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The scattering of plane sound waves from an air-filled steel spherical shell submerged in water

i'r the freq-.ency band 0<k, a< 500 is studied. This analysis is based on a methodology [Ayres

et al., Int. J. Solids Struct. 23, 937-946 (1987) and G. Gaunaurd and M. F. Werby, J. Acoust.

Soc. Am. 82, 2021-2033 (1987) ] proposed that uses the exact three-dimensional equations of

dynamic elasticity to describe the shell motions and to predict its sonar scattering cross section.

This approach is valid at all frequencies, for shells of any thickness, of any (constant)

curvature, and it accounts for their fluid-loaded condition. The methodology is used to predict

the cross sections, which are later interpreted on the basis of the various resonance features

that mni;fest themselves in the frequency response. The spectral locations of these resonances

depend on the various types of elastic waves propagating along the shell, or in the surrounding

flu;d. The exact plots are geneiated for the phase (c,) velocities of these (Lamb) waves always

accounting for the curvature and fluid-loading effects present on the shell, without appeals to

plate waves or theories. Some of the dispersion plots were generated using the Donnell shell-

theory approximation, which seems to yield accurate results up to the coincidence frequency.

Aside from the broad resonance lobe present at the coincidence frequency, there is anotht C

high-frequency resonance lobe. due to a thickness-resonance effect, which was also predictzd

and displayed. A partial-wave analysis of the resonance response curve for a thin shell, around

its coincidence frequency, serves to identify the origins of the various types of observed

resonance features and to relate them to the elastic and acoustic waves that propagate along
the shell or the outer fluid. Many computer-generated graphs are displayed to illustrate the
above points.

PA.CS numbers: 43.30.Ft, 43.30.Gv, 43.40.Qi

INTRODUCTION the years that as sound waves impinge on elastic scatterers,

The study of the reflection and scattering of sound the returned echoes have features that depend on the type of

waves from submerged elastic shells. .,istitutes a problem elastic waves that get excited on the scatterer. For either an

area not only very rich in scientific and technics, challenges elastic half-space or for an elastic layer offinite thickness, the

but also of crucial importance to our employer in view of its basic waves are, respectively, the Rayleigh and the (various

connection with the sensing and the identification of sub- types of) Lamb" waves. For convex solid (or hollow) elas-

merged scatterers. Work on this subject started proliferating tic t odies immersed in fluids these waves have retained their

in the early 1960s,1.2 and over the years it has included names ior the flat case. but have been generalized 2".7 to
bare '2 and coated 3 shells of spherical' 3 and cylindrical account for the nonvanishing body curvature. It is in this

geometries, among others. context that these names are currently used. In spite of the

The methodology that we will use here to generate our fact that exact three-dimensional descriptors of the shell mo-

predictions and interpretations is a three-dimensional elasti- tions are available, 3'.' 6 the tendency to explain features in the

city approach that first appeared 6 in 1987. We will consid- sonar cross sections of submerged shells in terms of (loaded

er Ref. 6 as the first part of this work, hence, its almost or unloaded) flat plate waves or theories, still seems to con-

identical title. We have worked on this subject over the tinue. We use the predictions of our approach;5'6 (i) to ex-

years,7 -10 using either classical approaches or specific reso- plain a variety of new features that have emerged, and (ii) to

nance techniques particularly useful in the (broad) reso- compare them in some instances to the results obtained from

nance region of submerged elastic structures. We have sum- the above mentioned simpler models.

marized many of our findings 0 in reviews that extensively

cite the truly large number of contributions to this important . THEORETICAL BACKGROUND

area, from all over the world. Of particular importance are a The complete clssical and RST formulation required

series of monographs'"" and papers-'" that deal with for the study of the acoustic echoes scattered from air-filled

Rayleigh and Lamb waves. It has become undisputed over elastic shells in water has beei given in Refs. 5 and 6 for bare

1656 J. Acoust. Soc. Am. 89 (4), Pt. 1. April 1991 1656
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spherical shells, in Ref. 3 for viscoelastically coated spherical vs 0, for each value, n = 0, 1, 2.
shells, in Refs. 4 and 18 for bare cylindrical sliells, and in Ref. (viii) The angular scattering pattern of modal reson-

19 for viz'oelastically coated cylindrical shclls. The essen- ances: In this case, we generate and display

tials of this formulation art contained in the form function, If, (0, X =.X) -f(bg) (0, x xo )I vs 0, for n = 0, 1, 2,
which is given by the expression .... Herefbg) (l, Xo) is as in (ii) with o replaced by the

index n. Ifthe fixedx o isthelth resonance within the mode n,
(Ox oX [(viz., x,,), then the plot wili be proportional to the angular

pattern of a Legendre polynomial IP, (cos 0)1, and will

_1-1 j (2n + 1)AP, (cos ,9I , (1) have 2n lobes of different sizes. In the cylindrical case, this
ix o .- plot is proportional to Icos nO 1, and it still has 2n lobes now

where x k a, and the coefficients A, for the bae, air- of equal sizes. Such a plot resembles a "daisy" ora"rosetta."filled, spherical shl1 in d ater, are given by the ratios of two It is a rhodonea of 2n petals.
il1nd , ae gIt is often instructive to generate and display calcula-

