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Abstract. The Internet of Things (IoT) is an emerging technology that
is growing continuously thanks to the number of devices deployed and
data generated. Nevertheless, an upper layer to abstract the limitations
of storing, processing, battery and networking is becoming a mandatory
need in this field. Cloud Computing is an especially suitable technology
that can supplement this field in the limitations mentioned. However, the
current platforms are not prepared for querying large amounts of data
with arbitrary functions in real-time, which are necessary requirements
for real-time systems. This paper presents λ-CoAP architecture, a novel
paradigm not introduced yet to the best of our knowledge, which pro-
poses an integration of Cloud Computing and Internet of Things through
the Lambda Architecture (LA) and a Constrained Application Protocol
(CoAP) middleware. The λ-CoAP architecture has the purpose to query,
process and analyze large amounts of IoT data with arbitrary functions
in real-time. On the other hand, the CoAP middleware is a lightweight
middleware that can be deployed in resource constrained devices and
allows the way of the IoT towards the Web of Things. Moreover, the
λ-CoAP also contains a set of components with well defined interfaces
for querying, managing, and actuating over the system.

Keywords: Internet of Things · Lambda Architecture · Coap middle-
ware · Cloud computing

1 Introduction

The Internet of Things (IoT) [1] has received a lot of attention in recent years,
thanks to the continuous research in this field, the technological advances and
the large amount of systems, components, software and devices release every day.
The IoT is composed of a set of interconnected things (mobile devices, RFID
tags, sensors, smart-phones, cameras, etc.) which have the ability to sense, com-
municate and/or actuate over the Internet. Moreover, thanks to the IoT capacity
for adapting on many situations, it has carried the IoT suitable for monitoring,
control and manage in many areas such as Smart Ambient and Monitoring.
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Nowadays, it is possible to acquire an embedded personal computer for a few
dollars [2] and check the free car parks in real-time in your city, something
unthinkable just a few years ago. All of this has been originated from the IoT,
and it is now one of the most interesting fields of research that will be present
to help us everyday.

However, the devices involved in the IoT have serious constraints with respect
to processing, storing and networking. These issues has originated integrations
with new paradigms like Cloud Computing, known as Cloud of Things [3], which
has solved such IoT limitations. Cloud Computing enables an on demand access
to a pool of configurable resources providing virtually unlimited capabilities in
terms of storage and processing power [4], which are the main drawbacks of the
IoT. Even though the integration with Cloud Computing provides the IoT the
requirements already mentioned, the current need for extracting knowledge of
the data in real-time imply to think beyond. Moreover, there are a large amounts
of heterogeneous devices deployed around the world, so they also generate large
amounts of data which will keep on growing in the coming years [5]. Cloud Com-
puting can solve the above requirements, but the needs for extracting knowledge
with large amounts of data in real-time like in critical systems, means that Cloud
Computing might be unsuitable for certain situations due to high latency.

The Lambda Architecture (LA) [6] is a novel paradigm introduced by Nathan
Marz composed by Cloud Computing components—a distributed queue, batch
and stream processing and a distributed database—designed to offer arbitrary
and predicted queries over arbitrary real-time data. The key idea in the LA is
the precomputed view, which contains the knowledge consequence of applying
functions over the system data. The data in LA is split in two ways: historical
data, which contains all data generated in the system, and real-time data with
the stream data received. The LA also decomposes the paradigm in three layers:
the batch layer, the real-time layer and the serving layer. All data received is
delivered to a distributed queue which replies it into the real-time layer for
processing and generating the real-time views and the batch layer which stores
it in the master data and generates the batch views with the historical data. The
LA therefore offers new opportunities for processing and analysis large amounts
of arbitrary data in real-time.

