

Lambda calculus with namefree formulas involving symbols
that represent reference transforming mappings
Citation for published version (APA):
Bruijn, de, N. G. (1978). Lambda calculus with namefree formulas involving symbols that represent reference
transforming mappings. Indagationes Mathematicae (Proceedings), 81(3), 348-356.
https://doi.org/10.1016/1385-7258(78)90052-5

DOI:
10.1016/1385-7258(78)90052-5

Document status and date:
Published: 01/01/1978

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1016/1385-7258(78)90052-5
https://doi.org/10.1016/1385-7258(78)90052-5
https://research.tue.nl/en/publications/0513a7c7-92e6-41dd-ac58-4b006f039769

MATHEMATICS

Lambda calculus with namefree formulas involving symbols
that represent reference transforming mappings

Dedicated to A. Heyting at the occasion of his 80th birthday on May 9,1978

Communicated at the meeting of March 18, 1978

Department of Mathematics, Eindhoven University of Technology, The Netherlands

1. INTRODUCTION ON NAME-CARRYING LAWBDA CALCULUS

In ordinary lambda calculus we use names both for free and for bound
variables. Let us present an example that explains what kind of expressions
we are after: apart from names for variables we have names for constants.
We may have introduced an expression in two variables x and y, and
have abbreviated it to f(x, y) (now f is the "constant" we mentioned).
Now 3LZf(x, y) is a lambda expression. Its interpretation is: the function
that attaches to every x the value f(x, y). The letter y is a free variable
and x a bound variable in the expression il,f(x, y).

We can, of course, also write more complex lambda expressions like

In this example the free variables are y and s.
Usual lambda calculus has a notation (in the form of concatenation)

for "application" that intends to express "the value of the function y
a t the point x". We do not need a special notation for this, because we
can devote a special constant A to this purpose, and write that value as
A(y, x). Now so-called beta-reduction is a kind of elimination of such
an A, like the passage from A(&(/ (x, y)), g(t)) to f(g(t), y). The latter two
formulas are not considered to be equal (in spite of their common inter-
pretation). On the other hand, the difference between W(x, y) and

Reprinted from Proceedings of the Koninklijke Nederlandse Akademie
van Wetenschappen, Amsterdam, series A, volume 81 (3), September 22, 1978

L,f(u, y) is much less essential. The desire to identify them lies a t the
root of namefree lambda calculus.

The kind of name-carrying lambda calculus described above is exactly
the same as in [I]. We close this section with the tree interpretation of
the expression (1.1) :

2. INTRODUCTION ON NAlWEFREE LAMBDA CALCULUS

In [I] we explained a notation for lambda expressions where all occur-
rences of free and bound variables are replaced by positive integers that
indicate their reference depth. The system is easily demonstrated at the
example (1.1) in the tree form

1
1

e with s, z, y, . . . as list
of free variables.

The dots below the tree are unessential, but suggestive to the term
"reference depth", if they are interpreted as being tied to s, z, y, ... (the
upper one refers to s, the middle one to 2, the lower one to y; the fact
that z is never referred to in the formula does not bother us).

The idea is that an integer k at an end-point refers to the E-th lambda
we meet when travelling from that end-point to the root of the tree;
if there are only j lambdas on that path, with jtk, then the k a t the
endpoint refers to the (E-j)-th entry of the list of free variables.

As a preparation to what follows, we express the above correspondence
like this. We start at an endpoint and want to know what variable the
number refers to. Now we descend the tree, taking the number along,
subtracting 1 each time we pass some A. If this subtraction leads to the
value 0, we do not go any further; we have located the right lambda.
Of course we act as if the free variables s, z, y, are tied to underground
lambdas.

The tree at the beginning of this section did not show any names
attached to the lambdas. We can assign arbitrarily names (different from
the constants and the free variables) for these bound variables. There
is a safe, "conservative", system where it is required that all these names
are different. The "liberal" system, on the other hand, only requires that
lambdas get different names if they are hierarchically related: if one
lambda lies on the path down from another lambda to the root, then the
two have to get different names.

3. TREES WITH SYMBOLS THaT REPRESENT &.TAPPINGS

We shall now describe a new kind of namefree trees where a t some
places in the tree we have a symbol denoting some mapping of I2 into I2
(X l = (1, 2, 3, . . .)). We shall use these more complicated trees for the same
purpose as the trees in section 1. What matters is, to describe to which
lambda a natural number a t an end-point refers. What we intend to do
will be clear from an example. The letters co, 8, z, y denote mappings
of 'JR into Ji2.