6 X 6 determinants B, and D, viz., tions versus the modal index n, for fixed values of and/orx.
A,, (x) = B,, (x)/D,, (x), (2) A number of relevant cases are as follows.

where the elements of these determinants are given in Refs. 5 (ix) The response surface: Here we compute the isolated

and 6. The outer (or inner) radius of the shell is a (or b). resonances obtained after the subtraction of the appropriate

There are many ways to proceed from here on. Some of background, and display them versus n and x, in an isomet-

these are enumerated below, ric view. The calculation is done in the backscattering direc-

(i) Generaticn of the ba'ksscattering or monostaticform tion 0 = V and the pertinent display is

function: We compute and/or display: If (0 = -,x)I vs x. I f (0 = -,,x) -f~ 8 '1 (0 = -,x)1, versus n and x. This

Here we use P,, (cos ,;) = ( - 1)". could also be generated in other directions. '

(ii) Isolation of thp resonances-spectrogram: Here we (x) The spectrogram versus mode order n, at fixed fre-

compute and/or display f. (0 = -,x) -fg'(6 = ir,x) I quencies: Here we generate and display

vs x. The quantityf (v,x) is as'in Eq. (1) but with A, If (6= -,x = x 0 ) -f'8( xx) Ivs n. The frequency x

replaced by A (bsr), where I (bsg, for most metal shells in can be chosen to be a resonance frequency x,,, of the body, or

water, is the rigidone, given by: A .') = -j , (x)/h "'(x). not. This is a slice of the response surface in item (ix) at

We have often denoted these plots of isolated resonances as x = xo . Analogously, the spectrogram in item (ii) is a slice

j the "residual responses" since these residuals constitute cf the response surface in item (ix) at each integer value of n.

what is left of the form function after the suitable back- (xi) The isolated modal "residuals "displayed versus n at

grounds have been suppressed. fixed frequencies: This is analogous to item (x) but for each

(iii) The angular scattering pattern at afixed frequency: partial wave or mode n. We generate and display

We generate and display If,, (0, x = xo)l vs. Ifxo isnot a If. (0 = -,xo) - (0 = ir( ,Xo)I vs n, at fixed xo , in the

* resonance (i.e., a real root of the real characteristic equation backscattered direction 6 = i-. Here, xo can be a body reso-
F;- ((x) = Re[z,(x)) - '), then the resulting plot will b nance, x,,, or not. This plot shows the strength with which

complicated and uninformative. If xo is a (real) resonance, each mode n contributes to the resulting residual, at each

then the associated plot displays simplifying and informative chosen frequcncy x0 .

features! .9  (xii) The modal backgrounds in mode-order space n:

(iv) The (bistatic) angular scattering pattern at a fixed These often informative plots show If( ') (0 = r,xo ) I vs n,

frequency, after background subtraction: The pertinent at various fixed x = x.. Clearly, items (xi) and (xii) can be

quantity here is used to displa\ the separation of "backgrounds" and "reson-
ances" in the micle-order domain n. As a companion to itemIf.(0, X = X.o  X ) I V""0.
(vi), I f(bg' (0 = 7.x) I can also be displayed versus x for

The quantity f. rt(6.x,,) is as in Eq. (1), but with n = 0, 1, 2, ... and then such a display, together with item
x = x, = fixed, and A,, replaced by A , as in (ii). What Ivi), exhibits the separation of "backgrounds" and "reson-
was done above for the summed form function If. (0,x) I ances" in the frequency domain, which is standard since the

can also be done for the partial waves contained within it e.iPr y days of the development of the RST.s1 0

viz., (Ox) 1, for n = 0, 1, 2, ... ]. This type of partial- We have always distinguished the complex eigenfre-

wave analysis is very useful and informative. quencies i.1, roots of D,, (.R) = 0 in the complex R plane,

(v) Generation of the back-scattered partial waves: Here from the real resonances x,,,, which are roots of ieal charac-
we compute and display f(0= -,x) Ivsx, forn =0, 1,2, teristic equations, which in this case are of the type:

.... Again, P, (cos r) = (- 1). F; ' (x) = Re[zl) (x) ] - '. It is at these resonancesx,,, that
(vi) Resonance isolation within each mode or partial peaks and/or dips appear in the plots of the form functions

wave of index n: Here we compute and display versus the real variable x, and that exactly n + 1/2 wave-

If, (0 = r,x) -f5I'" (0 = ,x) I vs x in the backscattering lengths fit the shell's circumference. It is common to also
direction ir, for n = 0, 1, 2,.... Heref '(,x) is as in (ii), consider an alternative representation in the complex fre-
with oo replaced by the indek n. quency plane i, and display the complex :*genfrequency

(vii) The (bistatic) angularpattern ofa single mode n at there. Both representations have their advantages. The coin-

* fixed frequency: The pertinent quantity is If, (0, x = x0 ) plex eigenfrequencies of a metal shell in water tend to split

1657 J. Acoust. Soc. Am., Vol. 89, No.4. Pt. 1,. April 1991 G. C. Gaunaurd and M. F. Werby: Lamb and creeping waves 1657



t

into two great groups. One big set, clustered just beneath the the resulting curves would differ. The two curves would then

