
Laguerre's Method Applied to the Matrix
Eigenvalue Problem

By Beresford Parlett

1. Introduction. We present a new algorithm for the calculation of the eigenvalues
of real square matrices of orders up to 100. The basic method is directly applicable
to complex matrices as well and, in both cases, with each eigenvalue X of A a vector
v is produced for which (A — XI)v is null except for a small last element. This vector
is not always an approximation to the eigenvector for X and this algorithm claims
only to find eigenvalues.

The main concern has been to use only single precision arithmetic although the
effect of using an accumulated inner product procedure in one part of the program
is shown in the results in Section 15.

The method consists of two parts. Firstly the given matrix A is reduced to
almost triangular (Hessenberg) form H by elementary similarity transformations.
Direct reduction of H to sparser forms requires extra precision in practice and even
then is not without difficulties. So the second stage is the iterative search for the
eigenvalues of H. A natural extension of Hyman's method [13] may be used to
evaluate p(z) = det (H — zl) and any number of derivatives in an accurate and
stable way. However each evaluation requires approximately n real multiplications
and n real additions for annXn matrix and complex z. Thus the viability of this
approach depends on finding each eigenvalue with a small number of evaluations.
Results so far with the method developed here indicate an average of just less than
9 evaluations (3 iterations) per eigenvalue on a wide variety of matrices of orders
from 8 to 100.

Now the iterations of Müller, Newton, and Bairstow converge quickly once a
fair approximation to an eigenvalue has been found. They do not seem so satis-
factory at the beginning of a search. Laguerre's method [2], [5], [6] was designed for
polynomials with real zeros and when these are distinct it gives strong convergence
right from any starting value. The method can be extended to the complex plane.
No longer is convergence certain for any starting value but, in practice, the complex
iteration seems as powerful as the real one on all examples so far considered. One
Laguerre step requires more calculation than one step of any of the methods men-
tioned above, but when there are no a priori approximation to the zeros available
the reduction in the number of iterations with Laguerre more than compensates
for the extra calculation for each step. In addition when an eigenvalue has been
found there is enough information available to take one Newton step towards the
next eigenvalue.

This paper is mainly a detailed discussion of the practical application of the
method and techniques for keeping the number of iterations to a minimum. A
description of the program is given in Algol 60 [1], together with some results ob-

Received January 21, 1963. The work presented in this paper is supported by the AEC
Computing and Applied Mathematics Center, Courant Institute of Mathematical Sciences,
New York University, under Contract AT(30-1)-1480 with the TJ. S. Atomic Energy Com-
mission, and also under Contract Nonr-225(37) (NR-044-211) with the Office of Naval Research.

464

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX  EIGENVALUE   PROBLEM 465

tained with a FORTRAN version on an IBM 7090 which has been submitted to
SHARE as NU EIG3, Ref. 1373.

The work was begun at Stanford University under Professor G. E. Forsythe
and continued at the Courant Institute of Mathematical Sciences, New York Uni-
versity, New York.

The author acknowledges the help of George E. Forsythe in debugging the
Algol program, and in testing it on the Burroughs B 5000 at Stanford University.
See the certification in this issue.

2. The Condition of an Eigenvalue. The accurate location of an eigenvalue of a
non-hermitian matrix can be made difficult by the possible sensitivity of the eigen-
value to small perturbations of the matrix elements.

A definition and discussion of the condition of an eigenvalue is given in [10,
p. 110]. It suffices for our purposes to say that an eigenvalue is ill-conditioned if a
small change in any of the matrix elements causes a large change in the eigenvalue.
The effect of ill-conditioning on the numerical computation of eigenvalues is ex-
plained in the following way. See [10, p. 109] and [13, p. 32] for more details.

When we evaluate the characteristic polynomial of a Hessenberg matrix with
finite precision we obtain the exact value of the characteristic polynomial of a
Hessenberg matrix whose elements never differ from those of the given matrix by
more than small quantities. Every time we repeat the evaluation with a new argu-
ment we are effectively evaluating exactly the characteristic polynomial of a dif-
ferent, though close, matrix. Thus at each step of our procedure the current iterate
behaves as though it were approaching an eigenvalue of a different, though close,
matrix. For this reason ill-conditioned eigenvalues may be difficult to find.

We conclude that it is fruitless to expect a program to work well on all matrices.
We should rather attempt to give with each eigenvalue some information about its
condition. If the successive iterates are printed out they will give valuable informa-
tion about the condition and accuracy of a computed eigenvalue without any extra
calculation.

3. Reduction to Almost Triangular Form. For a detailed discussion we refer to
Wilkinson [14, 15]. For completeness we include our Crout-like reduction in the
Algol 60 program of this article.

The reduction could also be done with orthogonal transformations. One ad-
vantage would be that no eigenvalue would have its condition worsened (increased)
in the process. On the other hand it would take about twice as long (using House-
holder's method) as the method we use which is quite accurate enough.

We record any superdiagonal elements a¿,í+i which are zero or small enough to
be put to zero. Hyman's method for determinant evaluation requires that o,,,+i 9e 0.
Yet Wilkinson [13] has shown that small values of a¿,,+i do not impair accuracy. So
two courses can be followed. Either zero pivots can be replaced by some small
quantity or advantage can be taken of the zeros to consider a number of smaller
matrices.

We have chosen the latter course for a program which computes eigenvalues
only. The method we use is easily coded for any principal submatrix of a (lower)
Hessenberg matrix and it clearly saves time to consider a number of smaller matrices
rather than one large one.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



466 BERESFORD   PARLETT

4. Laguerre's Iteration. Let P(z) be a complex polynomial in z with roots
Tx, • • • , Tn . Given an approximation z to one of the roots, say rn , then Laguerre's
method uses P(z), P'(z), and P"(z) to obtain a better approximation. We define
derivatives of log P(z) as follows

Sl(*) = T(¿y = h^Ty
Si(z)=p'(z)t-Jíz)p,'(z) = ±    1

P(z)2 U(z-r{y

We write

= a(z) ,       —!— = ß(z) + Si(z) (i = 1, 2, ••• ,n - 1),

where ß is the mean of the l/(z — r,) (i = 1, 2, • • • , n — 1), and so
71-1

0 = Z Si ■
i=X

Now we define <52 = 2J2-1 §/ and express Si and & in terms of a, ß, ô, obtaining

Sx = a+ (n- l)ß,        Si = a  + (n - l)ß2 + Ô2.