If we want to know what an integer refers to we descend the tree;
again we subtract 1 if we pass a 1, but if we pass one of the letters repre-
senting a mapping we do something different: we apply that mapping
to our number. So the 3 in the upper left corner refers to the left-hand
A if w(3) = 1. If w(3) > 1 it refers to O(w(3) - 1)-th free variable. As an
excercise the reader may verify that if 0.43) = 5, O(4) = 1, z(1) = 1, y(1) = 2,
then this tree corresponds to the same references from end-points to
lambdas or free variables as the following one:

We shall say that (3.2) is the reduced form of (1). In the notation of
this paper (3.1) is represented by

and (3.2) by

The motivation for studying the tree coding of the type (3.3) is that
operations like substitution are easier described in terms of these than in
terms of the mapping free codes like (3.4). This may hold both for language
theory and for automatic formula manipulation. Getting rid of the map-
pings can be postponed until we need it; it is relatively easy.

4. METALINGUISTIC NOTATION

In [l] our way to describe linguistic operations was based on the system
used in BNF (Backus' normal form). In simple cases this is quite feasable,
but in more complex situations it can no longer be maintained. In the
present note we prefer the system used in the theory of context-free
languages, where linguistic entities like words are treated as mathematical
objects, referred to by names or more complicated expressions, and never
appear themselves in the language that discusses them.

We have a set A (the elements are interpreted as letters and signs like
comma's, parentheses, etc.). S(A) is the set of all finite sequences of
elements of A (these sequences are called words). Sl(A) is the subset
consisting of all words of length 1.

We use the following notation for the concatenation of words: if p
and q denote words then [p I q] denotes the word we get by putting the
second word directly after the first one. Similarly for three or more words :

[~ l a l r l -
The letters elt directly after an opening bracklet or a vertical bar have

the meaning illustrated by the example:

where q E S(A), P C #(A), R C S(A).

The following "comb" notation was introduced in [2]:

1iFi-n instead of [p 1 q 1 r] ,

1 instead of [elt P I q I elt P I elt R 1.

This is quite easy for handwriting and reading, but harder to print.

5. THE SETS ZO AND Z

In order to give a preliminary idea we state that Z will consist of all
strings of the type (3.3) (with a restriction on the constants) and Zo will
be the subset consisting of the strings of type (3.4). (The elements of Zo
were called NF-expressions in [I]).

As before, 1R= (1, 2, 3, . . .), and r will denote the set of all mappings
of 1R into l"l. And as before, A is a set, #(A) is the set of words, and
&(A) the set of one-letter words. Furthermore 6 is some injection of I2
into S1(A), 9 some injection of I' into &(A), and we assume that

where the four parts on the right are disjoint, and R has exactly 4 elements.
The elements r ~ , r2, r3, r4 of R are one-letter words with the following
interpretation: rl is the word consisting of a lambda only, rz of an opening
parenthesis only, r3 of a comma only, r4 of a closing parenthesis only.
Since we never show the elements of A themselves the usual symbols
for lambda, etc. are free for us to use, and as long as they are separated
in the [I I] notation, confusion does not arise. We can write e.g.

If Y is a subset of S(A) then o(Y) denotes the set of all strings of elements
of Y separated by comma's:

The set Z is a subset of &(A), defined as the minimal solution of the
equation

As an example of an element of Z we present, with g, f E C and
W Y 6, ZY y E r Y

Translation into (3.3) is just a matter of omitting the ['s, the]'s, the j's,
the v's and the 5's. In examples, one would prefer that abbreviated form
(3.3), of course.

The subset Zo of Z can be defined as the minimal solution of

(5.2) Zo = C V [elt C I (I elt ~ (Z O) I)] u f(1R) v [3L I elt ZO 1.

6. SUBSTITUTION

Let $2 be a mapping of TI into 2 , and let z be an element of o(Z). We
want to define subst (Q, z). Its interpretation, f i s t for the case that z E Z,
is as follows. Attach to z the free variable list xl, x2, ..., and to each one
of Q(l), 52(2), ... the variable list yl, y2, Now we substitute into the
name-carrying form of z, for each xi, the name-carrying form of Q(i).
What we get is an expression with free variables yl, y2, . . . , and the namefree
form of this will be subst (52, z). If z is a string, z E o(Z) then the substi-
tution is effected in every entry of the string separately.

From now on we concentrate on what happens in o(Z) and Z, and we
do not study the interpretations. (They will stay on the back of our mind,
of course).