Re . axis, is associated with the elastic composition of the exhibit a discontinuous "kink" at the point where-the fluid-'

body. The other large set, arranged in concentric quasise- loading condition changes.

mielliptical loci, .-nd located deeper into the lower half of the (xvi) Zeto-curvature results: There have been attempts

, plane, is associated with the body shape. To obtain these at interpreting features in the scattering cross sections of

eigenfrequencies (which approximately have the resonances shells by means of results derved for flat plates. Such at-

as real part-) one only needs to solve an equation such as tempts may have been motivated by a desire to see how a

D. (x) = 0 fo i its roots R,1, and it is obvious that this can simpler model could explain a more complex situation that it

always be done without ever having to subtract "back- was not originally meant to explain. It is also conceivable

grounds" as one must do if we look at the frequency depen- that they may have been due to the difficulty involved in

dence of the form function after the subtraction of the back- implementing the more general formulation. At h;3h-fre-

ground [cf. (ii) ]. The point here is that once the resonances quencies, it is possible to estimate the phase velocities for a

are found by either approach (viz., either subtracting the shell (fluid loaded or in vacuum) by their values obtained for

appropriate background, or without ever having to talk aplate, by means of the conversion:

about backgrounds by solving for the roots of a characteris-

tic equation), they can be used to construct dispersion plots x = k, anz 2- U(01.. (4)

for the phase or group velocities of the (surface) elastic c, I - b/a

waves that the resonances generate around the scatterer. If This relation converted the frequency-thickness products at

we obtain the roots of D, (.) = 0 in the (complex) x- p'ane, which certain modes (or branches) occurred in a flat plate,

then their real parts turn out to be close to the resonances,
and their imaginary parts, to their widths. If the resonanceswere
are isolated by means of the spectrogram in item (ii), then present for shells. It is at high frequencies that the shell -ize
arei ithsa b mea ofr the pom in itept t the becomes large compared to a wavelength, and that curvature
their widths can be read from the plot. We repeat that the effects become negligib!e. The approximation in Eq. (4) fails
resonances thus found, exactly coincide with the real roots atfeowsfrequenie. The p protim ation of ell for-x,, of the (real) characteristic equation at low frequencies. The present implementation of shell for-

x of Re (al) cThaacterhati t Reqution a mulations (cf., Refs. 5 and 6), is valid at all frequencies, and
F = e[z ) -  Ththus, it brings out the features present in all spectral regions.
only approximately equal to the x, does not imply arbitrari- In what follows, we will always use our shell formula-

ness in the way the x,, are determined. tion (Refs. 5 and 6). It will always account for exterior/in-
* (xiii) Dispersion curves for the phase velocities c ' of the terior fluid-loading effects, as well as for the precise shell

surface waves: They are found from the x, by the relation: curvatures. The snell deformations are described by the (ex-

D/c i =xtei/(n + 1/2). act) three-dimensional equations of elasticity-as opposed

(xiv) Dispersion curves for the group velocties ct of the to the many existir.g "shell theory" approximations-and it

surface waves: They are found from: will nowhere need estimates based on flat-plate theories or

cigl/c, = I/Re[dn,(x)/dx],wherec, isthesound-speed in effects. Hence, our results will be valid for all shell thick-

the outer medium. Analogous expressions exist' for the nesses, curvatures, and in all frequency bands, whether there

phase and group attenuation "constants" for the waves re- is fluid loading or not.

volving around the scatterer. In connection to the fluid-loading effects, it has been

(xv) Results in vacuum versusfluid-loaded results: All repeatedly' 8 stated that the dispersion curve for the zeroth-

the results discussed above are usually found with the exact order antisymmetric Lamb wave, A, propagating in a

formulation in Refs. 5 and 6, which accounts for the influ- spherical shell in a fluid -tarts to be excited for cp>c,. For

ence of the outer and inner fluids. A formulation for shells in c <c, there seems to be no A, branch, and what seems to

a vacuum could be extracted from the abovt. formulation exist then is a section of the dispersion curve corresponding

simply by settingp, = 0 andp, = 0. This would imply that to the "fluid-loaded" case, sometimes called the A branch.

the elements d,,, d16 , and A * (of Ref. 6) vanish. Such a This segment seems to be a discontinuous or disjointed ex-

result would be unrelated to a scattering situation and would tension of the A. curve toward the low-frequency end of the

be useful only to describe the vibration of unloaded elastic spectrum. See below.

bodies. In this case, it follows that In connection to curvature effects it also follows that at

A,(x) A ("'") low frequencies not only are there resonance effects due to
the A., A, and So waves, but also to an additional curvature

j, (x) wave. This curvature wave is missed if plate theory app-. oxi-

h r(x) x)-1 mations are used to predict resonance locations. This wave

fine - cosx (n~ =0,2,4,...) causes the breathing mode vibration of the shell, and it is the

'  n n ,(3) shell counterpart of the interface wave responsible for the
- iPe-sinx (n = 1,3,5,...). giant (monopole, n = 0) resonanceb ofan air bubble i wa-

