
Lambda Calculus

and

Intuitionistic Linear Logic

Simona Ronchi della Rocca

Università degli studi di Torino

Dipartimento di Informatica

C.so Svizzera n.185 - 10149 TORINO - ITALY.

E-mail: ronchi@di.unito.it

Luca Roversi

Università degli studi di Pisa

Dipartimento di Informatica

C.so Italia n.40 - 56125 PISA - ITALY.

E-mail: rover@di.unipi.it

1 Introduction

The Curry-Howard isomorphism 1 is the basis of typed functional programming. By means
of this isomorphism, the intuitionistic proof of a formula can be seen as a functional program,
whose type is the formula itself. In this way, the computation process has its logic realization
in the proof normalization procedure. Both the implicative fragment of the intuitionistic
propositional logic together with the simply typed λ-calculus [3], and the second order
propositional logic together with the second order λ-calculus of Girard and Reynold [8, 19]
are examples of such an isomorphism. The linear logic, introduced by Girard [9], seems to
be particularly interesting from the computational point of view. It is more refined than
the classical logic: the use of the structural rules is explicitly controlled through a modal
connective, denoted by the unary operator !. In other words, weakening and contraction
can be applied only to modal formulas. Since weakening and contraction rules are naturally
related to the operations of erasing and copying information, respectively, the linear logic can
be seen as a model for a computational environment with an explicit control of the resource
management. These features can be effectively studied using a language corresponding to
the intuitionistic fragment of the linear logic, through the Curry-Howard isomorphism.

Until now, some languages inspired by this isomorphism have been designed. First
of all, Lafont [13] defined a calculus of combinators, corresponding to the intuitionistic
linear logic (ILL in the following), where combinators were suggested from the categorical
interpretation of the logic. Then, he defined a linear abstract machine for the evaluation
of his calculus. Abramsky [1] has been the first one proposing a “linear λ-calculus”. His
language is inspired to the classical λ-calculus and it is defined using ILL as type assignment
for it. The functional language is obtained by “decorating” with terms the rules of the
sequent calculus for ILL. Abramsky also proposed an extension of the SECD machine for

1or “formulas-as-types” principle

1

evaluating his calculus in a call-by-value setting. However, the Abramsky’s language does not
realize the desired isomorphism. The language does not allow the correspondence reduction
rules/cut-elimination because normal terms which encode non-cut-free deductions do exist.
This implies the existence of some term representing different deductions which can not be
reduced each other by any cut-elimination step. All this comes from the syntax chosen to
represent the rule introducing ! on the right.

As pointed out by Lincoln and Mitchell in [14], a type assignment system for a func-
tional language should be expressed in a natural deduction way. In such a case, there is
a simple relation between the syntactic shape of a term and the structure of the deduc-
tion proving its type. The correspondence is lost in the sequent calculus because it is a
formula-driven definition of the logic. Moreover, a natural deduction formulation naturally
implies the subject reduction theorem which is a direct consequence of the closure of the
(natural) deductions with respect to substitution. Such a theorem is significant because of
its computational meaning: it says that types are preserved under reductions. Consequently,
Lincoln and Mitchell proposed a linear λ-calculus based on a natural deduction formulation
of ILL. Their proposal is based on the idea of Prawitz on logic S4 [18] and is essentially
the formulation of Troelstra [22]. The language by Lincoln and Mitchell, when restricted
to the multiplicative fragment of ILL, is linear in the sense that every free variable occurs
exactly once in a term. This makes it very difficult to deal with operations of copying and
erasing: their execution might modify the term so that the syntactic constraint fails. For
these reasons, in [14], copying and erasing operations can be executed only at the top level.
An unpleasant consequence is that the operational semantics is no more a congruence, mak-
ing it difficult to look for operational properties of the language. For solving the problem,
a further proposal has been made in [4] where only the multiplicative fragment of ILL is
studied. This new functional language is linear and, for preserving linearity constraints, the
term encoding the introduction of the modality implies that only closed terms can be com-
pletely copied/erased. The obtained operational semantics is a congruence. However, there
is a price to pay. The operational behaviour of the language is not easily understandable
because of the structural complexity of the reduction rule involving the modality. Moreover,
the big number of “commuting conversions” (originated by computationally meaningless
cuts of the logic) let the definition of an operational semantics difficult. An interesting ap-
proach to the definition of the language in [4] is that both its syntax and its operational
properties are suggested by a categorical semantics for ILL.

In this paper we present a further proposal of a language related to ILL by the Curry-
Howard isomorphism. The need of a new proposal follows from some, very general, consid-
eration.

The λ-calculus is interesting and useful, as paradigmatic language, because of its sim-
plicity. It has just abstraction and application as formation rules, and a single evaluation
rule (β-rule) which, essentially, formalizes the substitution. In the same line, a language can
be used as a paradigm for the linear intuitionistic computation, only if it preserves both the
syntactical and the computational simplicity of the λ-calculus.
The new language Λ! we are going to propose has both a simpler syntax and an easier
operational semantics than all the previous listed languages.

Λ! is a fully typed language. It is obtained as a “decoration” of the intuitionistic linear

2

proofs, given in natural deduction style. The most peculiar syntactical feature of Λ! is that
terms are built starting from two different sorts of variables, and that not only variables,
but also patterns, can be bound, in the spirit of [5]. A pattern is an expression formed
by a logic connective applied to variables 2. The two different sorts of variables correspond
respectively to modal and non modal premises. The fact that structural rules can be applied
only to modal premises reflects that terms must obey to linearity constraints only on one
sort of variables. Thanks to the use of patterns, the reduction rules, induced by the cuts of
the logics, have a uniform definition: they are all extensions of the classical β-rule, based
on pattern-matching. Consequently the computational behaviour of Λ! is very simple, and
properties of the language, like the strong normalization, for example, can be easily proved
by standard techniques.

We start from a natural deduction formulation of ILL which differs from those already
introduced in the literature. We have rules introducing two connectives at once. Because
of the behavior of our introduction rule for the modality, the substitution property holds
only partially. It can only be stated under some conditions on subderivations. The terms of
Λ! are defined as “decorations” of the proofs in this natural deduction system. The use of
variables of two sorts ensures the correct behavior of the substitution, making the language
normalizable with respect to a suitable notion of cut. The existence of two kinds of variables
allows to get a computationally sound and untyped version Λ−

! of Λ!, following what can be
done in the intuitionistic case. Namely, the Curry type assignment system can be obtained
by a “forgetful function” which erases the type information from the terms of the Church
typed λ-calculus. In the same way, Λ−

! can be written forgetting the types information of
Λ!. The two sorts of variable encode in the syntax the lost type information. Hence, the
reduction rules of Λ! can be safely updated to Λ−

! .
For studying the semantics of Λ!, a natural approach is the categorical one. A general

definition of the properties that a category must have, in order to be a model for linear
sequents, is both in [2] and [4]. The category we shall define is slightly different. We want
to model the natural deductions defining Λ!. The differences originate from the syntax of
Λ! which allows to get rid of syntactical heavyness of the previous mentioned languages.
We shall define what “intuitionistic linear category” means and we prove that every of
such categories is a model for Λ!. It turns out that every model of this kind induces an
extensional theory, also closed under a “commuting relation” which involves normal forms.
Such a relation is defined just by two clauses, because both erasure and duplication are
implicit into our language. Hence, the commuting relation is significatively simpler than the
one induced by the commuting conversions of [4].

A language similar to Λ! was presented in [23]. The language in [23] has two classes of
variables: intuitionistic and linear ones. However, the Wadler’s approach is different from
ours since his language is untyped, it encodes sequent calculus derivations and it is linear in
all variables.

The contents of the paper follow. Once recalled what the sequent calculus for ILL is in
Section 2, Section 3 introduces our system for ILL which is both in natural deduction style
and equivalent to the sequent calculus with respect to the set of provable formulas. Section 4

2
X ⊗ Y is an example of pattern

3

is devoted to the definition of the language Λ!. Further it lists the computational properties
of Λ!. Section 5 deals with the categorical model for Λ! and the properties it induces on
the language. In Section 6 a short discussion on the untyped version of Λ! and its relation
with Λ! is given. Finally, Appendix A contains the machinery needed to prove both strong
normalization and Church-Rosser theorems for Λ!.

The contents of this paper were the subject of an invited talk at the Logic Colloquium
1994 [20].

2 Intuitionistic linear logic

In this section we define the intuitionistic fragment of linear logic, using a sequent calculus
formulation.

Definition 2.1 i) Let AILL be a set of atomic formulas of ILL containing at least the
constant 1. The set FILL of well formed formulas of ILL is given as follows:

a ∈ AILL

a ∈ FILL

A, B ∈ FILL 2 ∈ {⊕,⊗, &,−◦ }

A2B ∈ FILL

A ∈ FILL

!A ∈ FILL

A formula of the shape !A, for some A ∈ FILL, will be called !-formula or modal
formula; !FILL ⊆ FILL is the set of all the !-formulas.

ii) Let ≡ be the syntactic identity on FILL.

