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Binary Field

Fq: Binary extension field of order q = 2m.
Constructed by a polynomial f (x) of degree m irreducible over F2.

Fq2 : Quadratic extension of a binary field.
Constructed by a polynomial g(u) of degree 2 irreducible over Fq.

A careful selection of f (x) and g(u) is important for an efficient implementation.

Our choices: F2127 = F2[x ]/(x127 + x63 + 1)
F2254 = F2127 [u]/(u2 + u + 1)
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Binary Field Arithmetic
Base Field: Multiplication and Reduction

Given a, b ∈ Fq, calculate c = a · b mod f (x).

The 127-bit elements in F2127 can be packed into two 64-bit words.

Polynomial multiplication can be performed using the Karatsuba method.

a · b = (a1x
64 + a0) · (b1x

64 + b0)

= (a1 · b1)x128 + [(a1 + a0) · (b1 + b0) + a1 · b1 + a0 · b0]x64 + a0 · b0

In F2127 , this operation can be implemented with three carry-less multiplication
instructions.

MUL(r1,r0,ma,mb)
t0 = mm xor si128( mm unpacklo epi64(ma,mb), mm unpackhi epi64(ma,mb));
r0 = mm clmulepi64 si128(ma, mb, 0x00);
r1 = mm clmulepi64 si128(ma, mb, 0x11);
t0 = mm clmulepi64 si128(t0, t0, 0x10);
t0 = mm xor si128(t0, mm xor si128(r0,r1));
r0 = mm xor si128(r0, mm slli si128(t0, 8));
r1 = mm xor si128(r1, mm srli si128(t0, 8));
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Binary Field Arithmetic
Base Field: Multiplication and Reduction

Modular reduction can be efficiently computed due to the special form of the
trinomial f (x) = x127 + x63 + 1.

After one polynomial multiplication in F2127 we have a polynomial of degree 253.
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Binary Field Arithmetic
Base Field: Multiplication and Reduction

Modular reduction can be efficiently computed due to the special form of the
trinomial f (x) = x127 + x63 + 1.

After one polynomial multiplication in F2127 we have a polynomial of degree 253.

The reduction can be performed in eleven instructions.

REDUCE(t0, m1, m0)
t0 = mm alignr epi8(m1,m0,8);
t0 = mm xor si128(t0, m1);
m1 = mm slli epi64(m1, 1);
m0 = mm xor si128(m0,m1);
m1 = mm unpackhi epi64(m1, t0);
m0 = mm xor si128(m0,m1);
t0 = mm srli epi64(t0, 63);
m0 = mm xor si128(m0, t0);
m1 = mm unpacklo epi64(t0, t0);
m0 = mm xor si128(m0, mm slli epi64(m1, 63));

After squaring: Taking advantage of the sparcity of the polynomial square operation, the
result of this operation can be reduced using just six instructions.
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Binary Field Arithmetic
Base Field: Other operations

Multisquaring: Performed via look-up tables of 24 · dm4 e field elements.

Inversion: Can be done via the Itoh-Tsujii algorithm using the following addition
chain of length 9: 1→ 2→ 3→ 6→ 12→ 24→ 48→ 96→ 120→ 126.

Half-trace (quadratic solver): Performed via look-up tables of 28 · dm8 e field
elements by exploiting the linear property:
H(c) = H(

∑m−1
i=0 cix

i ) =
∑m−1

i=0 ciH(x i ).
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Binary Field Arithmetic
Quadratic extension and comparison

Taking advantage of the irreducible polynomial g(u) = u2 + u + 1, all the field
arithmetic in the quadratic extension Fq2 can be performed efficiently.

Multiplication:
a ·b = (a0 +a1u) · (b0 +b1u) = (a0 · b0 +a1 · b1) + ((a0 + a1) · (b0 + b1) +a0 · b0)u
with a0, a1, b0, b1 ∈ Fq.

Squaring: a2 = (a0 + a1u)2 = a2
0 + a2

1 + a2
1u.

Inverse: a · c = (a0 + a1u) · (c0 + c1u) = 1. t = a0 · a1 + a0
2 + a1

2,
c0 = (a0 + a1) · t−1 and c1 = a1 · t−1.

