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Abstract In this paper, we study the following fractional differential equation
involving the Atangana-Baleanu-Caputo fractional derivative:{

ABC
aD

θ
τ [x(ϑ)− F (ϑ, x(ϑ))] = G(ϑ, x(ϑ)), ϑ ∈ J := [a, b],

x(a) = ϕa ∈ R.

The result is based on a Dhage fixed point theorem. Further, an example is pro-
vided for the justification of our main result.
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1 Introduction

Fractional differential equations are increasingly being used to model complex real-world
problems in various fields such as visco-elasticity, electromagnetic, chemistry, biology,
finance, and engineering, see ( [1–3,5–7,9,22,23,26,28]). The Atangana-Baleanu-Caputo
derivative is a fractional derivative that has recently garnered popularity due to its abil-
ity to capture the memory impact of a system being modeled. Atangana and Baleanu
first proposed the derivative in their works [10–13] as an extension of the Caputo-Fabrizio
derivative [14] to account for the non-singularity and non-locality of the kernel linked with
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chohra. This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs License (http://creativecommons.org/licenses/by-nc-nd/3.0/).



Vol. 59 (2023) Monotone Iterative Principle for Hybrid Fractional Differential Equations 80

the fractional derivative. Unlike the normal Caputo derivative, which lacks a fractional
integral, the Atangana-Baleanu derivative has a fractional integral as its anti-derivative.
Because of this property, the Atangana-Baleanu derivative has a more robust mathemat-
ical structure and a wider variety of utility in describing complicated physical systems
(see [4, 24,25]).

The Dhage iteration approach is a mathematical method for approximating solutions
to nonlinear differential equations with maxima, such as hybrid functional differential
equations and quadratic integral equations. The technique is based on an iterative pro-
cedure that converges to the solution of the problem and is based on a hybrid fixed point
theory established by Bapurao Dhage in 2014, see [15–19]. The technique has been used
to establish the existence and approximation of various kinds of differential equations,
such as neutral functional differential equations with delay and maxima, quadratic frac-
tional integral equations with maxima, and hybrid functional differential equations. For
more results, see [8, 20,21].

In [8], the authors discussed via a new version of Kransoselskii-type fixed-point theo-
rem under a nonlinear D-contraction condition (see Dhage’s version of Kransoselskii-type
fixed-point theorem [15]) the following fractional hybrid differential equation involving
the Riemann-Liouville differential and integral operators of orders 0 < λ < 1 and γ > 0:{

Dλ[x(ε)− Φ(ε, x(ε))] = Ψ (ε, x(ε), Iγ(x(ε))) , a.e. ε ∈ J, γ > 0,
x (ε0) = x0,

where J = [ε0, ε0 + `], for some fixed ε0 ∈ R and ` > 0 and Φ ∈ C(J × R,R),Ψ ∈
C(J ×R2,R). In [21], the authors considered the functional integro-differential equations
of fractional order

d%

dε%
[x(ε)− Φ(ε, x(ε))] = Ψ

(
ε,

∫ ε

0

Υ (s, xs)

)
ds, ε ∈ R+,

where 0 < % < 1, xε : R+ → R,Φ(ε, x) = Φ : R+ × R → R,Ψ(ε, x) = Ψ : R+ × R → R.
Dhage and Jadhav [20] studied the existence of solution for hybrid differential equation:{

d

d
[x(ε)− Φ(ε, x(ε))] = Ψ(ε, x(ε)), ε ∈ J,

x (ε0) = x0 ∈ R,

where Φ,Ψ ∈ C(J × R,R\{0}). In [27], Lu et al. established, under the ϕ -Lipschitz
contraction condition, the existence result for the following fractional hybrid differential
problems via the Riemann-Liouville derivative of order 0 < ξ < 1 :{

Dξ[x(ε)− Φ(ε, x(ε))] = Ψ(ε, x(ε)), a.e. ε ∈ J,
x (ε0) = x0 ∈ R,

where Φ,Ψ ∈ C(J × R,R).
In this article, we apply the Lakshmikantham monotone iterative technique to study

the following class of Atangana-Baleanu-Caputo fractional differential equation:{
ABC

aD
θ
τ [x(ϑ)− F (ϑ, x(ϑ))] = G(ϑ, x(ϑ)), ϑ ∈ J,

x(a) = ϕa,
(1.1)
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where F,G : J×R→ R are given continuous functions, ABCaD
θ
ϑ is the Atangana-Baleanu-

Caputo derivative of order θ ∈ (0, 1).