Definition 2.2 i) A context is a finite sequence of FILL. Contexts are ranged over by
greek capital letters Γ,. . .,∆, . . .,Θ. If a context Γ contains only formulas of !FILL it
will be named by !Γ. The concatenation of Γ and ∆ is denoted by Γ, ∆.

ii) The Sequent Calculus for ILL proves sequents Γ ⊢S A where Γ is a (possibly empty)
context and A ∈ FILL. It consists of the following rules:

Γ ⊢S A A, ∆ ⊢S B

Γ, ∆ ⊢S B
(Cut)

A ⊢S A
(Id)

Γ, A, B, ∆ ⊢S C

Γ, B, A, ∆ ⊢S C
(Exchange)

Γ ⊢S A B, ∆ ⊢S C

Γ, A −◦ B, ∆ ⊢S C
(−◦ L)

Γ, A ⊢S B

Γ ⊢S A −◦ B
(−◦ R)

Γ, A, B ⊢S C

Γ, A ⊗ B ⊢S C
(⊗L)

Γ ⊢S A ∆ ⊢S B

Γ, ∆ ⊢S A ⊗ B
(⊗R)

4

Γ, A ⊢S C
Γ, A&B ⊢S C

(&Ll)

Γ ⊢S A Γ ⊢S B
Γ ⊢S A&B

(&R)

Γ, B ⊢S C
Γ, A&B ⊢S C

(&Lr)

Γ ⊢S A
Γ ⊢S A ⊕ B

(⊕Rl)

Γ, A ⊢S C Γ, B ⊢S C
Γ, A ⊕ B ⊢S C

(⊕L)

Γ ⊢S B
Γ ⊢S A ⊕ B

(⊕Rr)

Γ, A ⊢S B

Γ, !A ⊢S B
(!L)

!Γ ⊢S A

!Γ ⊢S !A
(!R)

Γ ⊢S B

Γ, !A ⊢S B
(W)

Γ, !A, !A ⊢S B

Γ, !A ⊢S B
(C)

Notation: We shall use the greek capital letters Π, Π1, Π
′, . . . for ranging over the well

formed derivations of the system ⊢S . In particular, a derivation Π proving the sequent
Γ ⊢S A will be indicated by Π : Γ ⊢S A.

The connectives of ILL can be divided into two groups: the multiplicative (−◦ , ⊗, !)
and the additive (⊕, &).

The system ⊢S is normalizing: if Π : Γ ⊢S A, then there exists a derivation Π′ : Γ ⊢S A,
in which instances of the (Cut)-rule are never used.

3 Intuitionistic linear logic in natural deduction style

In the introduction we pointed out that the definition of a term language corresponding
(through the Curry-Howard isomorphism) to ILL is strongly related to its formulation in a
natural deduction style. The main problem in designing such a formulation is the modal
connective !.
The rule (!R) of the sequent calculus is not sound for a natural deduction formulation of
ILL, since if we used it for introducing !, then the substitution property would not hold.
Consequently the natural deduction would not be normalizable. Let see an example. Sup-
pose to have a system ⊢N which is a natural deduction version of ⊢S . Assume that the
introduction of ! in ⊢N is

(!I)
!Γ ⊢N A

!Γ ⊢N !A
,

5

namely (!I) is (!R) of ⊢S . Let observe the deduction here below:

(−◦ E)
(−◦ I)

(!I) !A ⊢N !A
!A ⊢N !!A

⊢N !A −◦ !!A
(−◦ E)A ⊢N A A −◦ !A ⊢N A −◦ !A

A, A −◦ !A ⊢N !A

A, A −◦ !A ⊢N !!A

The deduction is not normal because of the conclusion of (−◦ I) is the major premise of
(−◦ E). This is a “detour” which, in the intuitionistic case, is eliminated (i) replacing the
premise !A ⊢N !A by the conclusion of the uppermost (−◦ E), (ii) dropping both (−◦ I) and
the lowermost (−◦ E). However, ILL does not admit the simplified deduction

(!I)
(−◦ E)A −◦ !A ⊢N A −◦ !A A ⊢N A

A, A −◦ !A ⊢N !A

A, A −◦ !A ⊢N !!A

because (!I) needs the impossible situation A, A −◦ !A ∈!FILL to be applied. In [14] the
problem has been solved by designing an (!I) rule explicitly encoding the substitution for the
corresponding term formation. [4] has almost the same solution. Radical different proposals
are in [15] and [16]. They are based on a notion of level to express the modal dependencies
among formulas.

Nevertheless, we will follow a further different approach. We leave the (!R) rule un-
changed, passing from the ILL expressed as a sequent calculus to our natural-deduction-like
definition, and we call it (!I). We get a system where the substitution property partially
holds: it can be stated only for derivations satisfying a particular condition. We define a
suitable notion of “cut”, taking into account this condition. The result is a normalizable
system, where the normalization is reached in an “artificial” way. This choice is made on
purpose, in view of a future decoration of the system by the language Λ!. The choice of
leaving (!R) unchanged, will allow a very natural definition of the reduction rules. Another
main difference between our formulation of ILL and the previous ones, is that our system
contains rules introducing two connectives at once, namely the pairs (⊗,−◦) and (⊕,−◦).
Therefore, both for ⊗ and ⊕ there is no an elimination rule, since this role is played, in
both cases, by the rule eliminating the connective −◦ . They have been designed for having
a uniform definition of reduction in the term language.

Definition 3.1 i) Let a context be a multiset of formulas of FILL. By abuse of notation,
we will use greek capital letters for ranging over this new notion of context. Let Γ be a
context. We shall denote by Γ∗ its restriction to FILL\!FILL and by !Γ the restriction
of Γ to !FILL. By Γ, ∆ we denote the multiset union, i.e., the union with the sum of
multiplicities.

ii) The system ⊢N proves judgments Γ ⊢N A, where A ∈ FILL, and Γ is a context. It
consists of the following rules:

A ∈ FILL

!Γ, {A} ⊢N A
(Id)

6

Γ∗, !Θ ⊢N A −◦ B ∆∗, !Θ ⊢N A

Γ∗, ∆∗, !Θ ⊢N B
(−◦ E)

Γ, {A} ⊢N B

Γ ⊢N A −◦ B
(−◦ I)

Γ, {A}, {B} ⊢N C

Γ ⊢N (A ⊗ B) −◦ C
(⊗ −◦ I)

Γ∗, !Θ ⊢N A ∆∗, !Θ ⊢N B

Γ∗, ∆∗, !Θ ⊢N : A ⊗ B
(⊗I)

Γ ⊢N A
Γ ⊢N A ⊕ B

(⊕Il)

Γ, {A} ⊢N C Γ, {B} ⊢N C
Γ ⊢N (A ⊕ B) −◦ C

(⊕ −◦ I)

Γ ⊢N B
Γ ⊢N A ⊕ B

(⊕Ir)

Γ ⊢N A&B
Γ ⊢N A

(&El)

Γ ⊢N A Γ ⊢N B
Γ ⊢N A&B

(&I)

Γ ⊢N A&B
Γ ⊢N B (&Er)

Γ ⊢N !A

Γ ⊢N A
(!E)

!Γ ⊢N A

!Γ ⊢N !A
(!I)

Let notice that the system ⊢N does not explicitly contain structural rules. Both the
weakening and the contraction are derived rules, and this property is reached by the additive
behavior of the context, when restricted to its modal part. Moreover, ⊢N and ⊢S are
equivalent, as they essentially prove the same set of judgments. Let introduce some further
notation before demonstrating such property. Let Γ be a natural deduction context, i.e, a
multiset of formulas. Γ+ denotes a sequence built on Γ. Therefore, ()+ makes Γ into a
sequent calculus context.

Property 3.1 i) If Γ ⊢N A, then Γ, !∆ ⊢N A, for every !∆.

ii) If Γ, {!B}, {!B} ⊢N A, then Γ, {!B} ⊢N A.

iii) Γ ⊢N A if, and only if, Γ+ ⊢S A, for every Γ+.

Proof.

i) and ii) By induction on the length of the derivation. The arbitrariness of the context of
(Id), in its modal part, and the additive nature of the modal contexts constitute the
keypoints to conclude the proof.

7

iii) (⇒) By induction on the length of the derivation of Γ ⊢N A.

(⇐) By induction on the length of the derivation of Γ ⊢S A, using i) and ii). Since
derivations in ⊢S are normalizing, we can consider only derivations without applica-
tions of the (Cut)-rule. In case the last applied rule is a structural rule, use i) and
ii). Cases where the last applied rule is an introduction on the right are easy. In the
cases the last applied rule is an introduction on the left, the corresponding derivation
in the system ⊢N can be built without applying the substitution on the deductions of
the system ⊢N . For example, let the last applied rule be:

Γ ⊢S A B, ∆ ⊢S C

Γ, A −◦ B, ∆ ⊢S C
(−◦ L)

By induction, ΓN ⊢N A and {B}, ∆N ⊢N C, ΓN , ∆N being the multisets correspond-
ing to Γ and ∆. By point i), ΓN , !∆N ⊢N A and {B}, ∆N , !ΓN ⊢N C. Then the
corresponding derivation in ⊢N is:

∆∗
N , {B}, !∆N , !ΓN ⊢N C

∆∗
N , !∆N , !ΓN ⊢N B −◦ C

(−◦ I)
{A −◦ B}, !∆N , !ΓN ⊢N A −◦ B Γ∗

N , !∆N , !ΓN ⊢N A
Γ∗
N , {A −◦ B}, !∆N , !ΓN ⊢N B

(−◦ E)

∆∗
N , Γ∗

N , {A −◦ B}, !∆N , !ΓN ⊢S C
(−◦E)

where ∆∗
N , Γ∗

N , !∆N , !ΓN is ∆, Γ.