Eliminating ß and solving the resulting quadratic gives

a = - {Sx ± V(n - l)(nSi - nô2 - Sx2)}

and

(A)    r„ = z —-. = z — -j,-=—,    say.
S, ± V(n - 1)(»5, - nô2 - Sx3) Sx±W*'

The next approximation z  is obtained by ignoring the unknown quantity ô2 in
equation (A) above. Thus

(B) z  = z —- = — z —-Tf-f,   say.
Si ± V(n - l)(nSi - Sx2) Sx±W

We choose that square root of W which maximises | Si ± W \. Now [ Si ± W j =
| Si |2 + | W |2 ± 2 Re (S^). So we choose IF to make Re (SxW) non-negative
and when it is zero we arbitrarily take 0 :£ arg W < t. We make a similar rule
for IF*.

We call z the Laguerre iterate of z for the polynomial P, i.e. LP(z) = z . The
transition from zto z is called one Laguerre iteration.

We observe that z   =  » if, and only if,

Sx(z) = 5,(2) = 0,       i.e.        P'(z) = P"(z) = 0.

Also z   = rn if and only if ô2 = 0.
For polynomials with real roots the following results are known, see [2], [5],

and [6].
( 1 ) The real line is divided into as many abutting intervals as there are distinct

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX  EIGENVALUE   PROBLEM 467

roots and from any initial point in such an interval the successive Laguerre iterates
converge monotonically to the root therein.

(2) Locally, if the root is simple, convergence is cubic. Otherwise it is linear.
(3) Laguerre iterations are invariant under all Möbius transformations

Tz = —  —;,        a,b,c,d real,
cz + d

a   b
c    d ^ 0.

I.e. if z is the iterate of z for a polynomial P (roots rf), then Tz is the iterate of Tz
for the transformed polynomial (roots TV,).

5. The Complex Iteration. Here we are interested in Laguerre iterations in the
complex plane. We can say the following.

Property (1) does not extend to the complex case as it stands, i.e., the complex
plane is not covered by abutting regions such that from an initial value in a region
successive iterates converge to the zero contained therein. As an example consider
P(z) = z(3z2 + a2), a > 0. Then LP(a) = —a and LP(—a) = a yielding no con-
vergence. The question of what can be said about regions of convergence will not
be pursued here.

Property (2) does extend to complex Laguerre iterations, being algebraic in
nature. See [2, p. 269].

Property (3), also being algebraic, extends to the complex plane. This invari-
ance may be verified at the cost of considerable calculation. We prefer the following-
brief argument which we present because we have never seen an explicit proof of
Property (3).

Let P be a polynomial with complex zeros a, ß, ■ ■ ■ and let summations be
over the n zeros of P. Take z as a fixed number, not a zero of P, and consider, after
Laguerre, for v ¿¿ z,

^(^+0'-(:-^+i;
= \Si(z) - (z - y).

(u - z)1 + 2 Si(z)
(z - v)\

(u — z) + n — 1.

Thus/ = 0 is a quadratic in u — z (and also in u since z is fixed) with discriminant

D(v) = n(v - z)~2 + 2Sx(v - z)'1 + S,2 - (n - 1)S2 .

Since v j¿ z, we see that D(v) = 0 has the same solutions as the Laguerre equation

0 = D(v) = n + 2Sx(v - z) + (Sx2 - (n - l)S2)(v - z)2.

For invariance we must show that D(v) = 0 is an invariant equation under
the transformation group given in the previous section. This can be shown by
rewriting D(v) so that it is a rational function of well-known covariants, including
the Hessian of P. However we need only remark that D(v) is the discriminant of an
invariant quadratic and so must be a covariant of P.

The fact that / = 0 is an invariant equation is seen by writing it in homogeneous

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



468 BERESFORD   PARLETT

form. Rewriting each quantity w as the ratio w:w the transformation group takes
the form

TF = aw + b,       W' = cw  + d

and / becomes

t(v  u\ — v (Ua> ~~ aU'\2 _ (uv' ~ vu'\
' V V/      ^ \za' - az'j  ~ \zv' - vz'J

which is a sum of absolutely invariant terms. On putting all terms w = 1 the original
/ is recovered.

Practical Application of the Iteration

6. Cubic Convergence for Double Roots. If rn is a fc-fold root of P then the for-
mula (see [2, p. 73])

z   = z
L__^ (nSi _ sfík

will yield local cubic convergence to successive iterates. In general k is unknown so
we do the following. Suppose that we can test to distinguish linear from cubic con-
vergence. For simplicity we assume that linear increments are due to two close
roots and thus reject the current increment in favour of one computed from the
formula above with k = 2. This will need little extra calculation.

7. A Modification of the Formula for Polynomials with Real Coefficients. Let z
be an approximation to a complex root rn . We can make use of the fact that
f„ = rn-x is also a root. Let

1 1
2 = x + iy, ax = -, a2 =- ,

í3 + 5¿ = —|—,    i = 1,2, ■■■ ,(n - 2).

Then

But

Sx= Sx- a2 = ax+ (n- 2)ß,

S2 = Si- aí = ai2 + (n - 2)ß2 + Ô2.

ai = -—-^- = ir^ll +-~(z - fn)  - — (I - f„)2 +
z — z + z — rn      2y {        2y Ay2

Provided that | z — rn \ is small compared with | y \ we may use

a2 = 77—    and    «2   = -7-Z-
2y Ay2

to modify Si and S2 and obtain z from

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX  EIGENVALUE   PROBLEM 469

Jn-1)
Sx + VJn~^

As a test we require

Sx + V(n - 2)[(n - 1)& - Sx2)

| Zi - Zi-x I < I Vi I
in order to use the modification. It is also possible to postpone the application until
2 or 3 iterations have improved the approximation. However in practice we have
found it preferable to use the modification after 1 iteration. Actually the modifica-
tion is not used for iterates in the lower half plane since the program will always
have found the conjugate root previously.