Fq2 Multiplication Square-Root Squaring Inversion Half-Trace

Fq 3 mult + 4 add 2 sqrt + add 2 sqr + add
inv + 3 mult +
2 sqr + 3 add

2 ht + 2 add
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Elliptic Curve Arithmetic
Binary Curves and Point Operations

Let E/Fq : y2 + xy = x3 + ax2 + b, with a, b ∈ Fq and b 6= 0 be a Weierstrass
binary ordinary elliptic curve over Fq.

The set of points P = (x , y) with x , y ∈ Fq that satisfy the above equation,
together with the point at infinity O, forms an additively written abelian group
with respect to the elliptic point addition operation, Ea,b(Fq).

The basic point operations:

Addition: Given P,Q ∈ Ea,b(Fq), with P 6= Q, compute R = P + Q.

Doubling: Given P ∈ Ea,b(Fq), compute R = 2 · P.

Halving: Given P ∈ Ea,b(Fq), compute R such that P = 2 · R.

Doubling-and-addition: Given P,Q ∈ Ea,b(Fq), compute R such that
R = 2 · P + Q.
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Elliptic Curve Arithmetic
Lambda Projective Coordinates

λ-affine representation: Given a point P = (x , y) ∈ Ea,b(Fq) with x 6= 0, represent
P = (x , λ), where λ = x + y

x .

We must have efficient formulas for addition, doubling, halving and
doubling-and-addition.

λ-projective point: P = (X , L,Z ) corresponds to the λ-affine point (X
Z ,

L
Z ). The

lambda-projective form of the Weierstrass equation is:

(L2 + LZ + a · Z 2) · X 2 = X 4 + b · Z 4.
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Elliptic Curve Arithmetic
Lambda Projective Coordinates - Doubling

Let P = (XP , LP ,ZP) be a point in a non-supersingular curve Ea,b(Fq). Then the
formula for 2P = (X2P , L2P ,Z2P) using the λ-projective representation is given by

T = L2
P + (LP · ZP) + a · Z 2

P

X2P = T 2

Z2P = T · Z 2
P

L2P = (XP · ZP)2 + X2P + T · (LP · ZP) + Z2P .

Four multiplications, one multiplication by the a-coefficient and four squarings.

If the multiplication by the b-coefficient is fast, there is an alternative formula.

L2P = (LP + XP)2 · ((LP + XP)2 + T + Z 2
P) + (a2 + b) · Z 4

P + X2P + (a + 1) · Z2P .

Three multiplications, one multiplication by the a-coefficient, one multiplication
by the b-coefficient and four squarings.
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Elliptic Curve Arithmetic
Lambda Projective Coordinates - Addition

Let P = (XP , LP ,ZP) and Q = (XQ , LQ ,ZQ) be points in Ea,b(Fq) with P 6= ±Q.
Then the addition P + Q = (XP+Q , LP+Q ,ZP+Q) can be computed by the
formulas

A = LP · ZQ + LQ · ZP

B = (XP · ZQ + XQ · ZP)2

XP+Q = A · (XP · ZQ) · (XQ · ZP) · A
LP+Q = (A · (XQ · ZP) + B)2 + (A · B · ZQ) · (LP + ZP)

ZP+Q = (A · B · ZQ) · ZP .

Eleven multiplications and two squarings.
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A = LP · ZQ + LQ · ZP

B = (XP · ZQ + XQ · ZP)2

XP+Q = A · (XP · ZQ) · (XQ · ZP) · A
LP+Q = (A · (XQ · ZP) + B)2 + (A · B · ZQ) · (LP + ZP)

ZP+Q = (A · B · ZQ) · ZP .

For ZQ = 1 (mixed addition),
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Elliptic Curve Arithmetic
Lambda Projective Coordinates - Addition

Let P = (XP , LP ,ZP) and Q = (XQ , LQ ,ZQ) be points in Ea,b(Fq) with P 6= ±Q.
Then the addition P + Q = (XP+Q , LP+Q ,ZP+Q) can be computed by the
formulas

A = LP + LQ · ZP

B = (XP + XQ · ZP)2

XP+Q = A · XP · (XQ · ZP) · A
LP+Q = (A · (XQ · ZP) + B)2 + (A · B) · (LP + ZP)

ZP+Q = (A · B) · ZP .