The other cases of introduction on the left are similar.

2

A short remark is in order here. As Property 3.1.iii) states, ⊢S and ⊢N prove the same
judgments (modulo the different representations of the contexts). There is not a one-one
correspondence between derivations in the two systems. More precisely, a derivation in ⊢N

encodes a set of derivations in ⊢S . This because ⊢N does not explicitly contain structural
rules. A deduction of ⊢N represents derivations of ⊢S either differing from each other in the
order of applications of structural rules, or obtained by eliminating cuts involving structural
rules.

We have repeatedly stated that the substitution property partially holds for ⊢N . In the
following we shall make this claim clear. Let remind what the substitution property is for
a deductive system, say �. Let be given a main derivation Π1 : Γ, B � A and a secondary
derivation Π2 : ∆ � B. If, replacing each instance of the axioms of Π1, proving B, by Π2 we
always get a legal derivation Π : Γ, ∆ � A, then we say that the deductive system � enjoys
the substitution property.

Definition 3.2 Γ ⊢!
N A if, and only if, Γ ⊢N A and, if A ≡!B, for some B, then Γ =!Γ. A

judgment of the shape Γ ⊢!
N A will be called !-judgment.

Property 3.2 (Substitution property) The system ⊢N enjoys the substitution property
in case the secondary derivations proves a !-judgment.

Proof. By induction on the length of the main derivation. 2

8

Definition 3.3 The cuts in the system ⊢N are deductions of the following shape:

−◦ -cut

Γ∗, {A}, !Θ ⊢N B
Γ∗, !Θ ⊢N A −◦ B

(−◦ I) ∆∗, !Θ ⊢!
N A

Γ∗, ∆∗, !Θ ⊢N B
(−◦ E)

⊗-cut

Γ∗
1, {A}, {B}, !Θ ⊢N C

Γ∗
1, !Θ ⊢N (A ⊗ B) −◦ C

(⊗ −◦ I)
Γ∗

2, !Θ ⊢!
N A ∆∗, !Θ ⊢!

N B
Γ∗

2, ∆
∗, !Θ ⊢N A ⊗ B

(⊗I)

Γ∗
1, Γ

∗
2, ∆

∗, !Θ ⊢N C
(−◦ E)

⊕-cut

Γ∗, {A}, !Θ ⊢N C Γ∗, {B}, !Θ ⊢N C
Γ∗, !Θ ⊢N (A ⊕ B) −◦ C

(⊕ −◦ I)
∆∗, !Θ ⊢!

N A
∆∗, !Θ ⊢N A ⊕ B (⊕I)

∆∗, Γ∗, !Θ ⊢N C
(−◦ E)

&l-cut

Γ ⊢N A Γ ⊢N B
Γ ⊢N A&B

(&I)

Γ ⊢N A
(&El)

&r-cut

Γ ⊢N A Γ ⊢N B
Γ ⊢N A&B

(&I)

Γ ⊢N B
(&Er)

!-cut

!Γ ⊢N A
!Γ ⊢N !A

(!I)

!Γ ⊢N A
(!E)

A deduction is normal if, and only if, it has no cuts.

Theorem 3.1 The system ⊢N is normalizing, i.e., if Γ ⊢N A, then it can be proved by a
normal derivation.

Proof. The proof is quite standard. Let the degree of a cut be the number of symbols of
the formula in its major premise. Let the degree of a derivation be the pair (d, n), where d
is the maximum degree of a cut in it, and n is the number of cuts of degree d. A normal
derivation has the degree (0, 0). Let Π : Γ ⊢N A, and let Π be not normal. It must be
proved that there is Π′ : Γ ⊢N A, such that the degree of Π′ is smaller than the degree of Π.
It is easy to design an effective procedure eliminating at each step a cut of maximum degree
in Π not below cuts of maximum degree. 2

9

4 The language Λ!

In this section we introduce the typed language Λ! in the spirit of the Curry-Howard iso-
morphism. The system ⊢N is used as generator of the terms of Λ!. Namely, Λ! is defined
through a typed system ⊢, whose rules are those of ⊢N “decorated” by terms. Every term
will encode a derivation in ⊢N , proving its type.

Definition 4.1 i) Let V ar and !V ar be two distinguished countable set of variables,
ranged over, respectively, by x, y, z, and !x, !y, !z. X, Y , Z will range over V ar∪!V ar.
A basis Γ is a partial function from V ar∪!V ar to FILL, satisfying the following con-
straint: Γ(X) is a modal formula if and only if X ∈!V ar. Moreover , if Γ is a basis,
Γ∗ will be its restriction to V ar, and !Γ its restriction to !V ar. If Γ and ∆ are two
basis with disjoint domain,then Γ, ∆ is the basis such that:

Γ, ∆(X) =

{

Γ(X) if X ∈ Dom(Γ)
∆(X) if X ∈ Dom(∆)

Notice that we still make an abuse of notation, using greek capital letters for ranging
over the set of basis.

ii) The system ⊢ proves judgments of the shape Γ ⊢ M : A, where Γ is a basis and
A ∈ FILL. It consists of the following rules:

A ∈ FILL

!Γ, {X : A} ⊢ X : A
(Id)

Γ∗, !Θ ⊢ M : A −◦ B ∆∗, !Θ ⊢ N : A Dom(Γ∗) ∩ Dom(∆∗) = ∅

Γ∗, ∆∗, !Θ ⊢ (MN) : B
(−◦ E)

Γ, {X : A} ⊢ M : B

Γ ⊢ (λX : A.M) : A −◦ B
(−◦ I)

Γ, {X : A}, {Y : B} ⊢ M : C

Γ ⊢ (λX ⊗ Y : A ⊗ B.M) : (A ⊗ B) −◦ C
(⊗ −◦ I)

Γ∗, !Θ ⊢ M : A ∆∗, !Θ ⊢ N : B Dom(Γ∗) ∩ Dom(∆∗) = ∅

Γ∗, ∆∗, !Θ ⊢ (M ⊗ N) : A ⊗ B
(⊗I)

Γ ⊢ M : A
Γ ⊢ (M ⊕) : A ⊕ B

(⊕Il)

Γ, {X : A} ⊢ M : C Γ, {Y : B} ⊢ N : C
Γ ⊢ (λX ⊕ Y : A ⊕ B.M |N) : (A ⊕ B) −◦ C

(⊕ −◦ I)

Γ ⊢ M : B
Γ ⊢ (⊕ M) : A ⊕ B

(⊕Ir)

10

Γ ⊢ M : A&B
Γ ⊢ l(M) : A

(&El)

Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M&N) : A&B

(&I)

Γ ⊢ M : A&B
Γ ⊢ r(M) : B

(&Er)

Γ ⊢ M :!A

Γ ⊢ d(M) : A
(!E)

!Γ ⊢ M : A

!Γ ⊢ !M :!A
(!I)

Definition 4.2 i) M ∈ Λ! if, and only if, there are a basis Γ and a type A such that
Γ ⊢ M : A. !Λ! is the subset of Λ! whose elements either are in !V ar or have the shape
!M , for some M ∈ Λ!.

ii) For any M ∈ Λ!, the set FV (M) of its free variables is inductively given on the
structure of the terms in the following way:

FV (X) = {X}
FV (λX : A.M) = FV (M) \ {X}
FV (MN) = FV (M) ∪ FV (N)
FV (λX ⊗ Y : A ⊗ B.M) = FV (M) \ {X, Y }
FV (M ⊗ N) = FV (M) ∪ FV (N)
FV (λX ⊕ Y : A ⊕ B.M |N) = FV (M) \ {X, Y }
FV (M ⊕) = FV (M)
FV (⊕ M) = FV (M)
FV (M&N) = FV (M) ∪ FV (N)
FV (l(M)) = FV (M)
FV (r(M)) = FV (M)
FV (!M) = FV (M)
FV (d(M)) = FV (M)

Property 4.1 i) If Γ ⊢ M : A, then FV (M) ⊆ Dom(Γ).

ii) If Γ ⊢ M : A, then there exists ∆ such that ∆ ⊢ M : A and Dom(∆) = FV (M).

Proof. Both i) and ii) by induction on the length of the derivation of Γ ⊢ M : A. 2

The following property assures us that a term of Λ! correctly encodes a proof of ⊢N .

Property 4.2 (Unicity property) Let Γ ⊢ M : A. There is a unique derivation proving
this judgment.