The paper is organized as follows: In Section 2, we present some useful definitions
and lemmas. In Section 3, we develop the monotone iterative technique and prove the
existence of solution for the problem (1.1) by using Dhage fixed point theorem (Theorem
2.2). In the last section, we give an example to illustrate the applicability of our main
results.

2 Preliminaries and Auxiliary results

Let J := [a, b], (b > a), be a finite interval of the real line R and C := C(J,R) be the
Banach space of all continuous functions v from J into R with the supremum (uniform)
norm

‖v‖∞ := sup
ϑ∈J
|v(ϑ)|.

Definition 2.1 ( [12,13,24,25]). Let φ ∈ H1(a, b), a < b, θ ∈ (0, 1]. The left Atangana-
Baleanu fractional derivative of Caputo type (for shot ABC) of a function φ of order θ
is defined by

ABC
aD

θ
τφ(τ) :=

Θ(θ)

1− θ

∫ τ

a

Eθ
[
− θ

1− θ
(τ − σ)θ

]
φ′(σ)dσ, (2.1)

where Θ(θ) is a normalization function satisfying Θ(0) = Θ(1) = 1 and Θ(θ) > 0, and
Eθ is the Mittag-Leffler function defined by

Eθ(z) =
n=∞∑
n=0

zn

Γ(nθ + 1)
, (2.2)

and Hp(Ω) the Sobolev space defined by

Hp(Ω) =
{
f ∈ L2(Ω) : Dβf ∈ L2(Ω), for all |β| ≤ p

}
. (2.3)

The Riemann-Atangana-Baleanu fractional derivative of a function φ of order θ is defined
by

ABR
aD

θ
τφ(τ) :=

Θ(θ)

1− α
d

dτ

∫ τ

a

Eθ
[
−θ (τ − σ)θ

1− θ

]
φ(σ)dσ (2.4)

The associative fractional integral is defined by

AB
aI

θ
τφ(τ) :=

1− θ
Θ(θ)

φ(τ) +
θ

Θ(θ)
aIθτφ(τ), (2.5)

where

aIθτφ(τ) :=

∫ τ

a

(τ − σ)θ−1

Γ(θ)
φ(σ)dσ (2.6)

is the left Riemann-Liouville fractional integral.
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Lemma 2.1. Let 0 ≤ θ < 1. Then, AB
aI

θ
τ

(
ABC

aD
θ
τφ(τ)

)
= φ(τ)− φ(a).

Definition 2.2. Let E denote a partially ordered real normed linear space with an order
relation � and the norm ‖·‖. E is regular if {xn} is a nondecreasing (resp. nonincreasing)
sequence in E such that xn → x∗ as n→∞, then xn � x∗ (resp. xn � x∗) for all n ∈ N.

Definition 2.3 (Partially continuous mapping [17, 18]). Let K : E → E a mapping.
K : E → E is called partially continuous (p.c.) at a point a ∈ E if for ε > 0 there
exists a δ > 0 such that ‖Kx−Ka‖ < ε whenever x is comparable to a and ‖x− a‖ < δ.
It is said to be partially continuous on E if it is partially continuous at any point of E.

Definition 2.4 (Chain or subset totally ordered). A non-empty subset C of E is called
a chain or totally ordered if all the elements of C are comparable.

Remark 2.1. If K is p.c. on E, then it is continuous on every chain C contained in E.

Definition 2.5 ( [16, 17]). Let K an operator on a partially normed linear space E into
itself.

(i) K is called partially bounded if K(C) is bounded for every chain C in E.

(ii) K is called partially compact if K(C) is a relatively compact subset of E for all
totally ordered sets or chains C in E.

Definition 2.6 (Partially nonlinear D-Lipschitz mapping [18]). Let (E,�, ‖ · ‖) be a
partially ordered normed linear space and K : E → E a mapping.

(i) K is said to be partially nonlinear D-Lipschitz if there is a non-decreasing
semi-continuous upper function ψ : R+ → R+ such that ψ(0) = 0 and

‖Kx−Ky‖ ≤ ψ(‖x− y‖) (2.7)

for all comparable elements x, y ∈ E.