8. Removal of Accepted Roots. The basic quantities Si and S2 are suitable for
the subtraction of the effect of previously accepted roots. Suppose we have found
n — p roots rp+i, ■ ■ ■ , rn ; then we want to use the polynomial of degree p with
roots Tx, • • • , rp and observe that

p       i " i
(j>)   _   V1 -1 o (n) V^ -Ioi     — ¿-i-«i

=1 Z — 1\ i=p+X z —

1 n
(p)       v*        l c (n)        V1Siw = y ,        = Si

¿=i (z — r,)2 i=P+i (z — A-)2 '

This is fortunate because we evaluate P, P , P", and hence Si<n) and S2(,l), from the
Hessenberg matrix and so avoid the calculation of the coefficients of the charac-
teristic polynomial. Thus we have no possibility of "dividing out" the previous
roots by synthetic division. The work required to subtract out the known roots is
dominated by the work required to find Si<n) and S2(n> and the method is very
accurate for well separated roots in whatever order they are found.

For close roots the method is less satisfactory but the author knows of
no better one.

9. When Has a Root Been Found? The author knows of no rigorous yet feasible
numerical criterion for a given number to be an acceptable approximation to a
zero of a polynomial even when "acceptable approximation" is clearly defined.
Here are the tests used in the program of this paper which is designed for floating
point numbers with 8 decimal mantissas.

Let 2 be the current iterate, A2 the computed increment, and | 2 | = | Re(z) | +
I Im(2) |. Only the ratios

P(z):P'(z):P"(z)

will be available, not their individual values.
Test No. 1. ] P(z) I < 10"81 2 I I P'(z) |. In practice 10"~6 or 10~s might be more

realistic factors than 10~ . Certainly many acceptable zeros might fail this test
whose main purpose is to catch possible zero or very small values of P(z) and also
values of Si = P'/P so large that there will be no change observable in 2 to 8 decimal
places. The main concern is to detect convergence of the sequence of iterates. Now if

I Az/z I < 10"4

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



470 BERESFORD   PARLETT

and cubic convergence (the number of correct digits trebles at each step) were
in effect we would not expect to see any change in 2 + A2 upon further iterations
in an 8 decimal machine. Unfortunately this relative test is inapplicable to zero or
very small eigenvalues and for these we compare Az with c, the modulus of the
largest eigenvalue (yet found).

Test No. 2. I Az I < 10"4 max (| 2 |, 10"3c).
Finally if convergence is slow (linear) then Test No. 2 is not fine enough and

I Az| < HT6 max (\z\, 10"2c)

would be more appropriate. For simplicity we take
Test No. 3. I Az I  < 10"8c.
There remain two possible causes for failure to pass any of these tests. With

complex eigenvalues cycles can occur (see Section 5) and as a crude diagnosis and
cure for this possibility we use

Test No. 4. If, after 3 iterations, | Az | > \z\ then* restart the iteration from
infinity. If infinity could provoke a cycle (which is easily decided, see Section 12)
then restart the iteration from the mean of the superdiagonal elements.

Finally an eigenvalue may be so ill-conditioned that none of these tests is passed.
A weakening of the tests would mean accepting well-conditioned eigenvalues with
unnecessary lack of accuracy. The program regards ill conditioning as the cause of
failure to converge by the 15th step and the 16th iterate is accepted as an eigenvalue.
Matrix No. 3 affords an example of this phenomenon. Another possibility is to
switch to double precision evaluation of P, P , P" after 15 iterations.

Further experience may dictate changes in some or all of these tests.

10. Evaluation of the Characteristic Polynomial and its Derivatives. We con-
sider a lower Hessenberg matrix H; ha = 0 if j > i + 1. The determinant of H — zl
may be found by using Gaussian elimination, a sequence of plane rotations, or
Hyman's method, see [13]. We begin with a matrix which is real except possibly for
the principal diagonal. The first two of the methods mentioned will lead, in general,
to wholly complex matrices. All steps in the computation would have to be coded
for complex arithmetic. However Hyman's method keeps any complex numbers
confined to the diagonal.

It has been claimed, see [9, p. 430], that small numbers in the superdiagonal will
cause inaccuracy in the computed determinant. However Wilkinson showed in [13]
that Hyman's method in fact produces the exact determinant of a close Hessenberg
matrix. Thus the result can only be inaccurate if the determinant is ill-conditioned
and if this is the case no method can ameliorate the situation without recourse to
higher precision.

In [13] Wilkinson advocates replacing zero elements in the superdiagonal by
very small numbers. However, since the program for the method to be described
is easily written so as to operate on any block of a Hessenberg matrix between zero
superdiagonal elements we can take advantage of them and the consequent reduc-
tion of the full matrix.

Essentially Hyman's method consists of subtracting suitable multiples of the
other columns of H — zl from the first column so that it becomes null except pos-

* In more recent programs we use | Az,-+i + Az,- [ < .3| Az,- | in place of | Az | > \ z \.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX  EIGENVALUE   PROBLEM 471

sibly for the last element which we shall call/(z). Let H = (h^), V,- = — ft.-.i+i ̂
0(i = 1,2, ■■■ ,n - 1), and Vn = +1. Then

POO = det (# - 2/) = (II F,j/(2).

This constant non-zero coefficient of f(z) can be ignored since it will eventually
cancel out in the homogeneous expressions

l( } = T(zJ 2( } =-P~W-•

Let the multiple of column i which must be added to column 1 to annihilate the
(i — l)th element be u¿. Put Ux = 1 and then the w, (i = 2, ■ ■ ■ , n) are computed
recursively from

Ui+x = (hixUx + hiUi + • • • + huUi — zUi)/Vi.

Since Vn = 1 we find that un+x = f(z). The simple form of the relation invites both
differentiation with respect to z and the taking of real and imaginary parts. This
yields six real valued recursions for the calulation of the real and imaginary parts
of/(2),/'(2), and/"(2).

For a compact method of coding these computations in real arithmetic as a
sequence of inner products see [7].

The use of an accumulated inner product routine would yield f(z), f (z), f"(z)
with excellent accuracy at the cost of extra time. This extra time varies greatly
with different machines. Such accuracy does not seem warranted except perhaps for
the final approximation to each eigenvalue and, in practice, the single precision
results seem quite adequate. The reader is referred to the examples at the end of
the paper.

For complex z the evaluation of/, / , /" requires approximately 3n(n + 1) real
multiplications and the same number of additions. These evaluations form the
major part of the program and this shows the importance of minimising the number
of evaluations.