Proof. Let proceed by induction on the length of the deduction of Γ ⊢ M : A, once proved
in the same way the lemma

11

Lemma 4.1 Let Γ ⊢ M : A. For every A′ and Γ′ such that ∀X ∈ FV (M).Γ(X) = Γ′(X),
if Γ′ ⊢ M : A′, then A is A′.

2

We think that some remark on the use of two sorts of variables is in order here. From a
logical point of view, a variable in V ar corresponds to a premise which is used exactly once.
On the contrary, a variable in !V ar corresponds to a premise either used more than once,
or not used at all. This means that, in the corresponding derivation of the system ⊢S , a
weakening or a contraction rule has been applied. In this way the language Λ! has a partial
linearity constraint on V ar. For formally expressing such a constraint, we need to introduce
some definitions.
The set {(Id), (−◦ I), (−◦ E), (⊗ −◦ I), (!I), (!E)} of rules constitutes the multiplicative
fragment of ⊢. Let Γ ⊢ M : A be derived in the multiplicative fragment. Then M will be
called a multiplicative term. It is easy to verify that M is a multiplicative term if, and only
if, it is of the shape X , P ⊗ Q, λX ⊗ Y : A ⊗ B.P , λX : A.P , PQ, !P , where P and Q are,
in turn, multiplicative. Otherwise a term is called additive.

Definition 4.3 Two subterms P and Q of a term M ∈ Λ! are said disjoint terms in M if,
and only if, both

• exists a subterm N of M having either the shape λX ⊕ Y : A ⊕ B.P ′|Q′ or the shape
P ′&Q′,

• P is a subterm of P ′ and Q is a subterm of Q′.

Property 4.3 i) Let M be a multiplicative term and X ∈ V ar.
If X ∈ FV (M), then X occurs exactly once in M .
If X is bound, then X occurs exactly once in its scope.

ii) Let M be additive and X ∈ V ar.
If X ∈ FV (M) and X occurs n > 1 times in M , then exist n pairwise disjoint terms
of M where X occurs exactly once.
If X is bound and X occurs n > 1 times in M , then exist n pairwise disjoint terms in
its scope where X occurs exactly once.

iii) FV (!M) ⊂!V ar.

Proof. All points can be proved by induction on the length of the derivation. 2

Now we introduce the reduction rules of our language. The α-rule, i.e. the rule for
renaming bound variables, is shown in the next definition. Observe that a variable can be
replaced only by another variable of the same sort.

Definition 4.4 Let M [Y/X] denote the term M where all free occurrences of the variable
X are replaced by occurrences of Y .

12

i) →α is the reduction rule defined as follows:

– (λX : A.M) →α (λY : A.M [Y/X]) ⇔ (Y 6∈ FV (M) ∧ (X ∈ V ar ⇔ Y ∈ V ar))

– (λX ⊗ Y : A ⊗ B.M) →α (λX ′ ⊗ Y ′ : A ⊗ B.M [X ′/X][Y ′/Y]) ⇔ ((X ′, Y ′ 6∈
FV (M) ∧ (X ∈ V ar ⇔ X ′ ∈ V ar) ∧ (Y ∈ V ar ⇔ Y ′ ∈ V ar))

– (λX ⊕ Y : A ⊕ B.P |Q) →α (λX ′ ⊕ Y ′ : A ⊕ B.P [X ′/X]|Q[Y ′/Y]) ⇔ ((X ′ 6∈
FV (P) ∧ (Y ′ 6∈ FV (Q) ∧ (X ∈ V ar ⇔ X ′ ∈ V ar) ∧ (Y ∈ V ar ⇔ Y ′ ∈ V ar))

ii) →∗
α is the reflexive, transitive and contextual closure of →α. =α is the reflexive,

transitive, contextual, and symmetric closure of →α.

For defining the computational rules, first we need to define the operation of substitution
of a variable by a term. Again, it is necessary to take into account that variables can be of
different sorts. So a variable in !V ar, representing a reusable resource, can be replaced only
by a modal term: the substitution turns out to be a partial function.

Definition 4.5 The substitution of a term N ∈ Λ! for a free variable X ∈ (V ar∪!V ar) in
a term M ∈ Λ! (notation M [N/X]) is a partial function so defined:

M [N/X] = if (X ∈!V ar ⇔ N ∈!Λ!)
then the usual capture free substitution, using the α-rule of the definition 4.4
else undefined.

We will denote by M [N1/X1, . . . , Nn/Xn] the simultaneous substitution of every Ni for
all the free occurrences of xi in M , minding the agreement of the sorts.

The substitution property holds for Λ!.

Property 4.4 (Substitution property) If Γ∗, !Θ, {X : A} ⊢ M : B and ∆∗, !Θ ⊢ N : A
and M [N/X] is defined, then Γ∗, ∆∗, !Θ ⊢ M [N/X] : B.

Proof. By induction on the length of the derivation of Γ∗, !Θ, {X : A} ⊢ M : B. 2

The reduction rules for Λ! are given in next definition. As it can be easily checked, every
reduction corresponds to a cut, according to Definitions 3.3 and 4.5.

Definition 4.6 i) Let → denote the reduction rule defined as follows:

• (λX : A.M1)M2 → M1[M2/X] if M1[M2/X] is defined;

• (λX1 ⊗ X2 : A ⊗ B.M)(M1 ⊗ M2) → M [M1/X1, M2/X2] if M [M1/X1, M2/X2]
is defined;

• (λX ⊕ Y : A ⊕ B.M1|M2)(M ⊕) → M1[M/X] if M1[M/X] is defined;

• l(M1&M2) → M1;

• r(M1&M2) → M2;

13

• d(!M) → M ;

ii) →∗ is the contextual, transitive and reflexive closure of →. ≈ is the contextual, tran-
sitive, reflexive, and symmetric closure of →. The contextual and transitive closure of
→ is →+.

The subject reduction is the key property for a type system of a language.

Theorem 4.1 i) (Subject reduction) If Γ ⊢ M : A and M → N , then Γ ⊢ N : A.

ii) The terms of Λ! have a normal form.

Proof.

i) By induction on the the structure of M , using both Substitution and Unicity proper-
ties.

ii) The proof follows from the normalizability of ⊢N and the definition of the reduction
rule for Λ!.

2

Moreover, Λ! has all the good properties we would like it had.

Theorem 4.2 i) The terms of Λ! are strongly normalizable.

ii) The rewriting system → enjoys the Church − Rosser property.

Proof. Both i) and ii) will be proved in Appendix A. 2

5 Categorical model for Λ!

In this section we will give the denotational semantics of Λ! in a categorical setting. Because
of the way Λ! was constructed, a model for it is a model for derivations in the system ⊢N .
Let define a suitable category for Λ!, based on [4].

Definition 5.1 An intuitionistic linear category C is a category such that:

• C is monoidal symmetric with respect to the bifunctor ⊗. The unit of ⊗ is 1.

• C is closed with respect to the bifunctor −◦ , i.e., for all a, b, c ∈ ObjC, there exists a
natural isomorphism Λ : HomC(a ⊗ b, c) → HomC(a, b −◦ c).

• C is cartesian and co-cartesian.

• C is enriched by a symmetric monoidal comonad (!, δ :! →!!, ε :! → IdC, mA,B, m1)
such that:

14

– if 1 : C → C denotes the constant functor, then there exist two natural transfor-
mations E :! → 1 and D :! →! ⊗! such that, for all a ∈ ObjC, (!a, Da, Ea) is
a commutative comonoid.

– δ is an element of (⊗)-coalgC((!a, Da), (!!a, D!a)) and

1-coalgC((!a, Da), (!!a, D!a)).

In the following, for a better reading, we shall drop subscripts and superscripts on the
morphisms of C, when they are clear from the context.

Let us notice that the linear category just introduced is slightly different from the cate-
gory defined in [4] for interpreting sequents of ILL. As already remarked in the introduction,
the differences originate from the syntax of Λ! which is simpler than those already proposed.

Notations Let ObjC be ranged over by a, b, c,

• For all f : c → a and g : c → b, we shall name 〈f, g〉 the unique arrow such that the
diagram of the cartesian product commutes:

c

�
�

�
��	

f
@

@
@

@@R

g

p

p

p

p

p

p

p

p

p

p

p?

〈f,g〉

a a × b b�
pl

a,b

-
pr

a,b

• For every f : a → c and g : b → c, we shall name f |g the unique arrow such that the
diagram of the cartesian coproduct commutes:

a a + b b-
inl

a,b

�
inr

a,b

c
p

p

p

p

p

p

p

p

p

p

p

6
f |g

@
@

@
@@I

f

�
�

�
���

g

• For every f : (a ⊗ b) → c, we name evb,c the evaluation map such that the following
diagram commutes:

a ⊗ b
p

p

p

p

p

p

p

p

p?

Λ(f)⊗idb

c-f

b −◦ c ⊗ b
�

�
�

�
��3

evb,c

15

• For every a, b ∈ ObjC, ma,b :!a⊗!b →!(a ⊗ b) and m1 : 1 →!1 are the maps making ! a
monoidal functor and δ and ε monoidal natural transformations.