These shell results account for the precise curvature of the ter. For a shell, this resonance is not giant but just large, and

shell in a natural way, whether it is fluid loaded or in a vacu- it consists of about half a dozen multipole modal compo-

um. It is obvious that ifsomeshell feature such as a branch of nents (as can be seen in Fig. 3) or its enlargements. (See the

a dispersion plot for a phase velocity were to be displayed discussion of Fig. 3, below.) Hence, at low frequencies, the

accounting for, and then ignoring, the fluid-loading effects, general exact three-dimensional shell formulation presented

1658 J. Acoust. Soc. Am.. Vol. 89, No. 4, Pt. 1. April 1991 G. C. Gaunaurd and M. F. Werby: Lamb and creeping waves 1658



in Refs. 5 and 6, and implemented here, is the only tool that 20 A42

can accurately examine arbitrary fluid-loading, curvature, P7IZ 6o 0:03 707 [

and resonance effects in any frequency band of the form a . ." ..

functions of submerged shells. '2 6023,

.... ., 1 0 11 180 140 140 160 200

K. K.

11. NUMERICAL RESULTS AND DISCUSSION z SS38 Z246417

U
1 

84063

Apartial analysis of figures analogous to Figs. 1-3 has 04153U18"already appeared3-' -' t ' -" ' in various earlier works. The 2.7769 1.2270 '

complete picture that emerges from in-depth studies of these 0,.,,.61364 .. "." 4 J

results follows in very abridged form, below. With the excep- 0"200 220 2_ !______i____"

tion of our own work, ' -" the form functions have always A 2 20,30 3 K.

been analyzed in relative narrow bands not exceeding k a

values of 100. We have now extended these bands up tok, a = 500, which allows us to see some effects never befoi e ° t

published, or even noticed. 26237 I i I, I

Figure I shows the form function of an air-filled steel 0 .o.' J I I.: .4hljjj l

shell immersed in water. The relative shell thickness is ossos ,! [I I jil1 I I'

h /a= 5%. The properties of steel are: cdI = 5.95 X 105,oo

cm/s, c,, = 3.24X 10 cm/s, P2 = 7.7 g/cm', and those of K.

water are c, = 1.4825 X 105 cm/s, p, = I g/cm'. The prop- FIG. 1. Form function f, I as obtained from Eq (1) for a spherical, air-

erties of the internal air are: p, =0.0012 g/cm3 and c, filledsteelshellofrelativethickness h/al- -b/a = 5%,immersedinwa.

0.344x l0' cm/s. Figure 2 displays the residual response ter in the (nondimensional) frequency band O<k ae500.

obtained by subtracting the rigid background over the entire

spectrum, for the same shell in water in the band

0<k, a<500. Figure 3 (top) exhibits the form function of a nondispersive, has lower speed (cf. Fig. 4), and has effects

steel shell of the same properties as before but of thickness that begin to be felt at coincidence.--6 We also note some

h /a = 2.5%, in the band 0<k, a< 100. The bottom plot low-frequency resonance features at k a -3, which are due

* shows the residual response resulting when we subtract the to the nonzero curvature of the shell. For the case of very

rigid background throughout the entire spectrum. Dips in

the upper plot become resonance peaks in the bottom plot.

These curves are obtained by the procedures labeled (i) and

(ii) in Sec. I, and the (exact) methodology of Refs. 5 and 6. -mw 7

Consider Fig. 3 for a steel shell of relative thickness S32 I II
t-h/la = 2.5% .There is a clearly visible region of "strong 5 705,4 11,. :, it!'!" il: .i I
flexures," 6 or "bump," that starts to develop at xt - , or S'.7O64 ,07 .'

in this case, for xz 4 0. The empirical condition xt- I is a • Jr-" " o I

rule of thumb that has emerged from observation of many K. K.

cases."-s (See, for example, Fig. 4 and its discussion below,

for a t = 5% shell, or Figs. 1-7 of Ref. 6.) It has its origin in 5 S

the standard coincidence 4 condition c" = c, for the A, Z • 42

wave. The frequenc) x, for which c= c, (see, for example, %,,,2  ',l 1h6,.
26 44 I ooii j

the dispersion plot for A° in Fig. 4). seems to always be such J 2 !l;o,..!I
: 371-" 

2 039g6' I
Il i '

that xt- 1. This condition depends, it general, on material 9 1 ,.

parameters through a proportionality constant C (viz., 00 20 o40 240 280 3 0 3U0 340 360 380 4

Cxi - 1 ), but for steel Cc0.8, and thus. it still follows that K. 9.

xt - I. Thus, as a rule, the region ofstrong flexures begins to

appear at the coincidence frequency. In addition there are 2

resonance peaks spaced at regular but rather broad intervals'

throughout the whole spectrum except around the coinci- 1 II

dence 5 .18" 2 freq-ency. Their separation can be read from ,

Fig. 3 to be Ax-3.5 and they aredueto theS wave, which is ,,

the only one having its effects felt over the whole spectrum.
5  , A o

Then, near coincdence (viz., 40<ka470), the spacing of
the observable resonances becomes smaller (i.e., we read

FIG. 2. Residual (or "resonance") response obtained from the form func-

4x-- 1.2) and nearly uniform. These more closely spaced tion in Fig. I for the same shell, by the subtraction of the (ordinary) rigid

and narrower spikes are due to the Ao wave, which is almost background over the entire band 04k, a<500.
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2.5%.ia water. These plotsshow the region of strong flexures around the coincidence frequency, for which c. = c,.
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well-known relation given in item (xiii) of Section I. This

