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MATHEMATICS 

Lambda calculus with namefree formulas involving symbols 
that represent reference transforming mappings 

Dedicated to A. Heyting at the occasion of his 80th birthday on May 9,1978 

Communicated at the meeting of March 18, 1978 

Department of Mathematics, Eindhoven University of Technology, The Netherlands 

1. INTRODUCTION ON NAME-CARRYING LAWBDA CALCULUS 

In ordinary lambda calculus we use names both for free and for bound 
variables. Let us present an example that explains what kind of expressions 
we are after: apart from names for variables we have names for constants. 
We may have introduced an expression in two variables x and y, and 
have abbreviated it to f(x, y) (now f is the "constant" we mentioned). 
Now 3LZf(x, y) is a lambda expression. Its interpretation is: the function 
that attaches to every x the value f(x, y). The letter y is a free variable 
and x a bound variable in the expression il,f(x, y). 

We can, of course, also write more complex lambda expressions like 

In  this example the free variables are y and s. 
Usual lambda calculus has a notation (in the form of concatenation) 

for "application" that intends to express "the value of the function y 
a t  the point x". We do not need a special notation for this, because we 
can devote a special constant A to this purpose, and write that value as 
A(y, x). Now so-called beta-reduction is a kind of elimination of such 
an A, like the passage from A(&(/ (x, y)), g(t)) to f(g(t), y). The latter two 
formulas are not considered to be equal (in spite of their common inter- 
pretation). On the other hand, the difference between W(x, y) and 
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L,f(u, y) is much less essential. The desire to identify them lies a t  the 
root of namefree lambda calculus. 

The kind of name-carrying lambda calculus described above is exactly 
the same as in [I]. We close this section with the tree interpretation of 
the expression (1.1) : 

2. INTRODUCTION ON NAlWEFREE LAMBDA CALCULUS 

In [I] we explained a notation for lambda expressions where all occur- 
rences of free and bound variables are replaced by positive integers that 
indicate their reference depth. The system is easily demonstrated at the 
example (1.1) in the tree form 

1 
1 

e with s, z, y, . . . as list 
of free variables. 

The dots below the tree are unessential, but suggestive to the term 
"reference depth", if they are interpreted as being tied to s, z, y, ... (the 
upper one refers to s, the middle one to 2, the lower one to y; the fact 
that z is never referred to in the formula does not bother us). 

The idea is that an integer k at  an end-point refers to the E-th lambda 
we meet when travelling from that end-point to the root of the tree; 
if there are only j lambdas on that path, with jtk, then the k a t  the 
endpoint refers to the (E-j)-th entry of the list of free variables. 



As a preparation to what follows, we express the above correspondence 
like this. We start at  an endpoint and want to know what variable the 
number refers to. Now we descend the tree, taking the number along, 
subtracting 1 each time we pass some A. If this subtraction leads to the 
value 0, we do not go any further; we have located the right lambda. 
Of course we act as if the free variables s, z,  y, are tied to underground 
lambdas. 

The tree at  the beginning of this section did not show any names 
attached to the lambdas. We can assign arbitrarily names (different from 
the constants and the free variables) for these bound variables. There 
is a safe, "conservative", system where it is required that all these names 
are different. The "liberal" system, on the other hand, only requires that 
lambdas get different names if they are hierarchically related: if one 
lambda lies on the path down from another lambda to the root, then the 
two have to get different names. 

3. TREES WITH SYMBOLS THaT REPRESENT &.TAPPINGS 

We shall now describe a new kind of namefree trees where a t  some 
places in the tree we have a symbol denoting some mapping of I2 into I2 
( X l =  (1, 2, 3, . . .)). We shall use these more complicated trees for the same 
purpose as the trees in section 1. What matters is, to describe to which 
lambda a natural number a t  an end-point refers. What we intend to do 
will be clear from an example. The letters co, 8, z, y denote mappings 
of 'JR into Ji2. 

If we want to know what an integer refers to we descend the tree; 
again we subtract 1 if we pass a 1, but if we pass one of the letters repre- 
senting a mapping we do something different: we apply that mapping 
to our number. So the 3 in the upper left corner refers to the left-hand 
A if w(3) = 1. If w(3) > 1 it refers to O(w(3) - 1)-th free variable. As an 
excercise the reader may verify that if 0.43) = 5, O(4) = 1, z(1) = 1, y(1) = 2, 
then this tree corresponds to the same references from end-points to 
lambdas or free variables as the following one: 



We shall say that (3.2) is the reduced form of (1). In  the notation of 
this paper (3.1) is represented by 

and (3.2) by 

The motivation for studying the tree coding of the type (3.3) is that 
operations like substitution are easier described in terms of these than in 
terms of the mapping free codes like (3.4). This may hold both for language 
theory and for automatic formula manipulation. Getting rid of the map- 
pings can be postponed until we need it;  it is relatively easy. 