• We call a⊗(b+c) the natural isomorphism between a⊗ (b + c) and (a⊗ b) + (a⊗ c). It
exists because a ⊗ is left adjoint to a −◦ and, therefore, a ⊗ preserves all colimits
of C.

In next definition, we introduce some morphisms useful for defining the interpretation of
a term in a simple and concise way, while preserving its correctness.

Definition 5.2 • For all a1, . . . , an ∈ ObjC and for every permutation σ of the sequence

1, . . . , n, we call exca1⊗...⊗an

aσ(1)⊗...⊗aσ(n)
the natural isomorphism between a1 ⊗ . . . ⊗ an and

aσ(1) ⊗ . . . ⊗ aσ(n). The isomorphism exists because of the definition of intuitionistic
linear category.

• Let !ObjC be the subset of ObjC containing objects with shape !a, for some a ∈ ObjC.

• Let iso1⊗1 be the isomorphism between 1 and 1 ⊗ 1. We define the map

D∗
a1⊗...⊗an,b1⊗...⊗bm

: a1 ⊗ . . . ⊗ an → b1 ⊗ . . . ⊗ bm as follows:

D∗
1,1⊗1 = iso1⊗1

D∗
a,a = ida if a 6∈ (!ObjC ∪ {1})

D∗
!a,!a⊗!a = Da

D∗
a1⊗...⊗an−1⊗an,b1⊗...⊗bm⊗an

= D∗
a1⊗...⊗an−1,b1⊗...⊗bm

⊗ idan
if an 6∈!ObjC

D∗
a1⊗...⊗an−1⊗!an,b1⊗...⊗bm⊗!an⊗!an

= D∗
a1⊗...⊗an−1,b1⊗...⊗bm

⊗ Dan

• Let Hγ
γ′ : γ → γ′ be an abbreviation for excδ

γ′ ◦ D∗
γ,δ.

• Let a1, . . . , an be objects of C. Suppose that, for all i ∈ I ⊂ {1, . . . , n}, ai ≡ 1 and,
ak 6≡ 1, for all k ∈ K = {1, . . . , n} \ I.

Let iso⊗k∈Kak
be the natural isomorphism between a1 ⊗ . . . ⊗ an and

⊗

k∈K ak.

We call Πj
a1⊗...⊗an

: a1 ⊗ . . . ⊗ an → aj the morphism

isoaj
◦ (

⊗j−1
i=1 Eai

⊗ idaj
⊗

⊗n
i=j+1 Eai

).

We consider it a sort projection because, for all morphisms f : a → b, the two diagrams

!c ⊗ a

?

id!c⊗f

a

?

f

-
Π1

!c⊗a

!c ⊗ b b-Π1
!c⊗b

a⊗!c

?

f⊗id!c

a

?

f

-
Π2

a⊗!c

b⊗!c b-Π2
b⊗!c

commute.

16

Our aim is to prove that every intuitionistic linear category is a model for Λ!. For doing
that, we define the interpretation of a judgment Γ ⊢ M : A as a morphism of C, where C is
an intuitionistic linear category. This results in interpreting M itself as morphism of C.

We start by defining the interpretation of a formula in FILL. Clearly, the definition of
the interpretation, both of a formula and of a term, should be indexed by the particular
category we are working on. For reasons of readability, we shall drop such indexes.

Definition 5.3 i) An environment is a map from AILL to ObjC. We call it ρ.

ii) The interpretation of a formula in FILL is the function [[]] : FILL → (AILL →
ObjC) → ObjC, defined as follows:

[[A]]ρ = ρ(A) if A ∈ AILL.
[[A −◦ B]]ρ = [[A]]ρ −◦ [[B]]ρ
[[A ⊗ B]]ρ = [[A]]ρ ⊗ [[B]]ρ
[[A&B]]ρ = [[A]]ρ × [[B]]ρ
[[A ⊕ B]]ρ = [[A]]ρ + [[B]]ρ
[[!A]]ρ =![[A]]ρ

Let assume that there is a fixed total order relation ≤⊆ (V ar∪!V ar) × (V ar∪!V ar).
When we write a basis Γ = {X1 : A1, . . . , Xn : An}, we assume that the order on indexes is
given by sorting the names of the variables, according to ≤.

Given an environment ρ, a judgment {X1 : A1, . . . , Xn : An} ⊢ M : A will be interpreted
as a morphism 1⊗ [[A1]]ρ ⊗ . . .⊗ [[An]]ρ → [[A]]ρ. The order between the assumptions can be
obtained by using the morphisms Hγ

γ′ , for suitable γ and γ′. For a better reading, we shall
usually drop the environment ρ, when writing the interpretation of a term M . Further, we
assume the following

Notation

• The interpretation [[A]]ρ of a formula A ∈ FILL will be denoted by the lower letter a.
For example, [[A1 ⊗ . . . ⊗ An]]ρ will be represented by a1 ⊗ . . . ⊗ an.

• Let Γ be the basis {X1 : A1, . . . , Xn : An}. Then 1 ⊗ [[A1]]ρ ⊗ . . . ⊗ [[An]]ρ will be
denoted by [[Γ]]ρ, and, further, abbreviated by γ.

Definition 5.4 Let ρ be a given environment. The interpretation of a judgment {X1 :
A1, . . . , Xn : An} ⊢ M : A in ρ is denoted by [[{X1 : A1, . . . , Xn : An} ⊢ M : A]]ρ, and is a
morphism 1 ⊗ [[A1]]ρ ⊗ . . . ⊗ [[An]]ρ → [[A]]ρ. It is defined by induction on the derivation in
the following way:

• [[{X1 : A1, . . . , Xn : An} ⊢ Xi : Ai]]ρ = Πi+1
1⊗a1⊗...⊗an

.

17

• [[Γ ⊢ MN : B]]ρ = eva,b ◦ (f ⊗ g) ◦ H1⊗γ
1⊗γM⊗1⊗γN

where f ≡ [[ΓM ⊢ M : A −◦ B]]ρ ∈ HomC(1 ⊗ γM , a −◦ b),

g ≡ [[ΓN ⊢ N : A]]ρ ∈ HomC(1 ⊗ γN , a).

• [[Γ ⊢ λX : A.M : A −◦ B]]ρ = Λ(f)

where f ≡ [[Γ, {X : A} ⊢ M : B]]ρ ∈ HomC(1 ⊗ γ ⊗ a, b).

• [[Γ ⊢ λX ⊗ Y : A ⊗ B.M : (A ⊗ B) −◦ C]]ρ = Λ(f)

where f ≡ [[Γ, {X : A}, {Y : B} ⊢ M : C]]ρ ∈ HomC(1 ⊗ γ ⊗ a ⊗ b, c).

• [[Γ ⊢ λX ⊕ Y : A ⊕ B.P |Q : (A ⊕ B) −◦ C]]ρ = Λ((f | g) ◦ 1⊗γ⊗(a+b))

where f ≡ [[Γ, {X : A} ⊢ P : C]]ρ ∈ HomC(1 ⊗ γ ⊗ a, c)

and g ≡ [[Γ, {Y : B} ⊢ Q : C]]ρ ∈ HomC(1 ⊗ γ ⊗ b, c).

• [[Γ ⊢ M&N : A&B]]ρ = 〈f, g〉

where f ≡ [[Γ ⊢ M : A]]ρ ∈ HomC(1 ⊗ γ, a)

and g ≡ [[Γ ⊢ N : B]]ρ ∈ HomC(1 ⊗ γ, b).

• [[Γ ⊢ l(M) : A]]ρ = pl
a,b ◦ f and [[Γ ⊢ r(M) : B]]ρ = pr

a,b ◦ f

where f ≡ [[Γ ⊢ M : A&B]]ρ ∈ HomC(1 ⊗ γ, a × b).

• [[Γ ⊢ M ⊗ N : A ⊗ B]]ρ = (f ⊗ g) ◦ H1⊗γ
1⊗γM⊗1⊗γN

where f ≡ [[ΓM ⊢ M : A]]ρ ∈ HomC(1 ⊗ γM , a),

g ≡ [[ΓN ⊢ N : B]]ρ ∈ HomC(1 ⊗ γN , b).

• [[Γ ⊢ M ⊕ : A ⊕ B]]ρ = inl
a,b ◦ f and [[Γ ⊢ ⊕ M : B ⊕ A]]ρ = inr

b,a ◦ f

where f ≡ [[Γ ⊢ M : A]]ρ ∈ HomC(1 ⊗ γ, a).

• [[Γ ⊢ d(M) : A]]ρ = εa ◦ f

where f ≡ [[Γ ⊢ M :!A]]ρ ∈ HomC(1 ⊗ γ, !a).

• [[!Γ ⊢ !M :!A]]ρ =!f ◦ m1,a1,...,an
◦ (m1 ⊗

⊗n
i=1 δai

)

where f ≡ [[!Γ ⊢ M : A]]ρ ∈ HomC(1⊗!a1 ⊗ . . .⊗!an, a) and n ≥ 0.