. , .925 X 10 alternative procedure does not require background subtrac-

I ,SL(%INHo2 tion, but is more computationally intensive. In either case,

a o .. , . .,s , 2o L0 the result of the analysis for a t = 5% steel shell in water in
S 2 C12 0 =°26, the band, W_; ::<500, is shown in Fig. 4 (top). A detail of

2- 2(C,-C
2

1 this plot in the low-frequeacy region (dL. ed rectangle) is

27 shown in Fig. 4 (tottom). This figure contains much infor
-s 3 mation as we wiji see below. As mentioned in item (xvi),

21 ,,4 4 7, , there have been attei:,":-s at interpreting the form-function

C0 - . :' - 31 845 245 7 0 * o/,,, featu res o f sh ells in term s o f"co rrespo nd in g" resu lts fo r fl at
. 2 1 . plates. Consider the often-quoted Fig. 26 o: Brekhovskikh's4:I CR 16t 24 a. t1ar "" 112

44

15,9109

2=3 book (Ref. 12) which displays the dispersion plots for the

0o20 1 ,, O 0 0 Soo phase velocities of symmetric Sj and antisymmetric A,
( = 0, 1,2...) Lamb waves )n an aluminum plate in vacuum.

Brekhovskikh attributes this figure to Schoch" who in turn

C attrib ces it to Firestone. 6 We have recalculated it for a
tungsten carbide plate (Fig. 4, Ref. 5). Many authors have

generated it for various metals.iI" ' ' That figure shos

2 _ that at low frequencies, the A, branch tends to zero and the
So curve approaches a small constant value slightly below

L1_16 70 272- 12 the value c,, Ic,,. Figure 4 is the counterpart of that old plot,
/ now for air-filled steel spherical shells in water. In the band

* S 0 ,< k, a < 500, five branches enter the picture, namely Ao, A,

S-------------------- and 0 , S,, and S,. For shells, both the Ao and the S,

S ,, so -, , 6 branches attain very high c values at the ;ow-frequency end
,. 1 29 of the plot. Having Fig. 4, it is no longer necessary to use flat-

2 "' plate results (such as Fig. 26 of Ref. 12) to physically infer-

A- s- ,,ORNE pret resonance features in the backscattering cross sections
,, 10 20 3* -0 s ,o TO ,I o ;0 ,10 10of fluid-loaded elastic shells. In fact, Fig. 4, which corre-

sponds to the exact solution for a shell treated by three-di-

mensional elastodynanics, differs substantially at low fre-

FIG. 4 Exact dispersion plots for the phase velocities c, of the first few quencies from the equivalent (standard) results

symmetric and/or antis.mmctric Lamb waves circumnavigating a steel obtained 2 "-3 from plate theories. According to the relation

spherical shell of thickness h/a = 5%, in uater. The bottom plot is an en- in Sec. I (xiii), the phase velocities cf,(x) are proportional to
largement of the top one for tht low-frequency region enclosed in the the resonances x,,, found as roots of the pertinent character-
dashed-line rectangle. The top graph is the exact spherical counterpart of istic equation. This whole procedure is entirely contained in
the often quoted Fig. 26 of Ref. 12. for p)!ates. the frequency domain x, and is un, elated to approaches de-

veloped for the mode-order domain. The numbers marked

along the various branches ol tl.e dispersion curves corre-

thin shells, these resonance features merge to produce the spond to values of the index Iz at the various frequencies at

(monopole) breathing mode ofan air bubble in water, which which they occur. These numbers are obtained by carrying

becomes stronger and eventually giant, the thinner the shell on a partial-wave analysis of tne form function as indicated
becomes. Figures I and 2 also reveal a high-frequency fea- in items (v) and (vi) of Sec I, for various values ofthe mode

ture (viz., ka a--240) that had gone unnoticed in the past for index n. At high frequencies, Ihe Ao branch tends to the

shells of tbis thickness since it appears for k, a> 100-a re- Rayleigh speed cR. Figure 4 (bottom) shows that the A,

gion not investigated much in the past. For thinner shells, branch crosses the c = c, !eve! at the coincidence frequency,

such a broad resonance occurs at even higher frequencies near x = t - I=20, For frequencies below coincidence, the
(viz., at k, a -480 for t = 2.5%; cf. Fig. 9), as we will see Ao branch is to be replaced by the fluid-loaded branch A,

later. which here is determined from our (exact, 3-D) shell formu-

Once we have obtained the resonance locations, we can lation, '6 not from any flat-plate result.'"' Only in this fash-
use them to construct dispersion plots for the phase veloc- ion can the shell curvature (as well as fluid loading) effects

ities of the propagating (Lamb) wavis. Resonance locations be preserved and studied. The (sometimes called fluid load-

can be read from Fig. 2 or 3 (bottom), or even from Figs. I ed)A branch is notshown here (in Fig. 4),butit is known to

and 3 (top), since in these instances the resonances are quite remain always "subsonic" c < c,. The term "subsonic," or

noticeable even before isolating them by background sub- "supersonic" (c > cl ) often used to describe these phase ve-

traction. As we mentioned in Sec. I, item (xii), resonance locities, is tobe used with the understanding that thereare no

locations can also be obtained by solving for the (real) perceivable transonic effects or "sonic booms" occurring as

roots of characteristic equations such as F-'(x) these phase velocities exceed the sound speed in the medium.

=Re [z'(x)]- , and then substituting them into the It is known that phase v.-locities in analogous electromagnet-
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FIG 5. Exact dispersion plots for the phase %eociteseofthe Lamb %aves t

O4k,a<00.- Three branches of the dispersion curves (viz., those corre- li! i.i ~!U !VjV~tsponding to the A
o , 

S
o , 

and A, waves) are present in this band. The

numbers along the curves co respond to values of the nde. nlat tieevarious

frequencies.

ic instances can even exceed the speed of light in the mediumiGeFIG. 6. 0) Exact dispersion plots ofthe phase vlocities cs oftthe A and So
onLambwaves (top) propagating ina thin steel spherical shell ofh a = % in

terpartof Jungers upper branch ofeigenfrequencies found water in the band 00, a500. These are the only two branches present

by means of Donne lls s hell-theo ry equations. 8 At low fre- withinthishand. (ii) Portion ofthe residual response (bottom ofthe same

quencies, the Donnell theory results do not differ much from shell in the band 4000^500. Notice how "clearly" are the resonance

the exact 3-D elasticity results given in Fig. 4, for that peaks isolated in this plot which resulted from the s,,a-iction ofa modi-
*fied" background.

branch. Note that the exact So branch displayed in Fig. 4 has

a relatively flat shape in the enlargement (bottom), but as it

is seen in the top graph for 0<k^a500, at the higher fre-
quencies, it bends down and asymptotically approaches c ,

just as the Ao branch.
Figure 5 displays analogous results fo r a spherical steel ical derivation is lengthy and will appear elsewhere. Simple

shell in water of thicknes t = 2% in the band 0<kk a<500. observation of Fig. 6 is the best evidence of its appiopriate-

For this thickness, only three branches of the dispersion ness.

curves(viz., Ao, A , and S) are present. The others appear Figure 7 shows the dispersion plot for the phase-velocity

at still higher freq rcies. Figure 6 displays analogous re- of the A, branch for a steel spherical shell oft = I% in wa-

suits for the shell in the same band when the thickness is now ter. It coincides almost exactly with the Ao branch shown in

u = I%. Only the Ao and SO brachches are present in this case. Fig. 6 (top) which was computed using the exact 3-D for-

All that was said for the thicker shell still applies for Figs. 5 mulation ofRefs. 5 and 6. However, it wascalculated here by

and 6. The bottom part of Fig. 6 sho eds a section of the resid- means of the Donnell shell-theory equations used by

ual response in the high-frequency band 400<k,¢ a4 500 for a Junger and others. -'7 This plot is simpler and faster to gener-
t = 1% steel shell in water. In general, suppression of the ate than the one in Fig. 6 (top).

rigid background does not exactly isolate the resonances, Figure 8 shows the form equation (top) and the residual

everywhere, in a completely clean and clear fashion. The last response (bottom) of a steel shell of t = 1% in water. The

segment of Fig. 2 (400<k a<500) for the the t i 5 o srv at coind alotband 30eakt a<500, and the lower

shows the point well. Even though at high frequencies the ones have made use of the "modified" background men-
rigid background should 7 become "better," the last segment tioned above. While the form function (top) exhibits some

of Fig. 2 shows that such is not always the case. Figure 6 meaks and some dips, the "residual" response displays clear

(bottom) is displayed here merely to show that if a "modi- resonances everywhere. In fact, as stated above, these residu-

fied" background is used, the resonance-isolation process als are the isolated resonances, as predicted by the present
that results is very clean and accurate. The modified back- approach.

ground responsible for Fig. 6 does not assume the scatterer Figure 9 is analogous to Fig. 8, but the steel shell now

rigid as in many earlier RST papers, but it accounts for the has thickness = 2.5%. I e novelty is the appearance of a

matching of elastic properties oft sue the aterfluid large broad peak near k a=486. In fact, it extends from

loadings taking place at the shell's surfaces. Its mathemat- k, a = 470 to 510. This feature was seen earlier at k, a=240
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FIG. 9. Same as Fig. 8 but now for a steel shell ofithnctness 2.5%. Ile main

feature observable in this case is a large and wide resonace peak near

FIG. S. Form function (top) and residual response (bottom) for a I1% steel k, a-480. This is caused by a thickness resonance effect resulting when the

shell in water in the band 3004k, a<500. We underline the clean and clear frequency-thickness product for the shell equals either the phase velocity of

ntcure of the isolated resonances in the bottom plot, obtained via the same the pertinent Lamb wave propagating along the shell, or half the shell's
"modified" background used in Fig. 6 (ii). dilatational wave speed.
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156' ..8.4- 27r C,

0134 A. h/ c,

>11.3 > 7.1 A, which differs from Eq. (5a) in that c,, is hiow replaced by c,.
"'..6A There is also an analogous "principle of longitudinal reso-

... . S.1nance",1.
4 24 usually written as h = n(Ad/2) forn = 1, 2,

3 320 W No 3 M 40 440 460 480 500 3,..., whereAis thedilatational orlongitudinalwavelength

5.7 4., in the layer, which is easily seen to be equivalent to
kdh = nor. For n = 1, it leads to cd/ 2 =fh, or simply,S3 u. -. 4.SS

.0 ... h Ad
2

. The peak location could be now predicted by>..... •.. ~

"" • ., 2-r Cd (5c)x 44 M
.

