 18 and graphed in Matlab 2007.

Example 5.1.

We first consider the Lane-Emden problem [7]

y′′(x) +
2

x
y′(x) + y3(x) = 6 + x6, y(0) = y′′(0) = 0.

This problem can be written as xy′′(x)+2y′(x)+xy3(x) =
6x + x7 where Q2,0(x) = x,Q1,0(x) = 2, Q0,2(x) = x
and f(x) = 6x + x7. We suppose that y(x) is approxi-
mated by a truncated Laguerre series in the form y(x) =
2∑

n=0
anLn(x), 0 ≤ x ≤ 1. Using the procedure de-

scribed in Sect. 4, the fundamental matrix relations for
the equation and conditions are computed and then the
Laguerre coefficients are found at the 32th iteration as
a0 = 3

8 , a1 = 1
2 , a2 = 1

8 . Therefore, the solution of this
problem becomes y(x) = x2 which is an exact solution.

Example 5.2.

We consider the Riccati equation [8]
y′(x) = y(x)− 2y2(x), y(0) = 1.

with the exact solution y(x) = 1
(1−e−x) .

TABLE I

Comparison of the absolute errors for Example 5.2.

x
Euler
method

Taylor Col.
method
N= 6

Suggested
method
N=6

Suggested
method
N=20

0.1 1.31× 10−2 7.35× 10−5 7.05× 10−4 6.58× 10−14

0.2 1.85× 10−2 7.22× 10−5 8.22× 10−5 1.70× 10−16

0.3 2.04× 10−2 3.44× 10−5 3.17× 10−6 3.42× 10−16

0.4 2.07× 10−1 3.22× 10−5 2.62× 10−5 2.18× 10−15

0.5 2.01× 10−2 1.68× 10−5 1.20× 10−5 5.32× 10−15
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Table I shows the solutions of the problem for differ-
ent methods and various N . The suggested method has
smaller absolute error for the same N values. Similarly,
in the Table I the error decreases when N value is chosen
large enough.

Example 5.3.

Finally, we consider the Duffing’s equation of the fol-
lowing type y′′(x)+3y(x)− 2y3(x) = cos(x) sin(2x) with
initial conditions y(0) = 0, y′(0) = 1 having the exact
solution y(x) = sin(x).

TABLE II

Comparison of the absolute errors of Example 5.3.

Exact Error analysis(|y − ŷ|)
x Solution N=5 N=8 N=10
0.0 0 0 0 0
0.1 0.9983341665 4.62× 10−8 3.08× 10−11 4.33× 10−14

0.2 0.1986693308 6.12× 10−7 8.72× 10−11 1.03× 10−13

0.3 0.2955202067 4.28× 10−7 1.45× 10−11 1.66× 10−13

0.4 0.3894183423 2.29× 10−7 1.82× 10−10 2.21× 10−13

0.5 0.4794255386 4.23× 10−7 1.65× 10−10 2.71× 10−13

0.6 0.5646424734 4.03× 10−7 2.62× 10−10 3.15× 10−13

0.7 0.6442176872 3.32× 10−7 3.01× 10−12 2.29× 10−13

0.8 0.7173560909 5.66× 10−7 3.07× 10−10 3.85× 10−13

0.9 0.7833260096 8.87× 10−6 5.68× 10−9 9.73× 10−13

1.0 0.8414709848 1.43× 10−5 1.22× 10−8 1.57× 10−11

Fig. 1. Comparison of absolute errors for N = 6, 8, 10.

As can be seen in Fig. 1 there are differences between
errors obtained for different N values. We also see that
we approximate the exact solution at large N values.

6. Conclusions

Nonlinear ordinary differential equations, such as
Lane-Emden, Riccati and Duffing equations, appear fre-
quently in modeling of physical phenomena and play an
important role in the fields of science and engineering.
Most of these equations have no analytical solution and
so, numerical methods may be required to obtain their
approximate solutions [9–13]. For this reason, the La-
guerre collocation method has been presented. A consid-
erable advantage of the method is shorter computation
time and lower operation count, which results in reduc-
tion of cumulative truncation errors and in improvement
of overall accuracy. For this reason, this process is much
faster than the other methods. Illustrative examples with
the satisfactory results are used to demonstrate the ap-
plication of this method. Calculations were performed
using a program written in Maple18. As a result, the
power of the employed method is confirmed. The method
can also be extended to another applications, but some
modifications are required.
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