11. The Possibility of Overflow. Using computers which use only numbers with
moduli in the range (10~50, 1060) the danger of overflow in evaluating determinants
is quite high. With the method givn above this danger is lessened because the
determinant itself is not computed; rather

p(z) = kf(Z),    k = (-lyfih^+x.¿=i
If the matrix H is scaled down by 10 then so will be f(z), whilst f'(z) will be un-
changed, and f"(z) will be scaled up by 10. Thus, in practice, we may leave H
unaltered.

If overflow does occur then we can simply change the value of ux (see Section
10) and restart the computation. If the smallest possible value of Ux still provokes
an overflow then the value of z will have to be changed. In the notation of Section
10, f(z) = un+x ■ If overflow occurs in computing u, then, for simplicity, we take
.90' — l)z/(n + 1) as a new initial value.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



472 BERESFORD   PARLETT

12. Starting an Iteration. The appropriate choice of starting value is of the
utmost importance in the success of this method. Property (3) of Laguerre's iteration
(see Section 4) can be used to provide a real starting value of modulus greater than
the eigenvalue of greatest modulus provided that all the eigenvalues are real. If
the largest eigenvalue is simple then the more it is isolated the closer will this number
approximate it. This number is, in fact, the Laguerre iterate of infinity. Its use
was suggested by the late H. J. Maehly.*

Let the eigenvalues of a Hessenberg matrix H satisfy [ Xx | ^ | X2 | ^ • • • ^ | X„ |.
Let L(z) be the iterate of z for the characteristic polynomial det (H — zl) and let
l(z) denote the iterate of z for the reciprocal polynomial. Property (3) implies that

For the reciprocal polynomial,
n n

V \ _ fn\ - ^r

(-¿)

n 1 n n i

<ri(o) = E —7 = -E Xi,    <r2(o) = y--z-i = y x,2.
t'=l p. ¿=1 I r, i- \

Xi
For the matrix H,

n n

y X, = trace (H) = E A« ,
i=l i=l

71 71 71—1

E X/ = trace (H2) = yh2u -\- 2y Aí,<+iA¿+i,< •
7=1 ,'=1 7 = 1

Hence, using the Laguerre formula, we have

L(«) = -^[o-x(O) + V(n - l)[no-i(0) - <n(0)2].

In the complex case we may also compute L( °° ) but no longer is it necessarily
an approximation to a maximal eigenvalue. Indeed if the eigenvalues are symmetric
about the origin in such a way that

trace (H) = trace (H2) = 0

then L( » ) =0 and L(0) = °o so that we have a cycle of length 2. However this
particular danger is easy to detect and avoid.

In practice we have found that a starting value such as

zo = ( —-;=- ) (max E ha)
\y/2 /      i     i

is frequently 10 to 100 times greater in modulus than the largest eigenvalue. Conse-
quently we use 2o = L(cc) for the first initial value but subsequently switch to
using a Newton iteration from the eigenvalue just found. This can be done in the
following way.

* Private communication.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX  EIGENVALUE   PROBLEM 473

Let P be the original polynomial with zeros rx, ■ ■ ■ , rp of which zeros
rq+x, • • • , rp have been found already. Let Q be the polynomial with zeros
rx, ■ ■ ■ , rq. We suppose that we have just found a simple zero rq and wish to seek
the zeros of the polynomial

R(z) = Q(z)/(* - rt).
By equating Taylor Series about rq it follows that

P"(rq)        A        1R'(rq)/R(rq) = Q"(rq)/2Q'(rq) = r-^L _   £
2P'(rq)      ,•_,+! rq — n'

A Newton iteration for R from rq would yield

zo = rq — R(rq)/R'(rq).

In practice we shall not know R'(rq)/R(rq) but (ignoring roundoff errors) we can
compute easily

„ _ P"(u)       f     _J_
2P'(rq*)       >±f+x r* - n

where r* (the iterate preceding rq) is close to rq. Now

So we may expect to use the formula z = r — 1/s with safety provided that rq is
not close to any of the zeros rq+1, ■ ■ • , rp . If rq is close to a zero that has not yet
been found then s will still be an adequate approximation to R /R. Only when

¿=g-t-i rq        ri

is large enough to provoke cancellation in the subtraction do we reject this starting
value and use instead L( °° ).

For the same reason we prefer not to evaluate R /R as follows.

R'(rq) _ Q"(rq)
R(U)       2Q'(rq)

^ Q"(r*) /2Q'(r*)
'    Q(rq*) I     Q(rq*)

= [Sx\rq*) - Si(rq*)]/2Sx(rq*).

If one of the remaining roots is close to rq then Si2 and S2 will be nearly equal and
their computed difference will have few significant figures.

In practice the author has found that this technique seems to ensure that well-
conditioned simple eigenvalues are found in 3 iterations (on the average) inde-
pendent of the order of the matrix for orders up to 100. This is in contrast to a pre-
vious practice (see [7]) of always restarting with L(œ) for which the average
number of iterations per eigenvalue rose from 3 up to 6 as the orders rose from
12 to 64.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



474 BERESFORD   PARLETT

13. FLOW CHART FOR LAGUERRE METHOD

Initialize Laguerre Starting Value

Evaluate P, P'.P", s,, s2

I
<

(7^{|p(z)|  very small?")

♦ No
Find new   iterate

z = x +  iy

MnaCycle?)-
TÑo

Yes

'      Slow        "\  No
Convergence?/

No/1lAz|.   \Yes^M    Very     F^-
VSmall?/

Yes/'      z     A No  / Over    \No
^a root?j-*i       15

\Steps?

Complex approacîïxYes    ^nrsT\Yes
to a  real roof?

