
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Lambda calculus with explicit recursion

Z.M. Ariola and J.W. Klop

Computer Science/Department of Software Technology

CS-R9651 1996

Report CS-R9651
ISSN 0169-118X

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Lambda Calculus with Explicit Recursion

Zena M� Ariola

Computer and Information Science Department

University of Oregon� Eugene� OR ������ USA

email� ariola�cs�uoregon�edu

Jan Willem Klop

CWI� P�O� Box ������ ���� GB Amsterdam� The Netherlands

and

Department of Mathematics and Computer Science

Vrije Universiteit� De Boelelaan ��	�a� ��	� HV Amsterdam

email� jwk�cwi�nl

Abstract

This paper is concerned with the study of ��calculus with explicit recursion� namely of cyclic ��graphs� The

starting point is to treat a ��graph as a system of recursion equations involving ��terms� and to manipulate

such systems in an unrestricted manner� using equational logic� just as is possible for �rst�order term rewriting�

Surprisingly� now the con�uence property breaks down in an essential way�

Con�uence can be restored by introducing a restraining mechanism on the �substitution� operation� This

leads to a family of ��graph calculi� which can be seen as an extension of the family of ���calculi 	��calculi

with explicit substitution
� While the ���calculi treat the let�construct as a �rst�class citizen� our calculi

support the letrec� a feature that is essential to reason about time and space behavior of functional languages

and also about compilation and optimizations of programs�

CR Subject Classi�cation ������� D����� D����� F����� F�
��� F�
��

Keywords � Phrases� lambda calculus� recursion� in�nitary lambda calculus� term graph rewriting�

Note� The research of the �rst author is supported by NSF grant CCR��
������� The research of the second

author is partially supported by ESPRIT BRA��
�
 Confer� Further support was provided by ESPRIT Working

Group ��
� Semagraph� A shorter version of this paper appears in the Proceedings of LICS �
 as �Cyclic

Lambda Graph Rewriting� �AK�
��

Introduction

It is important to base the activities of programming� of writing a compiler� and of imple�
menting the run�time support for a programming language on mathematical concepts� This
can be done� without introducing too much mathematical machinery� with a rewriting or cal

culator approach that consists of mechanically applying a set of rewrite or simpli�cation rules
to a program� This method provides a programmer� a compiler writer� and an implementor

with a sound basis to present� check� and try out their ideas� However� the usefulness of this
abstract framework relies on how faithfully it models reality� In that respect� note that while
cyclic structures are ubiquitous in a program development system �PJ��	� traditional models
of computation� such as the ��calculus �Bar�
	 and term rewriting systems �Dershowitz et

�

al� �DJ�
	� Klop �Klo��	�� do not allow reasoning about them� As such� these models do not
constitute the right computational vehicle for reasoning about the time and space behavior
of a program�

Cycles occur in the representation of data structures� Consider the following data structure
de�nition written in the lenient language Id �Nik��	�

fones � � � ones
in onesg �

�A note on syntax� the construct f� � � in � � �g represents a block expression� which consists of
a group of unordered bindings and an expression which is written following the keyword in�
� is the Id list constructor�� This is usually expressed in the ��calculus using the �xed point
combinator Y� whose behavior is captured by the following rewrite rule�

YM ���M�YM� �

Thus� the above data structure ones becomes�

Y��x�� � x� �

which leads to the following rewriting ���� reads as �rewrites or reduces to���

Y��x�� � x� ��� ��x�� � x��Y��x�� � x�� ��� � � �Y��x�� � x�� �

The above sequence of rewritings suggests that ones is represented in terms of a cons cell�
with the head containing � and the tail pointing to the computation that delivers the rest of
the list� However� this is not what happens in practice� ones is represented in terms of a single
cons cell� with the tail pointing to the cons cell itself� Thus� access to any element of the list
will only involve unwinding the data structure and no further computation� As introduced by
Turner �Tur��	� this representation can be captured in the following way� instead of the above
Y�rule� use its optimized version� which involves a cycle �see Figure �� in which � stands for
application��

@ @

Y M M

Figure �� Cyclic Y�rule�

Cyclic structures do not only occur in non�strict languages� In a strict language� one can
create them with side�e�ect operations� For example� in Standard ML �Har��	 the data

�

λy

λ x

@

@

@

@

y

@

x

@

@

@

@

y@

x

@

@

@

@

@

@fibs

:

sum

:

+

head tail

tail

: 0

1

head

Figure �� Cyclic lambda graph for computing the sequence of Fibonacci numbers�

structure ones can be expressed as follows�

datatype reflist � CONS of int � reflist ref j NIL�

�� Values of reflist have the form Cons�i� j�� for i� an integer value�
and j� a reference to a re�ist value� or NIL� ��

let val x � ref�NIL�� �� associates x with a reference to a location containing NIL ��
in

x �� CONS��� x�� �� change the value x refers to ��
x� �� return the reference ��

end �

Cycles also occur in the data structure representing the run�time environment when im�
plementing recursive functions in either strict or non�strict languages� For example� the local
environment created by the following Scheme expression

�letrec
��fact �lambda�n�

�if �zero� n� �
�� n �fact ��n ��������

����

�

contains a circularity� which is usually implemented using assignments� as described in the
Scheme report �CR�
	�� Thus� dealing with cycles is desirable if one wants to discuss issues
of data representation� and it becomes necessary if one wants to provide a computational
model that supports reasoning about both functions and state� Moreover� capturing cycles is
not only important for reasoning about run�time issues� but it is also important for reasoning
about compilation and optimization of programs� as is discussed next�

Consider the sequence of Fibonacci numbers written in a lazy language �e�g�� Haskell
�HPJW���	� as follows�

let fibs � � � sum fibs �� � fibs�� �z �
��

sum � nx y���head x� head y� � sum �tail x� �tail y�� �z �
��

in fibs

�The form �� x y �� e� is Haskell�s syntax for a lambda abstraction� As before� � is the
list constructor� sum fibs ���fibs	 performs the addition of the fibs sequence and the
sequence ��fibs�� The corresponding cyclic graph is displayed in Figure �� In order to
share the work among all invocations of a function and all accesses to a data structure� it
makes sense to perform computations that occur inside a function body or inside a data
structure at compile time� Speci�cally� we would like to reduce the redexes �i�e�� reducible
expression� �� and �� in the Fibonacci program above� These redexes are indicated with
an arrow in Figure �� Both redexes express the application of a function to the arguments�
their reduction corresponds to what in the literature has been referred to as inlining� �

contraction or unfolding �App��	� However� they are not usual redexes� since they are in a
cycle� As such� their reduction is not at all obvious� In fact� as shown in this paper� a naive
approach will lead to a non�con�uence result� i�e�� depending on how we apply the above
transformations we get di�erent programs� The lack of con�uence has both theoretical and
practical impacts� From a theoretical point of view� proofs that the above transformations
are correct might become harder� From a practical point of view� non�con�uence means that
the order of application could ultimately have an impact on e�ciency� Thus� a rigorous
study of the reasons that cause con�uence to fail is bene�cial for getting a better grasp on
how to apply program transformations� including Wadler�s deforestation technique �Wad�
	�
partial evaluation �JGS��	� and the Burstall and Darlington unfold fold �BD��	� These last
transformations introduce new cycles by identifying previously encountered expressions� The
di�culties of reasoning about circular programs is re�ected by the fact that� in general� these
transformations do not preserve total correctness�

In conclusion� since cyclic structures are extensively used by implementors and compiler
writers it is important to provide an abstract framework that allows one to reason about them�
This paper provides such a framework in the context of ��calculus and �rst�order rewriting�
The paper is organized as follows� We start� in Section �� by introducing our approach
to cycles that is based on systems of recursion equations� Until Section �� we restrict our

�Rosaz in �Ros��a� argued that the same e�ciency can be gained by implementing recursion using suitable
versions of the Y combinator but at the expenses of more complex analysis�

�� Systems of recursion equations over the ��calculus �

attention to systems of recursion equations involving ��calculus extended with constants� No
nesting of equations is admitted� In Section �� we informally show how to manipulate such
systems in an unrestricted manner� using equational logic� just as is possible for �rst�order
term rewriting� This naive way of rewriting� called the �!�calculus� is formally introduced
in Section �� Surprisingly� as shown in Section
� the con�uence property of �! breaks down
in an essential way� We point out� in Section "� that the same phenomenon occurs in the
in�nitary lambda calculus developed by Kennaway et al� �KKSdV�"a	� We discuss� in Section
�� another source of non�con�uence that does not arise in the in�nitary lambda calculus� In
Section �� we show how to restore con�uence by controlling or restricting the operations on
the recursion equations� We also point out that the ���calculus �i�e�� the ��calculus extended
with the ��rule� which embodies much of cyclic ��graph rewriting is con�uent� In Section
�� we show soundness of �! with respect to the in�nitary lambda calculus� In Section ��
we extend our framework to include nesting of recursion equations� We discuss a family of
calculi� called ��� that incorporate the ��calculus� the ���calculus� ordinary �rst�order term
rewriting and term graph rewriting� In Section �
� we discuss previous work� In particular� we
relate our approach to Rose�s system �Ros��b	 and to the framework based on the interaction
nets of Lafont �Laf�
	� We conclude the paper with future directions of research�

�� Systems of recursion equations over the ��calculus
In the �rst part of the paper �Sections ���� we will consider systems of recursion equations
over the ��calculus� Thus we may write�

� � �x�x� �

This is an object whose unwinding is an #in�nite normal form�� also known as a B$ohm�tree
�Bar�
	� We also may consider mutual recursion as in

� � ��x�	xx��� 	 � ��y��y�	 �

We will always use �� 	� � � �� for recursion variables� For the time being� variables bound by �
are denoted by x� y� z� � � �� Note that the in�nite tree unwinding of the last recursion system
is not a B$ohm�tree� as it contains many ��redexes�

1

+

+

1

Figure �� Horizontal sharing�

These systems of recursion equations allow us to express #horizontal sharing� � i�e�� sharing
as in a #dag� �see Figure ��� as opposed to the #vertical sharing� shown in the examples above�
More precisely� we say that a graph has only vertical sharing if the graph can be partitioned

�

0

0

H GG

H

F

G

H

α

β γ

G H

H

Figure
� Vertical sharing�

into a tree and a set of edges with the property that either begin and end nodes are identical�
or the end node is an ancestor �in the tree� of the begin node� Equivalently� a graph has only
vertical sharing if there are no two di�erent acyclic paths starting from the root to the same
node �see Figure
�� The following is an example of a system with horizontal sharing�

� � 		� 	 � ��x�F�x��
 � �����

Since the right�hand side of the equations is restricted to ��calculus terms� the horizontal
sharing cannot appear inside a lambda�abstraction� This restricts the class of ��graphs that
we consider� For example� the graph of Figure " is not expressible� as the intuitive represen�
tation

� � �x�� �
�
��
 � ���� x� �

is not correct� This limitation will be removed in the second part of the paper� Section �� in
which we introduce a framework with nested recursion equations� We restrict ourselves to
systems without nesting since interesting observations can already be made�

1

λx

x

+

+

Figure "� Lambda body with horizontal sharing�

Note that we admit in addition to pure ��terms extended with recursion variables� operators
from a �rst�order signature� like F and � above� We use a harmless mixture of applicative
notation �with the application operator � usually suppressed� except in pictures of ��graphs�
and #functional� notation where operators have some arity �like the unary F above��

In presenting a recursion system� it is understood that the �rst �or topmost� equation is
the leading equation� displaying the root of the ��graph� When we want to be more precise�

�� Systems of recursion equations over the ��calculus �

we will present the system displayed in ����� as

h� j � � 		� 	 � ��x�F�x��
i �

The order of the equations in the #body� of the h j i construct is not important� Furthermore�
we will consider recursion systems obtained from each other by ��� renaming of recursion
variables� as identical� Thus�

h	 j 	 �

�
 � ��x�F�x��
i

is the same expression as the previous one�

To summarize� until Section �� we study systems of recursion equations of the form

�� � M�� � � � � �n � Mn �

where M�� � � � �Mn are ��calculus terms extended with constants� and the recursion variables
��� � � � � �n are distinct from each other�

��� Correspondence with graphs

It is straightforward to assign actual graphs to the recursion systems as introduced above�
In the sequel there will be several examples� One feature should be mentioned explicitly�
the nodes of the graph contain �rst�order operators �F�� or application ���� or �x� or a
variable x� y� z� � � �� Other than that� a node may have a name �� 	�
� � � �� These correspond
to the recursion variables in the recursion system� Note that also unnamed nodes may be
present in the graph �corresponding to subterms in the system that have no name� like x�
in h� j � � �x�x�i�� In the present setting� the root node of the ��graph will always have a
name�

F x

λx

@

S

S

x

δ

Figure �� Cyclic lambda graph corresponding to 	 � ��x�F�	�Sx���Sx��

��� Free and bound variables

The notion of a variable �x� y� � � �� bound by a lambda follows from ��calculus� For example�
in the system

� � ��x�F�Gx��Sx���Sx� �

�

the variable x superscripted with � is free� and the x�s superscripted with � and � are bound�
As another example� consider

	 � ��x�F�	�Sx����Sx�� �

The x superscripted with � is free� while x� is considered to be bound� The above term is
displayed in Figure �� Our stipulation regarding free and bound variables points out a curious
phenomenon� even though there is a path from the �x�node to the variable node x�� x� is
not bound by the �x node� We call this phenomenon scope cut
o� �see Figure ��� This is
consistent with other ways of presenting the cyclic ��graph of Figure �� For example� using
the �xed point combinator Y� we would have Y ��	���x�F�	�Sx����Sx���� in which x� does
indeed occur free�

x

λx

not bound by λx

λxcut-off scope of

λxscope of

Figure �� Scope cut�o� phenomenon�

The same scope cut�o� phenomenon occurs in the following system

� � �x�	� 	 � Fx �

which is displayed in Figure �� it is as if a name� in this case 	� stops the scope of a �� As
expected� this has some nasty consequences� With respect to the above system� substituting
for 	 in the �rst equation yields the system

� � �x�Fx� 	 � Fx �

in which the underlined x has been captured� In order to avoid this free variable capture
and still be able to use a naive version of substitution� we adopt the convention that all free
and bound variables have to be distinct from each other� Thus� we would express the term
� � �x�	� 	 � Fx as

� � �y�	� 	 � Fx �

�� Lambda graph rewriting 	

F

λx

x

α

δ

scope cut-off

Figure �� Cyclic lambda graph corresponding to � � �x�	� 	 � Fx�

�� Lambda graph rewriting

We now turn to the issue of de�ning ��reduction on ��graphs or� equivalently� systems of
recursion equations� Due to the possible presence of cycles� it may not immediately be clear
what the #right� notion of ��reduction is� In order to decide what is a right notion� we will
compare� with respect to soundness� any notion of ��reduction for recursion systems with the
in�nitary version of the ��calculus� as developed by Kennaway et al� �KKSdV�"a	� First� we
proceed in an intuitive fashion� We give some examples� where the redex being reduced is
underlined�

h� j � � ��x�	xx��� 	 � ��y��y�	i ����
h� j � � 	��� 	 � ��y��y�	i ����
h� j � � 	��� 	 � �	i �

Here� there is no problem� We call ��x�	xx�� an explicit ��redex� since it is of the form
��x�M�N � On the other hand� in a recursion system g� a subterm of the form �N is called
an implicit ��redex if g contains an equation of the form � � �x�M � Examples of implicit
��redexes are 	�Sx� and ��Sy� in the example below�

h� j � � �x�	�Sx�� 	 � �y���Sy�i �

An implicit redex �N must �rst be made explicit by substitution of �x�M for �� before it
can be contracted �i�e�� ��reduced�� The act of substitution will be denoted by ���s � we will

occasionally underline the variable we substitute for� Thus�

h� j � � �x�	�Sx�� 	 � �y���Sy�i ���s

h� j � � �x���y���Sy���Sx�� 	 � �y���Sy�i ����
h� j � � �x���S�Sx��� 	 � �y���Sy�i ���gc

h� j � � �x���S�Sx��i �

In the last step� we have applied garbage collection �written as ���gc � since the de�nition

of 	 is inaccessible from ��

Our stipulation that ��reduction can only be performed on explicit ��redexes in a system
is a matter of choice� de�nitions of ��reduction directly on implicit ��redexes are possible�
However� this stipulation makes it more clear� intuitively� what goes on� More importantly�

�

making ��redexes explicit involves making a copy of part of the graph that is often necessary�
An example is�

h� j � � F�	�� 	
�� 	 � �x�xi ���s

h� j � � F���x�x��� 	
�� 	 � �x�xi ����
h� j � � F��� 	
�� 	 � �x�xi �

The substitution step has performed a copy of �x�x� as is in this case anyway necessary�

��� The collapse problem

In orthogonal term graph rewriting �rewriting with an orthogonal �rst�order term rewriting
system� admitting graphs with horizontal and vertical sharing� and in�nitary term rewriting
�admitting in�nite trees� it has been a matter of some discussion what to do with #collapsing
operators� such as a unary operator I with the rule I�x� ��� x� Speci�cally� what should