Eight multiplications and two squarings.
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Elliptic Curve Arithmetic
Lambda Projective Coordinates - Doubling and Addition

Let P = (xP , λP) and Q = (XQ , LQ ,ZQ) be points in the curve Ea,b(Fq). Then
the operation 2Q + P = (X2Q+P , L2Q+P ,Z2Q+P) can be computed as follows:

T = L2
Q + LQ · ZQ + a · Z 2

Q

A = X 2
Q · Z 2

Q + T · (L2
Q + (a + 1 + λP) · Z 2

Q)

B = (xP · Z 2
Q + T )2

X2Q+P = (xP · Z 2
Q) · A2

Z2Q+P = (A · B · Z 2
Q)

L2Q+P = T · (A + B)2 + (λP + 1) · Z2Q+P .

Ten multiplications, one multiplication by the a-constant and six squarings.

Two multiplications are saved against computing first a doubling followed by a
point addition (R = 2P, R = R + Q).
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Elliptic Curve Arithmetic
Lambda Projective Coordinates - Comparison

Coordinate systems

Lopez-Dahab Lambda

Full-addition 13m̃ + 4s̃ 11m̃ + 2s̃ −2m̃− 2s̃

Mixed-addition 8m̃ + m̃a + 5s̃ 8m̃ + 2s̃ −m̃a − 3s̃

Doubling 3m̃ + m̃a + m̃b + 5s̃
4m̃ + m̃a + 4s̃

3m̃+m̃a+m̃b+4s̃
+m̃ −m̃b − s̃

−s̃
Doubling and addition 11m̃+2m̃a +m̃b +10s̃∗ 10m̃ + m̃a + 6s̃ −m̃− m̃a − m̃b − 4s̃
∗When compared with LD doubling + mixed-addition.

Lambda Coordinates Aftermath
More benefits and improvements derived from the lambda coordinates will be
presented in the next slides.
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Elliptic Curve Arithmetic
GLS Curves

The GLS curves is a large family of elliptic curves defined over Fq2 that admit
efficiently computable endomorphisms. We can use the GLV method to improve
significantly the point scalar multiplication by exploiting the endomorphism:

ψ : Ẽ → Ẽ , (x , y) 7→ (x2m

, y2m

+ s2m

x2m

+ sx2m

).

For our choice of elliptic curve E defined over the quadratic field
Fq2
∼= F2127 [u]/(u2 + u + 1) we have,

ψ(P) = ψ(x0 + x1u, y0 + y1u) 7→ ((x0 + x1) + x1u, (y0 + y1 + 1) + (y1 + 1)u)

Lambda Coordinates Aftermath
For points in λ-affine representation, the endomorphism is computed as
ψ(x0 + x1u, λ0 + λ1u) 7→ ((x0 + x1) + x1u, (λ0 + λ1) + (λ1 + 1)u).
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Scalar multiplication

Problem: Compute Q = kP, where P ∈ Ea,b(Fq2 ) is a generator of prime order r ,
k ∈ Zr is a scalar of bitlength n = |r | ≈ 2m − 1. P is not known in advance.

Methods:
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Scalar multiplication

Problem: Compute Q = kP, where P ∈ Ea,b(Fq2 ) is a generator of prime order r ,
k ∈ Zr is a scalar of bitlength n = |r | ≈ 2m − 1. P is not known in advance.

Methods:

Left-to-right double-and-add:
Q ← O
for i from n− 1 downto 0

Q ← 2Q
if ki = 1 then Q ← Q + P

Right-to-left halve-and-add:
Q ← O
k ′ ≡ 2n−1k mod r
for i from n− 1 downto 0

if k ′i = 1 then Q ← Q + P
P ← P/2

Lambda Coordinates Aftermath

Point halving function returns point P in lambda coordinates: P = (x , λ).
Lopez-Dahab coordinate system: for the next point addition, it is necessary to
return the point P to affine coordinates: y ← (λ+ x) · x . Multiplication penalty.
Lambda coordinate system: no multiplication needed: λ-affine coordinates
are already in the input format required for the mixed-addtion function.
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Scalar multiplication

Problem: Compute Q = kP, where P ∈ Ea,b(Fq2 ) is a generator of prime order r ,
k ∈ Zr is a scalar of bitlength n = |r | ≈ 2m − 1. P is not known in advance.

Methods:

GLV
Split the scalar k in two parts. Then kP = k1P + k2ψ(P) can be performed
by simultaneous multiple point techniques.