No

Accept z as a root

No/Previous root \Yes
has y > 0?

y== abs(y) abs(y)

Store z

EXIT Yes/Eno
ro

ugh\Nc
otsg/

Yes

Newton

Make previous
pair true con-
jugates

No
Yes

~(y > o?)—»~-(y < o? ,No

14. ALGOL 60 Procedures,
begin
comment   Before giving the procedure Eig 3 and its subsidiary procedures Tringle

and Laguerre we list the supplementary subroutines needed by the  method.
These may conveniently be machine coded library subroutines if not built-in
functions of the system being used ;

real procedure    max(a,b);   value a, b;    real a, b;
max : = if a ^ b then a else b ;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE  MATRIX EIGENVALUE  PROBLEM 475

real procedure   min(a,b);   value a,b;   real a,b;
min : = if a ^ b then a else b;

integer procedure    mod(l,m);   value 1, m ;    integer l,m;
mod : = 1 — m X (1 -i- m) ;

procedure    comsqrt (a,b,x,y);   value a, b;    real a, b, x, y;
begin comment x + iy : = (a+ib) f (1/2), where x ^ 0;    (code) end;

procedure   scale (V,j,k);   value j,k;   integer j,k;   array V;
begin
comment   the exponents of the elements V[j] through V[k] of V are scaled so that

the greatest (algebraically) is zero;    (code)
end;
Boolean procedure overflow;

begin comment overflow = false unless machine overflow has occurred since the
procedure was last invoked in which case overflow = true;    (code)

end;
procedure    Tringle (eps,n,A,INT) ;    value eps, n;    realeps;

integer n; array A; integer array INT ;
comment Given the n X n matrix A Tringle uses a Crout-like elimination with

interchanges, pivoting on A[z',i+1], to produce a similar almost lower triangular
(Hessenberg) matrix written over A. INT[i] is the index of the column which was
interchanged with column (i+1) at the ith stage. If, after interchange, A[¿,¿-)-l]
is small then INT[i] : = 0. A non-local procedure min(a,b) is used. The scalar
products in statements Dl and D2 may be accumulated in double precision for
greater accuracy;

begin integer i, j, k, 1, m, jl, j2;
real s, t, u;

for j : = 1 step 1 until n — 1 do
begin comment   find max doomed element in row j;

jl := j + 1;    j2:= j+2;
1 := jl;    s := abs(A[j,jl]);
for k : = j2 step 1 until n do

begin t : = abs(A[j,k]);   if t > s then
begin 1 : = k;   s : = t end

end;
comment   Interchange rows and columns j+1,1;
if 1 > jl then

begin for k : = 1 step 1 until n do
begin t := A[k,jl];   A[k,jl] := A[k,l];

A[k,l] : = t end k;
f or k : = 1 step 1 until n do

begin t := A[jl,k];   A[jl,k] := A[l,k];
A[l,k] : = t end k

end if;
comment   Are doomed elements negligible?;*

* In more recent programs we use s S eps X sa where sa = maxi (abs (A [j, i])), i =  1,
■J-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



476 BERESFORD   PARLETT

if s S eps X min(abs(A[j,j]), abs(A[jl,jl])) then
begin 1 : = 0;

for k : = j2 step 1 until n do A[j,k] : = 0;
go to L

end;
t := A[j,jl];
for k : = j2 step 1 until n do A[j,k] : = A[j,k]/t;
comment   update row j+1 ;

L : for i : = 1 step 1 until n do
begin u : = 0;   m : = min(j,i—2);

if 1 = 0 then go to D2;
Dl:      for k : = j2 step 1 until n do u : = u + A[k,i] X A[j,k];
D2:      for k : = 1 step 1 until m do u : = u - A[k,i] X A[jl,k+1];

A[jl,i] : = A[jl,i] + u
end i;

INT[j] : = 1;
end j;
INT[n] : = 0;
end Tringle;

procedure Laguerre (eps,nl,u,v,A,RTR,RTI); value eps, nl, u, v; integer nl,
u, v;    real eps;   array A, RTR, RTI;

comment A is an almost triangular real matrix. This procedure uses the principal
submatrix of A from A[«,w] through A[v,v] and calculatesmin(v—u+l,nl — u+l)
of its eigenvalues to be stored in vectors RTR and RTI containing, respectively,
the real and imaginary parts. It is assumed that no A[t',¿-(-l] = 0. The integer
mark tells which convergence test was passed by the eigenvalues, eps is a small
tolerance. Procedures max, min, and comsqrt enter as non-local identifiers. A local
procedure Evaluate is declared below. ;

begin
integer j, q, mark, tally;
Boolean slow, once, vnear;
real sir, sli, s2r, s2i, dr, di, er, ei, dl, d2, newdelta, newrate, oldelta, oldrate,

eigsuml, eigsum2, spurl, spur2, x, y, deltax, deltay, d, cap, cup, g, h, t, zz;

procedure   Evaluate;
comment Hyman's method is used in evaluating the logarithmic derivatives si

and s2 of the characteristic polynomial of the given submatrix of A, removing
the contribution of eigenvalues already found. Important: eps, u, v, q, A, RTR,
RTI, x, y, sir, sli, s2r, s2i, mark, and vnear enter as non-local entities, as do
procedures mod, scale, and overflow;

begin integer i, j, k, m, s;
real qlr, qli, q2r, q2i, d, dl, d2, t, tlr, tli, t2r, t2i, r;
array P[l:6,u:v4-l],B[l:6];

mark : = 0;   vnear : = false;
P[l,u] : = 1.0;   for j : = 2 step 1 until 6 do P[j,u] : = 0;
if abs(y) < abs(x) X eps then begin y : = 0;    m : = 3 end
else m : = 6;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE  MATRIX  EIGENVALUE   PROBLEM 477

El : for k : = u step 1 until v do
for j : = 1 step 1 until m do

begins := sign (3.5—j);
r : = - x X P[j,k] + y X s X P[j+3 X s,k] -

(if j = 1 then 0 else mod(j-l,3) X P[j-l,k]);
for i : = u step 1 until k do
r := r + P[j,i] X A[k,i];
if overflow then go to EO;
P[j,k+1] : = ifk = v then reise -r/A[k,k+l]

end j;
for j : = 1 step 1 until m do B[j] : = P[j,v+1];
for k : = m + 1 step 1 until 6 do B[k] : = 0;
comment   Scale down B to prevent B\i] X B\j] going out of range;
scale (B,l,m);
comment   Find the contributions ql, q2 to si, s2 of the eigenvalues already found.