Nevertheless, due to the heterogeneity of devices which compose the IoT,
which have different functionalities, capabilities and programming languages
among other things, an abstraction layer is necessary to abstract that hetero-
geneity offering a unique way to interconnect anything. Through a middleware,
the IoT can hide communication and low-level acquisition aspects in anything
[7]. Currently, there are a lot of Web services that work over the Internet for
sharing and exchanging a large amount of data and services. So allowing a com-
patible middleware with the current systems and the Internet, the IoT leads
to a part of the Internet, also known as Web of Things (WoT) [8], where the
current Web services will be enriched with physical smart objects. Moreover, the
Web-enabled applications are available on many platforms with Internet connec-
tion, from computer to smart phone, PDAs and tablets, so the WoT will also
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enable the IoT on many platforms. However, Web services usually work over
protocols such as HTTP and TCP, which are too heavy for resource constrained
devices. Taking into account that, the Internet Engineering Task Force (IETF)
launched the Constrained Application Protocol (CoAP) [9,10]. CoAP is a web
transfer protocol designed for resource constrained devices that work over UDP.
CoAP follows the same style that RESTFul Web services, supporting the Uni-
form Resource Identifier (URI) and a HTTP model, but it uses UDP thereby
reducing the transfer overhead and header of TCP. Furthermore, CoAP also
supports asynchronous communication and multicast, not available in TCP and
desirable in resource constrained devices with power, battery and network lim-
itations. CoAP was not created as a common middleware, but nevertheless we
propose a middleware based on CoAP for providing a layer to abstract commu-
nication, low-level acquisition and discovering aspects over the IoT. The IETF
also defines the guidelines for HTTP-CoAP mapping, so the CoAP middleware
is therefore a promising IoT middleware for integrating the IoT into the Web.

In this paper, we introduce λ-CoAP, an architecture for integrating the IoT
and Cloud Computing through the LA and a CoAP middleware, with real-
time and mobility requirements and resource embedded devices. The λ-CoAP
architecture constitutes a novel paradigm not introduced yet to the best of our
knowledge, which has several purposes: bring the IoT to the WoT; improve the
IoT with the necessary capacities in terms of storage, processing and networking
provided by the LA; and last but not least, define a framework for analysis and
actuating over large amounts of real-time data in IoT environments.

The rest of the paper is structured as follows. In Sect. 2 a state of the art of
the components of the architecture is presented. Section 3 presents the general
scheme of the proposed architecture. Finally, some conclusions and future work
are presented in Sect. 4.

2 Related Work

For a better organization of the λ-CoAP architecture requirements, related work
is divided in three categories taking into account the main requirements proposed
in this article. Firstly, we summarize different Cloud Platforms related to those
that constitute the LA. Next, several middleware for the IoT are summarized.
And lastly, we have summarized related work about the Smart CoAP Gateways.

2.1 Cloud Platforms

Batch Processing. The components responsible of generating the batch views
in the LA are the batch processing components. They allow the execution of a
large amount of jobs without manual intervention, achieving a greater distribu-
tion and high throughput. Apache Hadoop [11] is a well-known batch processing
platform for storing and processing large amounts of data. Apache Hadoop is
composed by three main components: Hadoop Distributed File System (HDFS),
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Map Reduce and Yet Another Resource Negotiator (YARN). HDFS is the dis-
tributed file system of Apache Hadoop, responsible for replicating and balancing
the data over the slaves deployed, achieving high bandwidth, reliability and
scalability. On the other hand, Map Reduce and YARN are Hadoop compo-
nents responsible for processing jobs and managing the resource management
respectively. Therefore, Apache Hadoop is a suitable component, compatible
with multiple Cloud platforms, for generating batch views in the LA.

Apache Spark [12] is another batch processing platform for processing and
analysis large amounts of data. In contrast to Apache Hadoop, Apache Spark
does not contain its own file system, but trusts on different data stores such as
HDFS, Apache Cassandra, Apache HBase and Amazon S3. Apache Spark follows
a different approach than Apache Hadoop. Apache Spark knows the high latency
due to reload continuous data from disk, and keeps it in memory for reducing
the latency. Although Apache Spark is a desirable component to achieve high
performance in a processing system, in the LA the latency requirements are
addressed by the real-time layer, so it is not necessary. Moreover, Apache Hadoop
presents more integration compatibility with other Cloud platforms.