Left-to-right double-and-add:
Q ← O
k ≡ k1 + k2δ mod r
for i from n/2 downto 0

Q ← 2Q
if k1,i = 1 then Q ← Q + P
if k2,i = 1 then Q ← Q +ψ(P)

Right-to-left halve-and-add:
Q ← O
k ′ ≡ 2n/2k mod r
k ′ ≡ k ′1 + k ′2δ mod r
for i from (n− 1)/2 downto 0

if k ′1,i = 1 then Q ← Q + P
if k ′2,i = 1 then Q ← Q + ψ(P)
P ← P/2
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Scalar multiplication
Comparison

Double-and-add Halve-and-add

2-GLV-GLS pre/post 1D + (2w−2 − 1)A+ 2w−2ψ 1D + (2w−1 − 2)A

(LD) sc. mult. n
w+1

A + n
2
D n

w+1
(A+m̃)+ n

2
H+ n

2(w+1)
ψ

Lambda Coordinates Aftermath

Double-and-add Halve-and-add

2-GLV-GLS pre/post 1D + (2w−2 − 1)A + 2w−2ψ 1D + (2w−1 − 2)A

(λ) sc. mult.
(2w+1)n

2(w+1)2 DA + w2n
2(w+1)2 D + n

2(w+1)2 A
n

w+1 A + n
2 H + n

2(w+1)ψ

−49 mult. −279 squarings ∗ −51 mult. −154 squarings ∗

∗ 4-NAF, n = 254, m̃b = 2
3
m̃,H = 2.48m̃
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Scalar multiplication
Parallel

Compute k ′′ ≡ 2tk mod r . Parameter t controls how many bits are processed by
each method (double-and-add, halve-and-add) in different cores.

kP =
∑n−1

i=t k ′′i (2i−tP) +
∑t−1

i=0 k ′′i
(

1
2−(t−i) P

)

Also, the GLV method can be combined with the parallel technique, which implies
that the loop length in each core reduces to ≈ n/4.

Algorithm 1 Parallel scalar multiplication with GLV method
Require: P ∈ E(F22m ), scalars k1, k2 of bitlength d ≈ n/2, w , constant t
Ensure: Q = kP

Q ← O
for i = d downto t do

Q ← 2Q
if k1,i = 1 then Q ← Q + P

if k2,i = 1 then Q ← Q + ψ(P)
end for
{Barrier}

Initialize Q0 ← O
for i = t − 1 downto 0 do

P ← P/2
if k1,i = 1 then Q0 ← Q0 + P

if k2,i = 1 then Q0 ← Q0 + ψ(P)
end for
{Barrier}

return Q ← Q + Q0
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Implementation

Code: C code compiled with GCC 4.7.0 (64-bit). Optimized for the Sandy Bridge
architechture (SSE and AVX instructions, PCLMULQDQ (carry-less multiplication
instruction)).
Program code publicly available at http://bench.cr.yp.to.

Benchmarking: Intel Xeon E31270 3.4 GHz (Sandy Bridge) and Intel Core i5 3570
3.4 GHz (Ivy Bridge). Turbo Boost and Hyper-Threading disabled.

Oliveira et al. (CINVESTAV, Unicamp, UnB) Lambda Coordinates for Binary Elliptic Curves CHES - Santa Barbara, USA 18 / 23



Implementation
Timing attacks

Protection against timing attacks is achieved through regular recoding (5-NAF).

Penalties:

Higher scalar density:
1

w − 1
against

1

w + 1
of unprotected version.

Pre/post computation are more expensive.

To avoid cache-timing attacks, linear passes must be executed for every point
addition.

Which method?

Right-to-left halve-and-add uses multiple accumulators, hence two linear
passes per addition are necessary.

Half-trace uses look-up tables and therefore needs linear passes.

Left-to-right Double-and-add is more promising.