6 X=- (5c)cz

0. .1
0401 -_____ 3.11 h__________ lta 2c,

300 320 340 360 380 400 400 420 440 460 480 60

K. K. which differs from Eq. (5a) in that c, has been replaced by
9: Cd!

2
. Substituting the values of the material parameters into

29 30 AO Eqs. (5b) and (5c) yields

>27 >28 .
6.28 x 3.24X 10'

< 26 4 2.7 x 5924 0" X 0.025 X 1.4825 X 10'

300 20o 30 30 3 40 4o 4Mo 440 ,O 4 ao SOO for Eq. (5b), and x=504 for Eq. (5c). Figure 9, which

displays our numerical prediction, shows the broad thick-
ness pea:. extending within: 470<x< 5 10, with the top of the

peak at -480. This rules out the prediction of Eq. (5b),FIG. 10. Phase velocities c, of the tt.ree Lmb waves (viz., Ao. So, and A, ) wihi 3 o ag.Hwvr tipista ohEs

that exist for k, a,<500 for a steel shell of thickness h/a = 2.5% in water, which is - 13% too large. However, it implies that both Eqs.

displayed in the band 300<ka<500. For A,,, at ka-480, we read (5a) and (5c) predict a location for the thickness resonance

-- 2.87 Km/s. peak which is in agreement with our calculations in Fig. 9 for
a steel shell. In the absence of other evidence, it seems that

the prediction of the main peak displayed in Fig. 9 is best
! given by Eq. (5a); however, that of Eq. (5c) is only

for a 5% shell in Figs. I and 2. Figure 10 displays dispersion
plots for the phase velcities of the first three Lamb waves 18/504=--3.5% away from the other, and thus, the differ-
Ao, S, andA in the band: 300vko ae500. W note Lthat near ences are small. They are close enough to each other to be
4,, Sh, and Ai the brand: 300<k a2.50Km. Th new are both "confirmed" by the calculations we have performed for
peak is caused by a thickness resonance effect present in the several other thicknesses and materials which will be shown

shell which we analyze below. This peak could be caused by elsewhere. At present, it is not clear if the location of this
the fact that the phase velocity of the propagating wave large thickness resonance peak should be determined by that

equals the frequency-thicknes~roduct (viz., for c. =J71:). of its central lobe of highest amplitude, or by that of on;. of

This condition is not due to the coincidence phenomenon, the particular subpeaks that form it (see Fig. 9). This point

although it resembles it in form. In fact, this resonance con- will be further studied by us in the future. For the case in Fig.

dition could be simply stated as: h = A, where A = c/f is 2, the phase velocity is slightly less than the values found

the wavelength of the Ao wave in the shell, of phase velocity here, so the location of the peak in Fig. 2 is about

c,. Shell motions in this situation are of a bending or flexural x-- k a = 236, as seen there. Finally, the resonance for a 1%

nature, and follow a direction through the thickness, normal steel shell in water is enlarged in Fig. II in the band

to the fluid-solid interface, as one would observe at the inci- 90<k, a < 150. It is in this band that the strong flexures begin

dence point on the shell. Such condition serves to predict the to appear at the coincidence frequency x= 100. This figure

spectral location of the large thickness resonance, since was already examined in Fig. 3(c) of Ref. 6; however, now

the various peaks in Fig. II have been identified with the

x=ka = 22ra f= 21,a c= 27 c, (5a) various mode orders n that cause them. This is done by a
c1  c1  h c, h a partial-wave analysis as described in items (v) and (vi) of

Substitution of the numerical values yields Sec. I, and used in Figs. 4-6. This partial-wave analysis
shows each one of the individual contributions to the ensem-

2 X 3.14 2.87 x =480, ble of peaks appearing in Fig. I1, and permits one to identify

1.4825 X 10'X0.025 them in that fashion. Figure 11 displays the set of resonances

just as seen in Fig. 9. There is a "principle of transverse numbered n = 107 to 126, which are separated a narrow

resonance," .1,14.24 that could also account for this peak, distance Ax - 1.2, and are due to the A-. --"- -, .,hich in the
and which is usually written as h = mA,/2 for m = 2, 4, 6, present exact formulation, always acounts for fluid loading

... where 2, is the shear wavelength in the layer. For m = 2, and shell curvature. It also displays another resonance set,

this condition is h = A,; (or equivalently, kh = mir), which spaced a wider amount, Ax- 3.5, toward the right end of the

differs from the previous resonance condition in that we now plot, which is due to the So wave, originally studied by

have 2, rather than A in the right side. This leads to c, = fh Junger 7 by means of a shell-theory approximation analo-

and to an equation to predict the peak location which is gous to the one we used in Fig. 7. Coincidence occurs near
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k, a- 108. For at= 1% shell, it should appear at x=k, a 17

-t = 100 but as we mentioned above, this relation is to "io' I
2s 123

be modified by a multiplicative factor that depends on mate- 40- . 1. 6 /ts Z 125

rial parameters and that is close to unity. The left portion of 35- 126

Fig. 11, up to ka= 125 actually shows the superposition of 0' ,
two resonance families. The flexural (antisymmetric) reso- 25-

nance family begins to appear slightly below the coincidence 20 1t010

frequency, at which point, a (forthcoming) partial-wave is-

analysis of the figure shows that the individual resonance t1"

contributions are quite broad when displayed versus ka. 05.