We define subst (52, z) for all z E o(Z) by recursion on (5.1). To that
end it suffices to define (note the uniqueness of parsing the elements
of o(Z)) :

(i) if z = [zl I , I z2] with zl E o(Z), 22 E Z then
subst (Q, z) = [subst (Q, 21) I , I subst (Q, zz)],

(ii) if x E C then subst (9 , z) =z,
(iii) if z= [c I ((21 ()] with c E C, z1 E o(Z) then

subst (Q, z) = [c 1 ((subst (Q, zl) I)I,
(iv) if for some n E 1R z = [(n) then subst (Q, z) = Q(n),
(v) if z = [A I zl] with zl E Z then subst (9, z) = [A I subst (Q*, zl)],

where Q* is the mapping defined by

with y defined by y(k)=lc+l (k=l , 2, 3, ...),
(vi) if z = [p(8) I zl] with 8 E r, zl E Z then subst (Q, z) = subst ($23, zl)

where 9 8 is dehed by (98)(Ic) =52(8(k)) for all Ic EI~.

7. THE REDUCED FORM?

At the end of section 3 it was explained how an element z of Z leads
to one of Zo, called its reduced form. We shall denote i t by rf(z), to be
formally defined here for all z E o(Z):

(i) if z = [zi I , I zz] with z1 E o(Z), 22 E Z then rf (z) = [rf (21) [, I rf (xz)],
(ii) if x E C then rf (z) = z,
(iii) if z = [c 1 (1 zl 1)] with c E C, zl E o(Z) then rf (2) = [c 1 (I rf (zl) I)I,
(iv) if z = [(n) for some n E n then rf (2) = z,
(v) if z = [A 1 zl] with zl E Z then rf (z) = [A I rf (zl)],
(pi) if z=[v(O) I C] with 8 E I', c E C then rf(z)=c,

(vii) if x = [91(8) I c I ((x I)] with 8 E J', c E C, x E o(Z), then

rf(z> = [c 1 (I rf(pe(x>> I >I,
where pe(x) is defined recursively by

(viii) if z = [y (8) I Q n)] with 8 E r, n E 32 then rf (z) = 5(8(n)) ,
(ix) if z = [y(O) I 1 I zl] with 8 E T, zl E Z then rf (z) = [A 1 w] with

w=rf([y(O*) (z l]) , where 8* is defined by 8*(1)= 1, 8*(E)=8(k- 1)+ 1
(k=2 , 3, ...),

(x) if z = [y(O) I y (q) I zl] with 8 E r, E r, 21 E Z then rf (z) = rf ([g~(Oq) I z])
(where, of course, 677 is defined by (By)(E) =6(q(E)) for all E ~ n) .

8. THEOREMS ON REDUCED FORllTS

THE ORE^ 8.1. For a11 x E o (Z) we have rf (rf (2)) = r f (z) .

THEOREM 8.2. For all z E o(Zo) we have r f (z) =z.

THE ORE^ 8.3. If 0 E r, z E Z then rf ([g1(8) 1 z]) = rf ([g1(8) I rf (z)]) .

THE ORE^ 8.4. If OO is the identity (OO(n) = n for all n), and z E Z , then

rf(CgI(60) I 21) =r f (z) .
These theorems are easily proved by induction with respect to the length

of z. At a certain point in the proof of Theorem 8.3 it plays a role that
the operation of section 7 (ix) satisfies (8q)*=6*~*.

9. THEOREMS ON SUBSTITUTION

THEOREW 9.1. If f 2 maps 32 into Z , and if 8 E r, z E Z then

rf(subst (Q J r f ([v(') I ' 1))) =rf (subst (f 2 6 Y r f

THEOREM 9.2. If $2 maps I2 into Z , and if z E o (Z) then

rf (subst (Q, 2)) = r f (subst (Dl , r f (z))) ,

where Q1 is defined by &(n) =r f (D(n)) for a11 n.

THEOREM 9.3. If y maps into X'l and if D (n) = y(O(n)) for all n,
then we have for all z E Z

THE ORE^ 9.4. If D maps I2 into 2, if z E Z, 8 E l', and if Q1 is defined
by f2l(n)=[q(6) 1 Q(n)] (%=I, 2, ...) then

THEOREM 9.5. If Q, Z, A are mappings of n into Z , such that

A(n) = subst (Q, Z(n)) (n= 1, 2, ...)

then we have for all z E c (Z)

rf(subst(Q, subst(L', 2))) =rf(subst (A, 2)) .

