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Abstract

This paper is concerned with the study of ��calculus with explicit recursion� namely of cyclic ��graphs� The

starting point is to treat a ��graph as a system of recursion equations involving ��terms� and to manipulate

such systems in an unrestricted manner� using equational logic� just as is possible for �rst�order term rewriting�

Surprisingly� now the con�uence property breaks down in an essential way�

Con�uence can be restored by introducing a restraining mechanism on the �substitution� operation� This

leads to a family of ��graph calculi� which can be seen as an extension of the family of ���calculi 	��calculi

with explicit substitution
� While the ���calculi treat the let�construct as a �rst�class citizen� our calculi

support the letrec� a feature that is essential to reason about time and space behavior of functional languages

and also about compilation and optimizations of programs�
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Introduction

It is important to base the activities of programming� of writing a compiler� and of imple�
menting the run�time support for a programming language on mathematical concepts� This
can be done� without introducing too much mathematical machinery� with a rewriting or cal

culator approach that consists of mechanically applying a set of rewrite or simpli�cation rules
to a program� This method provides a programmer� a compiler writer� and an implementor

with a sound basis to present� check� and try out their ideas� However� the usefulness of this
abstract framework relies on how faithfully it models reality� In that respect� note that while
cyclic structures are ubiquitous in a program development system �PJ��	� traditional models
of computation� such as the ��calculus �Bar�
	 and term rewriting systems �Dershowitz et



�

al� �DJ�
	� Klop �Klo��	�� do not allow reasoning about them� As such� these models do not
constitute the right computational vehicle for reasoning about the time and space behavior
of a program�

Cycles occur in the representation of data structures� Consider the following data structure
de�nition written in the lenient language Id �Nik��	�

fones � � � ones
in onesg �

�A note on syntax� the construct f� � � in � � �g represents a block expression� which consists of
a group of unordered bindings and an expression which is written following the keyword in�
� is the Id list constructor�� This is usually expressed in the ��calculus using the �xed point
combinator Y� whose behavior is captured by the following rewrite rule�

YM ���M�YM� �

Thus� the above data structure ones becomes�

Y��x�� � x� �

which leads to the following rewriting ���� reads as �rewrites or reduces to���

Y��x�� � x� ��� ��x�� � x��Y��x�� � x�� ��� � � �Y��x�� � x�� �

The above sequence of rewritings suggests that ones is represented in terms of a cons cell�
with the head containing � and the tail pointing to the computation that delivers the rest of
the list� However� this is not what happens in practice� ones is represented in terms of a single
cons cell� with the tail pointing to the cons cell itself� Thus� access to any element of the list
will only involve unwinding the data structure and no further computation� As introduced by
Turner �Tur��	� this representation can be captured in the following way� instead of the above
Y�rule� use its optimized version� which involves a cycle �see Figure �� in which � stands for
application��

@ @

Y M M

Figure �� Cyclic Y�rule�

Cyclic structures do not only occur in non�strict languages� In a strict language� one can
create them with side�e�ect operations� For example� in Standard ML �Har��	 the data
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Figure �� Cyclic lambda graph for computing the sequence of Fibonacci numbers�

structure ones can be expressed as follows�

datatype reflist � CONS of int � reflist ref j NIL�

�� Values of reflist have the form Cons�i� j�� for i� an integer value�
and j� a reference to a re�ist value� or NIL� ��

let val x � ref�NIL�� �� associates x with a reference to a location containing NIL ��
in

x �� CONS��� x�� �� change the value x refers to ��
x� �� return the reference ��

end �

Cycles also occur in the data structure representing the run�time environment when im�
plementing recursive functions in either strict or non�strict languages� For example� the local
environment created by the following Scheme expression

�letrec
��fact �lambda�n�

�if �zero� n� �
�� n �fact ��n ��������

����



�

contains a circularity� which is usually implemented using assignments� as described in the
Scheme report �CR�
	�� Thus� dealing with cycles is desirable if one wants to discuss issues
of data representation� and it becomes necessary if one wants to provide a computational
model that supports reasoning about both functions and state� Moreover� capturing cycles is
not only important for reasoning about run�time issues� but it is also important for reasoning
about compilation and optimization of programs� as is discussed next�

Consider the sequence of Fibonacci numbers written in a lazy language �e�g�� Haskell
�HPJW���	� as follows�

let fibs � � � sum fibs �� � fibs�� �z �
��

sum � nx y���head x� head y� � sum �tail x� �tail y�� �z �
��

in fibs

�The form �� x y �� e� is Haskell�s syntax for a lambda abstraction� As before� � is the
list constructor� sum fibs ���fibs	 performs the addition of the fibs sequence and the
sequence ��fibs�� The corresponding cyclic graph is displayed in Figure �� In order to
share the work among all invocations of a function and all accesses to a data structure� it
makes sense to perform computations that occur inside a function body or inside a data
structure at compile time� Speci�cally� we would like to reduce the redexes �i�e�� reducible
expression� �� and �� in the Fibonacci program above� These redexes are indicated with
an arrow in Figure �� Both redexes express the application of a function to the arguments�
their reduction corresponds to what in the literature has been referred to as inlining� �

contraction or unfolding �App��	� However� they are not usual redexes� since they are in a
cycle� As such� their reduction is not at all obvious� In fact� as shown in this paper� a naive
approach will lead to a non�con�uence result� i�e�� depending on how we apply the above
transformations we get di�erent programs� The lack of con�uence has both theoretical and
practical impacts� From a theoretical point of view� proofs that the above transformations
are correct might become harder� From a practical point of view� non�con�uence means that
the order of application could ultimately have an impact on e�ciency� Thus� a rigorous
study of the reasons that cause con�uence to fail is bene�cial for getting a better grasp on
how to apply program transformations� including Wadler�s deforestation technique �Wad�
	�
partial evaluation �JGS��	� and the Burstall and Darlington unfold fold �BD��	� These last
transformations introduce new cycles by identifying previously encountered expressions� The
di�culties of reasoning about circular programs is re�ected by the fact that� in general� these
transformations do not preserve total correctness�

In conclusion� since cyclic structures are extensively used by implementors and compiler
writers it is important to provide an abstract framework that allows one to reason about them�
This paper provides such a framework in the context of ��calculus and �rst�order rewriting�
The paper is organized as follows� We start� in Section �� by introducing our approach
to cycles that is based on systems of recursion equations� Until Section �� we restrict our

�Rosaz in �Ros��a� argued that the same e�ciency can be gained by implementing recursion using suitable
versions of the Y combinator but at the expenses of more complex analysis�



�� Systems of recursion equations over the ��calculus �

attention to systems of recursion equations involving ��calculus extended with constants� No
nesting of equations is admitted� In Section �� we informally show how to manipulate such
systems in an unrestricted manner� using equational logic� just as is possible for �rst�order
term rewriting� This naive way of rewriting� called the �!�calculus� is formally introduced
in Section �� Surprisingly� as shown in Section 
� the con�uence property of �! breaks down
in an essential way� We point out� in Section "� that the same phenomenon occurs in the
in�nitary lambda calculus developed by Kennaway et al� �KKSdV�"a	� We discuss� in Section
�� another source of non�con�uence that does not arise in the in�nitary lambda calculus� In
Section �� we show how to restore con�uence by controlling or restricting the operations on
the recursion equations� We also point out that the ���calculus �i�e�� the ��calculus extended
with the ��rule� which embodies much of cyclic ��graph rewriting is con�uent� In Section
�� we show soundness of �! with respect to the in�nitary lambda calculus� In Section ��
we extend our framework to include nesting of recursion equations� We discuss a family of
calculi� called ��� that incorporate the ��calculus� the ���calculus� ordinary �rst�order term
rewriting and term graph rewriting� In Section �
� we discuss previous work� In particular� we
relate our approach to Rose�s system �Ros��b	 and to the framework based on the interaction
nets of Lafont �Laf�
	� We conclude the paper with future directions of research�

�� Systems of recursion equations over the ��calculus
In the �rst part of the paper �Sections ���� we will consider systems of recursion equations
over the ��calculus� Thus we may write�

� � �x�x� �

This is an object whose unwinding is an #in�nite normal form�� also known as a B$ohm�tree
�Bar�
	� We also may consider mutual recursion as in

� � ��x�	xx��� 	 � ��y��y�	 �

We will always use �� 	� � � �� for recursion variables� For the time being� variables bound by �
are denoted by x� y� z� � � �� Note that the in�nite tree unwinding of the last recursion system
is not a B$ohm�tree� as it contains many ��redexes�

1

+

+

1

Figure �� Horizontal sharing�

These systems of recursion equations allow us to express #horizontal sharing� � i�e�� sharing
as in a #dag� �see Figure ��� as opposed to the #vertical sharing� shown in the examples above�
More precisely� we say that a graph has only vertical sharing if the graph can be partitioned
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Figure 
� Vertical sharing�

into a tree and a set of edges with the property that either begin and end nodes are identical�
or the end node is an ancestor �in the tree� of the begin node� Equivalently� a graph has only
vertical sharing if there are no two di�erent acyclic paths starting from the root to the same
node �see Figure 
�� The following is an example of a system with horizontal sharing�

� � 		� 	 � ��x�F�x��
 � �����

Since the right�hand side of the equations is restricted to ��calculus terms� the horizontal
sharing cannot appear inside a lambda�abstraction� This restricts the class of ��graphs that
we consider� For example� the graph of Figure " is not expressible� as the intuitive represen�
tation

� � �x�� �
� 
�� 
 � ���� x� �

is not correct� This limitation will be removed in the second part of the paper� Section �� in
which we introduce a framework with nested recursion equations� We restrict ourselves to
systems without nesting since interesting observations can already be made�

1

λx

x

+

+

Figure "� Lambda body with horizontal sharing�

Note that we admit in addition to pure ��terms extended with recursion variables� operators
from a �rst�order signature� like F and � above� We use a harmless mixture of applicative
notation �with the application operator � usually suppressed� except in pictures of ��graphs�
and #functional� notation where operators have some arity �like the unary F above��

In presenting a recursion system� it is understood that the �rst �or topmost� equation is
the leading equation� displaying the root of the ��graph� When we want to be more precise�



�� Systems of recursion equations over the ��calculus �

we will present the system displayed in ����� as

h� j � � 		� 	 � ��x�F�x��
i �

The order of the equations in the #body� of the h j i construct is not important� Furthermore�
we will consider recursion systems obtained from each other by ��� renaming of recursion
variables� as identical� Thus�

h	 j 	 � 

� 
 � ��x�F�x��
i

is the same expression as the previous one�

To summarize� until Section �� we study systems of recursion equations of the form

�� � M�� � � � � �n � Mn �

where M�� � � � �Mn are ��calculus terms extended with constants� and the recursion variables
��� � � � � �n are distinct from each other�

��� Correspondence with graphs

It is straightforward to assign actual graphs to the recursion systems as introduced above�
In the sequel there will be several examples� One feature should be mentioned explicitly�
the nodes of the graph contain �rst�order operators �F�� or application ���� or �x� or a
variable x� y� z� � � �� Other than that� a node may have a name �� 	� 
� � � �� These correspond
to the recursion variables in the recursion system� Note that also unnamed nodes may be
present in the graph �corresponding to subterms in the system that have no name� like x�
in h� j � � �x�x�i�� In the present setting� the root node of the ��graph will always have a
name�

F x

λx

@

S

S

x

δ

Figure �� Cyclic lambda graph corresponding to 	 � ��x�F�	�Sx���Sx��

��� Free and bound variables

The notion of a variable �x� y� � � �� bound by a lambda follows from ��calculus� For example�
in the system

� � ��x�F�Gx��Sx���Sx� �



�

the variable x superscripted with � is free� and the x�s superscripted with � and � are bound�
As another example� consider

	 � ��x�F�	�Sx����Sx�� �

The x superscripted with � is free� while x� is considered to be bound� The above term is
displayed in Figure �� Our stipulation regarding free and bound variables points out a curious
phenomenon� even though there is a path from the �x�node to the variable node x�� x� is
not bound by the �x node� We call this phenomenon scope cut
o� �see Figure ��� This is
consistent with other ways of presenting the cyclic ��graph of Figure �� For example� using
the �xed point combinator Y� we would have Y ��	���x�F�	�Sx����Sx���� in which x� does
indeed occur free�

x

λx

not bound by λx

λxcut-off scope of 

λxscope of

Figure �� Scope cut�o� phenomenon�

The same scope cut�o� phenomenon occurs in the following system

� � �x�	� 	 � Fx �

which is displayed in Figure �� it is as if a name� in this case 	� stops the scope of a �� As
expected� this has some nasty consequences� With respect to the above system� substituting
for 	 in the �rst equation yields the system

� � �x�Fx� 	 � Fx �

in which the underlined x has been captured� In order to avoid this free variable capture
and still be able to use a naive version of substitution� we adopt the convention that all free
and bound variables have to be distinct from each other� Thus� we would express the term
� � �x�	� 	 � Fx as

� � �y�	� 	 � Fx �



�� Lambda graph rewriting 	

F

λx

x

α

δ

scope cut-off

Figure �� Cyclic lambda graph corresponding to � � �x�	� 	 � Fx�

�� Lambda graph rewriting

We now turn to the issue of de�ning ��reduction on ��graphs or� equivalently� systems of
recursion equations� Due to the possible presence of cycles� it may not immediately be clear
what the #right� notion of ��reduction is� In order to decide what is a right notion� we will
compare� with respect to soundness� any notion of ��reduction for recursion systems with the
in�nitary version of the ��calculus� as developed by Kennaway et al� �KKSdV�"a	� First� we
proceed in an intuitive fashion� We give some examples� where the redex being reduced is
underlined�

h� j � � ��x�	xx��� 	 � ��y��y�	i ����
h� j � � 	��� 	 � ��y��y�	i ����
h� j � � 	��� 	 � �	i �

Here� there is no problem� We call ��x�	xx�� an explicit ��redex� since it is of the form
��x�M�N � On the other hand� in a recursion system g� a subterm of the form �N is called
an implicit ��redex if g contains an equation of the form � � �x�M � Examples of implicit
��redexes are 	�Sx� and ��Sy� in the example below�

h� j � � �x�	�Sx�� 	 � �y���Sy�i �

An implicit redex �N must �rst be made explicit by substitution of �x�M for �� before it
can be contracted �i�e�� ��reduced�� The act of substitution will be denoted by ���s � we will

occasionally underline the variable we substitute for� Thus�

h� j � � �x�	�Sx�� 	 � �y���Sy�i ���s

h� j � � �x���y���Sy���Sx�� 	 � �y���Sy�i ����
h� j � � �x���S�Sx��� 	 � �y���Sy�i ���gc

h� j � � �x���S�Sx��i �

In the last step� we have applied garbage collection �written as ���gc � since the de�nition

of 	 is inaccessible from ��

Our stipulation that ��reduction can only be performed on explicit ��redexes in a system
is a matter of choice� de�nitions of ��reduction directly on implicit ��redexes are possible�
However� this stipulation makes it more clear� intuitively� what goes on� More importantly�
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making ��redexes explicit involves making a copy of part of the graph that is often necessary�
An example is�

h� j � � F�	�� 	
�� 	 � �x�xi ���s

h� j � � F���x�x��� 	
�� 	 � �x�xi ����
h� j � � F��� 	
�� 	 � �x�xi �

The substitution step has performed a copy of �x�x� as is in this case anyway necessary�

��� The collapse problem

In orthogonal term graph rewriting �rewriting with an orthogonal �rst�order term rewriting
system� admitting graphs with horizontal and vertical sharing� and in�nitary term rewriting
�admitting in�nite trees� it has been a matter of some discussion what to do with #collapsing
operators� such as a unary operator I with the rule I�x� ��� x� Speci�cally� what should

#cyclic�I�� that is� h� j � � I���i� rewrite to� If this object rewrites to itself� then non�
con�uence arises� For� let J be another collapsing operator with J�x� ��� x� Then

h� j � � I�J����i

rewrites to both h� j � � I���i and h� j � � J���i� The simple solution is to proceed
with rewriting� both of these last two expressions rewrite to h� j � � �i� which is a #very
unde�ned� kind of expression� it is a special case of expressions being unde�ned by lack of
a head normal form� We capture this fact by rewriting h� j � � �i to a new object� that
we will call � �black�hole�� For a comparison of notions of unde�nedness in orthogonal term
�graph� rewriting see �AKK��
	�
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Figure �� Reductions to black�hole�



�� The �!�calculus 



Also in the present setting � arises as a result of reduction� E�g�� consider the ��graph �see
Figure ������

� � ��x�	�A� �z �
�

� 	 � ��y���B� �z �
�

�

Contracting the ��redex yields
� � 	� 	 � ��y���B

which is equivalent to �see Figure �����

� � ��y���B �

Contracting the � �redex yields
� � ��x�	�A� 	 � �

which is equivalent to �see Figure �����

� � ��x���A �

Both contracted graphs yield after one more reduction � � �� and this rewrites to � � � �see
Figure ��
��� Note that also mutual vacuous dependencies of recursion variables rewrite to
�� E�g�� h� j � � 	� 	 � �i ��� �� Or� inside a system�

h� j � � F���x�x�	�� 	 � ��y�y�	i ��� h� j � � F�	�� 	 � 	i ��� h� j � � F���i �

�� The �!�calculus

Here we present the �!�calculus� which formalizes the naive way of reducing possibly cyclic
redexes introduced so far� Notation� We assume that Fn belongs to a �rst�order signature�
The metavariables E�E� range over unordered sequences �possibly empty� of recursion equa�
tions� M �x �� N 	 denotes the substitution of N for each free occurrence of x in M � C��	
represents a ��calculus context with one hole �� A system of equations E� is orthogonal to
a system E or to a variable � if the recursion variables of E� �i�e�� the set of variables that
occur as the left�hand side of an equation in E�� do not intersect with the set of free variables
of E and ��

De�nition ��� The following clauses de�ne the syntax and basic reduction axioms of the
�!�calculus�
Syntax�

g ��� �� � M�� � � � � �n � Mn

M ��� x j Fn�M�� � � � �Mn� j �x�M jMM

Reduction Axioms�
�
rule �
��x�M�N ���� M �x �� N 	

Substitution �
h� j 
 � C�		� 	 � M�Ei ���s h� j 
 � C�M 	� 	 � M�Ei

Black hole�
h� j 
 � 
�Ei ���� h� j 
 � �� Ei




�

Copying

h� j Ei ���c h�� j E�i if � a variable mapping ��
h�� j E�i� � h� j Ei

Naming �
h� j 
 � C�M 	� Ei ���n h� j 
 � C�		� 	 � M�Ei if the free variables of M do

not occur bound in C�M 	 and
M is not a variable

Garbage collection�
h� j E�E�i ���gc h� j Ei if E� is non�empty and

orthogonal to E and �

In the Substitution rule� the equations 
 � C�		 and 	 �M can overlap as in the following
substitution step�

h� j � � �x�x�i ���s h� j � � �x�x��x�x��i �

in which both 	 and 
 are instantiated to �� The operation of copying di�ers from substitution
in the sense that copying never gets rid of recursion variables� Given two recursion systems
g and g�� g copies to g� if there exists a mapping � from recursion variables to recursion
variables �which is extended in the usual way to a system of recursion equations� such that
g�� � g� leaving the free recursion variables of g� unchanged� For example�

h� j � � F�
�� 
 � G���i ���c h� j � � F�
�� 
 � G����� �� � F�
��� 
� � G����i �

where the variable mapping � is� �� �� are mapped to �� and 
� 
� are mapped to 
� �See
�AK��	 for a thorough discussion of copying and its properties�� The proviso for the operation
of naming� which is written as ���n � is to forbid reductions of the form

h� j � � �x�Fxi ��� h� j � � �x�	� 	 � Fxi �

in which the underlined x gets out of scope�

To understand why we admit� in addition to substitution� also the operations of copying
and naming� we make an excursion into the �rst�order case� Substitution by itself causes
already non�con�uence in the �rst�order case� For� consider the recursion system without
any rewrite rule�

h� j � � S�	�� 	 � S���i �

By substitution and garbage collection this expression yields on the one hand

h� j � � S�S����i �����

on the other hand
h� j � � S�	�� 	 � S�S�	��i � �����

These two results cannot be made convergent by further substitutions� they are out
of
synch�
that is� at each point in time system ����� will have an even number of S�s� while system
����� will contain an odd number of S�s� However� by allowing re�introduction of names �i�e��
Naming� we can restore

h� j � � S�S����i



�� A counterexample to con�uence of �! 
�

to
h� j � � S�	�� 	 � S���i

and converge again� As shown in �AK��	� con�uence of substitution and naming is guaranteed
if the system contains also the operation of copying� Thus� in analogy with the �rst�order
case� we consider next to substitution also the operations of naming and copying� hoping
to prove con�uence of �!� However� as shown in the next section� there are some nasty
surprises�

Remark ��� It is interesting to observe that Naming can cause a non�terminating compu�
tation to terminate� E�g��

� � �y��
 ��� � � �y��
 ��� � � �y��
 ��� � � � �

Since �
 does not depend on the bound variable y it can be given a name� Then�

� � �y��
 ���n � � �y�	�
	 � �


���s � � �y�	�
	 � ��y�	�


���� � � �y�	�
	 � 	

��� � � �y�� �

The above term � � �y��
 can be seen as an in�nite tower of collapsing contexts� As will be
discussed in Section "� this constitutes a source of non�con�uence in the in�nitary calculi�

This example points out that in order to describe common program manipulations� as the
one described above� it is necessary to precisely delimit the body of a lambda abstraction�
Thus� indicating how much to copy once the lambda is applied� In our simple framework� all
unnamed nodes reachable from a lambda�node constitute its body�

�� A counterexample to confluence of �!

Consider the reductions �displayed in Figure �
� �

� � �x�	�Sx��
	 � �y���Sy�

s
� � � �x���y���Sy���Sx��

	 � �y���Sy�
�
� � � �x���S�Sx���

	 � �y���Sy�

� � �x�	�Sx��
	 � �y���x�	�Sx���Sy�

�
s

� � �x�	�Sx��
	 � �y�	�S�Sy��

�
�

� �

�

By using the same parity argument as in the previous section one can see that the two
systems obtained are clearly out�of�synch� The situation is even more serious� less curable
than in the �rst�order case since also the operations of naming and copying do not help� The
two expressions

� � �x���S�Sx�� and � � �x�	�Sx�� 	 � �y�	�S�Sy��

are irreversibly separated with respect to any set of operations on ��graphs that is #sound� in
a sense that we will elaborate in Section ��
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Figure �
� Failure of con�uence�

The above counterexample corresponds to unfolding or inlining the redexes �� and ���
respectively� in the following mutually recursive de�nitions of CAML�

% let rec odd � fun x � if x � 
 then false else even�x� ��� �z �
��

and even � fun x � if x � 
 then true else odd�x� ��� �z �
��

� �

The absence of a common reduct means that depending on how we apply these transforma�
tions we get di�erent programs� which� even though they might produce the same observable
result� are di�erent from an intensional point of view� As an example� unfolding �� �rst
triggers the application of the unused lambda expressions transformation �App��	� and thus
getting rid of the de�nition of even�

Analysis of the counterexample

The above counterexample not only is a counterexample to con�uence� but even to weak
con�uence� For ordinary ��calculus� weak con�uence is simple to prove by an inspection of
#elementary reduction diagrams�� Typical for these elementary reduction diagrams is that in
the converging sides� one has to contract the descendants �residuals� of the redexes contracted
in the diverging sides� So what goes wrong in the present case� when we try to prove weak
con�uence� Let us review the counterexample�

� � �x��	�Sx�	�� 	 � �y����Sy�	� �

where we have indicated the two redexes� � and �� that play a role� Both are implicit redexes�
Reduction of redex � requires making it explicit�

� � �x����y����Sy�	���Sx�	�� 	 � �y����Sy�	� �



�� A counterexample to con�uence of �! 
�

Garbage collection yields� � � �x����y����Sy�	���Sx�	�� The redex marked � can now be
contracted� with result �S��x� stands for S�S�x����

� � �x����S�x�	� �

In the other direction� we contract redex �� after explicitation�

� � �x��	�Sx�	�� 	 � �y����x��	�Sx�	���Sy�	� �

Contraction of the redex � yields�

� � �x��	�Sx�	�� 	 � �y��	�S�y�	� �

So� in analogy of pure ��calculus� we would expect that all we have to do is� complete the
following elementary reduction diagram� by contraction of the respective residuals�

� � �x��	�Sx�	�� 	 � �y����Sy�	� �� � � �x����S�x�	�
�� ��

� � �x��	�Sx�	�� 	 � �y��	�S�y�	� �� �

Now the reason of the failure of con�uence comes to the surface� reduction of redexes � in
� � �x�	�Sx�	�� 	 � �y��	�S�y�	�� or rather a complete development of the set of ��redexes� is
not possible� Likewise a complete development of the singleton set of ��redexes in

� � �x���S�x�	� �

is not possible� We will show this for the latter case� the ��redex� the other case of the ��redex
is similar� For greater ease in parsing the following expressions� let us use underlining instead
of � 	� to keep track of implicit or explicit redexes� so

� � �x����S�x�	�

is now
� � �x���S�x� �

We claim that this singleton set of underlined redexes cannot be completely developed� as the
analogy with ��calculus suggests we ought to do� Indeed� it is easily seen that no succession
of ��� s or ���� in whatever order will be able to remove all underlining� using obvious

rules for underlining�

� � �x���S�x� ���s

� � �x���x���S�x���S�x� ����
� � �x���S�x� ���s

� � �x���x���S�x���S�x� � � �

�also applying ���s on the second expression does not bring us further ��

This elaboration intends to give an intuition why con�uence fails � of course it does not
constitute a proof of that failure�




�

Another Analysis of the counterexample

Consider the following Abstract Reduction System� with as elements� singleton sets of natural
numbers n� pairs of natural numbers �n�m�� and alternative pairs of natural numbers �n�m	�
There are the following reduction rules�

fng ��� f�ng

fng ��� �n� n�

fng ��� �n� n	

�n�m� ��� �n�m�m�

�n�m� ��� �n� �m�

�n�m	 ��� fn�mg

�n�m	 ��� �n� n�m� �

We claim that these are not con�uent� Proof� ��� �	 ��� f�g and ��� �	 ��� ��� ��� Any reduct

of f�g is of the form feg or �e�� e�� or �e�� e�	 with e� e�� e� even� Any reduct of ��� �� is of the
form �o� e� with o odd and e even�

Using this abstract non�con�uent fact� we can give a sketch of the non�con�uence of reduc�
tions of the system� �

� � �x�	�S�x��
	 � �y���S�y��

Let us abbreviate�
fng � � � �x���Snx�

�n�m	 �

�
� � �x�	�Sn�x��
	 � �y���Sm�y��

�n�m� �

�
� � �x�	�Sn�x��
	 � �y�	�Sm�y��

Then indeed the abstract rewrite rules above are obtained by ��reduction on systems of
equations together with a limited form of copying� Hence the original system� which in
abbreviation is ��� �	� is not con�uent� Actually this �proof� is only giving the basic idea� it is
not complete since e�g�� the system abbreviated as f�g gives rise by copying to other systems
than the ones above� For example�

f�g ���c

���
��

� � �x�	�S��x��
	 � �y�
�S��y��

 � �x�	�S��x��

But also now� all S�s ever appearing in reducts expansions of the latter system will have even
exponents� On the other hand� the system ��� �� can be expanded e�g�� as follows�

��� �� ���c

���
��

� � �x�	�S�x��
	 � �y�
�S��y��

 � �x�	�S��x��



�� In	nitary lambda calculus 
�

And now in all reducts expansions of the latter system� the S in the equation for � will
have odd exponent� and the S�s in all the other equations will have even exponents�

This phenomenon may be thought to be dependent of our particular choice of reduction
for cyclic redexes� consisting of a substitution step followed by a familiar ��step� However�
we claim that it is robust� in fact� as we are going to explain in the next section� the same
phenomenon occurs in the in�nitary version of ��calculus �KKSdV�"a	�

�� Infinitary lambda calculus

As semantics of ��graph rewriting we take the in�nitary ��calculus� as introduced by Kenna�
way et al� �KKSdV�"a	� The in�nitary ��calculus provides us with a notion of correctness of
proposed de�nitions of ��reduction of ��graphs� and explains the counterexamples for ��ni�
tary� con�uence of ��reduction of such graphs� In this section we will give a short exposition
of some of the concepts introduced in �KKSdV�"a� KKSdV�"b	�

Cauchy converging reduction sequence: activity may occur everywhere

Strongly converging reduction sequence, with descendant relations

Figure ��� Converging and strongly converging reduction sequences�

We �rst underline the di�erence between convergent and strongly convergent reductions� In
short� a strongly convergent reduction is such that the pre�x of the term where no reduction
occurs is increasing �see Figure ���� that is� the depth of contracted redexes tends to in�nity�

In trans�nite orthogonal term rewriting there is a single source of failure of in�nitary
con�uence� the presence of collapsing operators� such as the I or K combinators� enabling one
to build trees that consist of an in�nite tower of collapsing operators� or rather collapsing
contexts� This is proved in �KKSdV�"b	� In the in�nitary ��calculus� that is also a source
of non�con�uence� However� the matter is more complicated� there is another phenomenon
that causes in�nitary non�con�uence� not due to collapsing contexts� To explain this� we �rst
need the concepts of development and complete development� which are a generalization of
the classical notions of ��calculus�

De�nition ��� Let M be a possibly in�nite ��tree� and S be a set �possibly in�nite� of
redexes in M�
�i� A development of S is a reduction� possibly in�nite� in which only descendants of members
of S are contracted�
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Figure ��� Complete development of the redexes marked as ��

�ii� A complete development of S is a development which is strongly convergent and after
which no descendant of a redex of S is left�

A classical lemma in ��calculus is the Finite Developments Lemma� stating that any devel�
opment must terminate �see Barendregt �Bar�
	�� Of course� we cannot have that for the
in�nitary ��calculus� since it admits in�nitely many redexes to be developed� But there is an
analogous statement� that is� any development strongly converges� This is however not the
case� and this gives rise to a failure of in�nitary con�uence� as shown in the next example�

Consider the in�nite unwinding of the term

h� j � � �x�	�Sx�� 	 � �y���Sy�i �

which� as was discussed in the previous section� was leading to two non�converging reductions�
Let S� and S� be the two sets of redexes descending from the two redexes ��Sy�� 	�Sx� in
that in�nite term� The result of the complete development of S� and S� is shown in Figures
�� and ��� respectively� The two in�nite terms so obtained do not have a common reduct�
We present a stylized version of the proof� for a formal exposition the reader can consult
�KKSdV�"a	� Consider the TRS with for every n 	 
� a unary operator n� There are
in�nitely many rewrite rules�

n�m�x�� ��� �n�m��x� �

This is a con�uent and terminating TRS� It is not orthogonal� The in�nitary version is not
con�uent� For� consider the following in�nite terms �where we have omitted brackets in the
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convention of association to the right��

� � � � � � � � � � � � � � ���

� � � � � � � � � � � � � ���

� � � � � � � � � � � � ����

� � � � � � � �

where we have #developed� the underlined redexes� that is� the redexes at even positions� This
corresponds to the reduction of redexes marked with � in Figure ��� whose leftmost in�nite
tree is represented as the in�nite term ��� � � � �i�e�� at each level the tree contains one symbol
S�� The complete development of the redexes marked with � in Figure �� corresponds to the
reduction of the redexes at odd positions� yielding�

� � � � � � � � � � � � � � ���

� � � � � � � � � � � � � ���

� � � � � � � � � � � � ����

� � � � � � � � �

Now it is clear that the two in�nite terms ���� � � � and ����� � � � have no common reduct� A
side result of this example is that for con�uent and terminating TRSs the generalization to
in�nitary rewriting does not work out well� apparently the orthogonality condition is needed�

Identifying the larger class of terms without weak head normal form does restore con�uence
for the in�nitary ��calculus� A term M has a weak head normal form if it reduces to some
term of the form xN� � � �Nn �n 	 
� or �x�N �



��

Theorem ��� The in
nitary lambda calculus extended with the rule �called &
rule��

M � & if M has no weak head normal form

is in
nitary con�uent�

Proof� See �KKSdV�"a	� in which the in�nitary calculus referred to in this paper is called
the ����in�nitary calculus� �

Remarkably� this is not the case in ��graph rewriting� as discussed in the next section�

	� Regular developments and another counterexample
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� In�nite reduction yielding a non�regular tree�

It may be thought that non�con�uence in the �!�calculus only arises because of expressions
that after unwinding to the corresponding in�nite ��tree have no weak head normal form�
Or� equivalently� that con�uence can be restored by equating all �!�expressions that have
no weak head normal form as in the in�nitary ��calculus� However� this is not the case�
non�con�uence in �! also may arise for expressions that have an in�nitary normal form�

An example of such an expression is�

h� j � � �x�F�
x�� 
 � �y�G��y�i �




� Notions of substitution �


Indeed� it is easily veri�ed that the corresponding in�nite term reduces to the in�nitary
normal form �x��FG��� independent of the order of reduction of the redexes of the form 
x
and �y� Establishing that this is indeed a counterexample to con�uence in �! can be done
by a reasoning similar to that for the counterexample in Section 
�

A more interesting counterexample is as follows� Before presenting the example� we remind
the reader that a ��tree is regular if it contains modulo isomorphism only �nitely many
di�erent sub�trees� A development is regular� if it is a development of a set of redexes in
a regular ��tree� and the result of the development exists and yields again a regular ��tree�
Consider�

h� j � � �x�F���Sx��Sx�� � � �y�G���Sy��Sy�i �

Unwinding these recursion equations yields the in�nite ��tree in the leftmost corner of Figure
�
� A development of the redexes with function part � yields a regular tree� as in the
�gure� Likewise a development of the redexes with function part � yields a regular tree� But
developing both sets of redexes yields a non�regular tree� namely� the rightmost one of Figure
�
� To see that we have indeed another counterexample to con�uence in �!� we reason as
follows� using the soundness of �! with respect to the in�nitary calculus �shown in Section ���
Let M be the initial �leftmost� in�nite term in Figure �
� Let M� be the middle term in that
�gure� arising after developing all ��redexes in M � Likewise M� is the term arising from M
after developing all redexes marked � in M � this term is not shown in the �gure� Finally� let
M��� be the term arising from developing both families of redexes� the redexes marked � as
well as the redexes marked �� This is the common reduct in the in�nitary calculus of M� and
M�� Now we claim that in fact M��� is the only common reduct of M� and M�� Establishing
this is a matter of routine which we omit� It follows that in the �nite graph calculus �! there
cannot be a common reduct for the two expressions arising from the recursion system under
consideration after executing the redex ��Sx� on the one hand and ��Sy� on the other hand�
For� these two expressions unwind to M� and M� respectively� Now if the two expressions
would have a common reduct� say C� in �!� then by its soundness we would have in the
in�nitary calculus a common reduct of M� and M�� namely the unwinding of C� But this
would be a regular term� as C is a �nite expression in �!� in contradiction with the claim
above that the irregular term M��� is the only common reduct of M� and M��

Summarizing� we have the situations as in Figure �"� where the lower plane is that of
��trees and their in�nite reductions� and the upper plane is that of ��graphs and their �nite
reductions� The planes are related by tree unwinding� Figure �"�i� displays the #normal� sit�
uation� Figure �"�ii� refers to the counterexample in Section 
� that is� the loss of con�uence
in both ��graph rewriting and in the in�nitary ��calculus� Figure �"�iii� refers to the �rst
counterexample in the present section� Figure �"�iv� refers to the second counterexample in
this section involving developments to non�regular in�nite terms�


� Notions of substitution

Going back to the analysis of the �rst counterexample� it is not hard to see what causes a
set of redexes in a recursion system to resist a complete pre�development� This occurs only
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if there is a cyclic con�guration in the system as follows�

�� � �x��C�����M��	
� � �
�i � �xi���Ci�����i��Mi���	
� � �
�n � �xn���Cn������M��	 �

Here the �iMi are the implicit ��redexes that we want to pre�develop� If we underline all
the �i in the above system and apply substitution� it so happens that those underlines can
never disappear� This suggests looking for a new form of substitution that leads to �nite
developments�

The new substitution� called acyclic substitution �written as ���as �� consists of de�ning an

order on the nodes of a graph� or equivalently on the recursion variables �see Figure ���� and
then allowing substitution upwards only� More precisely� call two nodes cyclically equivalent

if they are lying on a common cycle� A plane is a cyclic equivalence class� If there is a path
from node s to node t� and s� t are not in the same plane� we de�ne s 
 t� Let 
 be the name
associated to node s� and 	 the name associated to node t� then 
 
 	� Acyclic substitution
is then de�ned as follows�

h� j 
 � C�		� 	 � M�Ei ���as h� j 
 � C�M 	� 	 � M�Ei if 
 
 	 �




� Notions of substitution ��
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Figure ��� Ordering among recursion variables�

In C�		 just one occurrence of 	 is displayed and replaced by M � So in Figure ��� displaying
the system

h� j � � F��� 	� ��� � � H�G���� 
�� 
 � H�C� 	�� 	 � G�
�i

the only ���as �steps are from 	 in �� from � in �� from 
 in �� The new calculus� called �'�

that embodies acyclic substitution is given next�

De�nition 	�� The following clauses de�ne the syntax and basic reduction axioms of the
�'�calculus�
Syntax�

g ��� �� � M�� � � � � �n � Mn

M ��� x j Fn�M�� � � � �Mn� j �x�M jMM

Reduction Axioms�
�
rule �
��x�M�N ���� M �x �� N 	

Acyclic substitution �
h� j 
 � C�		� 	 � M�Ei ���as h� j 
 � C�M 	� 	 � M�Ei if 
 
 	

Fact 	�� Acyclic substitution is non terminating� E�g��

� � F
� 
 � G
 ���as � � FG
� 
 � G
 ���as � � FGG
� 
 � G
 ���as � � � �

Referring to the above reduction note that the second step involves the reduction of a new
redex� If reduction is restricted to �old� redexes only then acyclic substitution becomes
terminating� To that end� let us introduce an underlined substitution calculus which we
call �'as� The terms of the new calculus are systems of recursion equations with underlined
recursion variables� with the proviso that the underlined variables have to belong to an acyclic
substitution redex� For example� the system

� � F
� 
 � G
 �



��

is a legal term� On the other hand� the system

� � F
� 
 � G


is not legal since 
 

 
� The rule of �'as is�

h� j 
 � C�		� 	 � M�Ei ���as h� j 
 � C�M 	� 	 �M�Ei �

From now on� we will identify an acyclic substitution redex with the variable we are substi�
tuting for� E�g�� given the system � � F
� 
 � 
� we will say that 
 is a redex�

Lemma 	�� Let g ���as g� by reducing redex 	 and g ���as g� by reducing redex 
� then a

common reduct g� can be found by reducing in g� all descendants of 
 and in g� all descendants
of 	�

Proof� Let g ���as g� by substituting for 	 in �� and g ���as g� by substituting for 
 in ��

The only interesting case is when 	 � � or 
 � �� In other words� the two substitutions have
a cyclic plane in common �see Figure ���� Note that 	 � � and 
 � � are not simultaneously
possible� Let us assume 	 � �� We have�

g � � � C�		�
	 � C��
	�

 � N

�
� g� � � � C�C��
		�

	 � C��
	�

 � N

� � C�C��N 		�
	 � C��
	�

 � N

�
	

g� � � � C�		�
	 � C��N 	�

 � N

�

	

�
� g� � � � C�C��N 		�

	 � C��N 	�

 � N �

�
	

�

Lemma 	�
 ���as is strongly normalizing�

Proof� Due to the fact that the ordering 
 among recursion variables is well founded we can
use the multiset ordering �Klo	� The weight associated to a system of recursion equations g
is the multiset of all underlined recursion variables� E�g�� to the system

� � F	� 	 � G
� 
 � 
 �

we associate the multiset
ff	� 
gg �

Let
g � h� j 
 � C�		� 	 � M�Ei ���as h� j 
 � C�M 	� 	 � M�Ei � g� �

Without loss of generality� let M be C���	� Then� in the multiset associated to g�� 	 will be
substituted by �� By de�nition� 
 
 	 and 	 
 � and so the multiset is getting smaller� �




� Notions of substitution ��

Theorem 	�� Acyclic substitution is con�uent�

Proof� As in �Bar�
� Klo	 con�uence follows from Lemmas ��� and ��
 by applying the
complete development method� which consists of de�ning a new reduction relation with the
same transitive closure as ���as and prove that it satis�es the diamond property� �

Next� we prove that acyclic substitution combined with ��reduction is con�uent� We thus
extend �'as by allowing the underlining of ��s that constitute the operator part of a ��redex�
The new ��rule becomes ��x�M�N ���� M �x �� N 	� The combination of as and � is written

as ���as� � The new calculus is called �'� and is summarized next�

De�nition 	�� The following clauses de�ne the syntax and basic reduction axioms of the
�'�
Syntax�

g ��� �� � M�� � � � � �n � Mn

M ��� x j x j Fn�M�� � � � �Mn� j �x�M jMM j ��x�M�M

Reduction Axioms�
�
rule �
��x�M�N ���� M �x �� N 	

Acyclic substitution �
h� j 
 � C�		� 	 � M�Ei ���as h� j 
 � C�M 	� 	 � M�Ei if 
 
 	

We start by showing that ��� as� is strongly normalizing� The proof follows the same

steps as in �Bar�
	� We associate a positive integer to each variable �recursion variables and
lambda bound variables� occurring in the right�hand side of an equation of a system g� The
weight of g� written as jgj� is then the sum of the weights occurring in g� However� the initial
weight associated to variables has to obey some conditions�

De�nition 	�	 Let g be a system of recursion equations in �'� g has decreasing weight

property �dwp� if

�i� for every ��redex ��x�P �Q in g �

�x � P� jxj 
 jQj

�ii� for every as�redex 
� such that 
 � M is an equation in g�

j
j
jMj �

For example�
� � ��x�x����G
�
��� 
 � 			�

has the dwp� while

� � ��x�x
��G
�
��� 
 � 			� and � � ��x�x
��G
�
��� 
 � 			�

violate the conditions �i� and �ii�� respectively� of De�nition ����



��

Proposition 	�� For all systems of recursion equations g in �'� there exists an initial weight

assignment so that g has decreasing weight property�

Proof� We start by �nding the strongly connected components of the graph associated to
g� We could see the dag so obtained as having as nodes the sequences of equations that
de�ne a cyclic plane� These distinct sequences of equations are then topologically ordered�
obtaining a new system of equations g�� The equations corresponding to each cyclic plane
are not re�ordered� For example� the system

� � F
� 	 � G�� 
 � H	� � � H	

is re�ordered as
� � F
� 
 � H	� 	 � G�� � � H	

or
� � F
� 
 � H	� � � H	� 	 � G� �

In other words� the order of the equations for 	 and � is immaterial� Now we enumerate
all the variables occurring in the right�hand side of the equations� following the right to left
order� and assign to the mth variable occurrence the weight �m� Since

�m 
 �m�� � �m�� � � � � � � � �

g has the dwp� �

Proposition 	�
 If g ���as� g�� and g has dwp then

jgj 
 jg�j �

Proof� Follows from the fact that �m 
 �m�� � �m�� � � � � � � �� �

Proposition 	��� Let g ���as� g�� then if g has dwp so does g��

Proof� If g reduces to g� by performing a ��redex then the proof that the �rst condition
of the dwp holds is the same as in �Bar�
	� To show that the second condition holds let us
assume�

	 � C���	�
� � C���x�C��
	�C���		�

 � M�
� � N

���� 	 � C���	�
� � C�C��
	�x �� C���			�

 � M�
� � N �

Since during ��reduction the weights of the recursion variables are not disturbed� we still
have j
j
jM j and j�j
jN j� Since the weight of the right�hand side of � decreases� we still
have j�j
jC�C��
	�x �� C���			j�

Let us now assume that g reduces to g� by performing an underlined acyclic substitution
step� Let g be�

	 � C���	�
� � C���x�C��
	�C���		�


 � M�
� � N �




� Notions of substitution ��

If we substitute for either � or 
 then the �rst condition is met because the weight of the
argument of the ��redex decreases and x cannot occur free in M � Moreover� j�j is still greater
than the weight of the right�hand side� Analogously� if we substitute for � we still have that
the weights of 
 and � are greater than jMj and jNj� respectively� �

Lemma 	��� ���as� is strongly normalizing�

Proof� From Propositions ��� and ���
� �

Lemma 	��� Acyclic substitution commutes with ��

Proof� We show that ���as commutes with ���� � Since ���as� is strongly normalizing

it is enough to show that ���as commutes with ���� � Let g be

	 � C���	�
� � ��x�C��
	�C���	�

 � M�
� � N �

By cases on where the substitution occurs�

�Substitution for ��

	 � C���	�
� � ��x�C��
	�C���	�

 � M�
� � N

�
� 	 � C���	�

� � �C��
	��x �� C���		�

 � M�
� � N

	 � C����x�C��
	�C���		�
� � ��x�C��
	�C���	�

 � M�
� � N

�
as

�

�
�

� 	 � C���C��
	��x �� C���			�
� � �C��
	��x �� C���		�

 � M�
� � N

�
as

�Substitution for 
�

	 � C���	�
� � ��x�C��
	�C���	�

 � M�
� � N

�
� 	 � C���	�

� � �C��
	��x �� C���		�

 � M�
� � N

	 � C���	�
� � ��x�C��M 	�C���	�

 � M�
� � N

�
as

�

� 	 � C���	�
� � �C��M 	��x �� C���		�

 � M�
� � N

�
as



��

�Substitution for ��

	 � C���	�
� � ��x�C��
	�C���	�


 � M�
� � N

�
� 	 � C���	�

� � �C��
	��x �� C���		�


 � M�
� � N

	 � C���	�
� � ��x�C��
	�C��N 	�

 � M�
� � N

�
as

�

� 	 � C���	�
� � �C��
	��x �� C��N 		�

 � M�
� � N

��
as

�

Theorem 	��� �' is con�uent�

Proof� From the previous lemma and Hindley�Rosen�s Lemma� �

@

λx

spine

α

Figure ��� Cycle through a spine�

Con�uence of �' guarantees that the lack of con�uence of �! does not impair its correct�
ness� as shown in the next section� Moreover� it also allows us to precisely indentify which
redexes cause con�uence to fail� namely the spine�cyclic redexes� A ��redex is spine
cyclic
when its root and the ��node lie on the same cycle �see Figure ���� Otherwise� the redex is
spine
acyclic� In a spine�acyclic redex the root and the ��node may be cyclic� Reduction of
explicit spine�cyclic redexes� such as the ��redex in the equation 
 � ��x�C�
	�M � does not
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introduce any problem� Summarizing� Theorem ���� says that reduction of implicit and ex�
plicit spine�acyclic redexes and explicit spine�cyclic redexes is con�uent� since their reduction
involves acyclic substitution only�

An example of a spine�acyclic redex is the topmost ��redex of Figure �� The lower ��redex
is an example of a spine
cyclic redex� since the root of that redex and the ��node� named
sum� are on the same cyclic plane� and thus needing a substitution that is not acyclic to make
it explicit� Implicit spine�cyclic redexes can be made explicit by �rst applying the operation
of copying� which allows us to unwind a cycle without losing any name� For example� if we
want to reduce the underlined implicit spine�cyclic ��redex in the system�

� � �x�	�Sx�� 	 � �y���Sy�

we �rst perform a copy step�

� � �x�	�Sx�� 	 � �y���Sy� ���c � � �x�	�Sx�
�
� �� � �x�	�Sx�

�
� 	 � �y����Sy� �

The system so obtained contains an implicit spine�acyclic redex� i�e�� the one subscripted with
�� However� another copy of the implicit spine�cyclic redex is made� i�e�� the one subscripted
with ��

Remark 	��
 Another notion of substitution that guarantees con�uence is the parallel sub

stitution ����ps �� which consists of substituting at once for all the recursion variables�

�� � M�� � � � � �n � Mn ���ps �� � M�� ��n �� �Mn	� � � � � �n � Mn� ��n �� �Mn	 �

For example� we have

� � �x�	�Sx�� 	 � �y���Sy� ���ps � � �x���y���Sy���Sx�� 	 � �y���x�	�Sx���Sy� �

This notion is interesting since it allows us to remove the de�nition of 	� However� we do not
pursue the study of this notion since it does not underlie common program transformations�

Since a notion of substitution is already present in the ���calculus� we are going to present
it next�

��� The ��
calculus
An interesting calculus arises by extending #pure� ��calculus with the ��rule�

� � �x�Z�x� ��� Z��x�Z�x�� �

Here we use the notation as used for #higher�order term rewriting� by means of Combinatory
Reduction Systems �CRSs�� as in �KvOvR��	� Usually this rewriting rule is presented as
�x�Z ��� Z�x �� �x�Z	� The ���calculus already o�ers a form of cyclic ��graph rewriting �see

Figure ���� it reduces #implicit� ��redexes in a way similar to that discussed in Section 
� that



��

μα.αα
α

(μα.αα)(μα.αα)@ @

@@

α

Figure ��� Reduction of ������

is� by �rst performing some unwinding� Thus� it seems puzzling that the ���calculus� being an
orthogonal Combinatory Reduction System� is con�uent� Translating the �!�counterexample
to con�uence of Section 
 into �� is instructive� The uppermost cyclic graph of Figure �
 is
expressed in the ���calculus as�

M � ����x���	��y���Sy���Sx� �

In order to reduce the �implicit� ��redex ��Sy�� as we did in Section 
� we have to apply the
��rule twice obtaining�

M ���
 �x���	��y�M�Sy���Sx� ���
 �x���	��y���x���	��y�M�Sy���Sx���Sy���Sx� �

The above reduction is displayed in Figure ��� In Figure �
 we display one step of substitution�
Comparing the middle graph of Figure �� and the rightmost graph of Figure �
 we see that the
substitution operation embodied in the ��rule is much more complex than the unrestricted
version of �!� since it involves making an entire copy of M � Moreover� in �� one step
of unwinding is not enough to make the redex explicit� Another application of the ��rule
is necessary� this causes another copy of M to be made� This avoids the #out�of�synch�
phenomenon�

At this point we could restrict ourselves to the sub�calculus ��� however� this is not satis�
factory because the ���calculus is limited in the form of sharing it can express� For example�
it is unable to directly capture the expression

� � F�
� 
�� 
 � �x�G�
� �

In fact� by translating the above expression into the ���calculus we obtain

F��
��x�G�
�� �
��x�G�
�� �

where a duplication or unsharing has occurred� In other words� the ���calculus expresses
vertical sharing only� This gives rise to the following question� how can we extend ���
calculus� with its lack of horizontal sharing� to include this feature that is indispensable for
e�cient graph rewriting� while retaining con�uence and still properly extending well�known
term rewriting techniques� This leads to modular lambda graph rewriting� which is introduced
after having proved the soundness of �!�

�� Soundness of �!

In order to de�ne the tree unwinding of a recursion system we �rst introduce the notion of
expansion of a term� Let M��������

GK�as�

�nN denote n�steps of the Gross�Knuth strategy applied
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to the acyclic substitution redexes occurring in the �rst equation of M �i�e�� all acyclic
substitution redexes in the �rst equation of M are performed�� If the �rst equation of M
does not contain any acyclic substitution redexes we still write M��������

GK�as�

�N � For example�

� � F

� 
 � G
 ��������
GK�as�


�� � � F�GG
��GG
�� 
 � G
 �

De�nition ��� Let g be �� � M�� � � � � �m � Mm� and � � ��� g ��������GK�as�

�n � � M� g� Then�

the nth expansion of g� written as T n�g�� is the term M ��� �� &� � � � � �m �� &	�

Due to the monotonicity of expansion with respect to the 
�ordering �i�e�� the ordering
axiomatized by & 
 t� for any tree t�� we de�ne tree unwinding as follows�

De�nition ��� Given a recursion system g� The tree unwinding of g� written as T �g�� is
limn�� T n�g��

Using the in�nitary ��calculus we can now formulate a soundness criterion for transforma�
tions of �!�expressions� �Also the various transformations in Section � satisfy this criterion��

De�nition ��� Let g� g� be two recursion systems� We will say that a transformation g ��� g�

is sound �with respect to the in�nitary ��calculus� if T �g� ����
��

�� T �g��� �Here ����
��

�� denotes

possibly in�nitary reduction� that is a sequence of � or less �possibly 
� � or &�steps��

Theorem ��
 The �!
calculus is sound with respect to the in
nitary lambda calculus�

Proof� We will prove the result for a single step� the result for multiple steps follows from the
compression lemma of the in�nitary lambda calculus� If g ���c g�� g ���n g� or g ���s g��

then g and g� are bisimilar graphs and therefore T �g� � T �g�� �see �AK��	�� If g rewrites to
g� by reducing a ��redex� say �� then� since acyclic substitution commutes with � �Lemma
����� and the descendant of an as��redex �i�e�� an acyclic substitution redex occurring in the
�rst equation� is still an as��redex� the following holds�

g ���� g� �� �n� T n�g� ���� T
n�g�� �

where in the tree reduction all the descendants of � are reduced� Next� we will show that there
exists a t such that T �g� ����

��
�� t and t � T �g��� If T �g� does not contain any descendants

of � then we de�ne t � T �g�� this may happen if the ��redex is garbage collected during the
unwinding� If T �g� contains an in�nite number of descendants it means that the ��redex
in g lies on a cycle� That is� g contains an equation of the form � � C���x�P �Q	� where
either the context� P or Q contain a reference to �� and g contains equations of the form
� � C����	� � � � � �n � Cn��	� In the following� without loss of generality� we let � be �� Let
us assume that the context C��	 is empty and either P is � or P is x and Q is �� That is� g
contains an equation of one of the following two forms� � � ��x�x�� or � � ��x���Q� These
redexes lead to the following rewriting�

� � ��x�x�� ���� � � �
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and
� � ��x���Q ���� � � � �

In this case it is not true that T �g� ���
�
�� T �g��� In fact� T �g� rewrites to itself only� The

problem is that there always exists a redex at depth 
� However� the following holds�

T �g� � T �C���x�P �Q	� ���
�

T �C�&	� � T �C�P �x �� Q	� � T �g�� �

In the other cases� we can de�ne t by doing a complete development of all the descendants
of � that occur in T �g�� The next step is to prove that t � T �g��� We �rst show that
T n�g�� 
 t� Let T �g� rewrite to t� by doing all the ��redexes that are reduced in the reduction
T n�g� ���

�
T n�g��� then T n�g�� 
 t� and t� ���� t� Since all the descendants of � contained in

t� correspond to an & in T n�g�� we have T
n�g�� 
 t� t 
 T �g�� since each �nite approximation

of t can be obtained by reducing a �nite approximation of g�

�

�� Modular lambda graph rewriting

We now in a sequence of extensions develop a series of calculi� called ��� leading to a very
general and �exible calculus which incorporates the ��calculus� the ���calculus� ordinary
�rst�order term rewriting� vertical and horizontal sharing� The distinctive feature of this
family of calculi is the presence of nested recursion equations� For example� we will write�

h� j � � ��x�h	 j 	 � F���Sx�i�Sxi �

where� as in Section �� it is clear that the underlined x is free� To avoid free variable captures
we will still assume that both free and bound variables have to be distinct from each other�
So we will write the above term as

h� j � � ��y�h	 j 	 � F���Sy�i�Sxi �

Moreover� the root of a term is not restricted to be a variable� e�g��

hF� j � � G�i �

The general form of ���terms is
ht j Ei �

where t is a term and E is an unordered sequence of equations� � stands for the empty
sequence� We refer to ht j Ei as a box construct� We call t the external part of the box� and
E the internal part� We can see E as the environment associated to t� or as a set of delayed
substitutions� The ���calculi can be seen as an extension of the ���calculus and of the ���
calculi �ACCL��� Cur��� Les�
	 with horizontal sharing and vertical sharing� respectively�
The ���calculi treat the let�construct as a �rst class citizen� while the ���calculi support the
letrec� For example� in �� we can have

h� j � � �x�h	 j 	 � 
 � 
� 
 � � � xii �



��

which corresponds to the letrec expression�

letrec � � �x� letrec 	 � 
 � 
�

 � � � x

in 	
in � �

�The above term is displayed in Figure "�� We could also say that the ���calculi express
acyclic lambda graph rewriting� while the ���calculi deal with cyclic lambda graph rewriting�
Since cycles are ubiquitous in the implementation of programming languages� the ���calculi
follow the tradition of providing #enriched ��calculi� to capture more precisely the operational
semantics of functional languages �Ari��� PJ��	�

After having presented the graphical representation of �� terms� we discuss the basic
system ���� ��� is based on the con�uent notion of acyclic substitution �applied also to the
external part of a box�� it does not contain rules for the manipulation of boxes except the
empty ones� We show that ��� is con�uent and that the ��calculus can be de�ned in it� We
then present ���� which is obtained by extending ��� with some box distribution rules whose
job is to move a box construct as far as possible down a term until a variable is reached� We
show that the ���calculus is directly de�nable in ��� and how to encode the ���calculus in
���� We prove con�uence of ���� Finally� we extend ��� with rules to enlarge the scope of
a box and to merge boxes when possible� The calculus so obtained� called ���� is shown to
be con�uent� also in the presence of orthogonal term or term graph rewriting system� ���
contains Rose�s ���calculus �Ros��b	�

��� Graphical representation of modular �
graphs

α
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α βGF
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Figure ��� Graphs associated to ���terms�

We graphically represent an expression ht j Ei by a box divided in two parts� the upper part
corresponding to the external part t and the lower part containing the internal part E� A
box can be thought of as a re�ned version of a node� We present a series of examples�

Example 
�� �i� The following terms

�a� h� j � � F���� � � G���i
�b� hH��� �� j � � F���� � � G���i
�c� hH�H��� ��� 
�� j � � H��� ��i
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are displayed in Figure ��� Note that the free variables are drawn outside the box� as in
Figure ���c��

�ii� The terms

�a� hH�h� j � � F���i� �� j � � F�h
 j 
 � F�	�� 	 � G�
�i�
�b� hH���� �� j �� � h� j � � F���i� � � F�
��� 
� � h
 j 
 � F�	�� 	 � G�
�ii

are shown in Figure ��� Note the #external names� ��� 
� of the boxes in Figure ���b��
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Figure ��� Graphs associated to ���terms�

�iii� Boxes can also refer to each other� The term

h�� j �� � h� j � � F����� �� � h� j � � G����ii

is shown in Figure ��� Note that multiple references to a box are aiming straight at its
leading node�

β GF
α
α' β'