4. METALINGUISTIC NOTATION 

In [l] our way to describe linguistic operations was based on the system 
used in BNF (Backus' normal form). In simple cases this is quite feasable, 
but in more complex situations it can no longer be maintained. In the 
present note we prefer the system used in the theory of context-free 
languages, where linguistic entities like words are treated as mathematical 
objects, referred to by names or more complicated expressions, and never 
appear themselves in the language that discusses them. 

We have a set A (the elements are interpreted as letters and signs like 
comma's, parentheses, etc.). S(A) is the set of all finite sequences of 
elements of A (these sequences are called words). Sl(A) is the subset 
consisting of all words of length 1. 

We use the following notation for the concatenation of words: if p 
and q denote words then [ p  I q ] denotes the word we get by putting the 
second word directly after the first one. Similarly for three or more words : 

[ ~ l a l r l -  
The letters elt directly after an opening bracklet or a vertical bar have 

the meaning illustrated by the example: 

where q E S(A), P C #(A), R C S(A). 



The following "comb" notation was introduced in [2]: 

1iFi-n instead of [ p  1 q 1 r ] ,  

1 instead of [ elt P I q I elt P I elt R 1. 

This is quite easy for handwriting and reading, but harder to print. 

5. THE SETS ZO AND Z 

In order to give a preliminary idea we state that Z will consist of all 
strings of the type (3.3) (with a restriction on the constants) and Zo will 
be the subset consisting of the strings of type (3.4). (The elements of Zo 
were called NF-expressions in [I]). 

As before, 1R= (1, 2, 3, . . .), and r will denote the set of all mappings 
of 1R into l"l. And as before, A is a set, #(A) is the set of words, and 
&(A) the set of one-letter words. Furthermore 6 is some injection of I2 
into S1(A), 9 some injection of I' into &(A), and we assume that 

where the four parts on the right are disjoint, and R has exactly 4 elements. 
The elements r ~ ,  r2, r3, r4 of R are one-letter words with the following 
interpretation: rl is the word consisting of a lambda only, rz of an opening 
parenthesis only, r3 of a comma only, r4 of a closing parenthesis only. 
Since we never show the elements of A themselves the usual symbols 
for lambda, etc. are free for us to use, and as long as they are separated 
in the [ I I ] notation, confusion does not arise. We can write e.g. 

If Y is a subset of S(A) then o(Y) denotes the set of all strings of elements 
of Y separated by comma's: 

The set Z is a subset of &(A), defined as the minimal solution of the 
equation 

As an example of an element of Z we present, with g, f E C and 
W Y  6, ZY y E r Y  

Translation into (3.3) is just a matter of omitting the ['s, the ]'s, the j's, 
the v's and the 5's. In examples, one would prefer that abbreviated form 
(3.3), of course. 

The subset Zo of Z can be defined as the minimal solution of 

(5.2) Zo = C V [ elt C I ( I elt ~ ( Z O )  I ) ] u f(1R) v [ 3L I elt ZO 1. 



6. SUBSTITUTION 

Let $2 be a mapping of TI into 2 ,  and let z be an element of o(Z). We 
want to define subst (Q, z). Its interpretation, f i s t  for the case that z E Z, 
is as follows. Attach to z the free variable list xl, x2, ..., and to each one 
of Q(l), 52(2), ... the variable list yl, y2, .... Now we substitute into the 
name-carrying form of z, for each xi, the name-carrying form of Q(i). 
What we get is an expression with free variables yl, y2, . . . , and the namefree 
form of this will be subst (52, z). If z is a string, z E o(Z) then the substi- 
tution is effected in every entry of the string separately. 

From now on we concentrate on what happens in o(Z) and Z, and we 
do not study the interpretations. (They will stay on the back of our mind, 
of course). 