Let C be a particular intuitionistic linear category. [[Γ ⊢ M : A]]Cρ will denote the
interpretation of Γ ⊢ M : A in the category C. The semantic equivalence among terms,
induced by the previous defined categorical interpretation, is introduced, in a standard way,
as follows:

Definition 5.5 Let Γ ⊢ M : A and Γ ⊢ N : A. M ∼Γ,A N if, and only if, for all

intuitionistic linear category C, ∀ρ.[[Γ ⊢ M : A]]Cρ = [[Γ ⊢ N : A]]Cρ .

18

The following theorem proves the adequacy of the categorical semantics, i.e., terms re-
ducing each other are equivalent in every categorical model.

Theorem 5.1 (Adequacy) Let Γ ⊢ M : A. If M → N , then M ∼Γ,A N .

Proof. The proof follows from lemma 5.1 here below, which assures that the semantics
preserves the syntactic substitution.

Lemma 5.1 (Semantic substitution) Let Γ∗
M , {X : A}, !Γ ⊢ M : B, Γ∗

N , !Γ ⊢ N : A and
Γ = Γ∗

M , Γ∗
N , !Γ. Moreover let [[Γ∗

M , {X : A}, !Γ ⊢ M : B]] be a morphism 1⊗γ′⊗a⊗γ′′ → b.
Then:

[[Γ ⊢ M [N/X] : B]] =

[[Γ∗
M , {X : A}, !Γ ⊢ M : B]] ◦ (id1⊗γ′ ⊗ [[Γ∗

N , !Γ ⊢ N : A]] ⊗ idγ′′) ◦ H1⊗γ
1⊗γ′⊗1⊗γ∗

N
⊗γ′′⊗γ′′ .

Lemma 5.1 is proved by induction on the length of the derivation of Γ∗
M , !Γ, {X : A} ⊢ M : B,

using [[Γ ⊢ N : A]] ◦ iso1⊗γ
γ ◦ (idγ ⊗ Eb) = [[Γ, {!x :!B} ⊢ N : A]], for all !x 6∈ FV (N). 2

As immediate consequence of the adequacy the following holds:

Corollary 5.1 Let Γ ⊢ M : A. If M ≈ N , then M ∼Γ,A N .

Proof. We know that ≈ is the reflexive, transitive, symmetric, and contextual closure of
→. So, ≈ can be written as the least relation satisfying the rules

M → N

M ≈ N

M ≈ N

N ≈ M

M ≈ P P ≈ M

N ≈ M

M ≈ M ′ N ≈ N ′

MN ≈ M ′N ′

M ≈ M ′ N ≈ N ′

M ⊗ N ≈ M ′ ⊗ N ′

M ≈ M ′ N ≈ N ′

M&N ≈ M ′&N ′

M ≈ N

M ⊕ ≈ N ⊕

M ≈ N

⊕ M ≈ ⊕ N

M ≈ N

λX : A.M ≈ λX : A.N

M ≈ N

λX ⊗ Y : A ⊗ B.M ≈ λX ⊗ Y : A ⊗ B.N

M ≈ M ′ N ≈ N ′

λX ⊕ Y : A ⊕ B.M |N ≈ λX ⊕ Y : A ⊕ B.M ′|N ′

M ≈ N

!M ≈!N

M ≈ N

d(M) ≈ d(N)

then the proof is by structural induction on ≈, using the adequacy. 2

Since Λ! is a typed language, we expect that the semantic equivalence is extensional in
every suitable categorical model. Clearly, the definition of extensionality must take into
account that all kinds of patterns can be bound.

Definition 5.6 Let →η denote the reduction rule defined as follows:

19

i) – λX : A.MX →η M if X 6∈ FV (M);

– λX ⊗ Y : A ⊗ B.M(X ⊗ Y) →η M if X, Y 6∈ FV (M);

– (λX ⊕ Y : A ⊕ B.(X ⊕)|(⊕ Y))M →η M ;

– l(M)&r(M) →η M ;

– !(d(M)) →η M .

ii) →∗
η is the reflexive, transitive and contextual closure of →η. ≈η is the symmetric,

reflexive, transitive, and contextual closure of →η.

Theorem 5.2 Let Γ ⊢ M : A, Γ ⊢ N : A. Then M ≈η N implies M ∼Γ,A N .

Proof. First prove that M →η N implies M ∼Γ,A N . Then, proceed by induction on
definition of ≈η. 2

Finally, we introduce the relation ↔ among terms of Λ!. ↔ is induced by the model;
this because the model identifies two terms M and N corresponding to two derivations ΠM

and ΠN of ⊢S , obtained from each other by eliminating a secondary cut, i.e., a cut without
computational meaning in ⊢N .

Definition 5.7 i) For every term M, N, P, Q of Λ!,

– P [(λX ⊗ Y : A ⊗ B.M)N/Z] ↔ (λX ⊗ Y : A ⊗ B.P [M/Z])N ,

where {X, Y } ∩ FV (P) = ∅;

– P [(λX ⊕ Y : A ⊕ B.M |N)Q/Z] ↔ (λX ⊕ Y : A ⊕ B.P [M/Z]|P [N/Z])Q,

where {X, Y } ∩ FV (P) = ∅;

ii) ≈c is the contextual, transitive and symmetric closure of ↔.

Theorem 5.3 Let Γ ⊢ M : A, Γ ⊢ N : A. Then M ≈c N implies M ∼Γ,A N .

Proof. First prove that M ↔ N implies M ∼Γ,A N . Then, proceed by induction on the
definition of ≈c. 2

Definition 5.8 Let ≈ηc be ≈ ∪ ≈η ∪ ≈c.

The soundness of the term equivalence ≈ηc w.r.t. the interpretation in every intuitionistic
linear category follows:

Corollary 5.2 (Soundness) Assume that Γ ⊢ M : A. If M ≈ηc N , then M ∼Γ,A N .

Proof. Obvious. 2

20

5.1 Completeness

Once proved that arrows interpreting two terms M and N are the same arrow whenever
M ≈ηc N , we would like to know if the contrary holds. Namely, we would like to state a
completeness result:

Theorem 5.4 (Completeness) Assume that Γ ⊢ M : A. If M ∼Γ,A N , then M ≈ηc N .

The strategy for proving such theorem would be the usual one: once taken the term
model induced by ≈ηc it is enough to show that the term model is an intuitionistic linear
category.
For doing that we would certainly need to represent (by means of an equivalence class of
terms in Λ!) the morphisms m1 and E1. This is not possible because we can not explicitely
deal with the unity 1 of the tensor ⊗ in Λ!.
For being able to manage the unity, it is necessary to extend Λ!. Our proposal is to write a
language Λ1

! by adding to ⊢ the following two rules:

Γ∗, !Θ ⊢ M : 1 ∆∗, !Θ ⊢ N : A Dom(Γ∗) ∩ Dom(∆∗) = ∅

Γ∗, ∆∗, !Θ ⊢ let M be ∗ in N : A
(1E)

∀1 ≤ i 6= j ≤ n.Dom(Γ∗
i) ∩ Dom(Γ∗

j) = ∅
(Γ∗

i , !Γ ⊢ Mi :!Ai)0≤i≤n

Γ∗
1, . . . , Γ

∗
n, !Γ ⊢ ∗(M1, . . . , Mn) : 1

(1I)

Of course, the updating is conservative w.r.t. all logical properties. Further, the presence
of the new terms implies the definition of new cuts. We write them as reduction rules on
terms:

• let ∗ () be ∗ in M → M ;

• ∗(M1, . . . , Mi−1, !Mi, Mi+1, . . . , Mn) →

∗(M1, . . . , Mi−1, !x
i
1, . . . , !x

i
m, Mi+1, . . . , Mn),

where {!xi
1, . . . , !x

i
m} = FV (!Mi).

Once extended ≈η by the η-reduction

let M be ∗ in N [∗()/z] →η N [M/z]

and ≈c by
P [let M be ∗ in N/Z] ↔ let M be ∗ in P [N/Z]

we can effectively prove the completeness result we wish.
We do not study Λ1

! because we want to implement a philosophy which imposes to erase
and duplicate terms exclusively using modal variables. Terms joined at 1 actually modify
this perspective because of their computational behaviour. The presence of ∗(M1, . . . , Mn)
and let M be ∗ in N allows a different method for deleting terms. Just looking at their

21

reduction rules one can see that ∗(M1, . . . , Mn) acts like a “forgetful environment”: the
structure of modal instances of M1, . . . , Mn can be forgotten. Namely, ∗(M1, . . . , Mn) seems
to formalize the notions either of heap or of garbage collector. These observations seem to
suggest a three-level variable taxonomy: erasing, linear and duplicating variables. Let notice
that we have just reached this conclusion following a purely syntactical way. Jacobs [12]
suggested a similar solution starting from semantical speculations. This “coincidence” is
attractive: a three-sort variables language with heap-like construct and a more syntactically
compact3 copy-operation will constitute a topic for future work. A further language already
presenting some similar features is in [21].