Figure ��� Mutually dependent cyclic boxes�

��� Basic System

We start with the basic system ���� In order to simplify the reading of the reduction rules we
will denote by tE the term ht j Ei� As in the previous section� �F orthogonal to a sequence
of equations E and to a term t� means that the recursion variables of F do not intersect with
the free variables of E and t� We denote this property by F � E� t� The recursion equation
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	 �	 	 in the Black hole rules stands for the sequence 	 � 	�� � � � � 	n � 	� As for �!� the
proviso � 
 	 of the Acyclic substitution and Black hole rule indicates that there is no cycle
between them in the term matching the left�hand side of the rule� For example� � is greater
than 	 in the following underlined term�

g � h
 j 
 � hF� j � � G	� 	 � G
ii �

even though g contains a cycle between � and 	� However� this cycle goes through 
� which
is de�ned outside the internal box �see Figure �
�� The ����calculus is given next�

α

F

G

Gδ

γ

Figure �
� Ordering among recursion variables�

De�nition 
�� The following clauses de�ne the syntax and basic reduction axioms of the
����calculus�
Syntax�

t ��� � j Fn�t�� � � � � tn� j ���t j t�t� j ht� j �� � t�� � � � � �n � tni
C��	 ��� � j C��	t j Fn�t�� � � � � C��	� � � � � tn� j tC��	 j ���C��	 j hC��	 j Ei j

ht j � � C��	� Ei

In a term ht� j �� � t�� � � � � �n � tni all the recursion variables �i� � 
 i 
 n� are distinct
from each other�
Reduction Axioms�
�
rule�
����t�s ���� ht j � � si

External substitution�
hC�		 j 	 � s�Ei ���es hC�s	 j 	 � s�Ei

Acyclic substitution�
ht j � � C�		� 	 � s�Ei ���as ht j � � C�s	� 	 � s�Ei if � 
 	

Black hole�
hC�		 j 	 �	 	� Ei ���� hC��	 j 	 �	 	� Ei

ht j � � C�		� 	 �	 	� Ei ���� ht j � � C��	� 	 �	 	� Ei if � 
 	

Garbage collection rules�
tE�F ���gc tE if F 
� � and F � E� t

ht j i ���gc t
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Note that we have dropped the distinction between lambda bound variables and recursion
variables� ��equivalent ���terms and terms that are obtained by a ��� renaming of recursion
variables are identi�ed� In the ��rule notice the role change of the bound variable� previously
bound by �� afterwards bound by the recursion construct h j i� The ��rule now becomes
strongly normalizing� For example� �������������� ���� h�� j � � �����i� which does

not contain any ��redex� In order to proceed with the computation external substitution has
to be applied� yielding� h�������� j � � �����i� External substitution allows us to #extract�
a tree�like pre�x without duplicating the environment E� An external substitution redex
corresponds to an as��redex� introduced in Section �� The cyclic binding 	 �	 	 in the Black
hole rule allows the reduction of h	 j 	 � 	�� 	� � 	i to �� This reduction would not have been
possible if instead of 	 �	 	 we simply had 	 � 	� In this case the only possible rewriting
would have been the following�

h	 j 	 � 	�� 	� � 	i ���es h	� j 	 � 	�� 	� � 	i ���es h	 j 	 � 	�� 	� � 	i ���es � � �

No reduction can occur inside the environment since 	 and 	� lie on the same cycle� Moreover�
we have included the proviso � 
 	 in the Black hole rule to guarantee its con�uence� Without
it� we would have the following scenario�

h	 j 	 � 	�� 	� � 	i
�
� h	 j 	 � �� 	� � 	i

h	 j 	 � 	�� 	� � �i
�
�

as
� h	 j 	 � �� 	� � �i

�
as

The proviso �F 
� �� of the �rst Garbage collection rule guarantees its strong normalization�
Without that proviso we would have tE ���gc t

E �

Theorem 
�� ��� is con�uent�

Proof� Call the external and acyclic substitution rules s�reductions� and the remaining rules
o�reductions� o�reductions are con�uent� as they do not cause any duplication and they
commute� By Lemma ��"� s�reductions are con�uent� Next� one s�step commutes with a
sequence of o�steps �Notation� ��� ��� stands for a reduction of 
 or � steps���

o
��

�
s

o
��

���

�
s

Then we have that s�reductions commute with o�reductions� The result thus follows from
Hindley�Rosen�s Lemma� �

Lemma 
�
 The �
calculus is directly de
nable in ����



��

Proof� We have�

����t�s ���� ht j � � si ���es ht�� �� s	 j � � si ���gc t�� �� s	 �

The last step is justi�ed by the fact that � cannot occur free in s� �

Theorem 
�� Let R be an orthogonal term rewriting system� Then ��� �R is con�uent�

Proof� Since R�rewriting commutes with ���� �

Rewriting with ��� � R is already quite interesting from the point of view of term graph
rewriting� as it can handle horizontal �as shown in the following example� and vertical sharing�
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Figure �"� Reduction in ��� �R�

Example 
�� Let CL be �Combinatory Logic�� with the rules�

SZ�Z�Z� ��� Z�Z��Z�Z��

KZ�Z� ��� Z�

IZ ��� Z

Then we have the following reduction in ����R �see also Figure �"� where the lines dividing
the graphs correspond to the division in external and internal part� Only the nodes reachable
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from the root � are displayed��

h� j � � ��� � � S

� 
 � Ii ���es

h�� j � � ��� � � S

� 
 � Ii ���es

hS

� j � � ��� � � S

� 
 � Ii ���CL

h
��
�� j � � ��� � � S

� 
 � Ii ���es

hI��I�� j � � ��� � � S

� 
 � Ii ���CL

h�� j � � ��� � � S

� 
 � Ii

Remark 
�	 As pointed out in Section �� non�con�uence is caused by a notion of cyclic
substitution� This cyclic substitution is now absent in ���� Thus� all counterexamples to
con�uence disappear in ��� and in our subsequent extensions� This restriction does not limit
the expressive power of our calculi with respect to execution� That is� they are powerful
enough to simulate �nite ��reductions in the in�nitary calculus�

�i� Consider the system
g � h� j � � �x�
�Sx�� 
 � �y���Sy�i �

which caused the �rst counterexample to con�uence �see Section 
�� In ��� there is no
way of making the implicit ��redexes ��Sy� and 
�Sx� explicit by applying substitution
inside the environment� Thus� in ��� g does not rewrite to h� j � � �x���S�x�i� In ���
we have the following reductions �����esgc stands for ���� ���es ���gc ��

h� j � � �x�
�Sx�� 
 � �y���Sy�i ���es

h�x�
�Sx� j � � �x�
�Sx�� 
 � �y���Sy�i ���es

h�x���y���Sy���Sx� j � � �x�
�Sx�� 
 � �y���Sy�i ����esgc
h�x���S�x� j � � �x�
�Sx�� 
 � �y���Sy�i ���es

h�x���x�
�Sx���S�x� j � � �x�
�Sx�� 
 � �y���Sy�i ����esgc
h�x�
�S�x� j � � �x�
�Sx�� 
 � �y���Sy�i ���

� � �

Note that independently of how many rewriting steps are performed� the information
contained in g is �x�&� which is the in�nite normal form of T �g��

�ii� Consider the second counterexample �see Section ���

g � h� j � � �x�F�
�Sx��Sx�� 
 � �y�G���Sy��Sy�i ���es

h�x�F�
�Sx��Sx� j � � �x�F�
�Sx��Sx�� 
 � �y�G���Sy��Sy�i ���es

h�x�F���y�G���Sy��Sy���Sx��Sx� j � � �x�F�
�Sx��Sx�� 
 � �y�G���Sy��Sy�i ����esgc
h�x�F�G���S�x��S�x��Sx� j � � �x�F�
�Sx��Sx�� 
 � �y�G���Sy��Sy�i ���

h�x�F�G�F�
�S�x��S�x��S�x��Sx� j � � �x�F�
�Sx��Sx�� 
 � �y�G���Sy��Sy�i ���

� � �

Note that even though g cannot rewrite to a g� such that T �g�� is the tree on the right�
hand side of Figure �
� reductions in ��� produce all �nite approximations of that tree�
E�g�� the above reduction leads to the approximation �x�F�G�F�&�S�x��S�x��S�x��Sx��



��

����t�E ���d� ���tE

Fn�t�� � � � � tn�
E ���dF Fn�tE� � � � � � t

E
n � if n 	 �

�ts�E ���d� tEsE

h� j F iE ���d� h� j FEi if � is bound by F

Table �� Distribution rules�

��� �� with horizontal sharing and �� with vertical sharing

We translate the ���terms into ��� as follows�

� ���		 � �
� ��F�t�� � � � � tn�		 � F�� ��t�		 � � � � � � ��tn		�
� ��t�t�		 � � ��t�		� ��t�		
� �����t		 � ���� ��t		
� �����t		 � h� j � � � ��t		i �

However� the ���calculus is not directly de�nable in ���� E�g�� �

t � ���F��� ���G��� ��� ���
 ���F���G��� ���G��� ���� � s �

but

� ��t		 � h� j � � F��� h� j � � G��� ��i�i 
����
� h� j � � F���G��� h� j � � G��� ��i��i � � ��s		 �

To that end� we extend ��� with the distribution rules of Table �� whose job is to move a
box construct as far as possible down a term until a variable is reached� We call the result
���� Notation� FE means� if F is �� � t�� � � � � �n � tn then FE is �� � tE� � � � � � �n � tEn � �
bound by F means that F contains an equation of the form � � t�

Example 
�� The following reduction

���F��� ���G��� ��� ���
 ���F���G��� ���G��� ����

is de�ned in ��� as follows�

h� j � � F��� h� j � � G��� ��i�i ���es

h� j � � F��� hG��� �� j � � G��� ��i�i ���dF

h� j � � F���G�h� j � � G��� ��i� h� j � � G��� ��i��i ���gc

h� j � � F���G��� h� j � � G��� ��i��i �

�See Figure ����

In order to prove that �� is de�nable in ��� we need some properties of the distribution and
garbage collection rules� i�e�� strong normalization and con�uence� Using these properties we
then show that the distribution and garbage collection rules unfold the system by pushing
the box constructs next to the variables� Notation� ���dgc is the reduction relation induced

by the distribution and garbage collection rules�
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Figure ��� Analysis of ��step�

Lemma 
�
 ���dgc is strongly normalizing�

Proof� We associate to each box construct ht j Ei a positive number n� called the index of
ht j Ei� This index� written as d�t�� indicates the depth of the external part t of a box� that
is� how much a box has to travel until it reaches a variable�

d��� � 

d�constant� � 

d�st� � � �maxfd�s�� d�t�g
d�Fn�t�� � � � � tn�� � � �maxfd�t��� � � � � d�tn�g� n 	 �
d����t� � � � d�t�
d�ht j �� � t�� � � � � �n � tni� � � � d�t� �maxfd�t��� � � � � d�tn�g �

�We assume max fg to be 
�� The index of each box appears as a superscript in the system
below�

g � hh����� j � � hF	 j 	 � G�i�i� j � � hG� j � � 
i�i� �

The weight associated with a system of recursion equations g� written as jg j� is then the
multiset of sequences of indexes associated with all possible nesting of boxes� For example�

jg j� ff� � �� � �gg �

The multiset ordering is then induced by the lexicographic order on sequences� If a system
of recursion equations g does not contain any box construct we let jg j be ff
gg� The multiset
ordering takes care of the duplication of boxes� e�g�� �

�i� If

g � hH��� �� j � � hFF� j � � �i�i� ���dF

H�h� j � � hFF� j � � �i�i�� h� j � � hFF� j � � �i�i�� � g� �

then
jg j� ff� �gg 
 ff
 �� 
 �gg �jg� j �

�ii� If

g � hh� j � � H�F��F	�� � � H�F��F	�i� j 	 � hF� j � � �i�i� ���d�

h� j � � hH�F��F	� j 	 � hF� j � � �i�i�� � � hH�F��F	� j 	 � hF� j � � �i�i�i� � g� �



��

then
jg j� ff� �� � 
gg 
 ff
 � �� 
 � �gg �jg� j �

We �rst restrict our attention to the distribution rules only �written as ���d �� We show

the following fact�

Fact� C�R	 ���d C�R�	 �� d�C�R	� � d�C�R�	� �

By induction on the structure of C��	�

�C��	 � �� By cases on R� Notation� if E is the sequence of equations �� � t�� � � � � �n � tn
then d�E� stands for maxfd�t��� � � � � d�tn�g�

� d�����t�E� � � � d����t� � d�E�
� � � �� � d�t� � d�E��
� � � d�tE�
� d����tE� �

� d��st�E� � � � d�st� � d�E�
� � � � �maxfd�s�� d�t�g � d�E�
� � �maxf� � d�s�� � � d�t�g � d�E�
� � �maxf� � d�s� � d�E�� � � d�t� � d�E�g
� � �maxfd�sE�� d�tE�g � d�sEtE� �

� d�Fn�t�� � � � � tn�
E� � � � d�Fn�t�� � � � � tn�� � d�E�

� � � � �maxfd�t��� � � � � d�tn�g� d�E�
since n 	 � � � �maxf� � d�E� � d�t��� � � � � � � d�E� � d�tn�g

� � �maxfd�tE� �� � � � � d�t
E
n �g

� d�Fn�tE� � � � � � t
E
n �� �

Note that it is important for n to be greater than zero� otherwise the depth would
decrease in the reduction h
 j i ���dF 
�

� d�hh� j �� � t�� � � � � �n � tni j Ei� � � � d�h� j �� � t�� � � � � �n � tni� � d�E�
� � � � �maxfd�t��� � � � � d�tn�g� d�E�

since n 	 � � � �maxf� � d�t�� � d�E�� � � � � � � d�tn� � d�E�g
� � �maxfd�tE� �� � � � � d�t

E
n �g

� d�h� j �� � tE� � � � � � �n � tEn i� �
The proviso of the ���d� �rule guarantees that n is greater than zero�

�Inductive case� If C��	 is C���	t then
d�C��R	t� � � �maxfd�C��R	�� d�t�g Induction hypothesis

� � �maxfd�C��R�	�� d�t�g
� d�C��R�	t� �

The same for the other forms of C��	�

We are now ready to show that

g � C�R	 ���d C�R�	 � g� ��jg j
jg� j �

The proof is by induction on C��	�
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�C��	 � �� By cases on the rule being applied�

�h���t j Ei ���d� ���ht j Ei� The index of the outside box is ��d�t� and it is replaced

by d�t�� Any other box contained in t and in E is left unchanged�

�hst j Ei ���d� hs j Eiht j Ei� The index of the outside box is ��maxfd�s�� d�t�g and

it is replaced by d�s� and d�t�� respectively� The index of any other box contained
in t� s and E is left unchanged�

�hF�t�� � � � � tn� j Ei ���dF F�ht� j Ei� � � � � htn j Ei�� Same as the case above�

�hh� j �� � t�� � � � � �n � tni j Ei ���d� h� j �� � ht� j Ei� � � � � �n � htn j Eii� The

index of the outside box is � �maxfd�t��� � � � � d�tn�g and it is replaced by 
�

� Inductive case� The only interesting case is when C��	 is hC���	 j Ei� then according to
the previous fact the index of the outside box does not increase� In other words� an
internal reduction does not increase the index of the outside box�

Since a system of recursion equations g contains a �nite number of equations and boxes� the
garbage collection rules can be easily shown to be strongly normalizing� Let us assume there
is an in�nite sequence over the union of the distribution and garbage collection rules� This
sequence can only have �nitely many distribution steps� If not� since the garbage collection
rules do not increase the weight of g� it means that the in�nite sequence corresponds to an
in�nite descending chain� This is not possible� Thus� it must be that we have an in�nite
number of consecutive garbage collection steps� which contradicts the strong normalization
of the garbage collection rules� �

Remark 
��� If we change the current distribution rule over a box construct to

ht j EiF ��� htF j EF i �

then the distribution rules will no longer be strongly normalizing� E�g�� �

hhF��� 	� j � � 
i j 	 � �i ���d hhF��� 	� j 	 � �i j � � h
 j 	 � �ii ���d

hhF��� 	� j � � h
 j 	 � �ii j 	 � h� j � � h
 j 	 � �iii ���d hhF��� 	� j � � 
i j 	 � �i � � � �

Lemma 
��� ���dgc is con�uent�

Proof� The distribution rules de�ne an orthogonal system� and thus are con�uent� The
garbage collection rules are themselves con�uent� Since distribution and garbage collection
rules commute� the result follows from Hindley�Rosen�s Lemma� �

Notation� t��� �� h�� j Ei� � � � � �n �� h�n j Ei	 denotes a simultaneous substitution� nfdgc�t�
is the normal form with respect to the distribution and garbage collection rules�

Lemma 
��� �Unfolding Lemma� Let t be a term and E be �� � s�� � � � � �n � sn� Then

ht j Ei ���dgc nfdgc�t���� �� h�� j Ei� � � � � �n �� h�n j Ei	 �



��

Proof� Trivial if E is empty� Otherwise� without loss of generality let us assume n � ��
Since ���dgc is strongly normalizing we can conduct the proof by noetherian induction�

�t is a normal form� By structural induction on t�

�t is a variable� For t equal to �� the result follows trivially� Otherwise� let t be 
�

h
 j �� � s�i ���gc h
 j i ���gc 
 � 
��� �� h�� j �� � s�i	 �

�t is t�t�� We have�

ht�t� j �� � s�i ���d�

ht� j �� � s�iht� j �� � s�i ���dgc Induction hypothesis

t���� �� h�� j �� � s�i	t���� �� h�� j �� � s�i	 �
�t�t����� �� h�� j �� � s�i	 �

�t is F�t�� � � � � tn�� Same as the case above�

�t is ���t�� We have�

h���t� j �� � s�i ���d�

���ht� j �� � s�i ���dgc Induction hypothesis

����t���� �� h�� j �� � s�i	� �
����t����� �� h�� j �� � s�i	 �

�t is h�� j �� � s�i� We have�

hh�� j �� � s�i j �� � s�i ���d�

h�� j �� � hs� j �� � s�ii ���dgc Induction hypothesis

h�� j �� � s���� �� h�� j �� � s�i	i �
h�� j �� � s�i��� �� h�� j �� � s�i	 �

�t is not a normal form� Then�
ht j Ei ���dgc ht

� j Ei �

By induction hypothesis�

ht� j Ei ���dgc nfdgc�t
����� �� h�� j Ei� � � � � �n �� h�n j Ei	 �

From con�uence of ���dgc follows that nfdgc�t
�� � nfdgc�t��

�

Theorem 
��� �� is directly de
nable in ����
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Proof� We show that
� �����t		 ����
� � ��t�� �� ���t			 �

� �����t		 � De�nition of �
h� j � � � ��t		i ���es

h� ��t		 j � � � ��t		i ���dgc By the Unfolding Lemma

nfdgc�� ��t		��� �� h� j � � � ��t		i	 � Since nfdgc�� ��t		� � � ��t		

� ��t		 �� �� h� j � � � ��t		i	 � Structural induction on t
� ��t�� �� ���t			 �

Same for the ��rule� �

Next we want to show con�uence of ���� To that respect� we �rst need two propositions�
Notation� �dgc denotes the convertibility relation induced by the distribution and garbage
collection rules�

Proposition 
��
 Let t be a term� and E�F sequences of equations� Then�

ht j EiF�dgcht
F j EF i �

Proof� By noetherian induction on t with respect to the ordering induced by ���dgc �

� t is a normal form� By structural induction on t�

� t is a variable ��
If � is bound in E�

hh� j Ei j F i ���d� h� j EF i �gc hh� j F i j EF i �

Otherwise�
hh� j Ei j F i ���gc

h� j F i �gc

hh� j F i j EF i �

� t is t�t��

hht�t� j Ei j F i ���d�

hht� j Ei j F ihht� j Ei j F i �dgc Induction hypothesis

hht� j F i j E
F ihht� j F i j E

F i �d�
hht�t� j F i j E

F i �

� t is Fn�t�� � � � � tn�� Same as the case above�

� t is h� j Ei� Without loss of generality� let us assume E to be � � s�

hhh� j � � si j Ei j F i ���d�

h� j � � hhs j Ei j F ii �dgc Induction hypothesis

h� j � � hhs j F i j EF i �d�
hhh� j � � si j F i j EF i �



��

� t is not a normal form� Follows immediately from the induction hypothesis�

�

Proposition 
��� Let s be a term and E a sequence of equations� Then�

hC�s	 j Ei �dgc hC�sE 	 j Ei �

Proof� By structural induction on C��	 and Proposition ���
� �

Intermezzo 
��� In the proof of con�uence of ��� we will use the decreasing diagram
method proposed by van Oostrom �vO�
	� The method consists of associating a label to
each reduction step and giving a well�founded order on these labels� If all weakly con�uent
diagrams turn out to be of a speci�c kind� namely decreasing� then con�uence is guaranteed�

De�nition 
��	 Let j�j be a measure from strings of labels to multisets of labels� If a�� � � � � an
are labels�

ja� � � � anj � ffaij there is no j � i with aj 
 aigg �

Then� the diagram

b
�

�

�

�

�a�

�

a

b�

�
� � �

bm

�
�
an

is decreasing if ffa� bgg 	 jab� � � � bmj and ffa� bgg 	 jba� � � � anj�

Theorem 
��� If a labelled reduction system is weakly con�uent and all weakly con�uent

diagrams are decreasing with respect to a well founded order on labels then the system is

con�uent�

Proof� See �vO�
	� �

Theorem 
��
 ��� is con�uent�

Proof� We call the external and acyclic substitution reductions s�reductions� and the remain�
ing reductions� except ��reduction� o�reductions �written as ���o �� Since the black�hole rule

is strongly normalizing� and does not change the depth of a box� it follows that o�reductions
are strongly normalizing� Their weak con�uence thus implies con�uence�

Let us study the new system� called ����� which contains the following rewrite rules�



�� Modular lambda graph rewriting ��

t ���nfo
s� if s is the normal form of t with respect to the o�rules�

t ���ks s� if s is obtained from t by a complete development of a set� possibly empty� of

substitution redexes �this is possible since s�substitutions are con�uent by developments�
see Theorem ��"��

t ���k� s� if s is obtained from t by a complete development of a set� possibly empty� of

� redexes� Since ��reduction does not create new ��redexes� t ��� k� s if and only if

t ���� s�

Let us �rst show the weak con�uence diagrams�

���reduction and o�reductions� The goal is to show the following commuting diagram�

k�
�

nfo
�

k�

�
nfo

�
�
nfo ���
�

Let us �rst point out that the only obstacle to � commuting with o�reductions is caused
by the distribution of an environment over an application�

�����s�t�E ���d� ����s�EtE �

The right�hand side of the reduction is no longer a ��redex� We call this distribution�
step an interfering d���reduction� The distribution over lambda that restores the ��
redex is denoted by d���

�����s�t�E ���d�� ����s�EtE ���d�� ����sE�tE �

If there is no interference� then a single o�reduction step commutes with ��reductions�

k�
�

�
o

k�

�
�
o ���"�

�Note that ��reduction does not cause any duplication�� Otherwise� we show the fol�
lowing�

k�
�

�
d��

d��
�

k�

�
nfo

�
�
nfo �����



��

For a single ��step�

�����t�s�E
�

� ht j � � siE

�dgc

����t�EsE

d��

�

d��
� ����tE�sE

�

� htE j � � sEi

�����

�ht j � � siE�dgcht
E j � � sEi follows from Proposition ���
�� Since ��� dgc is

con�uent� ht j � � siE and htE j � � sEi have the same normal form� For the number
of ��steps greater than one we �rst re�order the ��reduction such that the interfering
step is the last step� We then have�

n��
�
��

�
�

���"� �����
�
d�

�

��

���"�

�

d��

�
d�

�

��
�
d��

�

�
nfo

�
�

nfo

We are now ready to prove our result �i�e�� diagram ���
��� Since o�reductions are
strongly normalizing� the proof is by noetherian induction� The result holds trivially
for a normal form� Otherwise� we have the following two cases�

k�
�

���"�
�
o

k�

�
�
o

I�H�
�
nfo

k�

�
nfo

�
�
nfo

k�
�

�����
�
d��

d��
�

k�

�
nfo

�
�
nfo

I�H� �
�
nfo

�
�
nfo

k�

�
nfo

�
�
nfo

�

� s�reductions and o�reductions� The goal is to show the following commuting diagram�

ks
�

nfo
�

ks
�

nfo

�
�
nfo �����

We remind the reader that the bottom ��� ks �reduction of the above diagram might

correspond to an empty reduction� E�g�� �

ht j � � C�		� 	 � 	�� 	� � 	i
as
� ht j � � C�	�	� 	 � 	�� 	� � 	i

ht j � � C��	� 	 � 	�� 	� � 	i
�
�

� ht j � � C��	� 	 � 	�� 	� � 	i �
�
�
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The bottom ��� nfo
�step of diagram ��� is due to the interference between external

substitution and the distribution of an environment over a box construct�

hh� j � � si j F i
es
� hhs j � � si j F i

�dgc

h� j � � hs j F ii

d�
�

es
� hhs j F i j � � hs j F ii �

The right�hand side of the top es�reduction is no longer a d��redex� We call this external
substitution an interfering es��reduction� Analogously� we call this distribution over the
box construct a d���reduction� A similar situation is caused by acyclic substitution�

hh� j � � C�		� 	 � si j F i
as

� hh� j � � C�s	� 	 � si j F i

hh� j � � hC�s	 j F i� 	 � hs j F ii
�
d�

�dgc

h� j � � hC�		 j F i� 	 � hs j F ii
�

d�

as
� h� j � � hC�hs j F i	 j F i� 	 � hs j F ii �

Thus� the distribution of an environment E over a box construct of the form h� j F i is
interfering if h� j F i is either an es or an as�redex�

By associating to each variable � a weight� say n� as in the proof of strong normalization
of ���as� � and to a variable �n a depth of n instead of 
� we can show� following the

steps of the proof of Lemma ���� that s�reductions �i�e�� developments with respect to
the s�rules� combined with o�reductions are strongly normalizing� Then� by noetherian
induction follows that� in case of non�interference� ���s commutes with ���o �

s
��

��
o

s
��
��
o �����

If the o�reduction interferes with s�reductions� we show the following�

s
��

�
d��

s
��

nfo

�
�
nfo

where the s�reductions stand for complete developments� Let the d���redex be hh� j F i j
Ei� We �rst re�order the s�reduction� such that� the external and acyclic substitution
redexes that interfere with hh� j F i j Ei are pushed at the end of the reduction� We
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then perform the descendants of the d���redex with respect to the non�interfering part
of the s�reduction� We have�

s
��

s�
��

�����
�
d�

s
��

n
��
d��

Note that the n d���redexes are disjoint from each other� that is� the corresponding
boxes are not contained into each other� We show by induction on n that we can close
the above diagram�

� n � �� Without loss of generality� let F be �� � C����	� �� � C����	� �� � s� We
have�

h�� j �� � C����	�
�� � C����	�
�� � siE

s�
�� hC��C��s		 j �� � C��C��s		�

�� � C��s	�
�� � siE

�dgc

h�� j �� � C����	
E �

�� � C����	
E �

�� � sEi

d��
�

s
�� hC��C��s

E 	E 	E j �� � C��C��s
E	E 	E �

�� � C��s
E 	E�

�� � sEi �

hC��C��s		 j �� � C��C��s		�
�� � C��s	�
�� � siE

�dgc hC��C��s
E 	E 	E j �� � C��C��s

E	E 	E �
�� � C��s

E	E �
�� � sEi

follows from Proposition ���"�

� n 
 �� We re�order the s��reduction� such that� the interfering steps with the �rst
d���step are pushed at the end of the s��reduction� Note that this re�ordering
does not cause a duplication of the d���redex� We thus have�

s
��

s
��

s�
��

I�H�
�
d�

s
��
�
d��

s�
��

nfo

�
�
nfo

�

d�

s
��

n��
��
d�

By re�ordering again the dashed middle s�reduction�

s
��

s�
��

I�H�n��
��
d�

s
��

n��
��
d��

s�
��

nfo

�
�
nfo

Diagram ����� follows by noetherian induction with respect to s�o�reductions�
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Summarizing� we have shown the following commuting diagrams�

k�
�

nfo
�

k�

�
nfo

�
�
nfo

ks
�

nfo
�

ks
�

nfo

�
�
nfo

Moreover� we also know the following ones�

k�
�

�
ks

k�

�
�
ks

ks
�

�
ks

ks
�
�
ks

k�
�

�
k�

k�

�
�
k�

nfo
�

�nfo
�

�

According to the ordering k � 
 nfo � k s� the above diagrams are decreasing� and thus by
Theorem ���� ���� is con�uent� Con�uence of ��� then follows from the following two points�

��� Each rewrite rule of ��� is a derived rule in ����� That is�

t ����
� t� �� �s� t ����
�

�
s and t� ����
�

�
s �

��� Each reduction in ���� is contained in ����

t ����
�

�
t� �� t ����
� t� �

�

Intermezzo 
��� ��� extends the ���calculus with names of Abadi et al� �ACCL��	 with
vertical sharing� We translate �� into ��� as follows�

T ��x		 � x
T ��ab		 � T ��a		 T ��b		
T ���x�a		 � �x�T ��a		
T ��a�s			 � hhT ��a		 j Sinfg�s
i j Soutfg�s
i