Real-Time Processing. Real-time processing components are those located
in the real-time layer, and are responsible for processing and analysis the stream
data provided by the distributed queue. Apache Storm [14] is an open source
distributed system for real-time processing. Apache Storm has an architecture
based on directed graphs, where the edges represent the flow data between the
vertices deployed, which are the computational components. The design based on
directed graphs contribute to provide fault-tolerant and replication in addition
to enable several layers to abstract the processing. Moreover, Apache Storm
also offers semantics guarantees with ‘at least once’ and ‘at most once’ data
processing. Also together with the integration with Apache Kafka and several
data stores, lead to Apache Storm to be a suitable component for the real-time
layer of the LA.

Apache Spark Streaming [15] is also an open source streaming processing
component. Apache Spark Streaming does not act like Apache Storm, since it
processes the stream data and then stores them in a specific format. Apache
Spark Streaming is also integrated with Apache Spark, so they can reuse the
same functions and data representation enabling a hybrid architecture with real-
time and batch processing. However, due to needs of integration with several
components which form the LA, Apache Storm is more suitable for this purpose.

Distributed Databases. The serving layer is perhaps the main component of
the LA, since it is responsible for serving and merging the real-time and batch
views. To support the serving layer a distributed database is necessary for serving
and querying data as soon as possible. Apache HBase [16] is an open source
distributed database suitable for random access and read/write large amounts
of data. Apache HBase uses HDFS as a storage system, where all data is stored
in tables like traditional Relational Database Management Systems (RDBMS).
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The Apache HBase tables are composed by multiples rows, where each rows can
store a set of mixed and indeterminate key-values. Apache HBase also supports
fault-tolerant, replication and load-balancing and is properly integrated with
Apache Hadoop.

Nonetheless, platforms such as Apache HBase and Apache Hadoop do not
guarantee how quickly data can be stored and accessed, which are the main
features in the LA. Druid [17,18] is an open source distributed column-oriented
database for storing and querying data in real-time. Druid was created in order to
resolve problems about applications which require low latency on ingestion and
query data. The key idea of Druid is to persist data on memory for quick access.
The historical data is persisted and obtained from the deep storage when real-
time data changes to historical. Moreover, Druid has integrations with external
Cloud platforms such as Apache Kafka [13], Apache Storm and Apache Hadoop,
so the serving layer will be properly constituted with Druid.

2.2 IoT Middleware

The IoT middleware contributes to abstract the processes of communication,
low-level acquisition and discovering in the IoT devices. Furthermore, it also
keeps away the heterogeneity in the IoT devices, showing each device like a
unified middleware.

LooCI [19] is a middleware for building component-based applications in
Wireless Sensor Network (WSN). The component infrastructure allows mecha-
nisms for deploying and managing components in runtime. LooCI also provides
interoperability across various platforms: a Java micro edition for constrained
devices known as Squawk, the OS for the IoT Contiki, and the OSGi.

On the other hand, the OMG Data-Distribution Service for Real-Time Sys-
tems (DDS) [20] is a centric publish/subscribe middleware for real-time and
embedded systems. All data in DDS is exchanged between consumers and pro-
ducers through typed data topics providing a level of safety.

However, the latter middlewares do not focus on offering interoperability
with the Internet, and its system requirements can be too heavy for resource
constrained devices, in contrast to the header of the CoAP middleware that only
requires 4 bytes. In addition, the real-time requirement is only addressed by DDS,
but its protocol stack can be too heavy for embedded devices too. Therefore, the
CoAP middleware is a lightweight middleware suitable for embedded devices
with real-time requirements for the λ-CoAP architecture.

