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ABSTRACT

Summary: We present a Markov chain Monte Carlo coalescent

genealogy sampler, LAMARC 2.0, which estimates population genetic

parameters from genetic data. LAMARC can co-estimate subpopula-

tion Q ¼ 4Nem, immigration rates, subpopulation exponential growth

rates and overall recombination rate, or a user-specified subset

of these parameters. It can perform either maximum-likelihood or

Bayesian analysis, and accomodates nucleotide sequence, SNP,

microsatellite or elecrophoretic data, with resolved or unresolved hap-

lotypes. It is available as portable source code and executables for

all three major platforms.

Availability: LAMARC 2.0 is freely available at http://evolution.gs.

washington.edu/lamarc

Contact: lamarc@gs.washington.edu

1 INTRODUCTION

Inference of population parameters (such as effective population

size, growth rate or immigration rate) from sequence data is often

done using summary statistics in order to avoid dealing with the

unknown genealogy relating the sampled sequences. Such genea-

logies are difficult to infer accurately, and nearly impossible in

cases with recombination.

The Lamarc package addresses this difficulty by approximate

integration over the space of possible genealogies using Markov

chain Monte Carlo (MCMC) sampling. This avoids both the loss

of power from using summary statistics and the difficulty of infer-

ring the true genealogy. Previous programs in the package include

COALESCE (Kuhner et al., 1995), estimating Q ¼ 4Nem and

several programs co-estimating Q and one additional type of para-

meter: FLUCTUATE (exponential growth rate) (Kuhner et al.,
1998), MIGRATE (immigration rates) (Beerli and Felsenstein,

1999), (Beerli and Felsenstein, 2001) and RECOMBINE (recomb-

ination rate) (Kuhner and Felsenstein, 2000; Kuhner et al., 2000a).
When multiple evolutionary forces act on a population, analyzing

them one at a time may lead to bias and loss of power. We have

developed an integrated program, LAMARC 2.0, which can infer

multiple forces simultaneously for greater accuracy.

Previous Lamarc package programs have performed maximum-

likelihood analysis, using the sampled genealogies to construct a

likelihood surface for the parameters of interest. LAMARC 2.0

retains this capability, but can also perform a Bayesian analysis

in which the sampler searches among parameter values as well

as genealogies.

2 ALGORITHM

2.1 Statistical approaches

LAMARC’s maximum-likelihood estimation uses a set of driving

values, working values of the population parameters, to construct

an importance sampling function which will guide the search

among genealogies. This procedure can be inefficient for finding

the maximum-likelihood estimates (MLEs) of the parameter values

unless the driving values are close to the unknown true parameters,

so the search is iterated using the previous estimates as new driving

values.

Bayesian estimation searches simultaneously among genealogies

(guided by the current working values of the population para-

meters) and among values of the population parameters (guided

by the current genealogy). Most probable estimates (MPEs) and

credibility intervals are produced by recording the parameter

values visited by the search and doing one-dimensional curve-

smoothing to obtain the posterior probability curve for each

parameter.

For both forms of analysis, LAMARC estimates parameters for

each unlinked genomic region separately, as well as a joint estimate

over all regions.

2.2 Evolutionary models

LAMARC estimates Q ¼ 4Nem, where Ne is the effective diploid

population size and m is the neutral mutation rate per site per

generation. (The estimated Q can also be interpreted in a haploid,

mitochondrial or alternative ploidy context.) It can co-estimate the

exponential growth rate g. In subdivided populations it estimates Q
and optionally g for each subpopulation, and immigration rate into

each subpopulation from each of the others. Finally, it can option-

ally estimate the overall recombination rate r ¼ c/m, where c is the
recombination chance per site per generation. Customized models

where specific rates are omitted, held constant or forced to be equal

to one another are possible for all parameters.
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3 IMPLEMENTATION

3.1 Search strategy

LAMARC 2.0 provides several mechanisms to improve its search

efficiency. Metropolis-Coupled MCMC or ‘heating’ allows auxil-

liary searches with more permissive acceptance criteria to act as

‘scouts’ for the main analysis (Geyer, 1991a). For likelihood

analyses, multiple replicated searches can be combined using

reverse logistic regression (Geyer, 1991b). For Bayesian analyses,

the Bayesian priors and the ratio of parameter change steps to

genealogy change steps can be set by the user.

3.2 Mutational models

LAMARC 2.0 offers the Felsenstein 84 (F84) and General Time-

Reversible (GTR) models for DNA or RNA data, and for SNP data

when information about the total sequence length surveyed is

available. The SNP model used is correct only if all variable

sites in the data have been captured; there will be an ascertainment

bias if SNPs were surveyed based on their presence in an external

panel. Multiple substitution rate categories (including an invariant

category) and potential autocorrelation between rates at adjacent

sites are accomodated using a hidden Markov model (Felsenstein

and Churchill, 1996).

For microsatellites, four models are available: a stepwise muta-

tion model (Ohta and Kimura, 1973); a Brownian-motion approx-

imation to the stepwise model (Beerli and Felsenstein, 2001) which

is much faster, but may be inaccurate when polymorphism is low;

a K-allele model and a mixture model of the stepwise and K-allele

models, with the mixture parameter potentially optimized based on

the data. The K-allele model is also suitable for analyzing elecro-

phoretic data.

Separate genetic regions with different forms of data (e.g. a DNA

locus and an unlinked microsatellite locus) may be combined in a

single analysis. The user must provide information on the expe-

cted relative m and/or Ne of the various regions if they differ. For

example, mitochondrial and nuclear DNA may be combined in one

analysis, but the program must be informed of the expected 4·
difference in Ne.