We define subst (52, z) for all z E o(Z) by recursion on (5.1). To that 
end it suffices to define (note the uniqueness of parsing the elements 
of o(Z) ) : 

(i) if z = [zl I , I z2] with zl E o(Z), 22 E Z then 
subst (Q, z) = [subst (Q, 21) I , I subst (Q, zz)], 

(ii) if x E C then subst (9 ,  z) =z, 
(iii) if z= [c I ( ( 21 ( )] with c E C, z1 E o(Z) then 

subst (Q, z) = [c 1 ( ( subst (Q, zl) I )I, 
(iv) if for some n E 1R z = [(n) then subst (Q, z) = Q(n), 
(v) if z = [A I zl] with zl E Z then subst (9,  z) = [A I subst (Q*, zl)], 

where Q* is the mapping defined by 

with y defined by y(k)=lc+l (k=l ,  2, 3, ...), 
(vi) if z = [p(8) I zl] with 8 E r, zl E Z then subst (Q, z) = subst ($23, zl) 

where 9 8  is dehed  by (98)(Ic) =52(8(k)) for all Ic EI~. 

7. THE REDUCED FORM? 

At the end of section 3 it was explained how an element z of Z leads 
to one of Zo, called its reduced form. We shall denote i t  by rf(z), to be 
formally defined here for all z E o(Z): 

(i) if z = [zi I , I zz] with z1 E o(Z), 22 E Z then rf (z) = [rf (21) [ , I rf (xz)], 
(ii) if x E C then rf (z) = z, 
(iii) if z = [c 1 ( 1 zl 1 )] with c E C, zl E o(Z) then rf (2) = [c 1 ( I rf (zl) I )I, 
(iv) if z = [(n) for some n E n then rf (2) = z, 
(v) if z = [A 1 zl] with zl E Z then rf (z) = [A I rf (zl)], 
(pi) if z=[v(O) I C] with 8 E I', c E C then rf(z)=c, 

(vii) if x =  [91(8) I c I ( ( x I )] with 8 E J', c E C, x E o(Z), then 

rf(z> = [c 1 ( I rf(pe(x>> I >I, 
where pe(x) is defined recursively by 



(viii) if z  = [y (8 )  I Q n ) ]  with 8 E r, n E 32 then rf ( z )  = 5(8(n)) ,  
(ix) if z  = [y(O) I 1 I zl] with 8 E T, zl E Z then rf ( z )  = [A  1 w ]  with 

w=rf([y(O*) ( z l ] ) ,  where 8* is defined by 8*(1)= 1, 8*(E)=8(k- 1)+ 1  
( k=2 ,  3, ...), 

(x) if z  = [y(O) I y ( q )  I zl] with 8 E r, E r, 21 E Z then rf ( z )  = rf ([g~(Oq) I z ] )  
(where, of course, 677 is defined by (By)(E) =6(q(E)) for all E ~ n ) .  

8. THEOREMS ON REDUCED FORllTS 

THE ORE^ 8.1. For a11 x E o ( Z )  we have rf (rf ( 2 ) )  = r f (z) .  

THEOREM 8.2. For all z  E o(Zo)  we have r f (z)  =z.  

THE ORE^ 8.3. If 0 E r, z E Z then rf ([g1(8) 1 z  ] ) = rf ([g1(8) I rf ( z ) ] ) .  

THE ORE^ 8.4. If OO is the identity (OO(n) = n for all n), and z  E Z ,  then 

rf(CgI(60) I 21) =r f ( z ) .  
These theorems are easily proved by induction with respect to the length 

of z. At a certain point in the proof of Theorem 8.3 it plays a role that 
the operation of section 7 (ix) satisfies (8q)*=6*~*. 

9. THEOREMS ON SUBSTITUTION 

THEOREW 9.1. If f 2  maps 32 into Z ,  and if 8 E r, z  E Z then 

rf(subst ( Q J  r f  ([v(') I ' 1 ) ) )  =rf  (subst ( f 2 6 Y  r f  

THEOREM 9.2. If $2 maps I2 into Z ,  and if z  E o ( Z )  then 

rf (subst (Q, 2 ) )  = r f  (subst (Dl ,  r f ( z ) ) ) ,  

where Q1 is defined by &(n) =r f (D(n ) )  for a11 n. 

THEOREM 9.3. If y  maps into X'l and if D ( n )  = y(O(n)) for all n, 
then we have for all z  E Z 

THE ORE^ 9.4. If D maps I2 into 2, if z  E Z, 8 E l', and if Q1 is defined 
by f2l(n)=[q(6) 1 Q(n) ]  (%=I, 2, ...) then 

THEOREM 9.5. If Q, Z, A are mappings of n into Z ,  such that 

A(n) = subst (Q, Z(n)) (n= 1, 2, ...) 

then we have for all z  E c ( Z )  

rf(subst(Q, subst(L', 2 ) ) )  =rf(subst (A,  2) ) .  