These flexural contributions are coherent and add in phase 0 1 22 i 0 138 146

below coincidence, but are out of phase above it so that an

envelope type of function becomes noticeable. This envelope

makes up the "bump" characteristic of this neighborhood of FIG. I1. Detail of the resonance response of a steel spherical shell of (rela-

the coincidence frequency. Superimposed on this envelope is tive) thickness h/a- I 1%, air filled, and submerged in water, in the band

a narrow resonance family due to a surface wave analogous 90ek, a< 150 in the vicinity of the coincidence frequency, at which the

to the Stoneley wave at the interface of an elastic plate fluid- strong flexures are seen to develop. The resonance peaks are labeled/num-

loaded on only one side. Alternative names for these reson- bered by the partial-wave analysis described in the text

ances are "leaky pseudo-Stoneley resonances," and also

"Junger-type resonances," and they appear near coinci-

dence. At their inception, and for the steel in Fig. 11, they

have a phase-velocity of 0.88c1, which ultimately increases pertaining to insonified shells fluid loaded on their inner and

to c, at coincidence, at which point they are essentially dissi- outer surfaces, particularly at low frequencies. This ap-

pated. In the vicinity of the coincidence frequency where proach never misses any of the many effects present in the

they occur, these two families seem to be the same, but they scattering process whether they are due to curvature, fluid

really have different origins.22 This point can be verified by loading, thickness resonances, or to choice of frequency

calculating the responses of shells to incident pulses at coin- lance

cidence, in the late-time region. This excludes the broader band.There is no need to analyze or interpret resonance fea-

flexural family (Ao) which dissipates faster in time, and per- tures in shell cross sections by means of plate waves or plate

mits the extrac.ion of the associated group velocities from vibrational theories, whether these are fluid loaded on one or

the resonance half-widths, of the Junger-type family, as was two sides, or placed in a vacuum. The tendency to do that has

reported earlier.29 A more detailed description and study of been quite popular, and it has included ourselves (cf. Fig. 4,

the partial-wave analysis that leads to Fig. I I and these re- Ref. 5). However, at present, we realize that it only obscures

suits, will appear elsewhere. Items (viii)-(xii) of Sec. I, al- the issues and introduces errors. It is clear from the present

though not used here, have been used in past resonance stud- study that only the 3-D elasticity formulation ot i 'efs. 5 andstudy that wily the used insit fortuatio oone.fs.5an
ies8 6, and will be used in future ones. 6accounts for all possible shell effects. Next best, is the use of

a shell theory approximation2 7
.
28 which will be ccurate at

least up to the coincidence frequency. As we saw in Fig. 7,

such an approach can still extract the curvature effects re-
Il. CONCLUSIONS sponsible for the high values of the phase velocities along the

A, and So branches at low frequencies. (We repeat that the

The present paper examines the featc:res in the scatter- branch we have called Ao already contains the fluid-loading

ing cross sections of air-filled sphericl steel shells in water in effects within it.) The basic explanation is that above coinci-

the band 0<k, a<500. The resonance features are then asso- dence there is an A. (Lamb) wave in the shell and also a

ciated with the Lamb waves propagating in the shell materi- correspondingA o wave in the fluid, which is transmitted to i"

al, and with other external circumferential waves propagat- by the motion of the shell. Below coincidence, the Ao

ing in the outer fluici. The presence of circumferential waves (Lamb) wave in the shell is turned off or ceases to be excited,

in the inner fluid does not manifest itself appreciably in the while its counterpart in the fluid does not. This counterpart

scattering cross sections. Having these resonance responses has to account for the presence of the surrounding fluid,

it is not hard to work backwards, 9 and be able to identify since without it, it would have no place to propagate. Thus

various properties of the scatterer such as its overall dimen- what has been termed as a (plate) A wave (that "accounts"

sion, thickness, and material composition. For example, for the fluid loading) emerges in a natural way from the

knowledge of the location of the large lobe that develops at present methodology which obviously always accounts for

the (nondimensional) coincidence frequency, x, for which the fluid loading on the (curved) shell. We remark that the

xt- 1, immediately gives the relative shell thickness t. present exact three-dimensional methodology is also avail-

Our analysis is based on an exact three-dimensional able for layered shells.3 This formul ion also leads to the

elasticity methodology that we described in Refs. 5 and 6, generation of exact dispersion plots for the phase velocities

initially implemented there, and continued here. This meth- of the various types of Lamb waves propagating on fluid-

odology is ideal to reliably analyze any scattering problem loaded spherical shells. This generalizes early plate results,
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