6 The untyped version of Λ!

In this last section we will complete the analysis of the Curry-Howard isomorphism for ILL,
by defining the untyped version of Λ!. We consider it an essential step in our construction,
since types are essential at the compile time, while, during the evaluation steps they can be
dropped. Thus, an evaluator for Λ! must be defined on an untyped language. The existence
of two different sorts of variables is essential for the construction of the untyped language,
since they allow the definition of the reduction rules independently from types.
Let Λ−

! be the untyped version of Λ!. Here we just give its syntactical definition, and list
its principal properties.

Definition 6.1 i) Let U and V be sub-sets of V ar∪!V ar.

Let define U ∩! V as (U ∩ V)\!V ar.

ii) The following deduction system proves statements M ∈ Λ−
!U , saying that M is a term

of Λ−
! with free variables in U :

X ∈ V ar∪!V ar

X ∈ Λ−
!{X}

M ∈ Λ−
!U

λX.M ∈ Λ−
!U\{X}

M ∈ Λ−
!U N ∈ Λ−

!V V ∩! U = ∅

{MN, M ⊗ N} ⊂ Λ−
!U∪V

M ∈ Λ−
!U

{M ⊕ , ⊕ M, l(M), r(M),d(M)} ⊂ Λ−
!U

M ∈ Λ−
!U

λX ⊗ Y.M ∈ Λ−
!U\{X,Y }

M ∈ Λ−
!U N ∈ Λ−

!V U ′ = U \ {X} = V \ {Y }

λX ⊕ Y.M |N ∈ Λ−
!U ′

M ∈ Λ−
!U U ⊆!V ar

!M ∈ Λ−
!U

M ∈ Λ−
!U N ∈ Λ−

!U

M&N ∈ Λ−
!U

3commuting-conversions-free

22

It is possible to design a type assignment system for terms in Λ−
! , through an erasing

function E which erases the type information from terms of Λ!.

Definition 6.2 i) The type assignment system ⊢− proves judgments with shape Γ ⊢−

M : A, where Γ is a context, M ∈ Λ−
! and A ∈ FILL. The rules of ⊢− come from

those of ⊢ to which the here below defined function E has been applied.

ii) Let E : Λ! → Λ−
! be defined, by induction on terms, in the following way:

E(X) = X
E(λX : A.M) = λX.E(M)
E(MN) = E(M)E(N)
E(λX ⊗ Y : A ⊗ B.M) = λX ⊗ Y.E(M)
E(M ⊗ N) = E(M) ⊗ E(N)
E(λX ⊕ Y : A ⊕ B.M |N) = λX ⊕ Y.E(M)|E(N)
E(M ⊕) = E(M) ⊕
E(⊕ M) = ⊕ E(M)
E(M&N) = E(M)&E(N)
E(l(M)) = l(E(M))
E(r(M)) = r(E(M))
E(!M) = !E(M)
E(d(M)) = d(E(M))

E can be extended to judgments by setting E(Γ ⊢ M : A) = Γ ⊢− E(M) : A.

The relationship between the typed system ⊢ and the type assignment ⊢− is given by
the following:

Property 6.1 Γ ⊢ M : A if and only if Γ ⊢− E(M) : A

From the point of view of the Curry-Howard isomorphism, a term of Λ−
! represents a set

of derivations. More precisely, M ∈ Λ−
! corresponds to the, possibly empty, set

{Π|Π : Γ ⊢N A and (∃M ′ ∈ Λ!. M = E(M ′) and Γ ⊢ M ′ : A)}.
In [17] the system ⊢− is further studied. In particular, ⊢− is proved to enjoy the principal

type property: if a term can be typed, then it can be assigned the principal type, such that
all, and only, the types derivable for the term can be obtained from it by replacing types
for its type variables. The reduction rules of Λ−

! are obtained from those of Λ! through the
erasing function. The system ⊢− inherits from ⊢ both the property of subject reduction and
strong normalization.

Moreover, in [17], a translation T from λ-calculus to Λ−
! is defined. T is such that,

when applied to terms typable in the Curry type assignment system, T is optimal, in the
following sense. Let us say that x occurring in M has a linear behaviour if, and only if, it
occurs once in every N such that M →∗

β N . The corresponding variable in T (M) is not
modal. This assures that modalities in T (M) are used exactly on those sub-terms which are
erased/duplicated during β-reductions. Such a property makes Λ−

! a good candidate as a
meta-language for efficient implementations.

:——————

23

7 Aknowledgments

Simona Ronchi della Rocca whish to thank Yves Lafont and Laurent Regnier for their
disponibility in discussing the semantics of linear logic, during her stage in Marseille from
October to December 1993. Both the authors thank Simone Martini and Furio Honsell for
the discussions on the problem of natural deduction in presence of modalities. Further,
the authors are also grateful both to Alberto Pravato and Torben Brauner for their careful
reading of some preliminar version of the work, where they outlined some inaccuracies.

A Strong normalization and Church-Rosser theorems

A.1 Strong normalization theorem

We adapt a technique of Gallier [7] to our case. The Gallier’s machinery allows to build a
model of Λ! using the notion of candidates of reducibility [6, 7, 10].

Let ΛΓ;A be the set of terms in Λ! for which ⊢ deduces A from Γ. We shall state that, if
M ∈ ΛΓ;A, then M belongs to the class SNΓ;A of the strongly normalizable terms 4 having
type A from Γ in ⊢; namely, we shall get ΛΓ;A ⊆ SNΓ;A. Since SNΓ;A is trivially a subset of
ΛΓ;A, it results SNΓ;A = ΛΓ;A.

The main implication (M ∈ ΛΓ;A) ⇒ (M ∈ SNΓ;A) is proved splitting it into a pair of
simpler implications.

For giving them, we need the definition of the predicate Comp whose usefulness becomes
clear looking at lemma A.1 below:

Definition A.1 • Comp(Γ; A; M) ⇔ M ∈ SNΓ;A and A ∈ AILL.

• Comp(Γ∗, !Γ; A −◦ B; M) ⇔ M ∈ SNΓ∗,!Γ;A−◦ B and

(∀N.Comp(∆∗, !Γ; A; N) ⇒ Comp(Γ∗, ∆∗, !Γ; B; MN)).

• Comp(Γ∗, !Γ; A⊗ B; M) ⇔ M ∈ SNΓ∗,!Γ;A⊗B and if M →∗ P ⊗ Q, then exist Γ∗
P and

Γ∗
Q such that Comp(Γ∗

P , !Γ; A; P) and Comp(Γ∗
Q, !Γ; B; Q).

• Comp(Γ; A ⊕ B; M) ⇔ M ∈ SNΓ;A⊕B and

either if M →∗ P ⊕ , then Comp(Γ; A; P)

or if M →∗ ⊕ Q, then Comp(Γ; B; Q).

• Comp(Γ; !A; M) ⇔ M ∈ SNΓ;!A and Comp(Γ; A;d(M)).

Comp defines non empty sets of terms enjoying the closure properties (R1)-(R3):

Lemma A.1 Let the following sets be given:
Iterms contains all, and only, the instances of the terms λX : A.M, λX ⊗ Y : A⊗B.M,

λX ⊕ Y : A ⊕ B.M |N, M&N, M ⊗ N, !M, M ⊕ , ⊕ M, . Eterms is Λ! \ Iterms, while
Stubborn is the set Eterms ∩ ({M |not(∃N.M →+ N)}∪ {M |∀N.M →+ N ⇒ N 6∈ Iterms}).

4
M ∈ Λ! strongly normalizable iff does not exist any infinite reduction →∗ starting from M

24

(R1) If Comp(Γ; A; M), then M ∈ SNΓ;A.

(R2) If Comp(Γ; A; M) and M →∗ N , then Comp(Γ; A; N).

(R3) If M ∈ (SNΓ;A ∩ Eterms) and ((M →∗ N ∈ Iterms) ⇒ Comp(Γ; A; N)),

then Comp(Γ; A; M).

Proof. The three points can be proved by simultaneous induction on the types, exploiting
that, for every SNΓ;A, we have:

(P1) X ∈ SNΓ;A if, and only if, Γ(X) ≡ A.

(P2) If M ∈ SNΓ;A and M → N , then N ∈ SNΓ;A.

(P3)(1) (a) If M ∈ SNΓ∗,!Γ;A−◦ B ∩Eterms and N ∈ SN∆∗,!Γ;A and (M →+ λX : A.Q ⇒ (λX :
A.Q)N ∈ SNΓ∗,∆∗,!Γ;B), then MN ∈ SNΓ∗,∆∗,!Γ;B.

(b) If M ∈ SNΓ∗,!Γ;A⊗B−◦ C ∩ Eterms and N ∈ SN∆∗,!Γ;A⊗B and (M →+ λX ⊗ Y :
A ⊗ B.Q ⇒ (λX ⊗ Y : A ⊗ B.Q)N ∈ SNΓ∗,∆∗,!Γ;C), then MN ∈ SNΓ∗,∆∗,!Γ;C .