These theorems provide a solid background to the conviction that 



rf (subst (52,~)) corresponds to what we usually mean by substitution. They 
are easily proved by recursion on the length of z. We omit the details. 

10. SUBSTITUTION IN 20 
Right now there is not enough experience to compare the value of the 

present system of substitution to other systems, in particular to the 
system of [I]. 

In  order to facilitate the comparison, we present the definition of sub- 
stitution of [I] in our present metalanguage. It operates on Zo and ~ ( 2 ~ ) .  
If z E c(ZO) and if 9 is a mapping of I3 into Zo, the result of the substitution 
will be denoted by S(9,  z). The definition is by recursion: 

(i) if z = [zl I , 1 zz] with zl E c(Zo) and x2 E Zo then 

(ii) if z E C then S(Q, z) =z, 
(iii) if z= [c I ( I z l  I )] with c E C,  zl E c(Z0) then 

(iv) if for some n E I3 z = f(n) then S(52, z) = S(n), 
(v) if z= [A I zl] with zl E Zo then 

where 521 is defined by its values Q1(l)=l(l) and 
&(k) = S(A, 9 (k  - 1)) (k = 2, 3, . ..) ; 
here A is the mapping defined by A(k) =&k+ I )  for all k. 

The fact that under (v) it is required to know the effect of S on ex- 
pressions that are not subexpressions of z, makes recursion proofs a bit 
complex. 

The following two theorems can be proved straightforwardly by in- 
duction with respect to the length of z. 

THEOREM 10.1. If ZEZO,  OET, then 

rf([(?@) I 21) =SPY 2) 

where O(k) = l(O(k)) (k= 1, 2, . ..). 

THEOREW 10.2. If Z E ~ ( Z O ) ,  Q : n + Z o  then 

S(9 ,  z) = rf (subst (52, 2)). 

11. ALGORITHM FOR CHECKING EQUALITY OF REDUCED FORMS 

Let x, y E c(Z). Quite often it is possible to answer the question whether 
rf (x) = rf (y) without evaluating rf(x) and rf (y). 

For every z E o(Z) there is a unique integer k > 1 such that z has the 



form [zl I , I . .. / , I ~ k ]  with z1 E Z, . .., zk E 2. Let us call k the string length 
of z. It is clear that z has the same string length as rf(z). So if x and y 
have different string length then certainly rf(x) z rf (y). 

Supposing x and y have the same string length Ic, we check whether 
rf (xl) = rf (yl), . . . , rf (xk) = rf (yk). This means that we yet have to describe 
how we check rf(x) = rf(y) if both x and y are in 2. 

If x = [ ~ ( e )  I xl], y = [ ~ ( e )  I yl] with 0 E r we just replace the question 
by the one whether rf(x1) =rf(yl). 

If x still has the form x=  [ ~ ( e )  I xl] but if y does not have the form 
[9(8) I yl], we apply one of the reduction steps (vi)-(x) of section 7, and 
if the result is u, we ask whether rf(u)=rf(y). We do a similar thing if 
this applies with x and y interchanged. 

Finally, if neither x nor y have such a form, we say that rf(x) #rf(y) 
unless we are in one of the following four cases: 

(i) X E C  and y=x, 
(ii) x=[c 1 ( ] XI j )], y=[c 1 ( 1 yl 1 )] with XI, x z ~ o ( z ) ,  C E C  and rf(xl)= 

=rf(xz). 
(iii) x=  y=E(n) for some n E '1R, 
(iv) x= [A I XI], y =  [A I yl] with XI E 2, x2 E Z, rf(x1) =rf(x2). 

12. REMARK ON STRINGS 

Some of the notational effort of the previous sections went into the 
distinction between Z and o(Z), connected with the fact that we deal 
with n-ary expressions like c(ul, ..., u,). One of the disadvantages is, that 
recursion over the definition of Z is not so straight-forward as it might 
be. It is, of course, possible to eliminate this unpleasantness, removing all 
cases with n>2. This can be done by creating a special constant s, and 
replacing, e.g., c(w, u2) by c(s(u1, w)),  c(w, uz, u3) by c(s(u1, s(u2, us))), 
etc. The cases c and c(u1) are unaltered. 

13. IMPLEMENTATION 

The substitution algorithm (section 6) and the algorithm of section 11 
have been implemented by Mi.. R. Wieringa with the use of the pro- 
gramming language PASCAL. 
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