Lambda Coordinates Aftermath
One multiplication can be saved by doing doubling-and-addition and addition:
2Q + Pi + Pj (17m̃ + m̃a + 8s̃). Also, only one linear pass for two points.
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Results
Scalar Multiplication

Scalar
multiplication

Curve Security Method SCR Cycles

Taverne et al. NIST-K233 112 No-GLV (τ -and-add) no 67,800
Bos et al. BK/FKT 128 4-GLV (double-and-add) no 156,000
Aranha et al. NIST-K283 128 2-GLV (τ -and-add) no 99,200
Longa and Sica GLS 128 4-GLV (double-and-add) no 91,000
Taverne et al. NIST-K233 112 No-GLV, parallel (2 cores) no 46,500
Longa and Sica GLS 128 4-GLV, parallel (4 cores) no 61,000
Bernstein Curve25519 128 Montgomery ladder yes 194,000
Hamburg Montgomery 128 Montgomery ladder yes 153,000
Longa and Sica GLS 128 4-GLV (double-and-add) yes 137,000
Bos et al. Kummer 128 Montgomery ladder yes 117,000

2-GLV (double-and-add) (LD) no 117,500
2-GLV (double-and-add) (λ) no 93,500
2-GLV (halve-and-add) (LD) no 81,800
2-GLV (halve-and-add) (λ) no 72,300
2-GLV, parallel (2 cores) (λ) no 47,900

This work GLS 128

2-GLV (double-and-add) (λ) yes 114,800

Single core non-protected version: 17% and 27% faster than state-of-the-art
implementations over prime and binary curves.
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Results
Scalar Multiplication

Scalar
multiplication

Curve Security Method SCR Cycles

Taverne et al. NIST-K233 112 No-GLV (τ -and-add) no 67,800
Bos et al. BK/FKT 128 4-GLV (double-and-add) no 156,000
Aranha et al. NIST-K283 128 2-GLV (τ -and-add) no 99,200
Longa and Sica GLS 128 4-GLV (double-and-add) no 91,000
Taverne et al. NIST-K233 112 No-GLV, parallel (2 cores) no 46,500
Longa and Sica GLS 128 4-GLV, parallel (4 cores) no 61,000
Bernstein Curve25519 128 Montgomery ladder yes 194,000
Hamburg Montgomery 128 Montgomery ladder yes 153,000
Longa and Sica GLS 128 4-GLV (double-and-add) yes 137,000
Bos et al. Kummer 128 Montgomery ladder yes 117,000

2-GLV (double-and-add) (LD) no 117,500
2-GLV (double-and-add) (λ) no 93,500
2-GLV (halve-and-add) (LD) no 81,800
2-GLV (halve-and-add) (λ) no 72,300
2-GLV, parallel (2 cores) (λ) no 47,900

This work GLS 128

2-GLV (double-and-add) (λ) yes 114,800

Two core non-protected version: 21% faster than state-of-the-art four-core
implementation over prime curves.
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Results (ongoing work)
Intel Haswell processor

Latency of PCLMULQDQ (carry-less multiplication instruction) dropped from 14
(Sandy Bridge) to 7. Point operations which require more field multiplications
were benefited (eg. doubling, addition).

Scalar
multiplication

Curve Security Method SCR Cycles

This work GLS 128

2-GLV (double-and-add) (λ) no 49,455
2-GLV (halve-and-add) (λ) no 44,653
2-GLV, parallel (2 cores) (λ) no 29,450
2-GLV (double-and-add) (λ) yes 65,820

Timings measured in a Core i7 4700MQ, 2.40GHz.
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2-GLV (halve-and-add) (λ) no 44,653
2-GLV, parallel (2 cores) (λ) no 29,450
2-GLV (double-and-add) (λ) yes 65,820

Timings measured in a Core i7 4700MQ, 2.40GHz.

The difference between double-and-add and halve-and-add was reduced from
24,400 cc (Sandy Bridge) to 4,800 cc.
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This work GLS 128

2-GLV (double-and-add) (λ) no 49,455
2-GLV (halve-and-add) (λ) no 44,653
2-GLV, parallel (2 cores) (λ) no 29,450
2-GLV (double-and-add) (λ) yes 65,820

Timings measured in a Core i7 4700MQ, 2.40GHz.

The difference between double-and-add and halve-and-add was reduced from
24,400 cc (Sandy Bridge) to 4,800 cc. The parallel version may soon achieve a
speedup close to 2x.
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Conclusion Remarks

The Lambda Coordinates system provides simple and efficient formulas for binary
elliptic curve artithmetic. Combined with other techniques we could achieve a fast
scalar multiplication.

More applications for the coordinates will be considered, stay tuned!
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Thank you!
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