2.3 Smart CoAP Gateway

For a HTTP-CoAP mapping, the integration between the CoAP devices and the
LA, besides minimizing the overload in constrained devices, it is necessary to
have a smart gateway that acts as an intermediate among the Web, the LA and
CoAP devices. The Smart Gateway acts as a cross-layer proxy between HTTP
and CoAP devices, creating a barrier to protect the embedded devices in case of
an overload of requests. In addition, the Smart Gateway is also responsible for
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transmitting the IoT data generated by the CoAP devices for further storing,
processing and analysis. Furthermore, through the Smart Gateway, the great
number of web applications deployed could make use of the physical devices
deployed achieving a cyber-physical environment.

Ludovici and Calveras [21] present a HTTP-CoAP proxy to leverage the inter-
connection of 6LowPAN WSN with HTTP long-polling requests. Ludovici and
Calveras know of the performance loss while doing continuous HTTP requests,
so a WebSocket communication is proposed to improve it. In [22], a proxy is pre-
sented to interconnect a ZigBee—a wireless communication protocol for embed-
ded devices—CoAP WSN with HTTP in order to enable an UPnP system.
However, these works focus on proxies with specific communications for embed-
ded devices such as 6LowPAN and ZigBee, and are not focus on integration with
Cloud Computing components. Our Smart Gateway aims to abstract different
communications (Ethernet and ZigBee) in order to build a Smart Gateway suit-
able for WSN as for mobile devices like smart-phones.

3 The λ-CoAP Architecture

The λ-CoAP is a novel architecture designed to offer a general framework for
processing, storing, analysis and obtaining conclusions of IoT data in real-time.
The λ-CoAP is the result of combining current components of Cloud Comput-
ing for abstracting the limitations of the IoT devices, with an IoT middleware
suitable for resource constraint devices. The λ-CoAP architecture also includes
the adoption of smart gateways, which has been established in order to abstract
and protect the IoT devices from external sources, but also offers a new way to
integrate the IoT in the WoT. Furthermore, the λ-CoAP also presents mecha-
nisms for querying data and generating actions over the IoT as well as a Web
UI where the users registered will can query and manage the system.

Figure 1 shows the general architecture of the λ-CoAP. It is composed by
three differentiated components: a Cloud, the Smart Gateways and end devices.
The Cloud is responsible for allocating and serving the components of the LA—
Apache Hadoop, Apache Storm, Apache Kafka and Druid—and other compo-
nents which compose the architecture: the Actions Component, a Web UI, a
Querying Interface and optional Smart Gateways. The Smart Gateways can be
deployed locally for abstracting local IoT deployments like a smart-house, in
addition to cloud deployment for mobile devices. Lastly, the end devices incor-
porate a middleware based on CoAP whose main function is to abstract the
communications with the Smart Gateways for querying data or actuation over
them as well as discovering and low-level acquisition aspects. The following sec-
tions describe each component belonging to the λ-CoAP architecture.

3.1 Lambda Architecture

As introduced, the LA is a paradigm composed by several Cloud Computing
components in order to enable a framework for processing, analysis, storing
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Fig. 1. The λ-CoAP Architecture

and querying arbitrary data with arbitrary functions in real-time. Immutable
data—data that does not change as time passes, only can be queried or added—
besides the precomputed views are key concepts in the LA.

All data received in the LA is stored in the master data and it is converted
into another form during the processing, so the initial data received never changes
over time. The latter prevents human errors such as accidental deletions and
updates. Also, Cloud Computing LA components replicate the data and offer
mechanisms to high availability and fault-tolerant, so the probability of data
lost is small. Generating arbitrary functions and complex analysis over large
amounts of data may require a considerable latency, an issue for real-time sys-
tems. Precomputed views have been designed to have available the complex
analysis required besides extracting knowledge over the system data. The LA is
decomposed in the following layers for such purposes:

– Batch layer: responsible for processing the historical data and generating
the batch precomputed views through batch processing. The batch layer also
stores all data of the system in an immutable form, known as master data,
so it allows generating new precomputed views with new functions at any
time. The batch layer is composed by the batch processing platform Apache
Hadoop.
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– Real-time layer: makes up the high latency of the batch layer, processing
the stream data and generating real-time precomputed views. The real-time
layer is composed by the real-time processing platform Apache Storm.