(c) If M ∈ SNΓ∗,∆∗,!Γ;A⊕B−◦ C ∩ Eterms and N ∈ SN∆∗,!Γ;A⊕B and (M →+ λX ⊕ Y :
A ⊕ B.P |Q ⇒ (λX ⊕ Y : A ⊕ B.P |Q)N ∈ SNΓ∗,∆∗,!Γ;C), then MN ∈ SNΓ,∆;C .

(P3)(2) If M ∈ SNΓ;A&B ∩ Eterms and (M →+ P&Q ⇒ l(P&Q) ∈ SNΓ;A and r(P&Q) ∈
SNΓ;B), then l(M) ∈ SNΓ;A and r(M) ∈ SNΓ;B.

(P3)(3) If M ∈ SNΓ;!A ∩ Eterms and (M →+ d(!N) ⇒ d(!N) ∈ SNΓ;A), then d(M) ∈ SNΓ;A.

2

Corollary A.1 (R4) If M ∈ (SNΓ;A ∩ Stubborn), then Comp(Γ; A; M).

Proof. By (R3). 2

(R1) is the second one of the two implications we need. We still lack the first implication.
It is Γ ⊢ M : A ⇒ Comp(Γ; A; M) and is obtained as an instance of the following

Lemma A.2 If X1 : A1, . . . , Xn : An ⊢ M : A and Comp(∆∗
1, !∆; A1; N1), . . . ,

Comp(∆∗
n, !∆; An; Nn), then Comp(∆∗

1, . . . , ∆
∗
n, !∆; A; M [N1/X1 . . .Nn/Xn]), where ∀1 ≤

i 6= j ≤ n.Dom(∆∗
i) ∩ Dom(∆∗

j) = ∅.

Proof. By induction on the length of X1 : A1, . . . , Xn : An ⊢ M : A, using (R1)-(R3) and
the following conditions, true for every set SNΓ;A:

(P4)(1) If M ∈ SNX:A,Γ;B, then λX : A.M ∈ SNΓ;A−◦ B .

(P4)(2) If M ∈ SNX:A,Y :B,Γ;C , then λX ⊗ Y : A ⊗ B.M ∈ SNΓ;A⊗B−◦ C .

(P4)(3) If M ∈ SNX:A,Γ;C and N ∈ SNY :B,Γ;C , then λX ⊕ Y : A ⊕ B.M |N ∈ SNΓ;A⊕B−◦ C .

25

(P4)(4) If M ∈ SNΓ;A and N ∈ SNΓ;B, then M&N ∈ SNΓ;A&B.

(P4)(5) If M ∈ SN!Γ;A, then !M ∈ SN!Γ;!A.

(P4)(6) If M ∈ SNΓ∗,!Γ;A and N ∈ SN∆∗,!Γ;B, then M ⊗ N ∈ SNΓ∗,∆∗,!Γ;A⊗B.

(P4)(7) If M ∈ SNΓ;A, then M ⊕ ∈ SNΓ;A⊕B and ⊕ M ∈ SNΓ;B⊕A.

(P5)(1) If M ∈ SNX:A,Γ∗,!Γ;B and

(∀N.N ∈ SN∆∗,!Γ;A and M [N/X] ∈ Λ! ⇒ M [N/X] ∈ SNΓ∗,∆∗,!Γ;B),

then (λX : A.M)N ∈ SNΓ∗,∆∗,!Γ;B.

(P5)(2) If M ∈ SNX:A,Y :B,Γ∗,!Γ;C and N ∈ SN∆∗,!Γ;A⊗B and

(N →∗ P ⊗ Q and M [P/X Q/Y] ∈ Λ! ⇒ M [P/X Q/Y] ∈ SNΓ∗,∆∗,!Γ;C), then

(λX ⊗ Y : A ⊗ B.M)N ∈ SNΓ∗,∆∗,!Γ;C .

(P5)(3) If P ∈ SNX:A,Γ∗,!Γ;C and Q ∈ SNY :B,Γ∗,!Γ;C and M ∈ SN∆∗,!Γ;A⊕B and

(M →∗ N ⊕ and P [N/X] ∈ Λ! ⇒ P [N/X] ∈ SNΓ∗,∆∗,!Γ;C) and

(M →∗ ⊕ N and Q[N/Y] ∈ Λ! ⇒ Q[N/Y] ∈ SNΓ∗,∆∗,!Γ;C),

then (λX ⊕ Y : A ⊕ B.P |Q)M ∈ SNΓ∗,∆∗,!Γ;C .

(P5)(4) If M ∈ SNΓ;A, then l(M&N) ∈ SNΓ;A and r(N&M) ∈ SNΓ;A.

(P5)(5) If M ∈ SNΓ;!A then d(M) ∈ SNΓ;A.

2

The main theorem:

Theorem A.1 If Γ ⊢ M : A, then M ∈ SNΓ;A.

Proof. Assume to have X1 : A1, . . . , Xn : An ⊢ M : A.
(R4) implies that Comp(X1 : A1; A1; X1), . . . , Comp(Xn : An; An; Xn) hold.
By lemma A.2, Comp(X1 : A1, . . . , Xn : An; A; M [X1/X1 . . . Xn/Xn]) holds.
By (R1), M ∈ SNX1:A1...Xn:An;A. 2

A.2 Church-Rosser theorem

Once proved the strong normalization, it is trivial to prove the Church-Rosser theorem,
exploiting well known results on the rewriting systems. In [11], for example, we find the
statement A noetherian rewriting system is confluent if, and only if, it is locally confluent. It
fits our purposes substituting noetherian by strong normalizable, confluent by Church-Rosser,
locally confluent by deterministic, and proving that our rewriting system is deterministic.

26

References

[1] S. Abramsky. Computational interpretation of linear logic. Technical Report 90/92,
Department of Computing, Imperial College, London, 1990.

[2] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear
logic. Technical Report 92/24, Department of Computing, Imperial College, London,
September 1992.

[3] H.P. Barendregt. The Lambda Calculus. North-Holland, second edition, 1984.

[4] N. Benton, G. Bierman, V. de Paiva, and M. Hyland. Term assignment for intuitionistic
linear logic. Technical Report 262, Computer Laboratory, University of Cambridge,
August 1990.

[5] V. Breazu-Tannen, D. Kesner, and L. Puel. A typed pattern calculus. In Proceedings
of the 8th Symposium on Logic in Computer Science LICS’93 (Montreal), pages 262 –
274, June 1993.

[6] J. Gallier. Logic and Computer Science, chapter On Girard’s “candidats de re-
ductibilités”, pages 123 – 203. P. Odifreddi editor, Academic Press, 1990.

[7] J. Gallier. On the correspondence between proofs and lambda terms. Obtained by ftp,
January 1993.

[8] J.Y. Girard. Interpretation Fonctionelle et Elimination des Coupures de l’Arithmetique
d’Ordre Superieur. PhD thesis, Université Paris VII, 1972.

[9] J.Y. Girard. Linear logic. Theoretical Computer Science, 50:1 – 102, 1987.

[10] J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press,
1989.

[11] G. Huet. Confluent reductions: abstract properties and applications to term rewriting
systems. Journal of A.C.M., 27:797 – 821, 1980.

[12] B. Jacobs. Semantics of weakening and contraction. In Typed Lambda Calculi and
Applications TLCA’92, volume LNCS. Springer-Verlag, 1992.

[13] Y. Lafont. The linear abstract machine. Theoretical Computer Science, 59:157 – 180,
1988.

[14] P. Lincoln and J. Mitchell. Operational aspects of linear lambda calculus. In Proceedings
of Symposium on Logic in Computer Science LICS’92, pages 235 – 246, June 1992.

[15] Simone Martini and Andrea Masini. On the fine structure of the exponential rule. In
J.-Y. Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages 197–
210. Cambridge University Press, 1995. Proceedings of the Workshop on Linear Logic,
Ithaca, New York, June 1993.

27

[16] G. Mints. Normal deductions in the intuitionistic linear logic. To appear in Archive for
Mathematical Logic.

[17] A. Pravato and L. Roversi. Λ! considered both as a paradigmatic language and as
a meta-language. In Theoretical Computer Science: Proceedings of the Fifth Italian
Conference (Salerno), pages 146 – 161. World Scientific, November 1995.

[18] D. Prawitz. Natural Deduction, a Proof Theoretic Study. Almquist and Wiksell-
Amsterdam, 1965.

[19] J.A. Reynolds. Paris Colloquium on Programming, chapter Towards a Theory of Type
Structures, pages 408–425. Springer-Verlag, 1974.

[20] S. Ronchi della Rocca and L. Roversi. Lambda calculus and intuitionistic linear logic.
Invited talk at the Logic Colloquium’94 (Clermont-Ferrand), July 1994.

[21] L. Roversi. Curry-howard isomorphism for intuitionistic linear logic: proof-theorist’s
and computer-scientist’s perspectives. Technical Report 15/94, Università degli Studi
di Pisa, 1994.

[22] A.S. Troelstra. Lectures on Linear Logic. CSLI, 1992.

[23] P. Wadler. A syntax for linear logic. Presented at the Mathematical Foundations of
Programming Semantics, New Orleans, April 1993.

28