Sinvar ��id		 � �

Sinvar ���a�x��s		 �

�
Sinvar�s� x � var
x � x��Sinvar
fxg�s� x 
� var

Soutvar ��id		 � �

Soutvar ���a�x��s		 �

�
Soutvar�s� x � var
x� � T ��a		 �Soutvar
fxg�s� x 
� var �

The above translation indicates how to map a let construct into a letrec� Namely� in order to
avoid variable capture� each binding has to be split in two� For example� the term

let x � cons � x in x



��

is translated as
letrec x� � cons � x in letrec x � x� in x �

The binding x � x� is generated by Sinvar and the binding x� � cons � x is generated by
Soutvar�

The substitution rules and garbage collection rules of ��� simulate the lookup of a variable
in a substitution� which is expressed in �� by the following rules�

Var��
x��a�x��s	 � a

Var��
x��a�y��s	 � x�s	 if x 
� y

Var��
x�id	 � x �

Var� entails that the ���calculus does not deal with cyclic substitutions� The distribution
rules simulate the following rules�

Abs�
��x�a��s	 � �y�a��y�x��s	 if y occurs in neither a nor s

App�
�ab��s	 � �a�s	��b�s	� �

��� A calculus for modular lambda graph rewriting

Until now we have kept the internal structure of a term� For example� we distinguish between
the following two terms t� and t�� respectively�

h� j � � h	 � 	 j 	 � tii h� j � � 	 � 	� 	 � ti �

However� we would like to consider the underlined box in t� as syntactic noise� To that end�
we rewrite t� to t� by applying the following box elimination rule�

ht j � � sE� F i �����
ht j � � s�E� F i ����
�

The application of this rule becomes at times necessary in order to capture the amount
of sharing in lazy implementations of functional languages� as described by Ariola et al�
�AFM��"� AF	� Consider the following reduction�

h���� � ��
� j � � h�
�
 � 	 j 	 � � � �ii ��� h� � 	 j 	 � � � �i� h
 � 	 j 	 � � � �i �

An unnecessary copy of the redex ��� has been performed� the reduction of this redex can be
shared between the two di�erent applications of �� This sharing occurs if before substituting
for �� the box surrounding the lambda is eliminated� as described below�

h���� � ��
� j � � h�
�
 � 	 j 	 � � � �ii �����
h���� � ��
� j � � �
�
 � 	� 	 � � � �i

��� h�� � 	� � ��
� j � � �
�
 � 	� 	 � � � �i

��� h�� � 	� � ��
� j � � �
�
 � 	� 	 � �i �
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However� not all boxes can be eliminated� Consider the following example�

h
 j 
 � hF� j � � G	� 	 � G
ii
as
gc
�� h
 j 
 � hF� j � � GG
ii

es
gc
�� h
 j 
 � FGG
i

h
 j 
 � F�� � � G	� 	 � G
i
�

� �
�

We have removed the underlined box which� as depicted in Figure �
� is on a cycle� Once this
cyclic box is removed the substitutions for � and 	 will no longer be acyclic substitutions�
This means that we need to distinguish between two kind of boxes� acyclic and cyclic� The
boxes of Figure �� that are drawn with heavy lines are examples of cyclic boxes� The boxes
of Figure �� are acyclic� since we require the cyclic path to go through the internal part of
the box and be within the parent box� �A parent box of a box is the smallest box properly
containing it�� Only acyclic boxes can be removed safely� Note that boxes of the form ht ji
can always be safely removed� Also� the underlined box in the following term�

h� j � � �
�h	 � 	 j 	 � 
 � 
ii �

cannot be removed since 
 will get out of scope� We can see that internal box as a cyclic
box by representing each reference to a bound variable as a link back to the corresponding
��node� as in �AL�
	�

β G

α

G

F

Figure ��� Graph of h� j � � F��� hG��� h� j � � G��� ��i� ji�i�

Following the above discussion we add a proviso to rule ����
� obtaining�

ht j � � sE � F i �����
ht j � � s�E� F i if sE is acyclic �

We also merge external boxes with the rule�

�tE�F ����m tE�F

However� we still run into problems if in the following example sE is a cylic box�

ht j � � �sE�F i
�m
� ht j � � sE�F i

ht j � � sE � F i

�
��

� �
�

������
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Thus� in order for con�uence not to fail we need to be able to move the equations that are
not on a cycle out of a box� as shown in the rule�

ht j � � sE��E� F i �����
ht j � � sE� � E� F i if E 
� � and E�� � 
 E �

where � 
 E means that � and the recursion variables of E do not lie on the same cyclic
plane� E� 
 E means that the recursion variables of E� do not occur free in E� Equipped
with the new rule we can now close diagram �������

ht j � � �sE�F i
�m
� ht j � � sE�F i

ht j � � hsE ji� F i

�
��

gc
� ht j � � sE� F i �

�
��

We need to move equations out of a lambda to cope with the following diagram�

ht j � � ��
�sE�E�i
�m
� ht j � � �
�sE � E�i

ht j � � �
�sE�E�i

��

The full set of rules is displayed in Table �� The proviso E 
� � is to guarantee strong
normalization� Since box elimination causes more sharing� it means that if we want con�uence
to hold we need to introduce an operation that unshares the system� We thus admit the
operation of copying� E�g��

hh�� j �� � s�� �� � s�i j F i
d�
� h�� j �� � sF� � �� � sF� i

h�� j �� � s�� �� � s�� F i
�
�m

c
� h�� j �� � s�� �� � s��� F� F

�i

��

Where s�� and F � denote a renamed version of s� and F � respectively� The dashed vertical
reductions consist of a sequence of �� steps followed by empty box removals� The new system
is called ���� We give all the reduction rules of ��� in Table �� The horizontal line suggests
that the rules below the line can be considered as part of a canonicalization procedure� Since
��� is con�uent� we can do rewriting on terms that do not contain any syntactic noise� such
as the presence of garbage and acyclic boxes�

Proposition 
��� Box elimination rules� garbage collection and black hole rules are strongly

normalizing�

Proof� To each term t we associate a measure� written as w�t�� that consists of a multiset
counting for every box and every equation the distance to the root� w�t� is de�ned as follows�

w����t� � inc�w�t��
w�Fn�t�� � � � � tn�� � inc�w�t�� � � � � �w�tn��
w�st� � inc�w�s� � w�t��
w��� � ff gg
w�ht j �� � t�� � � � � �n � tni� � w�t� � ff
� � � � � 
� �z �

n��

gg � inc�w�t�� � � � � � w�tn�� �
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���tE��E ����� ����tE��E if E 
� � and E�� � 
 E

F�t�� � � � � t
E
i � � � � � tn� ���

�F F�t�� � � � � ti� � � � � tn�
E

tEs �����l
�ts�E

tsE �����r �ts�E

�tE�F ����m tE�F

ht j � � sE��E� F i �����
ht j � � sE� � E� F i if E 
� � and E�� � 
 E

Table �� Box elimination rules�

inc adds one to each element of the multiset� i�e�� inc�ffn�� � � � � nmgg� � ffn���� � � � � nm��gg�
For example� w�hh� j � � F�i j � � h	 j 	 � G	ii� � ff
� 
� 
� 
� �� �gg� It is then routine to
check that this measure decreases at each box elimination step� and does not increase with
garbage collection and black hole� It thus follows that their union is strongly normalizing� �

Proposition 
��� The box elimination rules with garbage collection and black hole are con


�uent�

Proof� Follows from the fact that all critical pairs converge and from strong normalization�
�

Theorem 
��� ��� is con�uent�

Proof� As in the proof of con�uence of ���� we �rst prove con�uence of a new system� called
����� which contains the following rewrite rules�

t ���nf�e
s� if s is the normal form of t with respect to the box elimination rules� black hole

and garbage collection rules�

t ���nfo
s� if s is the normal form of t with respect to the distribution rules� black hole and

garbage collection rules�

t ���cgc s� if s is obtained from t by performing a copy step followed by the reduction to

normal form with respect to garbage collection�

t ���ks s� if s is obtained from t by a complete development of a set� possibly empty� of

substitution redexes�

t ���k� s� if s is obtained from t by a complete development of a set� possibly empty� of �

redexes�

We show next the weak con�uence diagrams�
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�
rule�
����t�s ���� ht j � � si

External substitution�
hC�		 j 	 � s�Ei ���es hC�s	 j 	 � s�Ei

Acyclic substitution�
ht j � � C�		� 	 � s�Ei ���as ht j � � C�s	� 	 � s�Ei if � 
 	

Distribution rules�
����t�E ���d� ���tE

Fn�t�� � � � � tn�
E ���dF Fn�tE� � � � � � t

E
n � if n 	 �

�ts�E ���d� tEsE

h� j F iE ���d� h� j FEi if � occurs bound in F

Copying

t ���c s if � a variable mapping �� s� � t

Black hole�
hC�		 j 	 �	 	� Ei ���� hC��	 j 	 �	 	� Ei

ht j � � C�		� 	 �	 	� Ei ���� ht j � � C��	� 	 �	 	� Ei if � 
 	

Garbage collection rules�
tE�F ���gc tE if F 
� � and orthogonal to E and t

ht j i ���gc t

Box elimination rules�
���tE��E ����� ����tE��E if E 
� � and E�� � 
 E

F�t�� � � � � t
E
i � � � � � tn� ���

�F F�t�� � � � � ti� � � � � tn�
E

tEs �����l
�ts�E

tsE �����r �ts�E

�tE�F ����m tE�F

ht j � � sE��E� F i �����
ht j � � sE� � E� F i if E 
� � and E�� � 
 E

Table �� Reduction rules of ����
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���cgc and the other rules�

cgc
�

�
cgc

cgc
�
�
cgc

nf�e
�

�
cgc

�

cgc

nf�e

�
�
nf�e

nfo
�

�
cgc

nfo

�
�
cgc

k�
�

�
cgc

k�

�
�
cgc

ks
�

�
cgc

ks
�
�
cgc

The con�uence of copying is shown in �AK��	� Copy does not commute with ���nf�e
because a copy step can turn some cyclic boxes into acyclic boxes� as shown next�

t � h� j � � hF	 j 	 � G�ii ���c h� j � � hF	 j 	 � G��i
�
� �� � hF	 j 	 � G��i

�
i � s �

The underlined cyclic box in t has two descendants in s� of which the one subscripted
with one is acyclic�

���nf�e
and ���ks � The obstacle to���nf�e

commuting with���ks is due to the following

interference �s� indicates a renamed version of s��

hC�		 j 	 � sE�F i
es

� hC�sE�F 	 j 	 � sE�F i

�nf�e

hC�		 j 	 � sE� F i

��

�

es
� hC�sE 	 j 	 � sE� F i

c
� hC�s�E

�

	 j 	 � sE � F� F �i

The same happens in case of acyclic substitution� In other words� �����
interferes

with substitution if sE�F is involved in the substitution� Following a similar argument
as in the study of the interaction between ���d� and the substitution rules �see the

proof of Theorem ������ and from the interaction between cgc and nf�e we have the
following commuting diagram�

ks
�

nf�e
�

ks
�

cgc
�

nf�e

�
�
nf�e

���nf�e
and ���nfo

� Let us �rst analyze each distribution rule�

���d� �

����t�E
d�
� ���tE

�

����t�E �
gc

����t��E
�
��
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���d� �

�ts�E
d�
� tEsE

�t�sE�E
�

�
��

l

��t�s�E�E
�

�
��r

�t�s�E�E
�

�

c

� �t�s�E�E
�

�
�m

���dF � Same as the case above�

���d� � Let F contain n�equations� Then�

hh� j Ei j F i
d�

� h� j EF i
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where ��� �e stands for the reduction relation induced by the box elimination

rules and garbage collection�

Summarizing� we have�
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From ������ and the fact that copying commutes with ����e �
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 cgc stands for the reduction relation induced by ���nf�e
and ���cgc �

���nf�e
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Following a similar argument as in the study of the interaction between ��� d� and

��reduction we then have the following commuting diagram�
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�
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Summarizing� we have the diagrams used in the proof of con�uence of ��� and the following
ones�
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nf�e 
 cgc
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�
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k�
�

�
nf�e

k�

�
nf�e

�
�
nf�e

According to the ordering nf�e � cgc � nfo � k � � k s� the above diagrams are decreasing�
and thus by Theorem ���� ���� is con�uent� As in the proof of con�uence of ���� con�uence
of ��� follows from the fact that a reduction of ��� is a derived reduction in ����� and each
reduction in ���� is contained in ���� �

Remark 
��
 Given a ��calculus term M � �x�C�N 	� N is said to be a free expression
of M if all free variables of N are free in M � N is said to be a maximal free expression
�mfe� of M if M does not contain any other free expression that properly contains N � If we
start from a ��calculus term such that each ��abstraction does not have trivial mfe�s �i�e��
di�erent from a variable� then the ����calculus is able to simulate Wadsworth�s interpreter�
The trick is played by the ��rule and the box elimination rules� a redex ����M�A will be
reduced to hM j � � Ai� that is� A is put in the environment� as in �HM��	 or� following the
terminology of �AKP�
	� A is ��agged� so that it will not be copied in case the redex is shared�
This suggests that in order to avoid the extra complication of detecting mfe�s at run time�
as in �Wad��	� a term can be �rst pre�processed by well�known techniques �Hug��� Joh�"	�
Then doing sharing of arguments is enough to capture the amount of sharing o�ered by
Wadsworth�s interpreter�

We can now extend ��� with term rewriting rules�

Theorem 
��� Let R be an orthogonal term rewriting system� Then� ��� �R is con�uent�
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Proof� Following the proof of con�uence of ��� we can show the following commuting
diagrams�

kR
�

nfo
�

kR

�
nfo

�
�
nfo

kR
�

nf�e
�

kR

�
cgc
�

nf�e

�
�
nf�e

Where ���kR stands for a complete development of a set of R�redexes� �

We can also extend ��� with orthogonal term graph rewriting rules� With respect to the
term rewriting rules below�

F��� ��� G��� ��

H��� ��� �

instead of reducing the term F�H���� as�

F�H���� ��� G�H����H����

thus duplicating the redex H���� we would like to keep the substitution in the environment�
as in the following reduction�

F�H���� ��� hG��� �� j � � H���i �

One possibility is to introduce a new notion of reduction� If l ��� r is a �rst�order term

rewriting rule� and l� a redex� then we can say�

l� ��� hr j x� � t�� � � � � xn � tni �

where � is the mapping x� �� t�� � � � � xn �� tn� The alternative we pursue instead is to require
the right�hand side of a �rst�order term rewriting rule to be a ���term� which is linear in its
free variables� For example� we express the rule F��� ��� G��� �� as