These theorems provide a solid background to the conviction that

rf (subst (52,~)) corresponds to what we usually mean by substitution. They
are easily proved by recursion on the length of z. We omit the details.

10. SUBSTITUTION IN 20
Right now there is not enough experience to compare the value of the

present system of substitution to other systems, in particular to the
system of [I].

In order to facilitate the comparison, we present the definition of sub-
stitution of [I] in our present metalanguage. It operates on Zo and ~ (2 ~) .
If z E c(ZO) and if 9 is a mapping of I3 into Zo, the result of the substitution
will be denoted by S(9, z). The definition is by recursion:

(i) if z = [zl I , 1 zz] with zl E c(Zo) and x2 E Zo then

(ii) if z E C then S(Q, z) =z,
(iii) if z= [c I (I z l I)] with c E C, zl E c(Z0) then

(iv) if for some n E I3 z = f(n) then S(52, z) = S(n),
(v) if z= [A I zl] with zl E Zo then

where 521 is defined by its values Q1(l)=l(l) and
&(k) = S(A, 9 (k - 1)) (k = 2, 3, . ..) ;
here A is the mapping defined by A(k) =&k+ I) for all k.

The fact that under (v) it is required to know the effect of S on ex-
pressions that are not subexpressions of z, makes recursion proofs a bit
complex.

The following two theorems can be proved straightforwardly by in-
duction with respect to the length of z.

THEOREM 10.1. If ZEZO, OET, then

rf([(?@) I 21) =SPY 2)

where O(k) = l(O(k)) (k= 1, 2, . ..).

THEOREW 10.2. If Z E ~ (Z O) , Q : n + Z o then

S(9 , z) = rf (subst (52, 2)).

11. ALGORITHM FOR CHECKING EQUALITY OF REDUCED FORMS

Let x, y E c(Z). Quite often it is possible to answer the question whether
rf (x) = rf (y) without evaluating rf(x) and rf (y).

For every z E o(Z) there is a unique integer k > 1 such that z has the

form [zl I , I . .. / , I ~ k] with z1 E Z, . .., zk E 2. Let us call k the string length
of z. It is clear that z has the same string length as rf(z). So if x and y
have different string length then certainly rf(x) z rf (y).

Supposing x and y have the same string length Ic, we check whether
rf (xl) = rf (yl), . . . , rf (xk) = rf (yk). This means that we yet have to describe
how we check rf(x) = rf(y) if both x and y are in 2.

If x = [~ (e) I xl], y = [~ (e) I yl] with 0 E r we just replace the question
by the one whether rf(x1) =rf(yl).

If x still has the form x= [~ (e) I xl] but if y does not have the form
[9(8) I yl], we apply one of the reduction steps (vi)-(x) of section 7, and
if the result is u, we ask whether rf(u)=rf(y). We do a similar thing if
this applies with x and y interchanged.

Finally, if neither x nor y have such a form, we say that rf(x) #rf(y)
unless we are in one of the following four cases:

(i) X E C and y=x,
(ii) x=[c 1 (] XI j)], y=[c 1 (1 yl 1)] with XI, x z ~ o (z) , C E C and rf(xl)=

=rf(xz).
(iii) x= y=E(n) for some n E '1R,
(iv) x= [A I XI], y = [A I yl] with XI E 2, x2 E Z, rf(x1) =rf(x2).

12. REMARK ON STRINGS

Some of the notational effort of the previous sections went into the
distinction between Z and o(Z), connected with the fact that we deal
with n-ary expressions like c(ul, ..., u,). One of the disadvantages is, that
recursion over the definition of Z is not so straight-forward as it might
be. It is, of course, possible to eliminate this unpleasantness, removing all
cases with n>2. This can be done by creating a special constant s, and
replacing, e.g., c(w, u2) by c(s(u1, w)), c(w, uz, u3) by c(s(u1, s(u2, us))),
etc. The cases c and c(u1) are unaltered.

13. IMPLEMENTATION

The substitution algorithm (section 6) and the algorithm of section 11
have been implemented by Mi.. R. Wieringa with the use of the pro-
gramming language PASCAL.

REFERENCES

1. Bruijn, N. G. de - Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
theorem. Nederl. Akad. Wetensch. Proc. Ser. A 75, (=Indag. Math. 34)
381-392 (1972).

2. Bruijn, N. G. de - Notation for concatenation. Technological University Eind-
hoven, Department of Mathematics. Memorandum 1977-09. August 1977.