Then compute il : = P'/P, ¿2 : = P"/P and hence si and s2;
qlr : = qli : = q2r : = q2i : = 0;    t : = x Î 2 + y T 2;
for j : = u step 1 until q do

begin dl : - RTR[j] - x;   d2 : = RTI[j] - y;
d := dit2 4- d2Í2;
if d á t X eps î 3 then begin vnear : = true;   go to E2 end;
dl   : = dl/d;   d2 : = - d2/d;
qlr : = qlr + dl;    qli : = qli + d2;
q2r := q2r + dl T 2 - d2|2;
q2i : = q2i + 2 X dl X d2

end j;
if (abs(q2r) + abs(q2i)) X t X eps f 2 ^ 1 then vnear : = true;
dl : = B[l] Î 2 + B[4] | 2;   d2 : = B[2] Î 2 + B[5] Î 2;
if dl g d2 X t X 100 X eps Î 4 then go to E2;
tlr : = B[2]/B[l];   tli : = 0;   t2r : = B[3]/B[l];    t2i : = 0;
if y ^ 0 then begin tlr : = (B[2] X B[l] + B[5] X B[4])/dl;

tli := (B[5] X B[l] - B[4] X B[2])/dl;
t2r : = (B[3] X B[l] + B[6] X B[4])/dl;
t2i : = (B[6] X B[l] - B[4] X B[3])/dl

end if;
sir : = tlr + qlr;   sli : = tli + qli;
s2r : = tlr î 2 - tli î 2 - t2r - q2r;
s2i : = 2 X tlr X tli - t2i - q2i;
go to E3;

E0:P[l,u] := P[l,u] X l.Oio-lO;
if P[l,u] = 0 then begin t : = 0.9 X (k-u)/(v-u+l);   P[l,u] : - 1.0;

x:=tXx;   y:=tXy end;
overflow : = false;   go to El;

E2: mark := 1;
E3: end Evaluate;

comment   Start Laguerre;
once : = slow : = vnear : = false;   q : = u — 1;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



478 BERESFORD   PARLETT

tally : = eigsuml : = eigsum2 : = cap : = cup : = zz : = 0;
oldelta := oldrate := 1.0;
for j : = u step 1 until v—1 do cup : = cup + abs(A[j,j + l]);
cup := cup/(v—u+1);
comment    Find the traces of A and A f 2 ;
spurl : = A[u,u];    spur2 : = spurl f 2;
for j : = u + 1 step 1 until v do

begin t : = A[j,j];
spurl : = spurl + t;
spur2 := spur2 + t|2 + 2 X A[j-l,j] X A[j,j-1]

end j;
comment   Use the iterate of infinity in obtaining an initial approximation;
LI : sir : = eigsuml — spurl ;

s2r : = spur2 — eigsum2;
if abs(slr) + abs(s2r) ^ eps X zz then

begin y : = 0; x : = cup;   go to Hy end if;
dr := (v-q-1) X ((v-q) X s2r - sir | 2);
er : = sqrt(abs(dr));
if dr < 0 then begin x : = —slr/(v—q); y: = er/(v—q) end
else begin y : = 0;   x : = —(sir -f- (if sir ^ 0 then er else — er))/(v—q)

end;
if q = 0 then begin x:=2Xx;   y:=2Xy end;

Hy: Evaluate;
if mark = 1 then go to L5 ;
tally : = tally +1;    g : = v - q;
L2: if abs(y) > newdelta then begin sli : = sli + 1/(2 X y);

s2r := s2r + 1/(4 Xyî2);
g := g - 1

end if;
comment    Compute Laguerre's formula: new : = old — g/(sl+d f (1/2));
if slow then h : = 0.5 X (g—2) else h : = g — 1;
dr : = h X (g X s2r-slr ] 2+sli | 2);
di : = h X (g X s2i-2 X sir X sli);
if di = 0 then begin t : = sqrt(abs(dr));

er : = max(0,sign(dr) X t);
ei : = max(0, — sign(dr) X t)

end
else comsqrt(dr,di,er,ei) ;
if (sir X er + sli X ei) < 0 then begin er : = —er;   ei : = —ei end;
dl : = sir + er;   d2 : = sli + ei;   t : = dl |2 + d2 | 2;
deltax : = —g X dl/t;    x : = x + deltax;
deltay : = g X d2/t;   y : = y + deltay;
newdelta := abs(deltax) + abs(deltay);
newrate : = newdelta/oldelta;
d : = abs(x) + abs(y);    zz : = max(d, eps X cap);
if tally ú 3 then go to Lt;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX  EIGENVALUE   PROBLEM 479

comment   test for cycle;
if (newdelta 2ï max (3 X oldelta, .5Xd)) then

begin oldelta : = cup;    oldrate : = 3.0;
go to if tally ^ 15 then LI else L5

end;
comment   if the iterates seem linear after 3 iterations it is assumed to be due to a

double root;
if newrate ^ .8 X oldrate then

begin mark : = 3 ;
if newdelta < eps f 2 X 100 X zz then go to L4;
if -i slow then begin x : = x — deltax;   y : = y — deltay;

slow : = true ;   go to L2
end

else slow : = false;   go to L3
end if;

comment   Test for an eigenvalue and at L4 test for a complex approach to a real
eigenvalue;

Lt: mark : = 2;   if newdelta < eps X zz then go to L5;
L3: oldelta := newdelta;   oldrate := newrate;
go to if tally > 15 then L4 else Hy;
L4 : slow : = false ;

if (y = 0)V(abs(y)X(abs(slr)-r-abs(sli))^l)V once then go to L5;
once : = true ;   y : = 0 ;   go to Hy ;

comment   Accept x + y \/—1 as an eigenvalue;
L5:q:=q+1;    RTR[q] : = x;

if abs(y) < .01 X eps X zz then y : = 0;    if q = u then go to L6;
if 0 < RTI[q-l] then begin RTI[q] : = y : = -abs(y);   go to L7 end;

L6:RTI[q] : = y : = +abs(y);
L7: cap : = max(d,cap);   tally : = 0;   oldelta : = oldrate : = 1 ;

once : = false ;
eigsuml : = eigsuml + x;
eigsum2 : = eigsum2 + x f 2 — y f 2;
if q è nl then go to FINIS;

comment   If RTI[q] > 0 then x — y \/ — 1 is the new initial approximation.
A rough conjugate complex pair of eigenvalues are made exactly conjugate;

if y > 0 then begin y : = — y;    go to Hy end;
if y < 0 then begin RTI[q-l] : = .5 X (RTI[q-l] - RTI[q]);