F��� ��� hG�	� 	� j 	 � �i �

Now rewriting can proceed as in �rst�order term rewriting�

Theorem 
��� Let R be an orthogonal term graph rewriting system� Then� ��� � R is

con�uent�

Proof� Since term graph rewriting does not cause a duplication we now have the following
commuting diagrams�
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�
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�
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�
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�
�
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�

nf�e
�

kR

�
nf�e

�
�
nf�e

�
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� Previous Work

This work follows the tradition of providing calculi that model more closely important prac�
tical concerns in language implementation� In particular� our work has focused on developing
a theory able to capture horizontal and vertical sharing in the context of lambda�calculus
and �rst�order rewriting� Most of the previous work is concerned with �rst�order theories
�SPvE��	� The operational approach of Barendregt et al� �BvEG���	� Smetsers �Sme��	�
Kennaway et al� �KKSdV�
	 and Farmer et al� �FW��� Far�
	 is based on pointers� redi�
rections and indirections� The category�oriented approach of L$owe �L$ow��	� Raoult �Rao�
	�
Kennaway �Ken��� Ken�
	 describes graph rewriting in terms of a single or double push�
out� The set�theoretic approach of Ariola et al� �Ari��� Ari��� AA��� AA�"� AK��	 and
Raoult et al� �RV��	 is the approach described in this paper� Typical results are con�uence
and correctness with respect to either in�nitary term rewriting �KKSdV�
� Far�
	 or �nite
approximations �Ari��	�

The issue of lambda�calculus and sharing has been addressed by Launchbury �Lau��	 and
Purushothaman et al� �PS��	 in an attempt of specifying the operational semantics of lazy
functional languages such as Haskell �HPJW���	� Purushothaman et al� deal with vertical
sharing only� Launchbury�s evaluator deals with both kinds of sharing� However� Launch�
bury does not provide an equational theory� for example� his work does not allow reasoning
about open terms� as such his work is not useful for expressing and reasoning about compiler
transformations� Sharing has been studied in the framework of the calculus of explicit substi�
tution by Field �Fie�
	 and Rose �Ros��b	� Usually� this approach to sharing is referred to as
the environment model� where an environment is a collection of mappings between variable
names and terms� Rose�s system allows cyclic structures and will be discussed below�

The issue of sharing has also been studied in the context of optimal implementations of
��calculus� For example by Mackie �Mac�
	 using interaction nets �Laf�
	 and by Asperti and
Laneve �AL�
	 using interaction systems �which generalize interaction nets by dropping the
linearity constraint�� In this approach sharing is made explicit by the use of fan�in nodes�
Both kind of sharing are covered and surprisingly the proposed calculi still enjoy con�uence�
The explanation for this fact is that the mechanism of copying in those calculi is more re�ned
than ours� namely node�by�node� We will discuss the relation with this work in more depth
in Section �
���

���� Rose�s system

We present the system introduced by Rose �Ros��b	 in our framework� Rose calls his system
��� not to be confused with the system of Section ���� The set of ���terms is de�ned as
follows�

S ��� M


M ��� � j ����S� j �ST �
� ��� �� � S�� � � � � �k � Sk �

S stands for a ���term� M�P stand for the ��component stripped of the substitution� �� �� 

and � range over a sequence of equations� The reduction rules are given in Table 
� ��� ���
�� and �� can be simulated in ��� as follows�
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�
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�m
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Thus� the main di�erence between ��� and Rose�s calculus concerns ��� which is absent in
���� Since in a box construct h�i j �� � t�� � � � � �n � tni the order of the equations is
irrelevant there is no need of copying equations in order to bring the equation �i � ti in �rst
position� The reason that prevents �� to be simulated in ��� is that �� introduces new cyclic
boxes� For example� �� allows the following reduction�

h	� j 	 � ���	��S��� 	� � �
�	�S
�i ���
� h	� j 	� � h�
�	�S
� j 	 � ���	��S��ii �

The internal box of the right�hand side term is on a cycle and thus cannot be removed�

���� Interaction nets

Di�erently from the ��graphs drawn in this paper� a net is an undirected graph� in which
the sharing is not represented by multiple pointers to the same node� but by a speci�c node�
called fan�in following Lamping �Lam�
	� The fan�in node is drawn as in Figure ���a�� We
will come back later to the explanation of the � and � symbols� In the fan�in node the two
nets connected to the higher links share the net connected to the lower link� When the lower
link is connected to a lambda�node� the fan�in node is in charge of duplication or copying� A
fan�in drawn upside�down is called fan�out� see Figure ���b�� Whilst the fan�in is responsible
of sharing� the fan�out is responsible of unsharing� More precisely� the fan�out node allows
partial sharing� the net connected to the higher link is shared and is connected to di�erent nets
depending on which side �� or �� we exit the fan�out node� This partial sharing constitutes
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�� �
�����M
��S�	 ��� hM j �� �� � � S� 
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�� �

h� j �� � M
�
� � � � � � �k � M
k

k i ��� h� j �� � M

�����M

��
�

� � � � � � �k � M

k����M

��
�

k i

if � 
� �� and k 	 �
�� �
h�� j �� � M
�

� � � � � � �k � M
k
k i ��� hM� j ��� �� � M
�

� � � � � � �k � M
k
k i

with the recursion variables de�ned in �� not
occurring free in M
i

i � i 	 ��
�� �
����M
�� ��� h���M
�� j i

if � is non�empty
�� �
�M
P ��� ��� hM
��P ��� j i

if � is non�empty

Table 
� Rose�s ���calculus�

the essential ingredient to solve our counterexamples to con�uence� Lastly� following an idea
used by Bourbaki in El�ements de Th�eorie des Ensembles to deal with quanti�ers� a variable
is represented by a link to the corresponding binding node�

Summarizing� a net for ��calculus contains the kind of nodes drawn in Figure ��� Each

O *
O *

(a) (b)

Figure ��� Fan�in and Fan�out nodes�

O *
O *

λ @

Figure ��� Nodes of an interaction net for ��calculus�

node has a �xed number of ports� For example� the lambda�node has three ports� connecting
the lambda�node to the context� to the bound occurrences and to the function body� One
particular port is called the principal port �indicated with an heavy line�� The principal port
allows an interaction between the nodes to occur� The last node is the erasure node �see
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�Mac�
	� that is used to represents terms of the form �x�M � where the bound variable x does
not occur free in M � The terms �x�x� �x�xx and �x�y are represented by the nets of Figure
�
� In the following� in drawing nets we may take the liberty of using variables names� Thus

λ λ

@

λ

y

Figure �
� Interaction nets for �x�x� �x�xx and �x�y�
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@

S
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F
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S
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@ S

S

(a) (b)

G

Figure ��� Cyclic interaction nets�

we represent the system�

h� j � � �x�	�Sx�� 	 � �y���Sy�i �

as in Figure ���a�� Note that we have included a fan�in node between the application and
the �y�node even though the �y�node is not shared� This is to capture the fact that 	�Sx� is
an implicit ��redex� We do the same in the representation of the system

h� j � � �x�F�
�Sx��Sx�� 
 � �y�G���Sy��Sy�i �

which is drawn in Figure ���b��
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As was said earlier� these nodes �also called agents by Lafont �Laf�
	� interact in a very
controlled way� namely through the principal port� It is possible to specify an action when
an interaction occurs by using rewrite rules� which are restricted to binary interactions� For

Figure ��� Interaction net with two interactions�

example� the net of Figure �� cannot be the left�hand�side of a rule� since it speci�es two
interactions� Moreover� for each interaction we can specify at most one rewrite rule� These
conditions guarantee that interaction nets satisfy the diamond property� as stated in �Laf�
	�

We can now specify the reduction rules for ��calculus� First� the ��rule expresses an
interaction between the � and the application node� and is drawn as in Figure ��� The

x

γ

δ

α

λ

@

x

γ

δ

α

Figure ��� ��rule�

connection of link � to link 	 expresses the fact that the root of the redex is over�written
by the body of the function� The connection of link x to link 
 expresses the fact that the
bound variables are replaced by a reference to the argument� For example� the reduction of
��x�xx���x�xx� is given in Figure �
� We can formulate this rule in our equational framework

@

λx λx

x

@

x

@

@

x

@

λx

Figure �
� ��reduction of ��x�xx���x�xx��

by relaxing our scope rules� Namely� by allowing the body of a lambda�abstraction to be
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spread out through the set of equations� The ��rule then becomes�

� � ��x�	�
 ��� � � 	� x � 
 �

where 	 and 
 are recursion variables� We can then mimick the reduction of Figure �
 in our
modi�ed equational framework with the following reduction�

� � ��x�	�
�
	 � xx�

 � �x��	��
	� � x�x�

��� � � 	�
	 � xx�
x � 
�

 � �x��	��
	� � x�x� �

Let us now assume there exists an obstacle to the ��� interaction� namely� there is a fan�in
node between the application and the lambda�node� This corresponds to the situation in our
equational framework of having a name associated to the ��node� Consider the system

h� j � � �x�	� 	 � �
� 
 � xi �

in which we assume the variable x is bound by the lambda�node� To make �
 into an explicit
��redex we need to apply the substitution operation� Thus�

h� j � � �x�	� 	 � �
� 
 � xi ���s h� j � � �x�	� 	 � ��x�	�
� 
 � xi �

Note that only the lambda�node has been duplicated� However� we now have that variable x
is in the scope of two lambda�s� This requires the introduction of a mechanism for unsharing
x� This is indeed the job of the fan�out node� The right way of performing the above
substitution should be�

h� j � � �x�	� 	 � �
� 
 � xi ���s h� j � � �x�	� 	 � ��x��	�
� 
 � Fan�out�x� x��i � ��
����

The substitution operation is captured in interaction nets by the rules expressing the
interaction between a fan�in and a � �see Figure �"�� By crossing the lambda�node the fan�in

c

O *

d

O *

ba

λ λ

a

O *

b

c d

λ

Figure �"� Fan�in and � interaction�

node is duplicated� One copy is in charge of duplicating the lambda�body and the other one
is responsible of creating two copies of the bound variable� The substitution given in �
���
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Figure ��� Fan�in and � reduction�

is displayed in Figure ��� This rule outlines a very important di�erence between interaction
nets and our equational framework� The copying necessary to implement the ��rule is done
lazily in the interaction nets approach� namely� it is done node�by�node� Instead� in our
framework it is done at once� In fact� corresponding to the reduction in question we would
have�

h� j � � �x��xi ���s h� j � � �x���x��x�xi ���� h� j � � �x��xi ���s � � � �

c d

O *

O *

a b

c d

a b

a b

c d

O *

O *

a b

O * O *

O * O *

c d

Figure ��� Fan�in and fan�out rules�

We �nally have the rules that deal with fan�in and fan�out nodes� If the fan�in and fan�out
nodes match� that is the fan�out node is the one introduced by the corresponding fan�in node�
then they cancel each other out �see the rule on the left of Figure ���� Otherwise� both fan�in
and fan�out nodes are duplicated �see the rule on the right of Figure ���� In order to keep
track of the matching between fan�in and fan�out nodes other rules are necessary� We do not
present them here but refer to �Mac�
	�

In �Mac�
	 it is mentioned that our counterexamples disappear in the framework of inter�
action nets� We are now ready to show in detail how this happens� In Figure �� we show the
reduction corresponding to the counterexample of Section 
� With the introduction of the
fan�out nodes we solve the out�of�synch phenomenon since we are no longer required to copy
an even number of S�s�

Let us now turn to the third counterexample described in Section �� which is given in Figure
��� The common net should thus correspond to an irregular tree� This translation also called
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Figure ��� First counterexample in interaction nets�
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read back semantics� is explained next� Let us call the top�most fan�in node the red fan�in�
and the lower one the blue fan�in� In the �gure we have indicated the corresponding fan�outs�
Note that at this point the symbols � and � are signi�cant� For simplicity we refer to � as
L �left� and to � as R �right�� In the read back procedure �called unwinding in this paper�
we make use of a stack to remember which port of the fan�in we enter from� We start by
generating a �x��node� When we enter the fan�in node we push on the red�stack the symbol
R� We connect the �x��node to the node labelled F� Since F has two arguments we duplicate
the red�stack� one used to generate the �rst argument and the other one used for generating
the second argument� Let us continue with the second argument� We generate an S and we
go through a fan�in node� but since there are no associated fan�out nodes we do not save
anything on the stack� We then reach the red�fan�out� from which we must exit from the
port the associated fan�in was entered from� This information is saved on the red�stack of
the second argument� Since on the top of the stack we read R we exit the fan�out from the
right port and we thus generate x� and pop R from the red�stack� This stack is now empty
indicating that we have �nished to generate the second argument of F� We now go back to
the generation of the �rst argument of F � We go through the blue�fan�in� We thus push
R on the blue�stack� We then connect the �rst argument to a G� As before since G has
two arguments we duplicate both the red and blue stacks� We note that both stacks now
contain R� We continue with the second argument of G� We generate an S� we then exit
the blue�fan�out with an S and the red fan�out with an x�� Since both stacks are empty we
have �nished with the second argument of G� With respect to the �rst argument we �rst
push L on the red�stack� We connect the G to an F and duplicate the stacks� On the second
argument of F we connect the F to an S and then exit the red�fan�out from the L port �and
pop the red�stack�� This means that we generate one S� We then exit the blue�fan�out from
the R port �the blue stack is now empty� � thus generating one more S� We �nally exit the
red�fan�out from the R port� This completes the generation of this argument� At this point
we have the tree drawn in Figure 

� The rest is generated in a similar way�

F

λx'

G

F

...

Sx'

SSx'

SSSx'

Figure 

� Partial tree�

In conclusion� our counterexamples to con�uence disappear in this framework� however�
at the expense of greater complexity� Moreover� the correctness of this approach has only
been shown with respect to ordinary ��calculus� thus it would be interesting to prove that
correctness also holds for cyclic graphs�
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Conclusions and future directions

We have de�ned a series of calculi as extensions of the ��calculus with the aim of providing
systems where it is possible to model sharing and cyclic structures� The motivation for this
work came from the desire to provide a unifying framework for reasoning about execution�
compilation� and optimization of programs� In these three areas sharing and cycles are
ubiquitous� they occur after parsing� in the intermediate program representation �language��
and during program execution�

The focus of this paper has been on developing calculi that enjoy the con�uence property�
As such� the resulting calculi fail to capture program transformations that deal with mutually
recursive functions� Our next step is to study calculi that have a more liberal view of rewriting�
i�e�� substitutions can occur on a cycle� This involves the introduction of a more abstract
notion of con�uence� Whilst con�uence guarantees unicity of normal forms� the new notion of
con�uence should guarantee unicity of in�nite normal forms� These calculi should correspond
to the intermediate languages used in the compilation of the functional core of both strict
and non�strict languages� We intend to make use of these calculi in studying the e�ects of
di�erent strategies on both the time and space behavior of programs and relating them to
current optimizations� including loop transformations�

Moreover� in order to formalize the compilation and optimization of a program as a rewrit�
ing process� we intend to enhance current rewriting technology to cover rules with conditions
and priorities� Priorities are associated with rules in order to impose a certain order� with
the intention that a rule which is higher in the order will be the preferred one to apply� We
will also consider rewriting of disconnected graphs� which� as shown by Pinter et al� �PP�
	�
is useful for detecting parallelizable program structures in sequential programs�
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