#cyclic�I�� that is� h� j � � I���i� rewrite to� If this object rewrites to itself� then non�
con�uence arises� For� let J be another collapsing operator with J�x� ��� x� Then

h� j � � I�J����i

rewrites to both h� j � � I���i and h� j � � J���i� The simple solution is to proceed
with rewriting� both of these last two expressions rewrite to h� j � � �i� which is a #very
unde�ned� kind of expression� it is a special case of expressions being unde�ned by lack of
a head normal form� We capture this fact by rewriting h� j � � �i to a new object� that
we will call � �black�hole�� For a comparison of notions of unde�nedness in orthogonal term
�graph� rewriting see �AKK��
	�

yλ

@

λ x

@
α

A

B

(1)

λ x

@
α

A

(2) α

yλ

@

B

(3)

α(4)

δ

Figure �� Reductions to black�hole�

�� The �!�calculus

Also in the present setting � arises as a result of reduction� E�g�� consider the ��graph �see
Figure ������

� � ��x�	�A� �z �
�

� 	 � ��y���B� �z �
�

�

Contracting the ��redex yields
� � 	� 	 � ��y���B

which is equivalent to �see Figure �����

� � ��y���B �

Contracting the � �redex yields
� � ��x�	�A� 	 � �

which is equivalent to �see Figure �����

� � ��x���A �

Both contracted graphs yield after one more reduction � � �� and this rewrites to � � � �see
Figure ��
��� Note that also mutual vacuous dependencies of recursion variables rewrite to
�� E�g�� h� j � � 	� 	 � �i ��� �� Or� inside a system�

h� j � � F���x�x�	�� 	 � ��y�y�	i ��� h� j � � F�	�� 	 � 	i ��� h� j � � F���i �

�� The �!�calculus

Here we present the �!�calculus� which formalizes the naive way of reducing possibly cyclic
redexes introduced so far� Notation� We assume that Fn belongs to a �rst�order signature�
The metavariables E�E� range over unordered sequences �possibly empty� of recursion equa�
tions� M �x �� N 	 denotes the substitution of N for each free occurrence of x in M � C��	
represents a ��calculus context with one hole �� A system of equations E� is orthogonal to
a system E or to a variable � if the recursion variables of E� �i�e�� the set of variables that
occur as the left�hand side of an equation in E�� do not intersect with the set of free variables
of E and ��

De�nition ��� The following clauses de�ne the syntax and basic reduction axioms of the
�!�calculus�
Syntax�

g ��� �� � M�� � � � � �n � Mn

M ��� x j Fn�M�� � � � �Mn� j �x�M jMM

Reduction Axioms�
�
rule �
��x�M�N ���� M �x �� N 	

Substitution �
h� j
 � C�		� 	 � M�Ei ���s h� j
 � C�M 	� 	 � M�Ei

Black hole�
h� j
 �
�Ei ���� h� j
 � �� Ei

�

Copying

h� j Ei ���c h�� j E�i if � a variable mapping ��
h�� j E�i� � h� j Ei

Naming �
h� j
 � C�M 	� Ei ���n h� j
 � C�		� 	 � M�Ei if the free variables of M do

not occur bound in C�M 	 and
M is not a variable

Garbage collection�
h� j E�E�i ���gc h� j Ei if E� is non�empty and

orthogonal to E and �

In the Substitution rule� the equations
 � C�		 and 	 �M can overlap as in the following
substitution step�

h� j � � �x�x�i ���s h� j � � �x�x��x�x��i �

in which both 	 and
 are instantiated to �� The operation of copying di�ers from substitution
in the sense that copying never gets rid of recursion variables� Given two recursion systems
g and g�� g copies to g� if there exists a mapping � from recursion variables to recursion
variables �which is extended in the usual way to a system of recursion equations� such that
g�� � g� leaving the free recursion variables of g� unchanged� For example�

h� j � � F�
��
 � G���i ���c h� j � � F�
��
 � G����� �� � F�
���
� � G����i �

where the variable mapping � is� �� �� are mapped to �� and
�
� are mapped to
� �See
�AK��	 for a thorough discussion of copying and its properties�� The proviso for the operation
of naming� which is written as ���n � is to forbid reductions of the form

h� j � � �x�Fxi ��� h� j � � �x�	� 	 � Fxi �

in which the underlined x gets out of scope�

To understand why we admit� in addition to substitution� also the operations of copying
and naming� we make an excursion into the �rst�order case� Substitution by itself causes
already non�con�uence in the �rst�order case� For� consider the recursion system without
any rewrite rule�

h� j � � S�	�� 	 � S���i �

By substitution and garbage collection this expression yields on the one hand

h� j � � S�S����i �����

on the other hand
h� j � � S�	�� 	 � S�S�	��i � �����

These two results cannot be made convergent by further substitutions� they are out
of
synch�
that is� at each point in time system ����� will have an even number of S�s� while system
����� will contain an odd number of S�s� However� by allowing re�introduction of names �i�e��
Naming� we can restore

h� j � � S�S����i

�� A counterexample to con�uence of �!
�

to
h� j � � S�	�� 	 � S���i

and converge again� As shown in �AK��	� con�uence of substitution and naming is guaranteed
if the system contains also the operation of copying� Thus� in analogy with the �rst�order
case� we consider next to substitution also the operations of naming and copying� hoping
to prove con�uence of �!� However� as shown in the next section� there are some nasty
surprises�

Remark ��� It is interesting to observe that Naming can cause a non�terminating compu�
tation to terminate� E�g��

� � �y��
 ��� � � �y��
 ��� � � �y��
 ��� � � � �

Since �
 does not depend on the bound variable y it can be given a name� Then�

� � �y��
 ���n � � �y�	�
	 � �

���s � � �y�	�
	 � ��y�	�

���� � � �y�	�
	 � 	

��� � � �y�� �

The above term � � �y��
 can be seen as an in�nite tower of collapsing contexts� As will be
discussed in Section "� this constitutes a source of non�con�uence in the in�nitary calculi�

This example points out that in order to describe common program manipulations� as the
one described above� it is necessary to precisely delimit the body of a lambda abstraction�
Thus� indicating how much to copy once the lambda is applied� In our simple framework� all
unnamed nodes reachable from a lambda�node constitute its body�

�� A counterexample to confluence of �!

Consider the reductions �displayed in Figure �
� �

� � �x�	�Sx��
	 � �y���Sy�

s
� � � �x���y���Sy���Sx��

	 � �y���Sy�
�
� � � �x���S�Sx���

	 � �y���Sy�

� � �x�	�Sx��
	 � �y���x�	�Sx���Sy�

�
s

� � �x�	�Sx��
	 � �y�	�S�Sy��

�
�

� �

�

By using the same parity argument as in the previous section one can see that the two
systems obtained are clearly out�of�synch� The situation is even more serious� less curable
than in the �rst�order case since also the operations of naming and copying do not help� The
two expressions

� � �x���S�Sx�� and � � �x�	�Sx�� 	 � �y�	�S�Sy��

are irreversibly separated with respect to any set of operations on ��graphs that is #sound� in
a sense that we will elaborate in Section ��

�

λx

@

x

λx

@

S

x

λy

@

S

y
α

α

δ

λx

@

S

x

λy

@

S2

x

S2

α

δ

Figure �
� Failure of con�uence�

The above counterexample corresponds to unfolding or inlining the redexes �� and ���
respectively� in the following mutually recursive de�nitions of CAML�

% let rec odd � fun x � if x �
 then false else even�x� ��� �z �
��

and even � fun x � if x �
 then true else odd�x� ��� �z �
��

� �

The absence of a common reduct means that depending on how we apply these transforma�
tions we get di�erent programs� which� even though they might produce the same observable
result� are di�erent from an intensional point of view� As an example� unfolding �� �rst
triggers the application of the unused lambda expressions transformation �App��	� and thus
getting rid of the de�nition of even�

Analysis of the counterexample

The above counterexample not only is a counterexample to con�uence� but even to weak
con�uence� For ordinary ��calculus� weak con�uence is simple to prove by an inspection of
#elementary reduction diagrams�� Typical for these elementary reduction diagrams is that in
the converging sides� one has to contract the descendants �residuals� of the redexes contracted
in the diverging sides� So what goes wrong in the present case� when we try to prove weak
con�uence� Let us review the counterexample�

� � �x��	�Sx�	�� 	 � �y����Sy�	� �

where we have indicated the two redexes� � and �� that play a role� Both are implicit redexes�
Reduction of redex � requires making it explicit�

� � �x����y����Sy�	���Sx�	�� 	 � �y����Sy�	� �

�� A counterexample to con�uence of �!
�

Garbage collection yields� � � �x����y����Sy�	���Sx�	�� The redex marked � can now be
contracted� with result �S��x� stands for S�S�x����

� � �x����S�x�	� �

In the other direction� we contract redex �� after explicitation�

� � �x��	�Sx�	�� 	 � �y����x��	�Sx�	���Sy�	� �

Contraction of the redex � yields�

� � �x��	�Sx�	�� 	 � �y��	�S�y�	� �

So� in analogy of pure ��calculus� we would expect that all we have to do is� complete the
following elementary reduction diagram� by contraction of the respective residuals�

� � �x��	�Sx�	�� 	 � �y����Sy�	� �� � � �x����S�x�	�
�� ��

� � �x��	�Sx�	�� 	 � �y��	�S�y�	� �� �

Now the reason of the failure of con�uence comes to the surface� reduction of redexes � in
� � �x�	�Sx�	�� 	 � �y��	�S�y�	�� or rather a complete development of the set of ��redexes� is
not possible� Likewise a complete development of the singleton set of ��redexes in

� � �x���S�x�	� �

is not possible� We will show this for the latter case� the ��redex� the other case of the ��redex
is similar� For greater ease in parsing the following expressions� let us use underlining instead
of � 	� to keep track of implicit or explicit redexes� so

� � �x����S�x�	�

is now
� � �x���S�x� �

We claim that this singleton set of underlined redexes cannot be completely developed� as the
analogy with ��calculus suggests we ought to do� Indeed� it is easily seen that no succession
of ��� s or ���� in whatever order will be able to remove all underlining� using obvious

rules for underlining�

� � �x���S�x� ���s

� � �x���x���S�x���S�x� ����
� � �x���S�x� ���s

� � �x���x���S�x���S�x� � � �

�also applying ���s on the second expression does not bring us further ��

This elaboration intends to give an intuition why con�uence fails � of course it does not
constitute a proof of that failure�

�

Another Analysis of the counterexample

Consider the following Abstract Reduction System� with as elements� singleton sets of natural
numbers n� pairs of natural numbers �n�m�� and alternative pairs of natural numbers �n�m	�
There are the following reduction rules�

fng ��� f�ng

fng ��� �n� n�

fng ��� �n� n	

�n�m� ��� �n�m�m�

�n�m� ��� �n� �m�

�n�m	 ��� fn�mg

�n�m	 ��� �n� n�m� �

We claim that these are not con�uent� Proof� ��� �	 ��� f�g and ��� �	 ��� ��� ��� Any reduct

of f�g is of the form feg or �e�� e�� or �e�� e�	 with e� e�� e� even� Any reduct of ��� �� is of the
form �o� e� with o odd and e even�

Using this abstract non�con�uent fact� we can give a sketch of the non�con�uence of reduc�
tions of the system� �

� � �x�	�S�x��
	 � �y���S�y��

Let us abbreviate�
fng � � � �x���Snx�

�n�m	 �

�
� � �x�	�Sn�x��
	 � �y���Sm�y��

�n�m� �

�
� � �x�	�Sn�x��
	 � �y�	�Sm�y��

Then indeed the abstract rewrite rules above are obtained by ��reduction on systems of
equations together with a limited form of copying� Hence the original system� which in
abbreviation is ��� �	� is not con�uent� Actually this �proof� is only giving the basic idea� it is
not complete since e�g�� the system abbreviated as f�g gives rise by copying to other systems
than the ones above� For example�

f�g ���c

���
��

� � �x�	�S��x��
	 � �y�
�S��y��

 � �x�	�S��x��

But also now� all S�s ever appearing in reducts expansions of the latter system will have even
exponents� On the other hand� the system ��� �� can be expanded e�g�� as follows�

��� �� ���c

���
��

� � �x�	�S�x��
	 � �y�
�S��y��

 � �x�	�S��x��

�� In	nitary lambda calculus
�

And now in all reducts expansions of the latter system� the S in the equation for � will
have odd exponent� and the S�s in all the other equations will have even exponents�

This phenomenon may be thought to be dependent of our particular choice of reduction
for cyclic redexes� consisting of a substitution step followed by a familiar ��step� However�
we claim that it is robust� in fact� as we are going to explain in the next section� the same
phenomenon occurs in the in�nitary version of ��calculus �KKSdV�"a	�

�� Infinitary lambda calculus

As semantics of ��graph rewriting we take the in�nitary ��calculus� as introduced by Kenna�
way et al� �KKSdV�"a	� The in�nitary ��calculus provides us with a notion of correctness of
proposed de�nitions of ��reduction of ��graphs� and explains the counterexamples for ��ni�
tary� con�uence of ��reduction of such graphs� In this section we will give a short exposition
of some of the concepts introduced in �KKSdV�"a� KKSdV�"b	�

Cauchy converging reduction sequence: activity may occur everywhere

Strongly converging reduction sequence, with descendant relations

Figure ��� Converging and strongly converging reduction sequences�

We �rst underline the di�erence between convergent and strongly convergent reductions� In
short� a strongly convergent reduction is such that the pre�x of the term where no reduction
occurs is increasing �see Figure ���� that is� the depth of contracted redexes tends to in�nity�

In trans�nite orthogonal term rewriting there is a single source of failure of in�nitary
con�uence� the presence of collapsing operators� such as the I or K combinators� enabling one
to build trees that consist of an in�nite tower of collapsing operators� or rather collapsing
contexts� This is proved in �KKSdV�"b	� In the in�nitary ��calculus� that is also a source
of non�con�uence� However� the matter is more complicated� there is another phenomenon
that causes in�nitary non�con�uence� not due to collapsing contexts� To explain this� we �rst
need the concepts of development and complete development� which are a generalization of
the classical notions of ��calculus�

De�nition ��� Let M be a possibly in�nite ��tree� and S be a set �possibly in�nite� of
redexes in M�
�i� A development of S is a reduction� possibly in�nite� in which only descendants of members
of S are contracted�

�

λy

λ x

@

@

S

x

S

y

λy

λ x

@

@

S

x

S

y

λy

λ x

@

@

S

x

S

y

λ x

@

S

x

S

λy

λ x

@

@

S

x

S

y

λy

λ x

@

@

S

x

S

y

λ x

@

S

x

Sλ x

@

Sλ x

@

S

S

x

S

x

1

1 1

1

1

2

22

222

22

2

11

Figure ��� Complete development of the redexes marked as ��

�ii� A complete development of S is a development which is strongly convergent and after
which no descendant of a redex of S is left�

A classical lemma in ��calculus is the Finite Developments Lemma� stating that any devel�
opment must terminate �see Barendregt �Bar�
	�� Of course� we cannot have that for the
in�nitary ��calculus� since it admits in�nitely many redexes to be developed� But there is an
analogous statement� that is� any development strongly converges� This is however not the
case� and this gives rise to a failure of in�nitary con�uence� as shown in the next example�

Consider the in�nite unwinding of the term

h� j � � �x�	�Sx�� 	 � �y���Sy�i �

which� as was discussed in the previous section� was leading to two non�converging reductions�
Let S� and S� be the two sets of redexes descending from the two redexes ��Sy�� 	�Sx� in
that in�nite term� The result of the complete development of S� and S� is shown in Figures
�� and ��� respectively� The two in�nite terms so obtained do not have a common reduct�
We present a stylized version of the proof� for a formal exposition the reader can consult
�KKSdV�"a	� Consider the TRS with for every n 	
� a unary operator n� There are
in�nitely many rewrite rules�

n�m�x�� ��� �n�m��x� �

This is a con�uent and terminating TRS� It is not orthogonal� The in�nitary version is not
con�uent� For� consider the following in�nite terms �where we have omitted brackets in the

�� In	nitary lambda calculus
	

λy

λ x

@

@

S

x

S

y

λy

λ x

@

@

S

x

S

y

λy

λ x

@

@

S

x

S

y

λy

λ x

@

S

x

S

y

λy

@

@

S

S

y

λy

λ x

@

@

S

x

S

y

λy

λ x

@

S

x

λy

@

S

λy

@

S

1

1

1

2

2

22

11

1 1

2 2

2

1 1

S

y

S

y

Figure ��� Complete development of the redexes marked as ��

convention of association to the right��

� � � � � � � � � � � � � � ���

� � � � � � � � � � � � � ���

� � � � � � � � � � � � ����

� � � � � � � �

where we have #developed� the underlined redexes� that is� the redexes at even positions� This
corresponds to the reduction of redexes marked with � in Figure ��� whose leftmost in�nite
tree is represented as the in�nite term ��� � � � �i�e�� at each level the tree contains one symbol
S�� The complete development of the redexes marked with � in Figure �� corresponds to the
reduction of the redexes at odd positions� yielding�

� � � � � � � � � � � � � � ���

� � � � � � � � � � � � � ���

� � � � � � � � � � � � ����

� � � � � � � � �

Now it is clear that the two in�nite terms ���� � � � and ����� � � � have no common reduct� A
side result of this example is that for con�uent and terminating TRSs the generalization to
in�nitary rewriting does not work out well� apparently the orthogonality condition is needed�

Identifying the larger class of terms without weak head normal form does restore con�uence
for the in�nitary ��calculus� A term M has a weak head normal form if it reduces to some
term of the form xN� � � �Nn �n 	
� or �x�N �

��

Theorem ��� The in
nitary lambda calculus extended with the rule �called &
rule��

M � & if M has no weak head normal form

is in
nitary con�uent�

Proof� See �KKSdV�"a	� in which the in�nitary calculus referred to in this paper is called
the ����in�nitary calculus� �

Remarkably� this is not the case in ��graph rewriting� as discussed in the next section�

	� Regular developments and another counterexample

F

λx

Sx

Sx@

α

G

Sy

Sy@

β

G

Sy

Sy@

β

F

λx

Sx

Sx@

α

F

λx

Sx

Sx@

α

λ
β

λ
β

G

Sy

F

@ SSy

SSy

G

λ

Sy

β

G

Sy

F

@ SSy

SSy

F

λx

Sx

α

G

F

G

G

SSSSx

F

SSSSSx

SSx

SSSx

SSSSSSx

ω
α β
ω

y

y

y

λ

λy

y

Figure �
� In�nite reduction yielding a non�regular tree�

It may be thought that non�con�uence in the �!�calculus only arises because of expressions
that after unwinding to the corresponding in�nite ��tree have no weak head normal form�
Or� equivalently� that con�uence can be restored by equating all �!�expressions that have
no weak head normal form as in the in�nitary ��calculus� However� this is not the case�
non�con�uence in �! also may arise for expressions that have an in�nitary normal form�

An example of such an expression is�

h� j � � �x�F�
x��
 � �y�G��y�i �

� Notions of substitution �

Indeed� it is easily veri�ed that the corresponding in�nite term reduces to the in�nitary
normal form �x��FG��� independent of the order of reduction of the redexes of the form
x
and �y� Establishing that this is indeed a counterexample to con�uence in �! can be done
by a reasoning similar to that for the counterexample in Section
�

A more interesting counterexample is as follows� Before presenting the example� we remind
the reader that a ��tree is regular if it contains modulo isomorphism only �nitely many
di�erent sub�trees� A development is regular� if it is a development of a set of redexes in
a regular ��tree� and the result of the development exists and yields again a regular ��tree�
Consider�

h� j � � �x�F���Sx��Sx�� � � �y�G���Sy��Sy�i �

Unwinding these recursion equations yields the in�nite ��tree in the leftmost corner of Figure
�
� A development of the redexes with function part � yields a regular tree� as in the
�gure� Likewise a development of the redexes with function part � yields a regular tree� But
developing both sets of redexes yields a non�regular tree� namely� the rightmost one of Figure
�
� To see that we have indeed another counterexample to con�uence in �!� we reason as
follows� using the soundness of �! with respect to the in�nitary calculus �shown in Section ���
Let M be the initial �leftmost� in�nite term in Figure �
� Let M� be the middle term in that
�gure� arising after developing all ��redexes in M � Likewise M� is the term arising from M
after developing all redexes marked � in M � this term is not shown in the �gure� Finally� let
M��� be the term arising from developing both families of redexes� the redexes marked � as
well as the redexes marked �� This is the common reduct in the in�nitary calculus of M� and
M�� Now we claim that in fact M��� is the only common reduct of M� and M�� Establishing
this is a matter of routine which we omit� It follows that in the �nite graph calculus �! there
cannot be a common reduct for the two expressions arising from the recursion system under
consideration after executing the redex ��Sx� on the one hand and ��Sy� on the other hand�
For� these two expressions unwind to M� and M� respectively� Now if the two expressions
would have a common reduct� say C� in �!� then by its soundness we would have in the
in�nitary calculus a common reduct of M� and M�� namely the unwinding of C� But this
would be a regular term� as C is a �nite expression in �!� in contradiction with the claim
above that the irregular term M��� is the only common reduct of M� and M��

Summarizing� we have the situations as in Figure �"� where the lower plane is that of
��trees and their in�nite reductions� and the upper plane is that of ��graphs and their �nite
reductions� The planes are related by tree unwinding� Figure �"�i� displays the #normal� sit�
uation� Figure �"�ii� refers to the counterexample in Section
� that is� the loss of con�uence
in both ��graph rewriting and in the in�nitary ��calculus� Figure �"�iii� refers to the �rst
counterexample in the present section� Figure �"�iv� refers to the second counterexample in
this section involving developments to non�regular in�nite terms�

� Notions of substitution

Going back to the analysis of the �rst counterexample� it is not hard to see what causes a
set of redexes in a recursion system to resist a complete pre�development� This occurs only

��

(ii)

unw
inding

(i)

λ -graphs

ω

ω

ω
ω

?

?

??

regular

regular

non-regular

(iii) (iv)

Figure �"� Relation between ��graph and ��tree reductions�

if there is a cyclic con�guration in the system as follows�

�� � �x��C�����M��	
� � �
�i � �xi���Ci�����i��Mi���	
� � �
�n � �xn���Cn������M��	 �

Here the �iMi are the implicit ��redexes that we want to pre�develop� If we underline all
the �i in the above system and apply substitution� it so happens that those underlines can
never disappear� This suggests looking for a new form of substitution that leads to �nite
developments�

The new substitution� called acyclic substitution �written as ���as �� consists of de�ning an

order on the nodes of a graph� or equivalently on the recursion variables �see Figure ���� and
then allowing substitution upwards only� More precisely� call two nodes cyclically equivalent

if they are lying on a common cycle� A plane is a cyclic equivalence class� If there is a path
from node s to node t� and s� t are not in the same plane� we de�ne s
 t� Let
 be the name
associated to node s� and 	 the name associated to node t� then

 	� Acyclic substitution
is then de�ned as follows�

h� j
 � C�		� 	 � M�Ei ���as h� j
 � C�M 	� 	 � M�Ei if

 	 �

� Notions of substitution ��

G

G H

C

F

H

α

ν

γ δ

Figure ��� Ordering among recursion variables�

In C�		 just one occurrence of 	 is displayed and replaced by M � So in Figure ��� displaying
the system

h� j � � F��� 	� ��� � � H�G����
��
 � H�C� 	�� 	 � G�
�i

the only ���as �steps are from 	 in �� from � in �� from
 in �� The new calculus� called �'�

that embodies acyclic substitution is given next�

De�nition 	�� The following clauses de�ne the syntax and basic reduction axioms of the
�'�calculus�
Syntax�

g ��� �� � M�� � � � � �n � Mn

M ��� x j Fn�M�� � � � �Mn� j �x�M jMM

Reduction Axioms�
�
rule �
��x�M�N ���� M �x �� N 	

Acyclic substitution �
h� j
 � C�		� 	 � M�Ei ���as h� j
 � C�M 	� 	 � M�Ei if

 	

Fact 	�� Acyclic substitution is non terminating� E�g��

� � F
�
 � G
 ���as � � FG
�
 � G
 ���as � � FGG
�
 � G
 ���as � � � �

Referring to the above reduction note that the second step involves the reduction of a new
redex� If reduction is restricted to �old� redexes only then acyclic substitution becomes
terminating� To that end� let us introduce an underlined substitution calculus which we
call �'as� The terms of the new calculus are systems of recursion equations with underlined
recursion variables� with the proviso that the underlined variables have to belong to an acyclic
substitution redex� For example� the system

� � F
�
 � G
 �

��

is a legal term� On the other hand� the system

� � F
�
 � G

is not legal since

� The rule of �'as is�

h� j
 � C�		� 	 � M�Ei ���as h� j
 � C�M 	� 	 �M�Ei �

From now on� we will identify an acyclic substitution redex with the variable we are substi�
tuting for� E�g�� given the system � � F
�
 �
� we will say that
 is a redex�

Lemma 	�� Let g ���as g� by reducing redex 	 and g ���as g� by reducing redex
� then a

common reduct g� can be found by reducing in g� all descendants of
 and in g� all descendants
of 	�

Proof� Let g ���as g� by substituting for 	 in �� and g ���as g� by substituting for
 in ��

The only interesting case is when 	 � � or
 � �� In other words� the two substitutions have
a cyclic plane in common �see Figure ���� Note that 	 � � and
 � � are not simultaneously
possible� Let us assume 	 � �� We have�

g � � � C�		�
	 � C��
	�

 � N

�
� g� � � � C�C��
		�

	 � C��
	�

 � N

� � C�C��N 		�
	 � C��
	�

 � N

�
	

g� � � � C�		�
	 � C��N 	�

 � N

�

	

�
� g� � � � C�C��N 		�

	 � C��N 	�

 � N �

�
	

�

Lemma 	�
 ���as is strongly normalizing�

Proof� Due to the fact that the ordering
 among recursion variables is well founded we can
use the multiset ordering �Klo	� The weight associated to a system of recursion equations g
is the multiset of all underlined recursion variables� E�g�� to the system

� � F	� 	 � G
�
 �
 �

we associate the multiset
ff	�
gg �

Let
g � h� j
 � C�		� 	 � M�Ei ���as h� j
 � C�M 	� 	 � M�Ei � g� �

Without loss of generality� let M be C���	� Then� in the multiset associated to g�� 	 will be
substituted by �� By de�nition�

 	 and 	
 � and so the multiset is getting smaller� �

� Notions of substitution ��

Theorem 	�� Acyclic substitution is con�uent�

Proof� As in �Bar�
� Klo	 con�uence follows from Lemmas ��� and ��
 by applying the
complete development method� which consists of de�ning a new reduction relation with the
same transitive closure as ���as and prove that it satis�es the diamond property� �

Next� we prove that acyclic substitution combined with ��reduction is con�uent� We thus
extend �'as by allowing the underlining of ��s that constitute the operator part of a ��redex�
The new ��rule becomes ��x�M�N ���� M �x �� N 	� The combination of as and � is written

as ���as� � The new calculus is called �'� and is summarized next�

De�nition 	�� The following clauses de�ne the syntax and basic reduction axioms of the
�'�
Syntax�

g ��� �� � M�� � � � � �n � Mn

M ��� x j x j Fn�M�� � � � �Mn� j �x�M jMM j ��x�M�M

Reduction Axioms�
�
rule �
��x�M�N ���� M �x �� N 	

Acyclic substitution �
h� j
 � C�		� 	 � M�Ei ���as h� j
 � C�M 	� 	 � M�Ei if

 	

We start by showing that ��� as� is strongly normalizing� The proof follows the same

steps as in �Bar�
	� We associate a positive integer to each variable �recursion variables and
lambda bound variables� occurring in the right�hand side of an equation of a system g� The
weight of g� written as jgj� is then the sum of the weights occurring in g� However� the initial
weight associated to variables has to obey some conditions�

De�nition 	�	 Let g be a system of recursion equations in �'� g has decreasing weight

property �dwp� if

�i� for every ��redex ��x�P �Q in g �

�x � P� jxj
 jQj

�ii� for every as�redex
� such that
 � M is an equation in g�

j
j
jMj �

For example�
� � ��x�x����G
�
���
 � 			�

has the dwp� while

� � ��x�x
��G
�
���
 � 			� and � � ��x�x
��G
�
���
 � 			�

violate the conditions �i� and �ii�� respectively� of De�nition ����

��

Proposition 	�� For all systems of recursion equations g in �'� there exists an initial weight

assignment so that g has decreasing weight property�

Proof� We start by �nding the strongly connected components of the graph associated to
g� We could see the dag so obtained as having as nodes the sequences of equations that
de�ne a cyclic plane� These distinct sequences of equations are then topologically ordered�
obtaining a new system of equations g�� The equations corresponding to each cyclic plane
are not re�ordered� For example� the system

� � F
� 	 � G��
 � H	� � � H	

is re�ordered as
� � F
�
 � H	� 	 � G�� � � H	

or
� � F
�
 � H	� � � H	� 	 � G� �

In other words� the order of the equations for 	 and � is immaterial� Now we enumerate
all the variables occurring in the right�hand side of the equations� following the right to left
order� and assign to the mth variable occurrence the weight �m� Since

�m
 �m�� � �m�� � � � � � � � �

g has the dwp� �

Proposition 	�
 If g ���as� g�� and g has dwp then

jgj
 jg�j �

Proof� Follows from the fact that �m
 �m�� � �m�� � � � � � � �� �

Proposition 	��� Let g ���as� g�� then if g has dwp so does g��

Proof� If g reduces to g� by performing a ��redex then the proof that the �rst condition
of the dwp holds is the same as in �Bar�
	� To show that the second condition holds let us
assume�

	 � C���	�
� � C���x�C��
	�C���		�

 � M�
� � N

���� 	 � C���	�
� � C�C��
	�x �� C���			�

 � M�
� � N �

Since during ��reduction the weights of the recursion variables are not disturbed� we still
have j
j
jM j and j�j
jN j� Since the weight of the right�hand side of � decreases� we still
have j�j
jC�C��
	�x �� C���			j�

Let us now assume that g reduces to g� by performing an underlined acyclic substitution
step� Let g be�

	 � C���	�
� � C���x�C��
	�C���		�

 � M�
� � N �

� Notions of substitution ��

If we substitute for either � or
 then the �rst condition is met because the weight of the
argument of the ��redex decreases and x cannot occur free in M � Moreover� j�j is still greater
than the weight of the right�hand side� Analogously� if we substitute for � we still have that
the weights of
 and � are greater than jMj and jNj� respectively� �

Lemma 	��� ���as� is strongly normalizing�

Proof� From Propositions ��� and ���
� �

Lemma 	��� Acyclic substitution commutes with ��

Proof� We show that ���as commutes with ���� � Since ���as� is strongly normalizing

it is enough to show that ���as commutes with ���� � Let g be

	 � C���	�
� � ��x�C��
	�C���	�

 � M�
� � N �

By cases on where the substitution occurs�

�Substitution for ��

	 � C���	�
� � ��x�C��
	�C���	�

 � M�
� � N

�
� 	 � C���	�

� � �C��
	��x �� C���		�

 � M�
� � N

	 � C����x�C��
	�C���		�
� � ��x�C��
	�C���	�

 � M�
� � N

�
as

�

�
�

� 	 � C���C��
	��x �� C���			�
� � �C��
	��x �� C���		�

 � M�
� � N

�
as

�Substitution for
�

	 � C���	�
� � ��x�C��
	�C���	�

 � M�
� � N

�
� 	 � C���	�

� � �C��
	��x �� C���		�

 � M�
� � N

	 � C���	�
� � ��x�C��M 	�C���	�

 � M�
� � N

�
as

�

� 	 � C���	�
� � �C��M 	��x �� C���		�

 � M�
� � N

�
as

��

�Substitution for ��

	 � C���	�
� � ��x�C��
	�C���	�

 � M�
� � N

�
� 	 � C���	�

� � �C��
	��x �� C���		�

 � M�
� � N

	 � C���	�
� � ��x�C��
	�C��N 	�

 � M�
� � N

�
as

�

� 	 � C���	�
� � �C��
	��x �� C��N 		�

 � M�
� � N

��
as

�

Theorem 	��� �' is con�uent�

Proof� From the previous lemma and Hindley�Rosen�s Lemma� �

@

λx

spine

α

Figure ��� Cycle through a spine�

Con�uence of �' guarantees that the lack of con�uence of �! does not impair its correct�
ness� as shown in the next section� Moreover� it also allows us to precisely indentify which
redexes cause con�uence to fail� namely the spine�cyclic redexes� A ��redex is spine
cyclic
when its root and the ��node lie on the same cycle �see Figure ���� Otherwise� the redex is
spine
acyclic� In a spine�acyclic redex the root and the ��node may be cyclic� Reduction of
explicit spine�cyclic redexes� such as the ��redex in the equation
 � ��x�C�
	�M � does not

� Notions of substitution �	

introduce any problem� Summarizing� Theorem ���� says that reduction of implicit and ex�
plicit spine�acyclic redexes and explicit spine�cyclic redexes is con�uent� since their reduction
involves acyclic substitution only�

An example of a spine�acyclic redex is the topmost ��redex of Figure �� The lower ��redex
is an example of a spine
cyclic redex� since the root of that redex and the ��node� named
sum� are on the same cyclic plane� and thus needing a substitution that is not acyclic to make
it explicit� Implicit spine�cyclic redexes can be made explicit by �rst applying the operation
of copying� which allows us to unwind a cycle without losing any name� For example� if we
want to reduce the underlined implicit spine�cyclic ��redex in the system�

� � �x�	�Sx�� 	 � �y���Sy�

we �rst perform a copy step�

� � �x�	�Sx�� 	 � �y���Sy� ���c � � �x�	�Sx�
�
� �� � �x�	�Sx�

�
� 	 � �y����Sy� �

The system so obtained contains an implicit spine�acyclic redex� i�e�� the one subscripted with
�� However� another copy of the implicit spine�cyclic redex is made� i�e�� the one subscripted
with ��

Remark 	��
 Another notion of substitution that guarantees con�uence is the parallel sub

stitution ����ps �� which consists of substituting at once for all the recursion variables�

�� � M�� � � � � �n � Mn ���ps �� � M�� ��n �� �Mn	� � � � � �n � Mn� ��n �� �Mn	 �

For example� we have

� � �x�	�Sx�� 	 � �y���Sy� ���ps � � �x���y���Sy���Sx�� 	 � �y���x�	�Sx���Sy� �

This notion is interesting since it allows us to remove the de�nition of 	� However� we do not
pursue the study of this notion since it does not underlie common program transformations�

Since a notion of substitution is already present in the ���calculus� we are going to present
it next�

��� The ��
calculus
An interesting calculus arises by extending #pure� ��calculus with the ��rule�

� � �x�Z�x� ��� Z��x�Z�x�� �

Here we use the notation as used for #higher�order term rewriting� by means of Combinatory
Reduction Systems �CRSs�� as in �KvOvR��	� Usually this rewriting rule is presented as
�x�Z ��� Z�x �� �x�Z	� The ���calculus already o�ers a form of cyclic ��graph rewriting �see

Figure ���� it reduces #implicit� ��redexes in a way similar to that discussed in Section
� that

��

μα.αα
α

(μα.αα)(μα.αα)@ @

@@

α

Figure ��� Reduction of ������

is� by �rst performing some unwinding� Thus� it seems puzzling that the ���calculus� being an
orthogonal Combinatory Reduction System� is con�uent� Translating the �!�counterexample
to con�uence of Section
 into �� is instructive� The uppermost cyclic graph of Figure �
 is
expressed in the ���calculus as�

M � ����x���	��y���Sy���Sx� �

In order to reduce the �implicit� ��redex ��Sy�� as we did in Section
� we have to apply the
��rule twice obtaining�

M ���
 �x���	��y�M�Sy���Sx� ���
 �x���	��y���x���	��y�M�Sy���Sx���Sy���Sx� �

The above reduction is displayed in Figure ��� In Figure �
 we display one step of substitution�
Comparing the middle graph of Figure �� and the rightmost graph of Figure �
 we see that the
substitution operation embodied in the ��rule is much more complex than the unrestricted
version of �!� since it involves making an entire copy of M � Moreover� in �� one step
of unwinding is not enough to make the redex explicit� Another application of the ��rule
is necessary� this causes another copy of M to be made� This avoids the #out�of�synch�
phenomenon�

At this point we could restrict ourselves to the sub�calculus ��� however� this is not satis�
factory because the ���calculus is limited in the form of sharing it can express� For example�
it is unable to directly capture the expression

� � F�
�
��
 � �x�G�
� �

In fact� by translating the above expression into the ���calculus we obtain

F��
��x�G�
�� �
��x�G�
�� �

where a duplication or unsharing has occurred� In other words� the ���calculus expresses
vertical sharing only� This gives rise to the following question� how can we extend ���
calculus� with its lack of horizontal sharing� to include this feature that is indispensable for
e�cient graph rewriting� while retaining con�uence and still properly extending well�known
term rewriting techniques� This leads to modular lambda graph rewriting� which is introduced
after having proved the soundness of �!�

�� Soundness of �!

In order to de�ne the tree unwinding of a recursion system we �rst introduce the notion of
expansion of a term� Let M��������

GK�as�

�nN denote n�steps of the Gross�Knuth strategy applied

�� Soundness of �! �

S

x

λx

@

λy

@

S

y

α

δ

S

x

λx

@

λy

@

S

y

δ

λx

@

S

x

λy

@

S

y

δ

α

λx

@

S

x

λy

@

S

y

δ

λx

@

S

x

λy

@

S

y

δ

α

S

x

λx

@

λy

@

S

y

δ

μ μ

Figure ��� ��reduction of ����x���	��y���Sy���Sx��

S

x

λx

@

λy

@

S

y

α

δ

S

x

λx

@

λx

@

S

x

λy

@

S

y

δ

s

Figure �
� Display of a substitution step�

��

to the acyclic substitution redexes occurring in the �rst equation of M �i�e�� all acyclic
substitution redexes in the �rst equation of M are performed�� If the �rst equation of M
does not contain any acyclic substitution redexes we still write M��������

GK�as�

�N � For example�

� � F

�
 � G
 ��������
GK�as�

�� � � F�GG
��GG
��
 � G
 �

De�nition ��� Let g be �� � M�� � � � � �m � Mm� and � � ��� g ��������GK�as�

�n � � M� g� Then�

the nth expansion of g� written as T n�g�� is the term M ��� �� &� � � � � �m �� &	�

Due to the monotonicity of expansion with respect to the
�ordering �i�e�� the ordering
axiomatized by &
 t� for any tree t�� we de�ne tree unwinding as follows�

De�nition ��� Given a recursion system g� The tree unwinding of g� written as T �g�� is
limn�� T n�g��

Using the in�nitary ��calculus we can now formulate a soundness criterion for transforma�
tions of �!�expressions� �Also the various transformations in Section � satisfy this criterion��

De�nition ��� Let g� g� be two recursion systems� We will say that a transformation g ��� g�

is sound �with respect to the in�nitary ��calculus� if T �g� ����
��

�� T �g��� �Here ����
��

�� denotes

possibly in�nitary reduction� that is a sequence of � or less �possibly
� � or &�steps��

Theorem ��
 The �!
calculus is sound with respect to the in
nitary lambda calculus�

Proof� We will prove the result for a single step� the result for multiple steps follows from the
compression lemma of the in�nitary lambda calculus� If g ���c g�� g ���n g� or g ���s g��

then g and g� are bisimilar graphs and therefore T �g� � T �g�� �see �AK��	�� If g rewrites to
g� by reducing a ��redex� say �� then� since acyclic substitution commutes with � �Lemma
����� and the descendant of an as��redex �i�e�� an acyclic substitution redex occurring in the
�rst equation� is still an as��redex� the following holds�

g ���� g� �� �n� T n�g� ���� T
n�g�� �

where in the tree reduction all the descendants of � are reduced� Next� we will show that there
exists a t such that T �g� ����

��
�� t and t � T �g��� If T �g� does not contain any descendants

of � then we de�ne t � T �g�� this may happen if the ��redex is garbage collected during the
unwinding� If T �g� contains an in�nite number of descendants it means that the ��redex
in g lies on a cycle� That is� g contains an equation of the form � � C���x�P �Q	� where
either the context� P or Q contain a reference to �� and g contains equations of the form
� � C����	� � � � � �n � Cn��	� In the following� without loss of generality� we let � be �� Let
us assume that the context C��	 is empty and either P is � or P is x and Q is �� That is� g
contains an equation of one of the following two forms� � � ��x�x�� or � � ��x���Q� These
redexes lead to the following rewriting�

� � ��x�x�� ���� � � �

�� Modular lambda graph rewriting ��

and
� � ��x���Q ���� � � � �

In this case it is not true that T �g� ���
�
�� T �g��� In fact� T �g� rewrites to itself only� The

problem is that there always exists a redex at depth
� However� the following holds�

T �g� � T �C���x�P �Q	� ���
�

T �C�&	� � T �C�P �x �� Q	� � T �g�� �

In the other cases� we can de�ne t by doing a complete development of all the descendants
of � that occur in T �g�� The next step is to prove that t � T �g��� We �rst show that
T n�g��
 t� Let T �g� rewrite to t� by doing all the ��redexes that are reduced in the reduction
T n�g� ���

�
T n�g��� then T n�g��
 t� and t� ���� t� Since all the descendants of � contained in

t� correspond to an & in T n�g�� we have T
n�g��
 t� t
 T �g�� since each �nite approximation

of t can be obtained by reducing a �nite approximation of g�

�

�� Modular lambda graph rewriting

We now in a sequence of extensions develop a series of calculi� called ��� leading to a very
general and �exible calculus which incorporates the ��calculus� the ���calculus� ordinary
�rst�order term rewriting� vertical and horizontal sharing� The distinctive feature of this
family of calculi is the presence of nested recursion equations� For example� we will write�

h� j � � ��x�h	 j 	 � F���Sx�i�Sxi �

where� as in Section �� it is clear that the underlined x is free� To avoid free variable captures
we will still assume that both free and bound variables have to be distinct from each other�
So we will write the above term as

h� j � � ��y�h	 j 	 � F���Sy�i�Sxi �

Moreover� the root of a term is not restricted to be a variable� e�g��

hF� j � � G�i �

The general form of ���terms is
ht j Ei �

where t is a term and E is an unordered sequence of equations� � stands for the empty
sequence� We refer to ht j Ei as a box construct� We call t the external part of the box� and
E the internal part� We can see E as the environment associated to t� or as a set of delayed
substitutions� The ���calculi can be seen as an extension of the ���calculus and of the ���
calculi �ACCL��� Cur��� Les�
	 with horizontal sharing and vertical sharing� respectively�
The ���calculi treat the let�construct as a �rst class citizen� while the ���calculi support the
letrec� For example� in �� we can have

h� j � � �x�h	 j 	 �
 �
�
 � � � xii �

��

which corresponds to the letrec expression�

letrec � � �x� letrec 	 �
 �
�

 � � � x

in 	
in � �

�The above term is displayed in Figure "�� We could also say that the ���calculi express
acyclic lambda graph rewriting� while the ���calculi deal with cyclic lambda graph rewriting�
Since cycles are ubiquitous in the implementation of programming languages� the ���calculi
follow the tradition of providing #enriched ��calculi� to capture more precisely the operational
semantics of functional languages �Ari��� PJ��	�

After having presented the graphical representation of �� terms� we discuss the basic
system ���� ��� is based on the con�uent notion of acyclic substitution �applied also to the
external part of a box�� it does not contain rules for the manipulation of boxes except the
empty ones� We show that ��� is con�uent and that the ��calculus can be de�ned in it� We
then present ���� which is obtained by extending ��� with some box distribution rules whose
job is to move a box construct as far as possible down a term until a variable is reached� We
show that the ���calculus is directly de�nable in ��� and how to encode the ���calculus in
���� We prove con�uence of ���� Finally� we extend ��� with rules to enlarge the scope of
a box and to merge boxes when possible� The calculus so obtained� called ���� is shown to
be con�uent� also in the presence of orthogonal term or term graph rewriting system� ���
contains Rose�s ���calculus �Ros��b	�

��� Graphical representation of modular �
graphs

α
F

β G

α βGF

H

α

β

H

H

H

γ

(a) (b) (c)

Figure ��� Graphs associated to ���terms�

We graphically represent an expression ht j Ei by a box divided in two parts� the upper part
corresponding to the external part t and the lower part containing the internal part E� A
box can be thought of as a re�ned version of a node� We present a series of examples�

Example
�� �i� The following terms

�a� h� j � � F���� � � G���i
�b� hH��� �� j � � F���� � � G���i
�c� hH�H��� ���
�� j � � H��� ��i

�� Modular lambda graph rewriting ��

are displayed in Figure ��� Note that the free variables are drawn outside the box� as in
Figure ���c��

�ii� The terms

�a� hH�h� j � � F���i� �� j � � F�h
 j
 � F�	�� 	 � G�
�i�
�b� hH���� �� j �� � h� j � � F���i� � � F�
���
� � h
 j
 � F�	�� 	 � G�
�ii

are shown in Figure ��� Note the #external names� ���
� of the boxes in Figure ���b��

α

β

F

F

H

F

G

γ

δ

α

β

F

F

H

F

G

γ

δ

γ'

α'

(a) (b)

Figure ��� Graphs associated to ���terms�

�iii� Boxes can also refer to each other� The term

h�� j �� � h� j � � F����� �� � h� j � � G����ii

is shown in Figure ��� Note that multiple references to a box are aiming straight at its
leading node�

β GF
α
α' β'

Figure ��� Mutually dependent cyclic boxes�

��� Basic System

We start with the basic system ���� In order to simplify the reading of the reduction rules we
will denote by tE the term ht j Ei� As in the previous section� �F orthogonal to a sequence
of equations E and to a term t� means that the recursion variables of F do not intersect with
the free variables of E and t� We denote this property by F � E� t� The recursion equation

��

	 �	 	 in the Black hole rules stands for the sequence 	 � 	�� � � � � 	n � 	� As for �!� the
proviso �
 	 of the Acyclic substitution and Black hole rule indicates that there is no cycle
between them in the term matching the left�hand side of the rule� For example� � is greater
than 	 in the following underlined term�

g � h
 j
 � hF� j � � G	� 	 � G
ii �

even though g contains a cycle between � and 	� However� this cycle goes through
� which
is de�ned outside the internal box �see Figure �
�� The ����calculus is given next�

α

F

G

Gδ

γ

Figure �
� Ordering among recursion variables�

De�nition
�� The following clauses de�ne the syntax and basic reduction axioms of the
����calculus�
Syntax�

t ��� � j Fn�t�� � � � � tn� j ���t j t�t� j ht� j �� � t�� � � � � �n � tni
C��	 ��� � j C��	t j Fn�t�� � � � � C��	� � � � � tn� j tC��	 j ���C��	 j hC��	 j Ei j

ht j � � C��	� Ei

In a term ht� j �� � t�� � � � � �n � tni all the recursion variables �i� �
 i
 n� are distinct
from each other�
Reduction Axioms�
�
rule�
����t�s ���� ht j � � si

External substitution�
hC�		 j 	 � s�Ei ���es hC�s	 j 	 � s�Ei

Acyclic substitution�
ht j � � C�		� 	 � s�Ei ���as ht j � � C�s	� 	 � s�Ei if �
 	

Black hole�
hC�		 j 	 �	 	� Ei ���� hC��	 j 	 �	 	� Ei

ht j � � C�		� 	 �	 	� Ei ���� ht j � � C��	� 	 �	 	� Ei if �
 	

Garbage collection rules�
tE�F ���gc tE if F
� � and F � E� t

ht j i ���gc t

�� Modular lambda graph rewriting ��

Note that we have dropped the distinction between lambda bound variables and recursion
variables� ��equivalent ���terms and terms that are obtained by a ��� renaming of recursion
variables are identi�ed� In the ��rule notice the role change of the bound variable� previously
bound by �� afterwards bound by the recursion construct h j i� The ��rule now becomes
strongly normalizing� For example� �������������� ���� h�� j � � �����i� which does

not contain any ��redex� In order to proceed with the computation external substitution has
to be applied� yielding� h�������� j � � �����i� External substitution allows us to #extract�
a tree�like pre�x without duplicating the environment E� An external substitution redex
corresponds to an as��redex� introduced in Section �� The cyclic binding 	 �	 	 in the Black
hole rule allows the reduction of h	 j 	 � 	�� 	� � 	i to �� This reduction would not have been
possible if instead of 	 �	 	 we simply had 	 � 	� In this case the only possible rewriting
would have been the following�

h	 j 	 � 	�� 	� � 	i ���es h	� j 	 � 	�� 	� � 	i ���es h	 j 	 � 	�� 	� � 	i ���es � � �

No reduction can occur inside the environment since 	 and 	� lie on the same cycle� Moreover�
we have included the proviso �
 	 in the Black hole rule to guarantee its con�uence� Without
it� we would have the following scenario�

h	 j 	 � 	�� 	� � 	i
�
� h	 j 	 � �� 	� � 	i

h	 j 	 � 	�� 	� � �i
�
�

as
� h	 j 	 � �� 	� � �i

�
as

The proviso �F
� �� of the �rst Garbage collection rule guarantees its strong normalization�
Without that proviso we would have tE ���gc t

E �

Theorem
�� ��� is con�uent�

Proof� Call the external and acyclic substitution rules s�reductions� and the remaining rules
o�reductions� o�reductions are con�uent� as they do not cause any duplication and they
commute� By Lemma ��"� s�reductions are con�uent� Next� one s�step commutes with a
sequence of o�steps �Notation� ��� ��� stands for a reduction of
 or � steps���

o
��

�
s

o
��

���

�
s

Then we have that s�reductions commute with o�reductions� The result thus follows from
Hindley�Rosen�s Lemma� �

Lemma
�
 The �
calculus is directly de
nable in ����

��

Proof� We have�

����t�s ���� ht j � � si ���es ht�� �� s	 j � � si ���gc t�� �� s	 �

The last step is justi�ed by the fact that � cannot occur free in s� �

Theorem
�� Let R be an orthogonal term rewriting system� Then ��� �R is con�uent�

Proof� Since R�rewriting commutes with ���� �

Rewriting with ��� � R is already quite interesting from the point of view of term graph
rewriting� as it can handle horizontal �as shown in the following example� and vertical sharing�

S

α

β

γ

@

@

@ I

S

β

γ

@

@

@ I

S S

β

γ

@

@

@

@

@ I

S

β

γ

@

@ I

@

@

@

I

S

β

γ

@

@ I

@

@

I

@

S

β

γ

@

@

@ I

CLCL

CL

Figure �"� Reduction in ��� �R�

Example
�� Let CL be �Combinatory Logic�� with the rules�

SZ�Z�Z� ��� Z�Z��Z�Z��

KZ�Z� ��� Z�

IZ ��� Z

Then we have the following reduction in ����R �see also Figure �"� where the lines dividing
the graphs correspond to the division in external and internal part� Only the nodes reachable