(ii) K is called nonlinear D-contraction if it is a nonlinear D-Lipschitz with ψ(r) <
r for r > 0.

Theorem 2.2. [17] Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed

linear space such that the order relation � and the norm ‖ · ‖ are compatible in E. Let
Ψ,Φ : E → E be two nondecreasing operators such that

(i) Ψ is partially bounded and partially nonlinear D-contraction,

(ii) Φ is partially continuous and partially compact, and

(iii) there exists an element x0 ∈ E such that x0 � Ψx0 + Φx0.

Then:

(i) the operator equation Ψx+ Φx = x has a solution x∗ in E, and
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(ii) the sequence {xn} of successive iterations defined by

xn+1 = Ψxn + Φxn, n = 0, 1, . . . ,

converges monotonically to x∗.

Define a norm ‖ · ‖ and the order relation ≤ in C(J,R) by

‖u‖ = sup
ϑ∈J
|u(ϑ)|, (2.8)

u ≤ v ⇐⇒ u(ϑ) ≤ v(ϑ) (2.9)

for all ϑ ∈ J .

Remark 2.2. With the norm defined in (2.8), C(J,R) is a Banach space, and with a
partially order relation ≤ in (2.9) it is partially ordered.

3 Existence of Solutions

Definition 3.1. A function v ∈ C(J,R) is said to be a lower solution of the HFDE (1.1)
if it satisfies {

ABC
aD

θ
τ [v(ϑ)− F (ϑ, v(ϑ))] ≤ G(ϑ, v(θ)),

v(a) ≤ ϕa,
(3.1)

for all τ ∈ J .

Assumptions:

(CI) The functions F,G : J × R −→ R are continuous functions.

(CII) The functions F,G are nondecreasing functions in x for all ϑ ∈ J .

(CIII) There exist constants ∆F ,∇G > 0 such that

|F (ϑ, x)| ≤ ∆F ,

|G(ϑ, x)| ≤ ∇G,
(3.2)

for all ϑ ∈ J and x ∈ R.

(CIV) There exists a D−contraction ζ such that

0 ≤ F (ϑ, x)− F (ϑ,$) ≤ ζ(x−$),

for all ϑ ∈ J and x,$ ∈ R with x ≥ $.

(CV) The exists a lower solution υ ∈ C(J,R) of problem (1.1), that is{
ABC

aD
θ
τ [υ(ϑ)− F (ϑ, υ(ϑ))] ≤ G(ϑ, υ(ϑ)),

υ(a) ≤ ϕa.
(3.3)
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Put E = C(J,R).

Lemma 3.1. Let α ∈ (0, 1] and a continuous function H : G → R, where H(a) = 0.
Then the Cauchy problem {

ABC
aD

θ
ϑx(ϑ) = H(ϑ), ϑ ∈ J,

x(a) = ϕa,
(3.4)

has a unique solution given by

x(ϑ) = ϕa + (1− θ)ΘθH(ϑ) +
θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1H(σ)dσ, (3.5)

where Θθ :=
1

Θ(θ)
.

Theorem 3.2. Suppose that (CI)−(CV) are satisfied. Then problem (1.1) has a solution
x∗ defined on J. Moreover, the sequence {xn}∞n=0 of successive approximations :

x0(ϑ) = u(ϑ),

xn+1(ϑ) = F (ϑ, xn(ϑ)) + ϕa − F (a, ϕa) + (1− θ)ΘθG(ϑ, xn(ϑ))

+ θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1G(σ, xn(σ))dσ,

(3.6)

converges to the solution x∗.

Proof. Clearly, E is partially ordered Banach space. Consider the equivalent operator
equation

Ψx(ϑ) + Φx(ϑ) = x(ϑ),

where
Ψx(ϑ) = F (ϑ, x(ϑ)),

and

Φx(ϑ) = ϕa − F (a, ϕa) + (1− θ)ΘθG(ϑ, x(ϑ)) +
θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1G(σ, x(σ))dσ,

for ϑ ∈ J.
Step I: Ψ and Φ are nondecreasing operators.

Let x,$ ∈ E where x ≥ $. Then by hypothesis (CII) we get, for ϑ ∈ J :

x(ϑ) ≥ $(ϑ)⇒ F (ϑ, x(ϑ)) ≥ F (ϑ,$(ϑ))

⇒ Ψx(ϑ) ≥ Ψ$(ϑ).