RTI[q] := -RTI[q-l];
RTR[q] := RTR[q-l] : = .5 X (RTR[q-l]+RTR[q])

end;
comment   A Newton step to start the next search. See Section 12 for an alternate

formula;
ifv — u — q<3V vnear then go to Ll ;
dr : = sir î 2 - sli î 2 - s2r;    di : = 2 X sir X sli - s2i;
d2 := drî2 + diî2;
if d2 = 0 then go to Ll ;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



480 BERESFORD   PARLETT

x := x- 2X(slr Xdr +sliXdi)/d2;   y : = abs(y - 2X(sliXdr-slrXdi)/d2);
go to if abs(x) + abs(y) > 2 X cap then Ll else Hy;
FINIS: end Laguerre;
procedure   Eig3 (m,n,A,RTR,RTI,eps);   value m, n, eps;   real eps;   integer m,

n;   array A,RTR,RTI;
comment   EigZ finds m(^n) eigenvalues of the real n X n matrix A and stores

the real parts in RTR and the imaginary parts in RTI. Non-local procedures
Tringle, Laguerre, and max are used. If the machine word has a mantissa of s
bits to the base b then it is recommended that eps : = 1/6 T  (s-=-2);

begin integer j, k, u, v;
real p,q,r,s,d,e,f,spura,spurb,spurc ;
integer array C[l:n];

spura : = spurb : = spurc : = 0;
for j : = 1 step 1 until n do spura : = spura + A[j,j];
Tringle (eps, n, A, C);
for j : = 1 step 1 until n do spurb : = spurb + A[j,j];
comment   Search for any zero superdiagonal elements thus finding A in reduced

form. Dispense with Laguerre for 1 X 1 and 2X2 submatrices;
u := v := 0;
Ll : if v ^ n then go to L4 else u : = v : = v + 1 ;
L2: if C[v] = 0 then go to L3;

v : = v + 1;   go to L2;
L3:ifv> u + 1

then Laguerre (eps,min(m,v),u,v,A,RTR,RTI)
else begin

if v = u then begin RTI[u] : = 0;
RTR[u] : = A[u,u]

end
else begin p : = A[u,u];    q : = A[v,v];

r := .5 X (p + q);
d := .25 X ((p-r)-(q-r))î2  +  A[u,v]XA[v,u];
s : = sqrt(abs(d));
e : = 1 — max(0, — sign(d));
f := p X q - A[u,v] X A[v,u];
RTR[u] := r + .5 X  ((p-r) + (q-r)) +  (if r^O then e

else — e) X s;
RTI[u]:= - (e-l)Xs;
d : = RTR[u] | 2 + RTI[u] î 2;
RTR[v] : = f X RTR[u]/d;
RTI[v] : = -f X RTI[u]/d;

end
end;

go to Ll ;
L4: for j : = step 1 until m do spurc : = spurc + RTR[j];
comment   spura,spurb,spurc may be written out for comparison;
end Eig3;
end

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX  EIGENVALUE   PROBLEM 481

IS. Numerical Results. We give below the results of applying the method dis-
cussed above, here called Method I, to some test matrices. For a comparison we
also used an inner product routine which accumulates the sums in double precision
for the reduction to Hessenberg form. This is Method II. On the first 4 test matrices
Method II produced results which were negligibly different from those of Method I
and only the latter will be given in these cases.

The program was coded in FORTRAN (see SHARE ref. 1373) and run on the
IBM 7090 at the AEC Computing Center, New York University, New York. The
column headed 0 indicates the order in which the roots were found. The column
headed I indicates the number of iterations required.

Matrix No. 1 (Rosser [8]), 8X8.

611    196    -192
899       113

899

symmetric

407
-192
196
611

-8      -
-71      -

61
8

411    -

Trace of Hessenberg form
Time < 1.8 sees.

4039.9999.

-52
-43

49
44

599
411

-49
-8

8
59

208
208
99

29
-44

52
-23
208
208

-911
99

Correct (8 digits)

1020.0490
1020.0000
1019.9020
1000.
1000.

.098048640
0.0

•1020.0490

Computed, e = 10-4

1020.0500
1019.9997
1019.9019
1000.0001
999.99999

.098045509
-.0000094-■

-1020.0490

1
2
3
4
5
8
7
6

9
1
6
5
1
1
3
1

4040.0 4040.0007 27

Average no. of iterations per root 3.375.
Matrix No. 2 (P. A. White [9]), 10 X 10.

[ B    2B~\
[_4B    3ßJ' B =

10"

0 10 0 0
0 0 10 0
0 0 0 10
0 0 0 0 1

0   0   0   0

Eigenvalues of A :
.5 exp (2irik/5),
— .1 exp (2irik/5),
k = 1,2, 3, 4, 5.

Trace of Hessenberg form: 0.
Computed eigenvalues were in error by less than 2 units in the last (8th) decimal
place.
Time <3 sees. Average no. of iterations per root 3.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



482 BERESFORD   PARLETT

Matrix No. 3 (Frank [4], Wilkinson [13]), 12 X 12.

12     11
11     11     10
10    10    10    9

1     1

Trace:    78.0
Time     < 9 sees.

Correct (8 digits)

32.228891
20.198988
12.311077
6.9615330
3.5118559
1.55-39887

.64350532

.28474972

.14364652

.081227659

.049507429

.031028060

Computed, e = 10~4

32.228895
20.198989
12.311077
6.9615331
3.5118560
1.5539888

.64351736

.28432775

.13838053

.071327899*

.036500148*

.020891586*

1
2
3
4
5
6
7
8
9

12
11
10

3
3
3
3
3
3
3

16
16
16
16
16

78.0 77.961279 101

Average no. of iterations per root 8.416.

Matrix No. 4 (Eberlein [3]), 16 X 16.

-LB    2B
4B    3B B = 5C

5C C =

-2222
-3322
-2042
-10    0    5

Eigenvalues: 60 ± 20i, 45 ± 15», 30 ± 10», 15 ± 5», -12 ± 4», -9 ± 3», -6 ± 2i,
-3 ± ».
Trace of Hessenberg form: 239.99999.
Sum of computed eigenvalues: 239.99999.
All eigenvalues had at least six figures correct.
The greatest error (relative and absolute) occurred in computing —9 ± 3».
-9.0000061 + 2.9999923», -9.0000055 - 2.9999945».
Time < 6 sees.
Average no. of iterations per eigenvalue 2.69.