– Serving layer: responsible for abstracting the batch and real-time views
offering a unique way to access them. The serving layer is composed by the
distributed database Druid.

When a stream data is received in the LA through the Smart Gateways, the
distributed queue composed by Apache Kafka distributes the stream data to the
batch and real-time layers. The batch layer stores the stream data received by
Apache Kafka and generates the batch views with the historical data periodically.
The batch layer makes complex analysis over the historical data and generates
actions for the IoT about such analysis. On the other hand, the real-time layer
generates the real-time views and actions with the stream data received. All
actions both the generated by the real-time layer and the batch layer are sent
to the Actions Component which is responsible to communicate with the Smart
Gateways in order to actuate over the underlying IoT devices. Lastly, the serving
layer merge the batch and real-time views for the coming queries.

3.2 Smart Gateway

The Smart Gateway is the component responsible for abstracting the IoT in
addition to connect it with the LA. The Smart Gateway is also responsible for
incorporating a cross-layer proxy to interconnect the IoT with the Web. There
are two ways of Smart Gateway deployment: a cloud and local deployment. The
local deployment is intent to abstract local deployments like WSN or smart-
home. On the other hand, the cloud deployment is intent to integrate mobile
devices without a local Smart Gateway. The local Smart Gateways uses the
ZigBee protocol and Ethernet/Wifi/UMTS for devices which support it, for the
communication with the IoT devices. The cloud deployments trust only on the
Ethernet/Wifi/UMTS module installed in each component, so a ZigBee network
is not available. Moreover, the adoption of a lightweight protocol for resource
constrained devices like ZigBee, which does not trust in UDP, has only been done
to the best of our knowledge in a UPnP system in [22]. Each Smart Gateway is
composed by the following components:

– LA Connector: connects the Smart Gateway with the LA. When a stream
provided by the Smart Gateway is received, the LA Connector sends it to
Apache Kafka for further processing of the LA.

– Web Server: is responsible for managing the HTTP requests of external
sources such as an action provided of the LA and a query of a client. The Web
Server checks firstly on the Database Cache if the data required is available. If
the data required is not present in the Database Cache, the Web Server obtains
the address of the device associated to the request, and makes a CoAP request
with it to obtain or act over the device that is sent to the CoAP Connector.
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– CoAP Connector: receives requests from the Web Server to request data
or actuate over a device. The CoAP Connector also connects the CoAP mid-
dlewares with the Smart Gateways to obtain the data or send the actions
requested.

– Database Cache: has two main functions, in fact, it is both a cache and a
lightweight database. On the one hand, the Database Cache stores information
about end devices and its resources. On the other hand, the Database Cache
also stores data of devices in order to provide a cache and protects the end
devices of overload of requests.

Fig. 2. Smart Gateway

Figure 2 shows the architecture of the Smart Gateway. When a CoAP middle-
ware is deployed in the system, it sends a broadcast message in local deployments
in order to inform the rest of the network that is deployed. The Smart Gateway,
upon the reception of the broadcast message, registers the device on its database
and makes a request to the CoAP Connector for obtaining its resources pro-
vided. Once the Smart Gateway receives the requested message, by default the
Smart Gateway subscribes to all resources contained in the CoAP middleware
through the observe CoAP option. The Smart Gateway also stores information
about CoAP resources in order to inform the HTTP clients with the resources
provided by the CoAP middleware and translate operations. The CoAP mid-
dleware also sends broadcast messages periodically in order to inform the other
components that are alive. In cloud deployments, there are not broadcast mes-
sages, but the end devices also inform to the Cloud Smart Gateway that they
are deployed/alive. Every time that an observed CoAP data is received in the
CoAP connector, it is transferred to the LA Connector for sending it to the LA.