3.3 Haplotype uncertainty

Phase-unknown data may be used, although they are less powerful

than phase-known data. The genealogy search is extended to search

among haplotype resolutions as well, so that the estimate takes into

account haplotype uncertainty as well as genealogy uncertainty

(Kuhner and Felsenstein, 2000; Kuhner et al., 2000b).

3.4 Availability

LAMARC 2.0 is freely distributed as portable C++ source code and

as executables for Windows, Mac OSX and Linux. It provides a

utility to convert PHYLIP, RECOMBINE and MIGRATE input

files. The file converter’s graphical user interface uses a multi-

platform windowing system which works on all three major plat-

forms, but a pure text file converter is also available. The major

requirements for the use of LAMARC are availability of memory

and time. For example, estimation of recombination rate using

60 16 kb mtDNA sequences required 2 GB of memory and

3–4 weeks of workstation time. Smaller analyses will often take

1–2 days.

4 DISCUSSION

4.1 Model assumptions

LAMARC 2.0 assumes that individuals are drawn from panmictic

subpopulations and that the subpopulation structure has been con-

stant throughout the lifespan of the underlying coalescent tree. It

is not suitable for populations which have recently diverged from

a common ancestor. It assumes that the rate at which a lineage

immigrates into a population is independent of the size of both

source and recipient populations. It also assumes that exponential

growth rates and immigration rates have been constant throughout

the lifespan of the coalescent tree and that recombination rate

does not vary by position, subpopulation or with time. Finally, it

assumes that the variation being observed is neutral, though puri-

fying selection removing harmful mutations does not disrupt the

analysis much.

Violation of these assumptions will potentially result in biased

estimates and inaccurate confidence intervals.

4.2 Bayesian versus likelihood analysis

In most cases examined so far (Kuhner and Smith, manuscript

submitted) LAMARC’s Bayesian and likelihood methods produce

similar point estimates and confidence intervals. The Bayesian

method is vulnerable to a poor choice of priors, but with good

priors it may search among genealogies more efficiently, especially

in cases where one or more parameters are close to zero. Our current

curve-smoothing method does not allow the Bayesian algorithm

to assess correlation among parameters, whereas the likelihood

algorithm can. Speed requirements of the two methods are similar;

the Bayesian sampler must perform more search steps, but its

curve-smoothing is faster than likelihood maximization.

4.3 Data requirements.

LAMARC 2.0 assumes that individuals are sampled randomly

within each subpopulation, but it does not require equal sample

sizes among subpopulations.

If some subpopulations are not genetically differentiated (4Nem
much greater than one) results will be unsatisfactory. Such sub-

populations are best pooled into a single subpopulation.

A sample of 20 individuals per subpopulation is fully adequate

and results are often satisfactory with as few as eight, especially if

multiple loci are available. For estimation of any parameter except

recombination rate, adding unlinked loci will improve the estimate

more than adding individuals or lengthening sequences. For estim-

ating recombination rate, lengthening sequences or adding linked

loci are preferable.

4.4 History

LAMARC 1.0 was released in 2001. LAMARC 2.0 corrects several

deficiencies in the previous versions, particularly errors in likeli-

hood maximization and handling of multi-locus data. LAMARC 2.0

adds Bayesian analysis, the ability to constrain parameters and

new mutational models.

ACKNOWLEDGEMENTS

The author thanks the Lamarc team, including Peter Beerli,

Joseph Felsenstein, Eric Rynes, Lucian Smith, Elizabeth Walkup,

LAMARC 2.0

769



Jon Yamato and Wang Yi. Development of this program was sup-

ported by NIH grant 5R01GM51929-11 to M.K. Funding to pay the

Open Access publication charges was provided by the National

Institutes of health grant 5R01CM51929-11 to M.K.

Conflict of Interest: none declared.

REFERENCES

Beerli,P. and Felsenstein,J. (1999) Maximum-likelihood estimation of migration rates

and effective population numbers in two populations using a coalescent approach.

Genetics, 152, 763–773.

Beerli,P. and Felsestein,J. Maximum likelihood estimation of a migration matrix and

effective population sizes in n subpopulations using a coalescent approach. Proc.

Natl Acad. Sci. USA, 98, 4563–4568.

Felsenstein,J. and Churchill,G.A. (1996) A hidden Markov model approach to variation

among sites in rate of evolution. Mol. Biol. Evol., 13, 93–104.

Geyer,C.J. (1991a) Markov chain Monte Carlo maximum likelihood. In Keramidas

(ed.), Computing Science and Statistics: Proceedings of 23rd Symposium on the

Interface, Interface Foundation, Fairfax Station, pp. 156–163.

Geyer,C.J. (1991b) Estimating normalizing constants and reweighting mixtures

in Markov chain Monte Carlo. Technical Report No. 568, School of Statistics,

University of Minnesota, MN revised 1994.

Kuhner,M.K. and Felsenstein,J. (2000) Sampling among haplotype resolutions in

a coalescent-based genealogy sampler. Genet. Epidemiol., 19 (Suppl. 1), S15–S21.

Kuhner,M.K. et al. (1995) Estimating effective population size and mutation rate from

sequence data using Metropolis-Hastings sampling. Genetics, 140, 1421–1430.

Kuhner,M.K. et al. (1998) Maximum likelihood estimation of population growth rates

based on the coalescent. Genetics, 149, 429–434.

Kuhner,M.K. et al. (2000a) Usefulness of single nucleotide polymorphism data for

estimating population parameters. Genetics, 156, 439–447.

Kuhner,M.K. et al. (2000b) Maximum likelihood estimation of recombination rates

from population data. Genetics, 156, 1393–1401.

Ohta,T. and Kimura,M. (1973) Amodel of mutation appropriate to estimate the number

of electrophoretically detectable alleles in a finite population. Genet. Res., 22,

201–204.

M.K.Kuhner

770