* Imaginary part <.05. The ill-conditioning of the small eigenvalues is revealed by the
iteration count reaching its permitted maximum.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE   MATRIX   EIGENVALUE   PROBLEM 483

Matrix No. 5 (Eberlein [3]), 40 X 40.

A = 8B
-5B 4SI f C    2CI-ßj ' L4C    3Cj '

C

.7 = 1 ± V-3
Eigenvalues: 3, 6,
±1Q;, ±20/.

4D      3D]
\_-2D     -D\'

D =

-110 0 0
-10 10 0
-10 0 10
-10 0 0 1
-10    0    0    0

■15, -30, ±1.5j, ±3j, ±7.5j, ±15.7, 4, 8,  -20, -40, ±2j,

Trace of Hessenberg form:
Sum of computed eigenvalues :
Greatest   errors   (absolute   and

relative) occurred in the small
real roots

Time <
Av. no. of iterations per root

Matrix No. 6 (Parlett), 64  X 64.

Method I
-83.999968
-83.999982

3.0001076
3.9999094
5.9999073
8.0000845

.91 minutes
3.0

-[ B
4JB

2B
3B B 3C    3C

5C      C

Method II
-83.999983
-84.000007

2.9999915
4.0000106
6.0000135
7.9999872
1.1 minutes
3.0

C =
6D
82)

-2D
5D

■D
0
0

-D

D 0
D 2D
D 2D

-D D
I)

-2222
-3322
-2042
-10    0    5

j = 3 ± V-l, k = 1 ± 2 V-l.
Eigenvalues: 120m,  —40»»,  —24m, 8m, 90»»,  —30m,  —18m, 6m,  60m,  —20m,
— 12m, 4m, 30m, —10m, —6m, 2m.
m = j, k

Trace of Hessenberg form :
Sum of computed eigenvalues :
Greatest error:

No. of conjugate prs.
with errors in last p
figures

Time <
Av. no. of iterations per

root

12.000138 + 3.9997210¿:
12.000118 - 3.9997633Í:

Method I Method II
1279.9994 1279.9995
1279.9994 1279.9996

12.000018 + 3.9999665Í
11.999996 - 4.0000147»

p = 4        3 0
3      11 7
2       16 12
1 2 13

4.75 minutes        5.54 minutes
2.5 2.5

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



484 BERESFORD   PARLETT

Matrix No. 7 (Parlett), 100 X  100.
A = [ai,]; an = 0 (»' < j, with two exceptions);
aii = 101 - »'; atj = (-l)i+y+140/(» + j - 2) (»' > j).
In order to obtain a lower Hessenberg form with a minimal number of zero elements
we put an = 40/102, cs,,i0o = 40.
Eigenvalues: 100, 99, • • • , 2, 1.

Trace of Hessenberg form :
Sum of computed eigenvalues :
No. of correct digits (at least)

100, 99, 98, 97, 96
95,
88,
85,
71,
54,

89
86
72
55
1

Time
Av. no. of iterations per root

Method I
5049.9985
5049.9988

!, 7, 6, 4, 4
4
5
5
6
6

12 minutes
3

Method II
5049.9973
5049.9978

1, 7, 7, 7, 6
5
5
6
6
7

15 minutes
3

Tentative conclusion: Method II will give one more digit correct than will
Method I but at the cost of a 20% increase in computing time for matrices of order
greater than 30.

In many cases fewer iterations are required and results are slightly improved
by starting at 0 instead of oo. However this is not a safe general practice.

New York University
Courant Institute of Mathematical Sciences
AEC Computing and Applied Mathematics Center
New York 3, New York

1. J. W. Backus et al., "Report on the algorithmic language Algol 60," Numer. Math.
v. 2, 1960, p. 106-136.

2. E. Durand, Solutions Numériques des Equations Algébriques, Vol. 2, Masson et Cie,
Paris, 1960.

3. P. J. Eberlein, "A Jacobi-like method for the automatic computation of eigenvalues
and eigenvectors of an arbitrary matrix," J. Soc Indust. Appl. Math., v. 10,1962, p. 74-88.

4. W. L. Frank, "Computing eigenvalues of complex matrices by determinant evaluation
and by methods of Danilewski and Wielandt," /. Soc. Indust. Appl. Math., v. 6, 1958, p. 378-
392.

5. E. N. Laguerre, Oeuvres de Laguerre, Gauthier-Villars, Paris, Vol. 1, p. 87-103.
6. H. J. Maehlt, "Zur Iterativen Auflösung Algebraischer Gleichungen," Z. Angew.

Math. Phys., v. 5, 1954, p. 260-263.
7. B. N. Parlett, Applications of Laguerre's Method to the Matrix Eigenvalue Problem,

Tech. Report No. 21, Stanford Univ., Applied Math, and Stat. Labs., Contract Nonr 225(37),
1962.

8. J. B. Rosser et al., "Separation of close eigenvalues of a real symmetric matrix,"
J. Res. Nat. Bur. Standards, v. 47,1951, p. 291-297.

9. P. A. White, "The computation of eigenvalues and eigenvectors of a matrix," /. Soc.
Indust. Appl. Math., v. 6, 1958, p. 393-437.

10. J. H. Wilkinson, Determination of Characteristic Values and Characteristic Vectors,
Application of Advanced Numer. Anal, to Digital Computers, Summer Session, 1958, Univ. of
Michigan, Ann Arbor, Mich., p. 101-154.

11. J. H. Wilkinson, Notes on Practical Methods of Solving Linear Systems and Calculating
the Eigensystems of Matrices, National Physical Laboratory, Teddington, England, 1959.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE  MATRIX  EIGENVALUE   PROBLEM 485

12. J. H. Wilkinson, Advanced Numerical Analysis, Summer Session, 1960, Univ. of Michi-
gan, Ann Arbor, Mich.

13. J. H. Wilkinson, "Error analysis of floating-point computation," Numer. Math., v. 5,
1960, p. 319-340.

14. J. H. Wilkinson, "Stability of the reduction of a matrix to almost triangular and
triangular form by elementary similarity transformations," J. Assoc. Comput. Mach., v. 6,
1959, p. 336-359.

15. J. H. Wilkinson, The Numerical Eigenvalue Problem, Oxford Univ. Press, in prepa-
ration.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