This shows that Ψ is nondecreasing operator on E into E. And, for ϑ ∈ J, we get by
(CII),

Φx(ϑ)− Φ$(ϑ) = (1− θ)Θθ [G(ϑ, x(ϑ))−G(ϑ,$(ϑ))]

+
θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1 [G(σ, x(σ))−G(σ,$(σ))] dσ ≥ 0.
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Then, Φ is nondecreasing operator on E into E.
Step II: Ψ is a partially bounded and partially nonlinear D-contraction operator. Let

x ∈ E, then for ϑ ∈ J, we get by (CIII) :

|Ψx(ϑ)| = |F (ϑ, x(ϑ))| ≤ ∆F .

Thus,
‖ Ψx ‖≤ ∆F .

Then, Ψ is bounded on E and so partially bounded.
On the other hand, let x,$ ∈ E where x ≥ $. Then for ϑ ∈ J, by hypothesis (CIV) we
get:

|Ψx(ϑ)−Ψ$(ϑ)| = |F (ϑ, x(ϑ))− F (ϑ,$(ϑ))|
≤ ζ(|x(ϑ)−$(ϑ)|)
≤ ζ(‖x−$‖).

Then, for each x,$ ∈ E where x ≥ $, we get

‖Ψx−Ψ$‖ ≤ ζ(‖x−$‖).

Thus, Ψ is a partially nonlinear D−contraction on E and, thus partially continuous.
Step III: Φ is partially continuous.

Let C a chain in E, and {xn} a sequence of points of C in E where xn → x∗ for each
n ∈ N. By (CI) and the Lebesgue dominated convergence theorem, we have

lim
n→∞

(Φxn)(ϑ) = lim
n→∞

[
ϕa − F (a, ϕa) + (1− θ)ΘθG(ϑ, xn(ϑ))

+
θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1G(σ, xn(σ))dσ
]

= ϕa − F (a, ϕa) + (1− θ)Θθ

[
lim
n→∞

G(ϑ, xn(ϑ))
]

+
θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1
[

lim
n→∞

G(ϑ, xn(τ))
]
dσ

= ϕa − F (a, ϕa) + (1− θ)ΘθG(ϑ, x∗(ϑ))

+
θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1G(σ, x∗(σ))dσ

= (Φx∗)(ϑ),

for all ϑ ∈ J. This shows that {Φxn} converges to Φx∗ pointwise on J and and the
convergence is monotonic by the property of G.
Next, we will show that {Φxn} is an equicontinuous sequence of functions in E.
Let ϑ1, ϑ2 ∈ J be arbitrary with ϑ1 < ϑ2. Then, by (CIII) we have

|Φxn (ϑ2)− Φxn (ϑ1)|
≤ (1− θ)Θθ |G(ϑ2, xn(ϑ2))−G(ϑ1, xn(ϑ1))|

+
θΘθ

Γ(θ)

∣∣∣∣∫ ϑ2

a

[
(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1

]
G (σ, xn(σ)) dσ

∣∣∣∣
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+
θΘθ

Γ(θ)

∣∣∣∣∫ ϑ2

a

(ϑ1 − σ)θ−1G (σ, xn(σ)) dσ −
∫ ϑ1

a

(ϑ1 − σ)θ−1G (σ, xn(σ)) dσ

∣∣∣∣
≤ (1− θ)Θθ |G(ϑ2, xn(ϑ2))−G(ϑ1, xn(ϑ1))|

+
θΘθ

Γ(θ)

∫ ϑ2

a

∣∣∣(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1
∣∣∣ |G (σ, xn(σ))| dσ

+
θΘθ

Γ(θ)

∣∣∣∣∫ ϑ2

ϑ1

(ϑ1 − σ)θ−1G (σ, xn(σ)) dσ

∣∣∣∣
≤ (1− θ)Θθ |G(ϑ2, xn(ϑ2))−G(ϑ1, xn(ϑ1))|

+
θΘθ∇G

Γ(θ)

∫ ϑ2

a

∣∣∣(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1
∣∣∣ dσ +

θΘθ∇G

Γ(θ)

∫ ϑ2

ϑ1

∣∣∣(ϑ1 − σ)θ−1
∣∣∣ dσ

≤ (1− θ)Θθ |G(ϑ2, xn(ϑ2))−G(ϑ1, xn(ϑ1))|

+
θΘθ∇G

Γ(θ)

∫ b

a

∣∣∣(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1
∣∣∣ dσ +

θΘθ∇G

Γ(θ)
|Υ(ϑ2)−Υ(ϑ1)| ,

where Υ(ϑ) =

∫ ϑ

a

∣∣∣(b− σ)θ−1
∣∣∣ dσ. Since the functions ϑ 7→ (ϑ− σ)θ−1 and ϑ 7→ Υ(ϑ) are

uniformly continuous on compact J = [a, b], we have that

|Φxn (ϑ2)− Φxn (ϑ1)| → 0 as ϑ2 → ϑ1

uniformly for each n ∈ N. Then, the convergence Φxn → Φx∗ is uniform. Thus Φ is
partially continuous on E.

Step IV: Φ is partially compact.
Let C be a chain in E. We shall show that Φ(C) is uniformly bounded and equicontinuous
in E. Let x̃ ∈ Φ(C) be arbitrary. We have x̃ = Φ(x) for some x ∈ C, and by (CIII), we
get

x̃(ϑ) = |Φx(ϑ)|
≤ |ϕa − F (a, ϕa)|

+ (1− θ)Θθ |G(ϑ, x(ϑ))|+ θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1 |G(σ, x(σ))| dσ

≤ |ϕa − F (a, ϕa)|

+ (1− θ)Θθ |G(ϑ, x(ϑ))|+ θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1 |G(σ, x(σ))| dσ

≤ |ϕa − F (a, ϕa)|+ (1− θ)Θθ∇G +
Θθ∇G(b− a)θ

Γ(θ)

:= M,

for all ϑ ∈ J. Thus,
‖x̃‖ = ‖Φx‖ ≤M,

for each x̃ ∈ Φ(C). Consequently, Φ(C) is a uniformly bounded subset of E.
Let us show that Φ(C) is an equicontinuous set in E. Let ϑ1, ϑ2 ∈ J be arbitrary with
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ϑ1 < ϑ2. Then, by (CIII) we get

|Φx (ϑ2)− Φx (ϑ1)|
≤ (1− θ)Θθ |G(ϑ2, x(ϑ2))−G(ϑ1, x(ϑ1))|

+
θΘθ

Γ(θ)

∣∣∣∣∫ ϑ2

a

[
(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1

]
G (σ, x(σ)) dσ

∣∣∣∣
+
θΘθ

Γ(θ)

∣∣∣∣∫ ϑ2

a

(ϑ1 − σ)θ−1G (σ, x(σ)) dσ −
∫ ϑ1

a

(ϑ1 − σ)θ−1G (σ, x(σ)) dσ

∣∣∣∣
≤ (1− θ)Θθ |G(ϑ2, x(ϑ2))−G(ϑ1, x(ϑ1))|

+
θΘθ

Γ(θ)

∫ ϑ2

a

∣∣∣(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1
∣∣∣ |G (σ, x(σ))| dσ

+
θΘθ

Γ(θ)

∣∣∣∣∫ ϑ2

ϑ1

(ϑ1 − σ)θ−1G (σ, x(σ)) dσ

∣∣∣∣
≤ (1− θ)Θθ |G(ϑ2, x(ϑ2))−G(ϑ1, x(ϑ1))|

+
θΘθ∇G

Γ(θ)

∫ ϑ2

a

∣∣∣(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1
∣∣∣ dσ +

θΘθ∇G

Γ(θ)

∫ ϑ2

ϑ1

∣∣∣(ϑ1 − σ)θ−1
∣∣∣ dσ

≤ (1− θ)Θθ |G(ϑ2, x(ϑ2))−G(ϑ1, x(ϑ1))|

+
θΘθ∇G

Γ(θ)

∫ b

a

∣∣∣(ϑ2 − σ)θ−1 − (ϑ1 − σ)θ−1
∣∣∣ dσ +

θΘθ∇G

Γ(θ)
|Υ(ϑ2)−Υ(ϑ1)| .

Since the functions ϑ 7→ (ϑ− s)θ−1 and ϑ 7→ Υ(ϑ) are uniformly continuous on compact
J = [a, b], we have

|Φx (ϑ2)− Φx (ϑ1)| → 0 as ϑ2 → ϑ1

uniformly for each x ∈ C. Then, Φ(C) is an equicontinuous set in E. Hence Φ(C) is
compact subset of E and consequently Φ is a partially compact operator on E into itself.

Step V: υ satisfies the operator inequality υ ≤ Φυ.
By condition (CV), v is a lower solution of (1.1) defined on J, i.e{

ABC
aD

θ
τ [υ(ϑ)− F (ϑ, υ(ϑ))] ≤ G(ϑ, υ(ϑ)),

υ(a) ≤ ϕa,

for all ϑ ∈ J . By integrating of inequality

ABC
aD

θ
τ [υ(ϑ)− F (ϑ, υ(ϑ))] ≤ G(ϑ, υ(ϑ)), (3.7)

from a to ϑ, we get

υ(ϑ) ≤ F (ϑ, υ(ϑ)) + ϕa − F (a, ϕa) + (1− θ)ΘθG(ϑ, υ(ϑ))

+
θΘθ

Γ(θ)

∫ ϑ

a

(ϑ− σ)θ−1G(σ, υ(σ))dσ,

for all ϑ ∈ J. Then, υ is a lower solution of the operator equation υ = Ψυ + Φυ. Con-
sequently, Ψ and Φ satisfies all conditions in Theorem 2.2. Thus, the operator equation
Ψx+Φx = x has a solution. Furthermore, the sequence {xn} of successive approximations
defined by (3.6) converges monotonically to x∗.
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4 An Example

Consider the Cauchy problem:

ABC
0D

1
2

[
x(ϑ)− 1

100

(
x(ϑ)

10 + x(ϑ)
+ 1

)]
=

1

2
e−ϑ arctanx(ϑ), ϑ ∈ J = [0, 1], (4.1)

x(0) = ϕ0 ∈ R. (4.2)

Set

F (ϑ, x) =
1

100

(
x

10 + x
+ 1

)
,

and

G(ϑ, x) =
1

2
e−ϑ arctanx,

for all ϑ ∈ J, x ∈ R. Clearly, the functions F and G are jointly continuous and nonde-
creasing in x for all ϑ ∈ J . Then conditions (CI) and (CII) are satisfied. Furthermore,

the functions F and G satisfy the condition (CIII) with ∆F =
3

275
and ∇G =

π

4
. On the

other hand, let x,$ ∈ R where x ≥ $, and ϑ ∈ J, then:

0 ≤ F (ϑ, x)− F (ϑ,$) =
1

100

[
x

10 + x
− $

10 +$

]
=

1

10

[
x−$

(10 + x)(10 +$)

]
≤ 1

10
(x−$) = ζ(x−$),

for all ϑ ∈ J , where ζ : R+ → R+ defined by ζ(ϑ) =
1

10
ϑ < ϑ, ϑ > 0, is a D−contraction.

Then, the function F satisfies the condition (CIV).
Finally, if ϑ ∈ [0, 1], υ(ϑ) = 0 is a lower solution of (4.1). Indeed,

0 = υ(ϑ) ≤ F (ϑ, 0) + ϕ0 − F (0, ϕ0) +

(
1− 1

2

)
Θ 1

2
G(ϑ, 0)

+

1
2
Θ 1

2

Γ(1
2
)

∫ ϑ

0

(ϑ− σ)
1
2
−1G(σ, 0)dσ

≤ ϕ0 −
ϕ0

100(10 + ϕ0)
,

for some ϕ0 ∈ R. Then, the condition (CV) is true. Thus, all conditions, (CI) − (CV),
are satisfied. It follows from Theorem 3.2 that the problem (4.1)-(4.2) has a solution x∗

on J = [0, 1], which is a limit of the monotone sequence (xn), n = 0, 1, . . . , defined by

x0(ϑ) = ϕ0, for ϑ ∈ [0, 1],

where ϕ0 −
ϕ0

100(10 + ϕ0)
≥ 0 and

xn+1(ϑ) = F (ϑ, xn(ϑ)) + ϕ0 − F (0, ϕ0)

+
1

2
Θ 1

2
G(ϑ, xn(ϑ)) +

1
2
Θ 1

2

Γ(1
2
)

∫ ϑ

0

(ϑ− σ)
1
2
−1G(σ, xn(σ))dσ.
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Nasr, 20000 Säıda, Algeria
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