3.3 CoAP Middleware

The CoAP middleware is responsible for abstracting communication, low-level
acquisition and discovering aspects in the IoT devices. The CoAP middleware
provides an abstract layer for accessing low-level components like sensors as well
as actuating over the actuators components in the IoT devices. It depends on
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the networking established, the CoAP middleware can be installed in a WSN
through the ZigBee protocol besides to be installed in mobiles devices through
Ethernet/Wifi/UMTS.

The CoAP middleware also manages CoAP resources which can be identi-
fied by an URI. CoAP resources are components responsible for the abstract
operations in the IoT devices such as obtaining the value of a specific sensor
and performing the action over an actuator component. Querying the underly-
ing sensors installed in each device is performed through a resource with CoAP
GET requests, whereas actuating over a components is performed through a
resource with CoAP POST requests. The CoAP requests are generated by the
CoAP Connector of the Smart Gateways based on the HTTP requests. There-
fore, through the Smart Gateways, users can query and actuate over the IoT by
means of HTTP GET and POST operations.

The discovering process is initiated when a new CoAP middleware is deployed
in the system. The discovering process has been designed to help the Smart
Gateways to know how many CoAP middlewares are deployed, which are alive
and which are its resources. Moreover, the discovering process also informs the
rest of the network the status of the middleware, allowing it to create distributed
CoAP resources among several CoAP middlewares.

3.4 External Components

In order to provide a unified way to actuate, query and manage the system, the
λ-CoAP also incorporates the following components:

– Cloud Smart Gateways: are Smart Gateways deployed in the Cloud which
manage and abstract the underlying IoT mobiles devices. Cloud Smart Gate-
ways can be deployed based on the system needs, so there may be from 0 to
n deployments.

– Actions Component: provides an API RESTFul for receiving the result
actions generated by the LA. The Actions Component establishes the com-
munications with the respective Smart Gateway in order to actuate over the
action required CoAP resource.

– Web UI interface: provides a Web UI where the users registered can manage,
query and monitor the λ-CoAP architecture.

– Querying Interface: provides an API RESTFul to query all data and con-
clusions belong to the LA.

The adoption of API RESTFul interfaces also allows that external systems
can integrate the λ-CoAP architecture in their business models.

4 Conclusions and Future Work

This work presents a novel architecture to integrate the Internet of Things and
Cloud Computing with real-time requirements, called the λ-CoAP architecture.
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The λ-CoAP architecture contributes to solve the problems of processing, analy-
sis and storing large amounts of IoT data with arbitrary functions through a
paradigm known as the LA. The λ-CoAP architecture also supports the variety,
velocity and volume of data generated by the IoT, allowing the known Big Data
paradigm.

The λ-CoAP architecture proposes a CoAP middleware in order to abstract
the low-level aspects of the IoT and provides a lightweight way to actuate and
send IoT data. Moreover, the IoT is abstracted through Smart Gateways, which
provide a cross-proxy between HTTP and CoAP, allowing the access to the IoT
through normal HTTP requests. In fact, the latter also contributes to carry
the IoT towards the WoT. The Smart Gateways also take into account the
mobility of the IoT, and supports mobile devices as local deployments. Finally,
the architecture is composed of external components for querying, actuating and
managing the system through well defined interfaces.

Therefore, we think that the λ-CoAP architecture is a promising architec-
ture for the IoT with real-time and mobility requirements, that can be applied
in many areas both with smart-phone networks and with WSNs. We are cur-
rently involved in the development of the architecture in order to evaluate the
performance and real-time requirements on an IoT deployment.
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