�� Modular lambda graph rewriting �	

from the root � are displayed��

h� j � � ��� � � S

�
 � Ii ���es

h�� j � � ��� � � S

�
 � Ii ���es

hS

� j � � ��� � � S

�
 � Ii ���CL

h
��
�� j � � ��� � � S

�
 � Ii ���es

hI��I�� j � � ��� � � S

�
 � Ii ���CL

h�� j � � ��� � � S

�
 � Ii

Remark
�	 As pointed out in Section �� non�con�uence is caused by a notion of cyclic
substitution� This cyclic substitution is now absent in ���� Thus� all counterexamples to
con�uence disappear in ��� and in our subsequent extensions� This restriction does not limit
the expressive power of our calculi with respect to execution� That is� they are powerful
enough to simulate �nite ��reductions in the in�nitary calculus�

�i� Consider the system
g � h� j � � �x�
�Sx��
 � �y���Sy�i �

which caused the �rst counterexample to con�uence �see Section
�� In ��� there is no
way of making the implicit ��redexes ��Sy� and
�Sx� explicit by applying substitution
inside the environment� Thus� in ��� g does not rewrite to h� j � � �x���S�x�i� In ���
we have the following reductions �����esgc stands for ���� ���es ���gc ��

h� j � � �x�
�Sx��
 � �y���Sy�i ���es

h�x�
�Sx� j � � �x�
�Sx��
 � �y���Sy�i ���es

h�x���y���Sy���Sx� j � � �x�
�Sx��
 � �y���Sy�i ����esgc
h�x���S�x� j � � �x�
�Sx��
 � �y���Sy�i ���es

h�x���x�
�Sx���S�x� j � � �x�
�Sx��
 � �y���Sy�i ����esgc
h�x�
�S�x� j � � �x�
�Sx��
 � �y���Sy�i ���

� � �

Note that independently of how many rewriting steps are performed� the information
contained in g is �x�&� which is the in�nite normal form of T �g��

�ii� Consider the second counterexample �see Section ���

g � h� j � � �x�F�
�Sx��Sx��
 � �y�G���Sy��Sy�i ���es

h�x�F�
�Sx��Sx� j � � �x�F�
�Sx��Sx��
 � �y�G���Sy��Sy�i ���es

h�x�F���y�G���Sy��Sy���Sx��Sx� j � � �x�F�
�Sx��Sx��
 � �y�G���Sy��Sy�i ����esgc
h�x�F�G���S�x��S�x��Sx� j � � �x�F�
�Sx��Sx��
 � �y�G���Sy��Sy�i ���

h�x�F�G�F�
�S�x��S�x��S�x��Sx� j � � �x�F�
�Sx��Sx��
 � �y�G���Sy��Sy�i ���

� � �

Note that even though g cannot rewrite to a g� such that T �g�� is the tree on the right�
hand side of Figure �
� reductions in ��� produce all �nite approximations of that tree�
E�g�� the above reduction leads to the approximation �x�F�G�F�&�S�x��S�x��S�x��Sx��

��

����t�E ���d� ���tE

Fn�t�� � � � � tn�
E ���dF Fn�tE� � � � � � t

E
n � if n 	 �

�ts�E ���d� tEsE

h� j F iE ���d� h� j FEi if � is bound by F

Table �� Distribution rules�

��� �� with horizontal sharing and �� with vertical sharing

We translate the ���terms into ��� as follows�

� ���		 � �
� ��F�t�� � � � � tn�		 � F�� ��t�		 � � � � � � ��tn		�
� ��t�t�		 � � ��t�		� ��t�		
� �����t		 � ���� ��t		
� �����t		 � h� j � � � ��t		i �

However� the ���calculus is not directly de�nable in ���� E�g�� �

t � ���F��� ���G��� ��� ���
 ���F���G��� ���G��� ���� � s �

but

� ��t		 � h� j � � F��� h� j � � G��� ��i�i
����
� h� j � � F���G��� h� j � � G��� ��i��i � � ��s		 �

To that end� we extend ��� with the distribution rules of Table �� whose job is to move a
box construct as far as possible down a term until a variable is reached� We call the result
���� Notation� FE means� if F is �� � t�� � � � � �n � tn then FE is �� � tE� � � � � � �n � tEn � �
bound by F means that F contains an equation of the form � � t�

Example
�� The following reduction

���F��� ���G��� ��� ���
 ���F���G��� ���G��� ����

is de�ned in ��� as follows�

h� j � � F��� h� j � � G��� ��i�i ���es

h� j � � F��� hG��� �� j � � G��� ��i�i ���dF

h� j � � F���G�h� j � � G��� ��i� h� j � � G��� ��i��i ���gc

h� j � � F���G��� h� j � � G��� ��i��i �

�See Figure ����

In order to prove that �� is de�nable in ��� we need some properties of the distribution and
garbage collection rules� i�e�� strong normalization and con�uence� Using these properties we
then show that the distribution and garbage collection rules unfold the system by pushing
the box constructs next to the variables� Notation� ���dgc is the reduction relation induced

by the distribution and garbage collection rules�

�� Modular lambda graph rewriting �

α

G

F

β

β G

α

G

F

β G

α

G

F

Figure ��� Analysis of ��step�

Lemma
�
 ���dgc is strongly normalizing�

Proof� We associate to each box construct ht j Ei a positive number n� called the index of
ht j Ei� This index� written as d�t�� indicates the depth of the external part t of a box� that
is� how much a box has to travel until it reaches a variable�

d��� �

d�constant� �

d�st� � � �maxfd�s�� d�t�g
d�Fn�t�� � � � � tn�� � � �maxfd�t��� � � � � d�tn�g� n 	 �
d����t� � � � d�t�
d�ht j �� � t�� � � � � �n � tni� � � � d�t� �maxfd�t��� � � � � d�tn�g �

�We assume max fg to be
�� The index of each box appears as a superscript in the system
below�

g � hh����� j � � hF	 j 	 � G�i�i� j � � hG� j � �
i�i� �

The weight associated with a system of recursion equations g� written as jg j� is then the
multiset of sequences of indexes associated with all possible nesting of boxes� For example�

jg j� ff� � �� � �gg �

The multiset ordering is then induced by the lexicographic order on sequences� If a system
of recursion equations g does not contain any box construct we let jg j be ff
gg� The multiset
ordering takes care of the duplication of boxes� e�g�� �

�i� If

g � hH��� �� j � � hFF� j � � �i�i� ���dF

H�h� j � � hFF� j � � �i�i�� h� j � � hFF� j � � �i�i�� � g� �

then
jg j� ff� �gg
 ff
 ��
 �gg �jg� j �

�ii� If

g � hh� j � � H�F��F	�� � � H�F��F	�i� j 	 � hF� j � � �i�i� ���d�

h� j � � hH�F��F	� j 	 � hF� j � � �i�i�� � � hH�F��F	� j 	 � hF� j � � �i�i�i� � g� �

��

then
jg j� ff� �� �
gg
 ff
 � ��
 � �gg �jg� j �

We �rst restrict our attention to the distribution rules only �written as ���d �� We show

the following fact�

Fact� C�R	 ���d C�R�	 �� d�C�R	� � d�C�R�	� �

By induction on the structure of C��	�

�C��	 � �� By cases on R� Notation� if E is the sequence of equations �� � t�� � � � � �n � tn
then d�E� stands for maxfd�t��� � � � � d�tn�g�

� d�����t�E� � � � d����t� � d�E�
� � � �� � d�t� � d�E��
� � � d�tE�
� d����tE� �

� d��st�E� � � � d�st� � d�E�
� � � � �maxfd�s�� d�t�g � d�E�
� � �maxf� � d�s�� � � d�t�g � d�E�
� � �maxf� � d�s� � d�E�� � � d�t� � d�E�g
� � �maxfd�sE�� d�tE�g � d�sEtE� �

� d�Fn�t�� � � � � tn�
E� � � � d�Fn�t�� � � � � tn�� � d�E�

� � � � �maxfd�t��� � � � � d�tn�g� d�E�
since n 	 � � � �maxf� � d�E� � d�t��� � � � � � � d�E� � d�tn�g

� � �maxfd�tE� �� � � � � d�t
E
n �g

� d�Fn�tE� � � � � � t
E
n �� �

Note that it is important for n to be greater than zero� otherwise the depth would
decrease in the reduction h
 j i ���dF
�

� d�hh� j �� � t�� � � � � �n � tni j Ei� � � � d�h� j �� � t�� � � � � �n � tni� � d�E�
� � � � �maxfd�t��� � � � � d�tn�g� d�E�

since n 	 � � � �maxf� � d�t�� � d�E�� � � � � � � d�tn� � d�E�g
� � �maxfd�tE� �� � � � � d�t

E
n �g

� d�h� j �� � tE� � � � � � �n � tEn i� �
The proviso of the ���d� �rule guarantees that n is greater than zero�

�Inductive case� If C��	 is C���	t then
d�C��R	t� � � �maxfd�C��R	�� d�t�g Induction hypothesis

� � �maxfd�C��R�	�� d�t�g
� d�C��R�	t� �

The same for the other forms of C��	�

We are now ready to show that

g � C�R	 ���d C�R�	 � g� ��jg j
jg� j �

The proof is by induction on C��	�

�� Modular lambda graph rewriting ��

�C��	 � �� By cases on the rule being applied�

�h���t j Ei ���d� ���ht j Ei� The index of the outside box is ��d�t� and it is replaced

by d�t�� Any other box contained in t and in E is left unchanged�

�hst j Ei ���d� hs j Eiht j Ei� The index of the outside box is ��maxfd�s�� d�t�g and

it is replaced by d�s� and d�t�� respectively� The index of any other box contained
in t� s and E is left unchanged�

�hF�t�� � � � � tn� j Ei ���dF F�ht� j Ei� � � � � htn j Ei�� Same as the case above�

�hh� j �� � t�� � � � � �n � tni j Ei ���d� h� j �� � ht� j Ei� � � � � �n � htn j Eii� The

index of the outside box is � �maxfd�t��� � � � � d�tn�g and it is replaced by
�

� Inductive case� The only interesting case is when C��	 is hC���	 j Ei� then according to
the previous fact the index of the outside box does not increase� In other words� an
internal reduction does not increase the index of the outside box�

Since a system of recursion equations g contains a �nite number of equations and boxes� the
garbage collection rules can be easily shown to be strongly normalizing� Let us assume there
is an in�nite sequence over the union of the distribution and garbage collection rules� This
sequence can only have �nitely many distribution steps� If not� since the garbage collection
rules do not increase the weight of g� it means that the in�nite sequence corresponds to an
in�nite descending chain� This is not possible� Thus� it must be that we have an in�nite
number of consecutive garbage collection steps� which contradicts the strong normalization
of the garbage collection rules� �

Remark
��� If we change the current distribution rule over a box construct to

ht j EiF ��� htF j EF i �

then the distribution rules will no longer be strongly normalizing� E�g�� �

hhF��� 	� j � �
i j 	 � �i ���d hhF��� 	� j 	 � �i j � � h
 j 	 � �ii ���d

hhF��� 	� j � � h
 j 	 � �ii j 	 � h� j � � h
 j 	 � �iii ���d hhF��� 	� j � �
i j 	 � �i � � � �

Lemma
��� ���dgc is con�uent�

Proof� The distribution rules de�ne an orthogonal system� and thus are con�uent� The
garbage collection rules are themselves con�uent� Since distribution and garbage collection
rules commute� the result follows from Hindley�Rosen�s Lemma� �

Notation� t��� �� h�� j Ei� � � � � �n �� h�n j Ei	 denotes a simultaneous substitution� nfdgc�t�
is the normal form with respect to the distribution and garbage collection rules�

Lemma
��� �Unfolding Lemma� Let t be a term and E be �� � s�� � � � � �n � sn� Then

ht j Ei ���dgc nfdgc�t���� �� h�� j Ei� � � � � �n �� h�n j Ei	 �

��

Proof� Trivial if E is empty� Otherwise� without loss of generality let us assume n � ��
Since ���dgc is strongly normalizing we can conduct the proof by noetherian induction�

�t is a normal form� By structural induction on t�

�t is a variable� For t equal to �� the result follows trivially� Otherwise� let t be
�

h
 j �� � s�i ���gc h
 j i ���gc
 �
��� �� h�� j �� � s�i	 �

�t is t�t�� We have�

ht�t� j �� � s�i ���d�

ht� j �� � s�iht� j �� � s�i ���dgc Induction hypothesis

t���� �� h�� j �� � s�i	t���� �� h�� j �� � s�i	 �
�t�t����� �� h�� j �� � s�i	 �

�t is F�t�� � � � � tn�� Same as the case above�

�t is ���t�� We have�

h���t� j �� � s�i ���d�

���ht� j �� � s�i ���dgc Induction hypothesis

����t���� �� h�� j �� � s�i	� �
����t����� �� h�� j �� � s�i	 �

�t is h�� j �� � s�i� We have�

hh�� j �� � s�i j �� � s�i ���d�

h�� j �� � hs� j �� � s�ii ���dgc Induction hypothesis

h�� j �� � s���� �� h�� j �� � s�i	i �
h�� j �� � s�i��� �� h�� j �� � s�i	 �

�t is not a normal form� Then�
ht j Ei ���dgc ht

� j Ei �

By induction hypothesis�

ht� j Ei ���dgc nfdgc�t
����� �� h�� j Ei� � � � � �n �� h�n j Ei	 �

From con�uence of ���dgc follows that nfdgc�t
�� � nfdgc�t��

�

Theorem
��� �� is directly de
nable in ����

�� Modular lambda graph rewriting ��

Proof� We show that
� �����t		 ����
� � ��t�� �� ���t			 �

� �����t		 � De�nition of �
h� j � � � ��t		i ���es

h� ��t		 j � � � ��t		i ���dgc By the Unfolding Lemma

nfdgc�� ��t		��� �� h� j � � � ��t		i	 � Since nfdgc�� ��t		� � � ��t		

� ��t		 �� �� h� j � � � ��t		i	 � Structural induction on t
� ��t�� �� ���t			 �

Same for the ��rule� �

Next we want to show con�uence of ���� To that respect� we �rst need two propositions�
Notation� �dgc denotes the convertibility relation induced by the distribution and garbage
collection rules�

Proposition
��
 Let t be a term� and E�F sequences of equations� Then�

ht j EiF�dgcht
F j EF i �

Proof� By noetherian induction on t with respect to the ordering induced by ���dgc �

� t is a normal form� By structural induction on t�

� t is a variable ��
If � is bound in E�

hh� j Ei j F i ���d� h� j EF i �gc hh� j F i j EF i �

Otherwise�
hh� j Ei j F i ���gc

h� j F i �gc

hh� j F i j EF i �

� t is t�t��

hht�t� j Ei j F i ���d�

hht� j Ei j F ihht� j Ei j F i �dgc Induction hypothesis

hht� j F i j E
F ihht� j F i j E

F i �d�
hht�t� j F i j E

F i �

� t is Fn�t�� � � � � tn�� Same as the case above�

� t is h� j Ei� Without loss of generality� let us assume E to be � � s�

hhh� j � � si j Ei j F i ���d�

h� j � � hhs j Ei j F ii �dgc Induction hypothesis

h� j � � hhs j F i j EF i �d�
hhh� j � � si j F i j EF i �

��

� t is not a normal form� Follows immediately from the induction hypothesis�

�

Proposition
��� Let s be a term and E a sequence of equations� Then�

hC�s	 j Ei �dgc hC�sE 	 j Ei �

Proof� By structural induction on C��	 and Proposition ���
� �

Intermezzo
��� In the proof of con�uence of ��� we will use the decreasing diagram
method proposed by van Oostrom �vO�
	� The method consists of associating a label to
each reduction step and giving a well�founded order on these labels� If all weakly con�uent
diagrams turn out to be of a speci�c kind� namely decreasing� then con�uence is guaranteed�

De�nition
��	 Let j�j be a measure from strings of labels to multisets of labels� If a�� � � � � an
are labels�

ja� � � � anj � ffaij there is no j � i with aj
 aigg �

Then� the diagram

b
�

�

�

�

�a�

�

a

b�

�
� � �

bm

�
�
an

is decreasing if ffa� bgg 	 jab� � � � bmj and ffa� bgg 	 jba� � � � anj�

Theorem
��� If a labelled reduction system is weakly con�uent and all weakly con�uent

diagrams are decreasing with respect to a well founded order on labels then the system is

con�uent�

Proof� See �vO�
	� �

Theorem
��
 ��� is con�uent�

Proof� We call the external and acyclic substitution reductions s�reductions� and the remain�
ing reductions� except ��reduction� o�reductions �written as ���o �� Since the black�hole rule

is strongly normalizing� and does not change the depth of a box� it follows that o�reductions
are strongly normalizing� Their weak con�uence thus implies con�uence�

Let us study the new system� called ����� which contains the following rewrite rules�

�� Modular lambda graph rewriting ��

t ���nfo
s� if s is the normal form of t with respect to the o�rules�

t ���ks s� if s is obtained from t by a complete development of a set� possibly empty� of

substitution redexes �this is possible since s�substitutions are con�uent by developments�
see Theorem ��"��

t ���k� s� if s is obtained from t by a complete development of a set� possibly empty� of

� redexes� Since ��reduction does not create new ��redexes� t ��� k� s if and only if

t ���� s�

Let us �rst show the weak con�uence diagrams�

���reduction and o�reductions� The goal is to show the following commuting diagram�

k�
�

nfo
�

k�

�
nfo

�
�
nfo ���
�

Let us �rst point out that the only obstacle to � commuting with o�reductions is caused
by the distribution of an environment over an application�

�����s�t�E ���d� ����s�EtE �

The right�hand side of the reduction is no longer a ��redex� We call this distribution�
step an interfering d���reduction� The distribution over lambda that restores the ��
redex is denoted by d���

�����s�t�E ���d�� ����s�EtE ���d�� ����sE�tE �

If there is no interference� then a single o�reduction step commutes with ��reductions�

k�
�

�
o

k�

�
�
o ���"�

�Note that ��reduction does not cause any duplication�� Otherwise� we show the fol�
lowing�

k�
�

�
d��

d��
�

k�

�
nfo

�
�
nfo �����

��

For a single ��step�

�����t�s�E
�

� ht j � � siE

�dgc

����t�EsE

d��

�

d��
� ����tE�sE

�

� htE j � � sEi

�����

�ht j � � siE�dgcht
E j � � sEi follows from Proposition ���
�� Since ��� dgc is

con�uent� ht j � � siE and htE j � � sEi have the same normal form� For the number
of ��steps greater than one we �rst re�order the ��reduction such that the interfering
step is the last step� We then have�

n��
�
��

�
�

���"� �����
�
d�

�

��

���"�

�

d��

�
d�

�

��
�
d��

�

�
nfo

�
�

nfo

We are now ready to prove our result �i�e�� diagram ���
��� Since o�reductions are
strongly normalizing� the proof is by noetherian induction� The result holds trivially
for a normal form� Otherwise� we have the following two cases�

k�
�

���"�
�
o

k�

�
�
o

I�H�
�
nfo

k�

�
nfo

�
�
nfo

k�
�

�����
�
d��

d��
�

k�

�
nfo

�
�
nfo

I�H� �
�
nfo

�
�
nfo

k�

�
nfo

�
�
nfo

�

� s�reductions and o�reductions� The goal is to show the following commuting diagram�

ks
�

nfo
�

ks
�

nfo

�
�
nfo �����

We remind the reader that the bottom ��� ks �reduction of the above diagram might

correspond to an empty reduction� E�g�� �

ht j � � C�		� 	 � 	�� 	� � 	i
as
� ht j � � C�	�	� 	 � 	�� 	� � 	i

ht j � � C��	� 	 � 	�� 	� � 	i
�
�

� ht j � � C��	� 	 � 	�� 	� � 	i �
�
�

�� Modular lambda graph rewriting �	

The bottom ��� nfo
�step of diagram ��� is due to the interference between external

substitution and the distribution of an environment over a box construct�

hh� j � � si j F i
es
� hhs j � � si j F i

�dgc

h� j � � hs j F ii

d�
�

es
� hhs j F i j � � hs j F ii �

The right�hand side of the top es�reduction is no longer a d��redex� We call this external
substitution an interfering es��reduction� Analogously� we call this distribution over the
box construct a d���reduction� A similar situation is caused by acyclic substitution�

hh� j � � C�		� 	 � si j F i
as

� hh� j � � C�s	� 	 � si j F i

hh� j � � hC�s	 j F i� 	 � hs j F ii
�
d�

�dgc

h� j � � hC�		 j F i� 	 � hs j F ii
�

d�

as
� h� j � � hC�hs j F i	 j F i� 	 � hs j F ii �

Thus� the distribution of an environment E over a box construct of the form h� j F i is
interfering if h� j F i is either an es or an as�redex�

By associating to each variable � a weight� say n� as in the proof of strong normalization
of ���as� � and to a variable �n a depth of n instead of
� we can show� following the

steps of the proof of Lemma ���� that s�reductions �i�e�� developments with respect to
the s�rules� combined with o�reductions are strongly normalizing� Then� by noetherian
induction follows that� in case of non�interference� ���s commutes with ���o �

s
��

��
o

s
��
��
o �����

If the o�reduction interferes with s�reductions� we show the following�

s
��

�
d��

s
��

nfo

�
�
nfo

where the s�reductions stand for complete developments� Let the d���redex be hh� j F i j
Ei� We �rst re�order the s�reduction� such that� the external and acyclic substitution
redexes that interfere with hh� j F i j Ei are pushed at the end of the reduction� We

��

then perform the descendants of the d���redex with respect to the non�interfering part
of the s�reduction� We have�

s
��

s�
��

�����
�
d�

s
��

n
��
d��

Note that the n d���redexes are disjoint from each other� that is� the corresponding
boxes are not contained into each other� We show by induction on n that we can close
the above diagram�

� n � �� Without loss of generality� let F be �� � C����	� �� � C����	� �� � s� We
have�

h�� j �� � C����	�
�� � C����	�
�� � siE

s�
�� hC��C��s		 j �� � C��C��s		�

�� � C��s	�
�� � siE

�dgc

h�� j �� � C����	
E �

�� � C����	
E �

�� � sEi

d��
�

s
�� hC��C��s

E 	E 	E j �� � C��C��s
E	E 	E �

�� � C��s
E 	E�

�� � sEi �

hC��C��s		 j �� � C��C��s		�
�� � C��s	�
�� � siE

�dgc hC��C��s
E 	E 	E j �� � C��C��s

E	E 	E �
�� � C��s

E	E �
�� � sEi

follows from Proposition ���"�

� n
 �� We re�order the s��reduction� such that� the interfering steps with the �rst
d���step are pushed at the end of the s��reduction� Note that this re�ordering
does not cause a duplication of the d���redex� We thus have�

s
��

s
��

s�
��

I�H�
�
d�

s
��
�
d��

s�
��

nfo

�
�
nfo

�

d�

s
��

n��
��
d�

By re�ordering again the dashed middle s�reduction�

s
��

s�
��

I�H�n��
��
d�

s
��

n��
��
d��

s�
��

nfo

�
�
nfo

Diagram ����� follows by noetherian induction with respect to s�o�reductions�

�� Modular lambda graph rewriting �

Summarizing� we have shown the following commuting diagrams�

k�
�

nfo
�

k�

�
nfo

�
�
nfo

ks
�

nfo
�

ks
�

nfo

�
�
nfo

Moreover� we also know the following ones�

k�
�

�
ks

k�

�
�
ks

ks
�

�
ks

ks
�
�
ks

k�
�

�
k�

k�

�
�
k�

nfo
�

�nfo
�

�

According to the ordering k �
 nfo � k s� the above diagrams are decreasing� and thus by
Theorem ���� ���� is con�uent� Con�uence of ��� then follows from the following two points�

��� Each rewrite rule of ��� is a derived rule in ����� That is�

t ����
� t� �� �s� t ����
�

�
s and t� ����
�

�
s �

��� Each reduction in ���� is contained in ����

t ����
�

�
t� �� t ����
� t� �

�

Intermezzo
��� ��� extends the ���calculus with names of Abadi et al� �ACCL��	 with
vertical sharing� We translate �� into ��� as follows�

T ��x		 � x
T ��ab		 � T ��a		 T ��b		
T ���x�a		 � �x�T ��a		
T ��a�s			 � hhT ��a		 j Sinfg�s
i j Soutfg�s
i

Sinvar ��id		 � �

Sinvar ���a�x��s		 �

�
Sinvar�s� x � var
x � x��Sinvar
fxg�s� x
� var

Soutvar ��id		 � �

Soutvar ���a�x��s		 �

�
Soutvar�s� x � var
x� � T ��a		 �Soutvar
fxg�s� x
� var �

The above translation indicates how to map a let construct into a letrec� Namely� in order to
avoid variable capture� each binding has to be split in two� For example� the term

let x � cons � x in x

��

is translated as
letrec x� � cons � x in letrec x � x� in x �

The binding x � x� is generated by Sinvar and the binding x� � cons � x is generated by
Soutvar�

The substitution rules and garbage collection rules of ��� simulate the lookup of a variable
in a substitution� which is expressed in �� by the following rules�

Var��
x��a�x��s	 � a

Var��
x��a�y��s	 � x�s	 if x
� y

Var��
x�id	 � x �

Var� entails that the ���calculus does not deal with cyclic substitutions� The distribution
rules simulate the following rules�

Abs�
��x�a��s	 � �y�a��y�x��s	 if y occurs in neither a nor s

App�
�ab��s	 � �a�s	��b�s	� �

��� A calculus for modular lambda graph rewriting

Until now we have kept the internal structure of a term� For example� we distinguish between
the following two terms t� and t�� respectively�

h� j � � h	 � 	 j 	 � tii h� j � � 	 � 	� 	 � ti �

However� we would like to consider the underlined box in t� as syntactic noise� To that end�
we rewrite t� to t� by applying the following box elimination rule�

ht j � � sE� F i �����
ht j � � s�E� F i ����
�

The application of this rule becomes at times necessary in order to capture the amount
of sharing in lazy implementations of functional languages� as described by Ariola et al�
�AFM��"� AF	� Consider the following reduction�

h���� � ��
� j � � h�
�
 � 	 j 	 � � � �ii ��� h� � 	 j 	 � � � �i� h
 � 	 j 	 � � � �i �

An unnecessary copy of the redex ��� has been performed� the reduction of this redex can be
shared between the two di�erent applications of �� This sharing occurs if before substituting
for �� the box surrounding the lambda is eliminated� as described below�

h���� � ��
� j � � h�
�
 � 	 j 	 � � � �ii �����
h���� � ��
� j � � �
�
 � 	� 	 � � � �i

��� h�� � 	� � ��
� j � � �
�
 � 	� 	 � � � �i

��� h�� � 	� � ��
� j � � �
�
 � 	� 	 � �i �

�� Modular lambda graph rewriting ��

However� not all boxes can be eliminated� Consider the following example�

h
 j
 � hF� j � � G	� 	 � G
ii
as
gc
�� h
 j
 � hF� j � � GG
ii

es
gc
�� h
 j
 � FGG
i

h
 j
 � F�� � � G	� 	 � G
i
�

� �
�

We have removed the underlined box which� as depicted in Figure �
� is on a cycle� Once this
cyclic box is removed the substitutions for � and 	 will no longer be acyclic substitutions�
This means that we need to distinguish between two kind of boxes� acyclic and cyclic� The
boxes of Figure �� that are drawn with heavy lines are examples of cyclic boxes� The boxes
of Figure �� are acyclic� since we require the cyclic path to go through the internal part of
the box and be within the parent box� �A parent box of a box is the smallest box properly
containing it�� Only acyclic boxes can be removed safely� Note that boxes of the form ht ji
can always be safely removed� Also� the underlined box in the following term�

h� j � � �
�h	 � 	 j 	 �
 �
ii �

cannot be removed since
 will get out of scope� We can see that internal box as a cyclic
box by representing each reference to a bound variable as a link back to the corresponding
��node� as in �AL�
	�

β G

α

G

F

Figure ��� Graph of h� j � � F��� hG��� h� j � � G��� ��i� ji�i�

Following the above discussion we add a proviso to rule ����
� obtaining�

ht j � � sE � F i �����
ht j � � s�E� F i if sE is acyclic �

We also merge external boxes with the rule�

�tE�F ����m tE�F

However� we still run into problems if in the following example sE is a cylic box�

ht j � � �sE�F i
�m
� ht j � � sE�F i

ht j � � sE � F i

�
��

� �
�

������

��

Thus� in order for con�uence not to fail we need to be able to move the equations that are
not on a cycle out of a box� as shown in the rule�

ht j � � sE��E� F i �����
ht j � � sE� � E� F i if E
� � and E�� �
 E �

where �
 E means that � and the recursion variables of E do not lie on the same cyclic
plane� E�
 E means that the recursion variables of E� do not occur free in E� Equipped
with the new rule we can now close diagram �������

ht j � � �sE�F i
�m
� ht j � � sE�F i

ht j � � hsE ji� F i

�
��

gc
� ht j � � sE� F i �

�
��

We need to move equations out of a lambda to cope with the following diagram�

ht j � � ��
�sE�E�i
�m
� ht j � � �
�sE � E�i

ht j � � �
�sE�E�i

��

The full set of rules is displayed in Table �� The proviso E
� � is to guarantee strong
normalization� Since box elimination causes more sharing� it means that if we want con�uence
to hold we need to introduce an operation that unshares the system� We thus admit the
operation of copying� E�g��

hh�� j �� � s�� �� � s�i j F i
d�
� h�� j �� � sF� � �� � sF� i

h�� j �� � s�� �� � s�� F i
�
�m

c
� h�� j �� � s�� �� � s��� F� F

�i

��

Where s�� and F � denote a renamed version of s� and F � respectively� The dashed vertical
reductions consist of a sequence of �� steps followed by empty box removals� The new system
is called ���� We give all the reduction rules of ��� in Table �� The horizontal line suggests
that the rules below the line can be considered as part of a canonicalization procedure� Since
��� is con�uent� we can do rewriting on terms that do not contain any syntactic noise� such
as the presence of garbage and acyclic boxes�

Proposition
��� Box elimination rules� garbage collection and black hole rules are strongly

normalizing�

Proof� To each term t we associate a measure� written as w�t�� that consists of a multiset
counting for every box and every equation the distance to the root� w�t� is de�ned as follows�

w����t� � inc�w�t��
w�Fn�t�� � � � � tn�� � inc�w�t�� � � � � �w�tn��
w�st� � inc�w�s� � w�t��
w��� � ff gg
w�ht j �� � t�� � � � � �n � tni� � w�t� � ff
� � � � �
� �z �

n��

gg � inc�w�t�� � � � � � w�tn�� �

�� Modular lambda graph rewriting ��

���tE��E ����� ����tE��E if E
� � and E�� �
 E

F�t�� � � � � t
E
i � � � � � tn� ���

�F F�t�� � � � � ti� � � � � tn�
E

tEs �����l
�ts�E

tsE �����r �ts�E

�tE�F ����m tE�F

ht j � � sE��E� F i �����
ht j � � sE� � E� F i if E
� � and E�� �
 E

Table �� Box elimination rules�

inc adds one to each element of the multiset� i�e�� inc�ffn�� � � � � nmgg� � ffn���� � � � � nm��gg�
For example� w�hh� j � � F�i j � � h	 j 	 � G	ii� � ff
�
�
�
� �� �gg� It is then routine to
check that this measure decreases at each box elimination step� and does not increase with
garbage collection and black hole� It thus follows that their union is strongly normalizing� �

Proposition
��� The box elimination rules with garbage collection and black hole are con

�uent�

Proof� Follows from the fact that all critical pairs converge and from strong normalization�
�

Theorem
��� ��� is con�uent�

Proof� As in the proof of con�uence of ���� we �rst prove con�uence of a new system� called
����� which contains the following rewrite rules�

t ���nf�e
s� if s is the normal form of t with respect to the box elimination rules� black hole

and garbage collection rules�

t ���nfo
s� if s is the normal form of t with respect to the distribution rules� black hole and

garbage collection rules�

t ���cgc s� if s is obtained from t by performing a copy step followed by the reduction to

normal form with respect to garbage collection�

t ���ks s� if s is obtained from t by a complete development of a set� possibly empty� of

substitution redexes�

t ���k� s� if s is obtained from t by a complete development of a set� possibly empty� of �

redexes�

We show next the weak con�uence diagrams�

��

�
rule�
����t�s ���� ht j � � si

External substitution�
hC�		 j 	 � s�Ei ���es hC�s	 j 	 � s�Ei

Acyclic substitution�
ht j � � C�		� 	 � s�Ei ���as ht j � � C�s	� 	 � s�Ei if �
 	

Distribution rules�
����t�E ���d� ���tE

Fn�t�� � � � � tn�
E ���dF Fn�tE� � � � � � t

E
n � if n 	 �

�ts�E ���d� tEsE

h� j F iE ���d� h� j FEi if � occurs bound in F

Copying

t ���c s if � a variable mapping �� s� � t

Black hole�
hC�		 j 	 �	 	� Ei ���� hC��	 j 	 �	 	� Ei

ht j � � C�		� 	 �	 	� Ei ���� ht j � � C��	� 	 �	 	� Ei if �
 	

Garbage collection rules�
tE�F ���gc tE if F
� � and orthogonal to E and t

ht j i ���gc t

Box elimination rules�
���tE��E ����� ����tE��E if E
� � and E�� �
 E

F�t�� � � � � t
E
i � � � � � tn� ���

�F F�t�� � � � � ti� � � � � tn�
E

tEs �����l
�ts�E

tsE �����r �ts�E

�tE�F ����m tE�F

ht j � � sE��E� F i �����
ht j � � sE� � E� F i if E
� � and E�� �
 E

Table �� Reduction rules of ����

�� Modular lambda graph rewriting ��

���cgc and the other rules�

cgc
�

�
cgc

cgc
�
�
cgc

nf�e
�

�
cgc

�

cgc

nf�e

�
�
nf�e

nfo
�

�
cgc

nfo

�
�
cgc

k�
�

�
cgc

k�

�
�
cgc

ks
�

�
cgc

ks
�
�
cgc

The con�uence of copying is shown in �AK��	� Copy does not commute with ���nf�e
because a copy step can turn some cyclic boxes into acyclic boxes� as shown next�

t � h� j � � hF	 j 	 � G�ii ���c h� j � � hF	 j 	 � G��i
�
� �� � hF	 j 	 � G��i

�
i � s �

The underlined cyclic box in t has two descendants in s� of which the one subscripted
with one is acyclic�

���nf�e
and ���ks � The obstacle to���nf�e

commuting with���ks is due to the following

interference �s� indicates a renamed version of s��

hC�		 j 	 � sE�F i
es

� hC�sE�F 	 j 	 � sE�F i

�nf�e

hC�		 j 	 � sE� F i

��

�

es
� hC�sE 	 j 	 � sE� F i

c
� hC�s�E

�

	 j 	 � sE � F� F �i

The same happens in case of acyclic substitution� In other words� �����
interferes

with substitution if sE�F is involved in the substitution� Following a similar argument
as in the study of the interaction between ���d� and the substitution rules �see the

proof of Theorem ������ and from the interaction between cgc and nf�e we have the
following commuting diagram�

ks
�

nf�e
�

ks
�

cgc
�

nf�e

�
�
nf�e

���nf�e
and ���nfo

� Let us �rst analyze each distribution rule�

���d� �

����t�E
d�
� ���tE

�

����t�E �
gc

����t��E
�
��

��

���d� �

�ts�E
d�
� tEsE

�t�sE�E
�

�
��

l

��t�s�E�E
�

�
��r

�t�s�E�E
�

�

c

� �t�s�E�E
�

�
�m

���dF � Same as the case above�

���d� � Let F contain n�equations� Then�

hh� j Ei j F i
d�

� h� j EF i

h� j E�F i
�
�m

c
� h� j E�� F�� � � � � Fni

��
�e

where ��� �e stands for the reduction relation induced by the box elimination

rules and garbage collection�

Summarizing� we have�

d
�

��
�e

c
�
��
�e ������

From ������ and the fact that copying commutes with ����e �

nfo
�

�
nf�e

nf�e
 cgc

��
�
nf�e

where ���nf�e
 cgc stands for the reduction relation induced by ���nf�e
and ���cgc �

���nf�e
and ���k� � The only interference is caused by ����� �

����tE��E�s
�

� htE��E j � � si

�nf�e

����tE��Es

�
��

��l

� �����tE��s�E
�

� htE� j � � siE �

�� Modular lambda graph rewriting �	

Following a similar argument as in the study of the interaction between ��� d� and

��reduction we then have the following commuting diagram�

k�
�

�
nf�e

k�

�
nf�e

�
�
nf�e

Summarizing� we have the diagrams used in the proof of con�uence of ��� and the following
ones�

cgc
�

�
cgc

cgc
�
�
cgc

nf�e
�

�
cgc

�

cgc

nf�e

�
�
nf�e

nfo
�

�
cgc

nfo

�
�
cgc

k�
�

�
cgc

k�

�
�
cgc

ks
�

�
cgc

ks
�
�
cgc

nf�e
�

�nf�e
�

�

ks
�

nf�e
�

ks
�

cgc
�

nf�e

�
�
nf�e

nfo
�

�
nf�e

nf�e
 cgc

��
�
nf�e

k�
�

�
nf�e

k�

�
nf�e

�
�
nf�e

According to the ordering nf�e � cgc � nfo � k � � k s� the above diagrams are decreasing�
and thus by Theorem ���� ���� is con�uent� As in the proof of con�uence of ���� con�uence
of ��� follows from the fact that a reduction of ��� is a derived reduction in ����� and each
reduction in ���� is contained in ���� �

Remark
��
 Given a ��calculus term M � �x�C�N 	� N is said to be a free expression
of M if all free variables of N are free in M � N is said to be a maximal free expression
�mfe� of M if M does not contain any other free expression that properly contains N � If we
start from a ��calculus term such that each ��abstraction does not have trivial mfe�s �i�e��
di�erent from a variable� then the ����calculus is able to simulate Wadsworth�s interpreter�
The trick is played by the ��rule and the box elimination rules� a redex ����M�A will be
reduced to hM j � � Ai� that is� A is put in the environment� as in �HM��	 or� following the
terminology of �AKP�
	� A is ��agged� so that it will not be copied in case the redex is shared�
This suggests that in order to avoid the extra complication of detecting mfe�s at run time�
as in �Wad��	� a term can be �rst pre�processed by well�known techniques �Hug��� Joh�"	�
Then doing sharing of arguments is enough to capture the amount of sharing o�ered by
Wadsworth�s interpreter�

We can now extend ��� with term rewriting rules�

Theorem
��� Let R be an orthogonal term rewriting system� Then� ��� �R is con�uent�

��

Proof� Following the proof of con�uence of ��� we can show the following commuting
diagrams�

kR
�

nfo
�

kR

�
nfo

�
�
nfo

kR
�

nf�e
�

kR

�
cgc
�

nf�e

�
�
nf�e

Where ���kR stands for a complete development of a set of R�redexes� �

We can also extend ��� with orthogonal term graph rewriting rules� With respect to the
term rewriting rules below�

F��� ��� G��� ��

H��� ��� �

instead of reducing the term F�H���� as�

F�H���� ��� G�H����H����

thus duplicating the redex H���� we would like to keep the substitution in the environment�
as in the following reduction�

F�H���� ��� hG��� �� j � � H���i �

One possibility is to introduce a new notion of reduction� If l ��� r is a �rst�order term

rewriting rule� and l� a redex� then we can say�

l� ��� hr j x� � t�� � � � � xn � tni �

where � is the mapping x� �� t�� � � � � xn �� tn� The alternative we pursue instead is to require
the right�hand side of a �rst�order term rewriting rule to be a ���term� which is linear in its
free variables� For example� we express the rule F��� ��� G��� �� as

F��� ��� hG�	� 	� j 	 � �i �

Now rewriting can proceed as in �rst�order term rewriting�

Theorem
��� Let R be an orthogonal term graph rewriting system� Then� ��� � R is

con�uent�

Proof� Since term graph rewriting does not cause a duplication we now have the following
commuting diagrams�

kR
�

nfo
�

kR

�
nfo

�
�
nfo

kR
�

nf�e
�

kR

�
nf�e

�
�
nf�e

�

�
� Previous Work �

�
� Previous Work

This work follows the tradition of providing calculi that model more closely important prac�
tical concerns in language implementation� In particular� our work has focused on developing
a theory able to capture horizontal and vertical sharing in the context of lambda�calculus
and �rst�order rewriting� Most of the previous work is concerned with �rst�order theories
�SPvE��	� The operational approach of Barendregt et al� �BvEG���	� Smetsers �Sme��	�
Kennaway et al� �KKSdV�
	 and Farmer et al� �FW��� Far�
	 is based on pointers� redi�
rections and indirections� The category�oriented approach of L$owe �L$ow��	� Raoult �Rao�
	�
Kennaway �Ken��� Ken�
	 describes graph rewriting in terms of a single or double push�
out� The set�theoretic approach of Ariola et al� �Ari��� Ari��� AA��� AA�"� AK��	 and
Raoult et al� �RV��	 is the approach described in this paper� Typical results are con�uence
and correctness with respect to either in�nitary term rewriting �KKSdV�
� Far�
	 or �nite
approximations �Ari��	�

The issue of lambda�calculus and sharing has been addressed by Launchbury �Lau��	 and
Purushothaman et al� �PS��	 in an attempt of specifying the operational semantics of lazy
functional languages such as Haskell �HPJW���	� Purushothaman et al� deal with vertical
sharing only� Launchbury�s evaluator deals with both kinds of sharing� However� Launch�
bury does not provide an equational theory� for example� his work does not allow reasoning
about open terms� as such his work is not useful for expressing and reasoning about compiler
transformations� Sharing has been studied in the framework of the calculus of explicit substi�
tution by Field �Fie�
	 and Rose �Ros��b	� Usually� this approach to sharing is referred to as
the environment model� where an environment is a collection of mappings between variable
names and terms� Rose�s system allows cyclic structures and will be discussed below�

The issue of sharing has also been studied in the context of optimal implementations of
��calculus� For example by Mackie �Mac�
	 using interaction nets �Laf�
	 and by Asperti and
Laneve �AL�
	 using interaction systems �which generalize interaction nets by dropping the
linearity constraint�� In this approach sharing is made explicit by the use of fan�in nodes�
Both kind of sharing are covered and surprisingly the proposed calculi still enjoy con�uence�
The explanation for this fact is that the mechanism of copying in those calculi is more re�ned
than ours� namely node�by�node� We will discuss the relation with this work in more depth
in Section �
���

���� Rose�s system

We present the system introduced by Rose �Ros��b	 in our framework� Rose calls his system
��� not to be confused with the system of Section ���� The set of ���terms is de�ned as
follows�

S ��� M

M ��� � j ����S� j �ST �
� ��� �� � S�� � � � � �k � Sk �

S stands for a ���term� M�P stand for the ��component stripped of the substitution� �� ��

and � range over a sequence of equations� The reduction rules are given in Table
� ��� ���
�� and �� can be simulated in ��� as follows�

��

���
�����M
��S�	

�

� hM j �� �� � � S�
i

�����M
��S�	
�
d�

�
� hM
� j � � Si	

���m

���
h�� j �� � M
�

� � �� � M
�
� i

�
� hM� j ��� �� � M
�

� � �� � M
�
� i

�

hM
�
� j �� � M
�

� � �� � M
�
� i

�
es

����m hM� j ��� �� � M
�
� � �� � M
�

� i

���
����M
��

�
� h����M
��� j i

���M
�
�
d�

�m
� ���M
��

�
gc

���
�M
P ���

�
� h�M
��P ���� j i

�M
���P ���
�
d�

�m
�� M
��P ���

�
gc

Thus� the main di�erence between ��� and Rose�s calculus concerns ��� which is absent in
���� Since in a box construct h�i j �� � t�� � � � � �n � tni the order of the equations is
irrelevant there is no need of copying equations in order to bring the equation �i � ti in �rst
position� The reason that prevents �� to be simulated in ��� is that �� introduces new cyclic
boxes� For example� �� allows the following reduction�

h	� j 	 � ���	��S��� 	� � �
�	�S
�i ���
� h	� j 	� � h�
�	�S
� j 	 � ���	��S��ii �

The internal box of the right�hand side term is on a cycle and thus cannot be removed�

���� Interaction nets

Di�erently from the ��graphs drawn in this paper� a net is an undirected graph� in which
the sharing is not represented by multiple pointers to the same node� but by a speci�c node�
called fan�in following Lamping �Lam�
	� The fan�in node is drawn as in Figure ���a�� We
will come back later to the explanation of the � and � symbols� In the fan�in node the two
nets connected to the higher links share the net connected to the lower link� When the lower
link is connected to a lambda�node� the fan�in node is in charge of duplication or copying� A
fan�in drawn upside�down is called fan�out� see Figure ���b�� Whilst the fan�in is responsible
of sharing� the fan�out is responsible of unsharing� More precisely� the fan�out node allows
partial sharing� the net connected to the higher link is shared and is connected to di�erent nets
depending on which side �� or �� we exit the fan�out node� This partial sharing constitutes

�
� Previous Work ��

�� �
�����M
��S�	 ��� hM j �� �� � � S�
i

�� �

h� j �� � M
�
� � � � � � �k � M
k

k i ��� h� j �� � M

�����M

��
�

� � � � � � �k � M

k����M

��
�

k i

if �
� �� and k 	 �
�� �
h�� j �� � M
�

� � � � � � �k � M
k
k i ��� hM� j ��� �� � M
�

� � � � � � �k � M
k
k i

with the recursion variables de�ned in �� not
occurring free in M
i

i � i 	 ��
�� �
����M
�� ��� h���M
�� j i

if � is non�empty
�� �
�M
P ��� ��� hM
��P ��� j i

if � is non�empty

Table
� Rose�s ���calculus�

the essential ingredient to solve our counterexamples to con�uence� Lastly� following an idea
used by Bourbaki in El�ements de Th�eorie des Ensembles to deal with quanti�ers� a variable
is represented by a link to the corresponding binding node�

Summarizing� a net for ��calculus contains the kind of nodes drawn in Figure ��� Each

O *
O *

(a) (b)

Figure ��� Fan�in and Fan�out nodes�

O *
O *

λ @

Figure ��� Nodes of an interaction net for ��calculus�

node has a �xed number of ports� For example� the lambda�node has three ports� connecting
the lambda�node to the context� to the bound occurrences and to the function body� One
particular port is called the principal port �indicated with an heavy line�� The principal port
allows an interaction between the nodes to occur� The last node is the erasure node �see

��

�Mac�
	� that is used to represents terms of the form �x�M � where the bound variable x does
not occur free in M � The terms �x�x� �x�xx and �x�y are represented by the nets of Figure
�
� In the following� in drawing nets we may take the liberty of using variables names� Thus

λ λ

@

λ

y

Figure �
� Interaction nets for �x�x� �x�xx and �x�y�

λx

@

S

x

λy

@

S

y

λy

y

λx

F

@ S

S

x

@ S

S

(a) (b)

G

Figure ��� Cyclic interaction nets�

we represent the system�

h� j � � �x�	�Sx�� 	 � �y���Sy�i �

as in Figure ���a�� Note that we have included a fan�in node between the application and
the �y�node even though the �y�node is not shared� This is to capture the fact that 	�Sx� is
an implicit ��redex� We do the same in the representation of the system

h� j � � �x�F�
�Sx��Sx��
 � �y�G���Sy��Sy�i �

which is drawn in Figure ���b��

�
� Previous Work ��

As was said earlier� these nodes �also called agents by Lafont �Laf�
	� interact in a very
controlled way� namely through the principal port� It is possible to specify an action when
an interaction occurs by using rewrite rules� which are restricted to binary interactions� For

Figure ��� Interaction net with two interactions�

example� the net of Figure �� cannot be the left�hand�side of a rule� since it speci�es two
interactions� Moreover� for each interaction we can specify at most one rewrite rule� These
conditions guarantee that interaction nets satisfy the diamond property� as stated in �Laf�
	�

We can now specify the reduction rules for ��calculus� First� the ��rule expresses an
interaction between the � and the application node� and is drawn as in Figure ��� The

x

γ

δ

α

λ

@

x

γ

δ

α

Figure ��� ��rule�

connection of link � to link 	 expresses the fact that the root of the redex is over�written
by the body of the function� The connection of link x to link
 expresses the fact that the
bound variables are replaced by a reference to the argument� For example� the reduction of
��x�xx���x�xx� is given in Figure �
� We can formulate this rule in our equational framework

@

λx λx

x

@

x

@

@

x

@

λx

Figure �
� ��reduction of ��x�xx���x�xx��

by relaxing our scope rules� Namely� by allowing the body of a lambda�abstraction to be

��

spread out through the set of equations� The ��rule then becomes�

� � ��x�	�
 ��� � � 	� x �
 �

where 	 and
 are recursion variables� We can then mimick the reduction of Figure �
 in our
modi�ed equational framework with the following reduction�

� � ��x�	�
�
	 � xx�

 � �x��	��
	� � x�x�

��� � � 	�
	 � xx�
x �
�

 � �x��	��
	� � x�x� �

Let us now assume there exists an obstacle to the ��� interaction� namely� there is a fan�in
node between the application and the lambda�node� This corresponds to the situation in our
equational framework of having a name associated to the ��node� Consider the system

h� j � � �x�	� 	 � �
�
 � xi �

in which we assume the variable x is bound by the lambda�node� To make �
 into an explicit
��redex we need to apply the substitution operation� Thus�

h� j � � �x�	� 	 � �
�
 � xi ���s h� j � � �x�	� 	 � ��x�	�
�
 � xi �

Note that only the lambda�node has been duplicated� However� we now have that variable x
is in the scope of two lambda�s� This requires the introduction of a mechanism for unsharing
x� This is indeed the job of the fan�out node� The right way of performing the above
substitution should be�

h� j � � �x�	� 	 � �
�
 � xi ���s h� j � � �x�	� 	 � ��x��	�
�
 � Fan�out�x� x��i � ��
����

The substitution operation is captured in interaction nets by the rules expressing the
interaction between a fan�in and a � �see Figure �"�� By crossing the lambda�node the fan�in

c

O *

d

O *

ba

λ λ

a

O *

b

c d

λ

Figure �"� Fan�in and � interaction�

node is duplicated� One copy is in charge of duplicating the lambda�body and the other one
is responsible of creating two copies of the bound variable� The substitution given in �
���

�
� Previous Work ��

@

x

x'

λx'λx
λx'

x'

β

λx

@

x

Figure ��� Fan�in and � reduction�

is displayed in Figure ��� This rule outlines a very important di�erence between interaction
nets and our equational framework� The copying necessary to implement the ��rule is done
lazily in the interaction nets approach� namely� it is done node�by�node� Instead� in our
framework it is done at once� In fact� corresponding to the reduction in question we would
have�

h� j � � �x��xi ���s h� j � � �x���x��x�xi ���� h� j � � �x��xi ���s � � � �

c d

O *

O *

a b

c d

a b

a b

c d

O *

O *

a b

O * O *

O * O *

c d

Figure ��� Fan�in and fan�out rules�

We �nally have the rules that deal with fan�in and fan�out nodes� If the fan�in and fan�out
nodes match� that is the fan�out node is the one introduced by the corresponding fan�in node�
then they cancel each other out �see the rule on the left of Figure ���� Otherwise� both fan�in
and fan�out nodes are duplicated �see the rule on the right of Figure ���� In order to keep
track of the matching between fan�in and fan�out nodes other rules are necessary� We do not
present them here but refer to �Mac�
	�

In �Mac�
	 it is mentioned that our counterexamples disappear in the framework of inter�
action nets� We are now ready to show in detail how this happens� In Figure �� we show the
reduction corresponding to the counterexample of Section
� With the introduction of the
fan�out nodes we solve the out�of�synch phenomenon since we are no longer required to copy
an even number of S�s�

Let us now turn to the third counterexample described in Section �� which is given in Figure
��� The common net should thus correspond to an irregular tree� This translation also called

��

β

y

x

x'

S

y

λy

@

S

y

λx'λx

@

x

x'

S

β

λy

S

S

x'

λx'

y
y'

β
λx'

@

S

y

x'

S
λy λy'

λx'

@

x'

S

S

y

S

y

λy

@

S

x

x'

λx'λx

β

λx'λx

@

S

y
y'

λy λy'

@

ββ

x

λx

@

S

λy

@

S

λx

@

S

S

y'

λy λy'

@

x S

y

λy λx

@

S

x

Figure ��� First counterexample in interaction nets�

�
� Previous Work �	

λy

y

λx

F

@ S

S

x

@ S

S

λx

F

@ S

S

x

λy'λy

@ S

S

G

y

y'

β

λx

F

S

S

x

λy

@ S

S

G

y

λy

y

F

@ S

S

@ S

S

λx'λx

x

x'

G

F

S

S
λy

@ S

S

G

y

λx'λx

x

x'

β β

G

λy

y

F

@ S

S

S

S

λx'

x'

G

F

S

S
λy

S

S

G

y

λx'

x'

y

F

@ S

S

S

S

λx'

x'

G

λy'λy

β

Figure ��� Third counterexample in interaction nets�

��

read back semantics� is explained next� Let us call the top�most fan�in node the red fan�in�
and the lower one the blue fan�in� In the �gure we have indicated the corresponding fan�outs�
Note that at this point the symbols � and � are signi�cant� For simplicity we refer to � as
L �left� and to � as R �right�� In the read back procedure �called unwinding in this paper�
we make use of a stack to remember which port of the fan�in we enter from� We start by
generating a �x��node� When we enter the fan�in node we push on the red�stack the symbol
R� We connect the �x��node to the node labelled F� Since F has two arguments we duplicate
the red�stack� one used to generate the �rst argument and the other one used for generating
the second argument� Let us continue with the second argument� We generate an S and we
go through a fan�in node� but since there are no associated fan�out nodes we do not save
anything on the stack� We then reach the red�fan�out� from which we must exit from the
port the associated fan�in was entered from� This information is saved on the red�stack of
the second argument� Since on the top of the stack we read R we exit the fan�out from the
right port and we thus generate x� and pop R from the red�stack� This stack is now empty
indicating that we have �nished to generate the second argument of F� We now go back to
the generation of the �rst argument of F � We go through the blue�fan�in� We thus push
R on the blue�stack� We then connect the �rst argument to a G� As before since G has
two arguments we duplicate both the red and blue stacks� We note that both stacks now
contain R� We continue with the second argument of G� We generate an S� we then exit
the blue�fan�out with an S and the red fan�out with an x�� Since both stacks are empty we
have �nished with the second argument of G� With respect to the �rst argument we �rst
push L on the red�stack� We connect the G to an F and duplicate the stacks� On the second
argument of F we connect the F to an S and then exit the red�fan�out from the L port �and
pop the red�stack�� This means that we generate one S� We then exit the blue�fan�out from
the R port �the blue stack is now empty� � thus generating one more S� We �nally exit the
red�fan�out from the R port� This completes the generation of this argument� At this point
we have the tree drawn in Figure

� The rest is generated in a similar way�

F

λx'

G

F

...

Sx'

SSx'

SSSx'

Figure

� Partial tree�

In conclusion� our counterexamples to con�uence disappear in this framework� however�
at the expense of greater complexity� Moreover� the correctness of this approach has only
been shown with respect to ordinary ��calculus� thus it would be interesting to prove that
correctness also holds for cyclic graphs�

References �

Conclusions and future directions

We have de�ned a series of calculi as extensions of the ��calculus with the aim of providing
systems where it is possible to model sharing and cyclic structures� The motivation for this
work came from the desire to provide a unifying framework for reasoning about execution�
compilation� and optimization of programs� In these three areas sharing and cycles are
ubiquitous� they occur after parsing� in the intermediate program representation �language��
and during program execution�

The focus of this paper has been on developing calculi that enjoy the con�uence property�
As such� the resulting calculi fail to capture program transformations that deal with mutually
recursive functions� Our next step is to study calculi that have a more liberal view of rewriting�
i�e�� substitutions can occur on a cycle� This involves the introduction of a more abstract
notion of con�uence� Whilst con�uence guarantees unicity of normal forms� the new notion of
con�uence should guarantee unicity of in�nite normal forms� These calculi should correspond
to the intermediate languages used in the compilation of the functional core of both strict
and non�strict languages� We intend to make use of these calculi in studying the e�ects of
di�erent strategies on both the time and space behavior of programs and relating them to
current optimizations� including loop transformations�

Moreover� in order to formalize the compilation and optimization of a program as a rewrit�
ing process� we intend to enhance current rewriting technology to cover rules with conditions
and priorities� Priorities are associated with rules in order to impose a certain order� with
the intention that a rule which is higher in the order will be the preferred one to apply� We
will also consider rewriting of disconnected graphs� which� as shown by Pinter et al� �PP�
	�
is useful for detecting parallelizable program structures in sequential programs�

Acknowledgements

This work was done at the Department of Computer and Information Science of the University
of Oregon� at the Department of Software Technology of CWI� and at the Department of
Computer Science of the Vrije Universiteit Amsterdam� Zena Ariola thanks both CWI and
the Vrije Universiteit to make her summer visits possible�

The research of the �rst author has been supported by NSF grant CCR��
��
���� The
research of the second author has been partially supported by ESPRIT Basic Research Project
�
"
�CONFER� Funding for this work has further been provided by the ESPRIT Working
Group ��
" Semagraph�

We thank Femke van Raamsdonk and Vincent van Oostrom for introducing us to interac�
tion nets� Stefan Blom for scrutinizing several proofs� Amr Sabry for stimulating discussions
about a draft of this paper� We also thank the anonymous referees for their useful comments�

References

�AA��	 Z� M� Ariola and Arvind� Graph rewriting systems for e�cient compilation�
In M� R� Sleep� M� J� Plasmeijer� and M� C� D� J� van Eekelen� editors� Term
Graph Rewriting� Theory and Practice� pages ��(�
� John Wiley) Sons� �����

�AA�"	 Z� M� Ariola and Arvind� Properties of a �rst�order functional language with
sharing� Theoretical Computer Science� �
����(�
�� ���"�

�� References

�ACCL��	 M� Abadi� L� Cardelli� P��L� Curien� and J��J� L*evy� Explicit substitutions�
Journal of Functional Programming�
������"(
��� �����

�AF	 Z� M� Ariola and M� Felleisen� The call�by�need lambda calculus� To appear in

Journal of Functional Programming� Also Technical report CIS�TR�������

�AFM��"	 Z� M� Ariola� M� Felleisen� J� Maraist� M� Odersky� and P� Wadler� The call�by�
need lambda calculus� In Proc� ACM Conference on Principles of Programming

Languages� pages ���(�
�� ���"�

�AK�
	 Z� M� Ariola and J� W� Klop� Cyclic lambda graph rewriting� In Proc� Ninth

Symposium on Logic in Computer Science �LICS����� Paris� France� pages
��(

�"� ���
�

�AK��	 Z� M� Ariola and J� W� Klop� Equational term graph rewriting� Fundamentae

Informaticae� �����
���
�(�

� ����� Extended version� CWI Report CS�R�""��

�AKK��
	 Z� M� Ariola� J� W� Klop� J� R� Kennaway� F� J� de Vries� and M� R� Sleep�
Syntactic de�nitions of unde�ned� On de�ning the unde�ned� In Proc� TACS
��� Sendai� Japan� ���
�

�AKP�
	 Arvind� V� Kathail� and K� Pingali� Sharing of computation in functional lan�
guage implementations� In Proc� Internal Workshop on High
Level Computer

Architecture� ���
�

�AL�
	 A� Asperti and C� Laneve� Interaction systems I� The theory of optimal reduc�
tions� Mathematical structures for computer science�
�
"�("

� ���
�

�App��	 A� Appel� Compiling with Continuations� Cambdridge University Press� �����

�Ari��	 Z� M� Ariola� An Algebraic Approach to the Compilation and Operational Se

mantics of Functional Languages with I
structures� PhD thesis� MIT Technical
Report TR�"

� �����

�Ari��	 Z� M� Ariola� Relating graph and term rewriting via B$ohm models� Applicable
Algebra in Engineering� Communication and Computing� ��"�� �����

�Bar�
	 H� P� Barendregt� The Lambda Calculus� Its Syntax and Semantics� North�
Holland� Amsterdam� ���
�

�BD��	 R� Burstall and J� Darlington� A transformation system for developing recursive
programs� JACM� �����
��� January �����

�BvEG���	 H� P� Barendregt� M� C� J� D� van Eekelen� J� R� W� Glauert� J� R� Kennaway�
M� J� Plasmeijer� and M� R� Sleep� Term graph rewriting� In J� W� de Bakker�
A� J� Nijman� and P� C� Treleaven� editors� Proc� Conference on Parallel Ar

chitecture and Languages Europe �PARLE �	��� Eindhoven� The Netherlands�

Springer
Verlag LNCS ���� pages �
�(�"�� �����

�CR�
	 W� Clinger and J� Rees� Revised� report on the algorithmic language Scheme�
Technical Report CIS�TR��
�
�� University of Oregon� ���
�

�Cur��	 P��L� Curien� Categorical Combinators� Sequential algorithms� and Functional

Programming� Birkh$auser� �nd edition� �����

�DJ�
	 N� Dershowitz and J� P� Jouannaud� Rewrite systems� In J� van Leeuwen� editor�

References ��

Handbook of Theoretical Computer Science� volume B� pages �
�(��
� Elsevier
� The MIT Press� ���
�

�Far�
	 W� M� Farmer� A correctness proof for combinator reduction with cycles� ACM
Transactions on Programming Languages and Systems� ���������(��
� ���
�

�Fie�
	 J� Field� On laziness and optimality in lambda interpreters� Tools for speci�ca�
tion and analysis� In Proc� Conference on Principles of Programming Languages�

San Francisco� ���
�

�FW��	 W� M� Farmer and R� J� Watro� Redex capturing in term graph rewriting� In
R� V� Book� editor� Proc� �th International Conference on Rewriting Techniques

and Applications �RTA
���� Como� Italy� Springer
Verlag LNCS �		� pages ��(
�
� �����

�Har��	 B� Harper� Introduction to Standard ML� Technical report� ECS�LFCS����
�
� Laboratory for the Foundation of Computer Science� Edinburgh University�
�����

�HM��	 P� Henderson and J� H� Morris� A lazy evaluator� In Proc� ACM Conference on

Principles of Programming Languages� �����

�HPJW���	 P� Hudak� S� Peyton Jones� P� Wadler� B� Boutel� J� Fairbairn� J� Fasel� K� Ham�
mond� J� Hughes� T� Johnsson� D� Kieburtz� R� Nikhil� W� Partain� and J� Pe�
terson� Report on the programming language Haskell� ACM SIGPLAN Notices�
���"���(�
� �����

�Hug��	 R� J� M� Hughes� Super�combinators� In Proc� of Lisp and Functional Program

ming� �����

�JGS��	 N� D� Jones� C� Gomard� and P� Sestoft� Partial Evaluation and Automatic

Program Generation� Prentice�Hall� �����

�Joh�"	 T� Johnsson� Lambda lifting� Transforming programs to recursive equations� In
Proc� ACM Conference on Functional Programming Languages and Computer

Architecture� Nancy� France� Springer
Verlag LNCS ���� ���"�

�Ken��	 J� R� Kennaway� On graph rewriting� Theoretical Computer Science� "����("��
�����

�Ken�
	 J� R� Kennaway� Graph rewriting on some categories of partial morphisms� In
Proc� �th International Workshop on Graph Grammars and their Application to

Computer Science� Bremen� Germany� Springer
Verlag LNCS ���� pages
�
(
"

� ���
�

�KKSdV�
	 J� R� Kennaway� J� W� Klop� M� R� Sleep� and F� J� de Vries� On the adequacy
of graph rewriting for simulating term rewriting� Transactions on Programming

Languages and Systems� ������
��("��� ���
�

�KKSdV�"a	 J� R� Kennaway� J� W� Klop� M� R� Sleep� and F� J� de Vries� In�nitary lambda
calculus� In Proc� Rewriting Techniques and Applications� Kaiserslautern� ���"�

�KKSdV�"b	 J� R� Kennaway� J� W� Klop� M� R� Sleep� and F� J� de Vries� Trans�nite
reductions in orthogonal term rewriting systems� Information and Computation�
������� ���"�

�� References

�Klo	 J� W� Klop� Combinatory Reduction Systems� PhD thesis� Mathematical Centre
Tracts ���� CWI� Amsterdam����
�

�Klo��	 J� W� Klop� Term rewriting systems� In S� Abramsky� D� Gabbay� and
T� Maibaum� editors� Handbook of Logic in Computer Science� volume II� pages
�(���� Oxford University Press� �����

�KvOvR��	 J� W� Klop� V� van Oostrom� and F� van Raamsdonk� Combinatory reduction
systems� Introduction and survey� Theoretical Computer Science� ������������(
�
�� ����� A Collection of Contributions in Honour of Corrado B$ohm on the
Occasion of his �
th Birthday� guest eds� M� Dezani�Ciancaglini� S� Ronchi Della
Rocca and M� Venturini�Zilli�

�Laf�
	 Y� Lafont� Interaction nets� In Proc� ACM Conference on Principles of Pro

gramming Languages� San Francisco� ���
�

�Lam�
	 J� Lamping� An algorithm for optimal lambda calculus reduction� In Proc� ACM

Conference on Principles of Programming Languages� San Francisco� ���
�

�Lau��	 J� Launchbury� A natural semantics for lazy evaluation� In Proc� ACM Confer

ence on Principles of Programming Languages� pages �

(�"
� �����

�Les�
	 P� Lescanne� From �� to �� a journey through calculi of explicit substitutions�
In Proc� ��st Symposium on Principles of Programming Languages �POPL �����

Portland� Oregon� pages �
(��� ���
�

�L$ow��	 M� L$owe� Algebraic approach to single pushout graph transformation� Theoret

ical Computer Science� �
�����(��
� �����

�Mac�
	 Ian Craig Mackie� The geometry of implementation� PhD thesis� University of
London� ���
�

�Nik��	 R� S� Nikhil� Id �version �
��� reference manual� Technical Report ��
���
MIT Laboratory for Computer Science� "
" Technology Square� Cambridge�
MA
����� �����

�PJ��	 S� L� Peyton Jones� The implementation of Functional Programming Languages�
Prentice�Hall International� Englewood Cli�s� N�J�� �����

�PP�
	 S� S� Pinter and R� Y� Pinter� Program optimization and parallelization� ACM
Transactions on Programming Languages and Systems� �������
"(���� ���
�

�PS��	 S� Purushothaman and J� Seaman� An adequate operational semantics of sharing
in lazy evaluation� In �th European Symposium on Programming� Lecture Notes

in Computer Science� Springer Verlag� Berlin� �����

�Rao�
	 J� C� Raoult� On graph rewritings� Theoretical Computer Science� ����(�
�
���
�

�Ros��a	 J� G� Rosaz� Taming the Y operator� In Proceedings of Lisp and Functional

Programming� pages ���(��
� �����

�Ros��b	 K� H� Rose� Explicit cyclic substitutions� In M� Rusinowitch and J� L� R*emy�
editors� Proc� �rd International Workshop on Conditional Term Rewriting Sys

tems �CTRS
���� Pont
�a
Mousson� France� Springer
Verlag LNCS ���� pages

References ��

��("
� �����

�RV��	 J��C� Raoult and F� Voisin� Set�theoretic graph rewriting� Technical Report
���"� INRIA Rapport de Recherche� �����

�Sme��	 J� E� W� Smetsers� Graph Rewriting and Functional Languages� PhD thesis�
University of Nijmegen� �����

�SPvE��	 M� R� Sleep� M� J� Plasmeijer� and M� C� D� J� van Eekelen� editors� Term
Graph Rewriting� Theory and Practice� John Wiley) Sons� �����

�Tur��	 D� A� Turner� A new implementation technique for applicative languages� Soft

ware Practice and Experience� ����(
�� �����

�vO�
	 V� van Oostrom� Con�uence for Abstract and Higher
Order Rewriting� PhD
thesis� Vrije Universiteit� ���
�

�Wad��	 C� Wadsworth� Semantics and Pragmatics of the Lambda
Calculus� ����� PhD
thesis� University of Oxford�

�Wad�
	 P� Wadler� Deforestation� transforming programs to eliminate trees� TCS�

������
��	� ���
�

