
BRICS
Basic Research in Computer Science

Lambda-Lifting in Quadratic Time

Olivier Danvy
Ulrik P. Schultz

BRICS Report Series RS-04-12

ISSN 0909-0878 June 2004

B
R

IC
S

R
S

-04-12
D

anvy
&

S
chultz:

Lam
bda-Lifting

in
Q

uadratic
T

im
e

Copyright c© 2004, Olivier Danvy & Ulrik P. Schultz.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/04/12/

Lambda-Lifting in Quadratic Time ∗

Olivier Danvy
BRICS †

Ulrik P. Schultz
ISIS Katrinebjerg

Department of Computer Science
University of Aarhus ‡

June 17, 2004

Abstract

Lambda-lifting is a program transformation that is used in compilers,
partial evaluators, and program transformers. In this article, we show
how to reduce its complexity from cubic time to quadratic time, and we
present a flow-sensitive lambda-lifter that also works in quadratic time.

Lambda-lifting transforms a block-structured program into a set of
recursive equations, one for each local function in the source program.
Each equation carries extra parameters to account for the free variables
of the corresponding local function and of all its callees. It is the search
for these extra parameters that yields the cubic factor in the traditional
formulation of lambda-lifting, which is due to Johnsson. This search is
carried out by computing a transitive closure.

To reduce the complexity of lambda-lifting, we partition the call graph
of the source program into strongly connected components, based on the
simple observation that all functions in each component need the same
extra parameters and thus a transitive closure is not needed. We therefore
simplify the search for extra parameters by treating each strongly con-
nected component instead of each function as a unit, thereby reducing
the time complexity of lambda-lifting from O(n3) to O(n2), where n is
the size of the program.

Since a lambda-lifter can output programs of size O(n2), our algorithm
is asympotically optimal.

Keywords
Block structure, lexical scope, functional programming, inner classes in Java.

∗To appear in the Journal of Functional and Logic Programming.
A preliminary version of this article was presented at FLOPS’02 [17].

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.
E-mail addresses: {danvy,ups}@daimi.au.dk
Home pages: http://www.daimi.au.dk/~{danvy,ups}

1

Contents

1 Lambda-lifting 4
1.1 Setting and background . 4
1.2 Two examples to illustrate lambda-lifting 5
1.3 Two examples to illustrate the time complexity of lambda-lifting 8
1.4 Overview . 11
1.5 Notation and assumptions . 11

2 Lambda-lifting in cubic time 12
2.1 Johnsson’s parameter-lifting algorithm 12
2.2 An alternative specification based on graphs 12
2.3 Example . 15

3 Lambda-lifting in quadratic time 15
3.1 The basic idea . 15
3.2 The new algorithm . 17
3.3 Revisiting the example of Section 2.3 17
3.4 Complexity analysis . 18
3.5 Lower bound and optimality . 19

4 Flow-sensitive lambda-lifting in quadratic time 20
4.1 A simple example of aliasing . 20
4.2 Handling aliasing . 21
4.3 Revisiting the example of Section 4.1 21

5 Related work 22
5.1 Supercombinator conversion . 22
5.2 Closure conversion . 23
5.3 Lambda-dropping . 23
5.4 Flow sensitivity, revisited . 24
5.5 Mixed style . 25
5.6 Correctness issues . 25
5.7 Typing issues . 25

6 Lambda-lifting in Java 26
6.1 Java inner classes . 26
6.2 A simple example of inner classes 27
6.3 Time complexity . 30

7 Conclusion 30

2

List of Figures

1 Syntax of source programs . 11
2 Graph and list procedures . 11
3 Johnsson’s parameter-lifting algorithm (part 1/2) — time O(n3). 13
4 Johnsson’s parameter-lifting algorithm (part 2/2) — time O(n3). 14
5 Block floating: block structure is flattened 14
6 Three mutually recursive functions 16
7 Dependencies between the local functions in Figure 6 16
8 Lambda-lifted counterpart of Figure 6 16
9 The improved parameter lifting algorithm — time O(n2) 18
10 Lower-bound example . 19
11 The program of Figure 10, after parameter-lifting 19
12 Inner classes with free variables in Java 28
13 ML counterpart of Figure 12 . 28
14 The program of Figure 12, after compilation and decompilation . 29
15 ML counterpart of Figure 14 . 29

3

1 Lambda-lifting

1.1 Setting and background

Lambda-lifting: what. In the mid 1980’s, Augustsson, Hughes, Johnsson,
and Peyton Jones devised ‘lambda-lifting’, a meaning-preserving transformation
from block-structured functional programs to recursive equations [7, 26, 27, 39].

recursive equations

block-structured program

lambda
lifting

OO

Recursive equations provide a propitious format for graph reduction because
they are scope free.

Lambda-lifting: where. Today, a number of systems use lambda-lifting as
an intermediate phase: the PAKCS implementation of Curry [23, 24], the Strat-
ego optimizer [44], the Escher compiler [19, Section 3.2.3.1], the PreScheme
compiler [37], the Pell-Mell partial evaluator [32], the Schism partial evalua-
tor [13], and the Similix partial evaluator [10] all lambda-lift source programs
and generate scope-free recursive equations. Compilers such as Larceny [12] and
Moby [40] use local, incremental versions of lambda-lifting in their optimiza-
tions, and so did an experimental version of the Glasgow Haskell Compiler [41].
Program generators such as Bakewell and Runciman’s least general common
generalization operate on lambda-lifted programs [8] and so does Ohori’s logical
abstract machine [36]. Graunke, Findler, Krishnamurthi, and Felleisen also use
lambda-lifting to restructure functional programs for the web [22].

Lambda-lifting, however, is not restricted to functional programs. In Sec-
tion 6, we show how it is used to compile inner classes in Java.

Lambda-lifting: when. In a compiler, the effectiveness of lambda-lifting
hinges on the tension between passing many actual parameters vs. passing few
actual parameters, and between referring to a formal parameter vs. referring to
a free variable.

In practice, though, programmers often stay away both from recursive equa-
tions and from maximally nested programs. Instead, they write in a mixed
style that both abides by Perlis’s epigram “If you have a procedure with ten
parameters, you probably missed some.” and by Turner’s recommendation that
good Miranda style means little nesting. In this mixed style, and to paraphrase
another of Perlis’s epigrams, one man’s parameter is another man’s free variable.

Lambda-lifting: how. Lambda-lifting operates in two stages: parameter lift-
ing and block floating.

4

scope-free
recursive equations

scope-insensitive
block-structured program

block
floating

OO

scope-sensitive
block-structured program

parameter
lifting

OO

lambda
lifting

EE

A block-structured program is scope-sensitive because of free variables in local
functions. Parameter lifting makes a program scope-insensitive by passing extra
variables to each function. These variables account both for the free variables
of each function but also for variables occurring free further in the call path.
Block floating flattens block structure by making each local function a global
recursive equation.

Parameter lifting: Parameter-lifting a program amounts to making all the free
variables of a function formal parameters of this function. All callers of the
function must thus be passed these variables as arguments as well. A set
of solutions pairing each function with a least set of additional parameters
is built by traversing the program. Each block of locally defined functions
gives rise to a collection of set equations describing which variables should
be passed as arguments to its local functions. The names of functions,
however, are not included in the sets, since all functions become globally
visible when the lambda-lifting transformation is complete. The solution
of each set equation extends the current set of solutions, which is then
used to analyze the header (i.e., the local declarations) and the body of
the block.

Block floating: After parameter lifting, a program is scope insensitive. Block
floating is thus straightforward: the program is merely traversed, all local
functions are collected and all blocks are replaced by their bodies. The
collected function definitions are then appended to the program as global
mutually recursive functions, making all functions globally visible.

1.2 Two examples to illustrate lambda-lifting

We first illustrate first-order lambda-lifting with the classical foldr functional,
and then higher-order lambda-lifting with a use of foldr to calculate the value
of a polynomial. Throughout, we use Standard ML [34].

5

Example 1: We consider the classical fold function for lists, defined with a
local function.

(* foldr : (’a * ’b -> ’b) * ’b * ’a list -> ’b *)

fun foldr (f, b, xs)

= let (* walk : ’a list -> ’b *)

fun walk nil

= b

| walk (x :: xs)

= f (x, walk xs)

in walk xs

end

This program is block structured because of the local function walk. It is scope
sensitive because walk has two free variables, f and b.

Parameter-lifting this scope-sensitive block-structured program parameter-
izes walk with f and b. The result is the following scope-insensitive block-
structured program:

(* foldr : (’a * ’b -> ’b) * ’b * ’a list -> ’b *)

fun foldr (f, b, xs)

= let (* walk : (’a * ’b -> ’b) * ’b -> ’a list -> ’b *)

fun walk (f, b) nil

= b

| walk (f, b) (x :: xs)

= f (x, walk (f, b) xs)

in walk (f, b) xs

end

This program is block structured because of the local function walk. It is scope
insensitive because walk is closed.

Block-floating this scope-insensitive block-structured program yields two
scope-free recursive equations. One corresponds to the original entry point,
foldr, and the other to the local function, walk:

(* foldr : (’a * ’b -> ’b) * ’b * ’a list -> ’b *)

fun foldr (f, b, xs)

= foldr_walk (f, b) xs

(* foldr_walk : (’a * ’b -> ’b) * ’b -> ’a list -> ’b *)

and foldr_walk (f, b) nil

= b

| foldr_walk (f, b) (x :: xs)

= f (x, foldr_walk (f, b) xs)

Example 2: We represent the polynomial c0 +c1x+c2x
2 +c3x

3 + ...+cnxn as
the list of coefficients [c0, c1, c2, c3, ..., cn]. Calculating the value of a polynomial
at some x is done by traversing the list of coefficients as follows:

(* val_of_pol : int list * int -> int *)

6

fun val_of_pol (cs, x)

= let (* walk : int * int list -> int *)

fun walk (x_n, nil)

= 0

| walk (x_n, c :: cs)

= c * x_n + walk (x * x_n, cs)

in walk (1, cs)

end

We can also express this function with foldr, naming all anonymous functions.
The result is the following scope-sensitive block-structured program:

(* val_of_pol : int list * int -> int *)

fun val_of_pol (cs, x)

= let (* cons : int * int -> int *)

fun cons (c, a)

= let (* aux : int -> int *)

fun aux x_n

= c * x_n + a (x * x_n)

in aux

end

(* null : int -> int *)

fun null x_n

= 0

in foldr (cons, null, cs) 1

end

Three local functions occur: cons, which has one free variable, x; aux, which has
three free variables, c, a, and x; and null, which is closed.

Parameter-lifting this scope-sensitive block-structured program parameter-
izes cons with x and aux with c, a, and x. The result is the following scope-
insensitive block-structured program:

(* val_of_pol : int list * int -> int *)

fun val_of_pol (cs, x)

= let (* cons : int -> int * int -> int *)

fun cons x (c, a)

= let (* aux : int * int * int -> int -> int *)

fun aux (c, a, x) x_n

= c * x_n + a (x * x_n)

in aux (c, a, x)

end

(* null : int -> int *)

fun null x_n

= 0

in foldr (cons x, null, cs) 1

end

This program is block structured because of the local functions cons, aux, and
null. It is scope insensitive because each of these functions is closed.

7

Block-floating this scope-insensitive block-structured program yields four
scope-free recursive equations. One corresponds to the original entry point and
the three others to the local functions:

(* val_of_pol : int list * int -> int *)

fun val_of_pol (cs, x)

= foldr (val_of_pol_cons x, val_of_pol_null, cs) 1

(* val_of_pol_cons : int -> int * int -> int *)

and val_of_pol_cons x (c, a)

= val_of_pol_cons_aux (c, a, x)

(* val_of_pol_cons_aux : int * int * int -> int -> int *)

and val_of_pol_cons_aux (c, a, x) x_n

= c * x_n + a (x * x_n)

(* val_of_pol_null : int -> int *)

and val_of_pol_null x_n

= 0

As illustrated by this example, lambda-lifting naturally handles higher-order
functions. Before lambda-lifting, the free variables of a function are implicitly
passed at the definition site to construct a closure. Lambda-lifting transforms
the definition site into a call site where the free variables are explicitly passed
to the lifted function.

In practice, for efficiency, polynomials are usually represented in Horner form
c0 + x(c1 + x(c2 + x(c3 + ...))) and are calculated more directly as follows:

(* val_of_pol : int list * int -> int *)

fun val_of_pol (cs, x)

= foldr (fn (c, a) => c + x * a, 0, cs)

This definition has only one functional value with one free variable. It is lambda-
lifted into the following recursive equations:

(* val_of_pol : int list * int -> int *)

fun val_of_pol (cs, x)

= foldr (val_of_pol_cons x, 0, cs)

(* val_of_pol_cons : int -> int * int -> int *)

and val_of_pol_cons x (c, a)

= c + x * a

The extra parameter needed after lambda-lifting, x, is explicitly passed to
val of pol cons, a technique that was initially developed for the POP-2 pro-
gramming language [11].

1.3 Two examples to illustrate the time complexity of
lambda-lifting

We first consider an example involving multiple local functions and variables
occurring free further in any call path, and then an example involving mutually
recursive local functions.

8

Example 1: The following scope-sensitive block-structured program adds its
two parameters.

(* main : int * int -> int *)

fun main (x, y)

= let (* add : int -> int *)

fun add p

= add_to_x p

(* add_to_x : int -> int *)

and add_to_x q

= q + x

in add y

end

Two local functions occur: add, which is closed, and add to x, which has one
free variable, x.

Parameter-lifting this program parameterizes add to x with x, which in turn
requires us to parameterize add with x as well. The result is the following scope-
insensitive block-structured program:

(* main : int * int -> int *)

fun main (x, y)

= let (* add : int -> int -> int *)

fun add x p

= add_to_x x p

(* add_to_x : int -> int -> int *)

and add_to_x x q

= q + x

in add x y

end

Block-floating this program yields three recursive equations, one for the orig-
inal entry point and two for the local functions:

(* main : int * int -> int *)

fun main (x, y)

= main_add x y

(* main_add : int -> int -> int *)

and main_add x p

= main_add_to_x x p

(* main_add_to_x : int -> int -> int *)

and main_add_to_x x q

= q + x

As illustrated by this example, during parameter lifting, each function needs
to be passed not only the value of its free variables, but also the values of the
free variables of all its callees.

9

Example 2: The following scope-sensitive block-structured program multi-
plies its two parameters with successive additions, using mutual recursion.

(* mul : int * int -> int *)

fun mul (x, y)

= let (* loop : int -> int *)

fun loop z

= if z = 0 then 0 else add_to_x z

(* add_to_x : int -> int *)

and add_to_x z

= x + loop (z - 1)

in loop y

end

Two local functions occur: loop, which is closed, and add to x, which has one
free variable, x.

Parameter-lifting this program parameterizes add to x with x, which in turn
requires us to parameterize its caller loop with x as well. When add to x calls
loop recursively, it must pass the value of x to loop, so that loop can pass it
back in the recursive call. The result is the following scope-insensitive block-
structured program:

(* mul : int * int -> int *)

fun mul (x, y)

= let (* loop : int -> int -> int *)

fun loop x z

= if z = 0 then 0 else add_to_x x z

(* add_to_x : int -> int -> int *)

and add_to_x x z

= x + loop x (z - 1)

in loop x y

end

Block-floating this program yields three recursive equations, one for the orig-
inal entry point and two for the local functions:

(* mul : int * int -> int *)

fun mul (x, y)

= mul_loop x y

(* mul_loop : int -> int -> int *)

and mul_loop x z

= if z = 0 then 0 else mul_add_to_x x z

(* mul_add_to_x : int -> int -> int *)

and mul_add_to_x x z

= x + mul_loop x (z - 1)

This final example illustrates our insight: during parameter lifting, mutually
recursive functions must be passed the same set of free variables as parameters.

10

1.4 Overview

Lambda-lifting, as specified by Johnsson, takes cubic time (Section 2). We show
how to reduce this complexity to quadratic time (Section 3). We also present
a flow-sensitive extension to lambda-lifting, where flow information is used to
eliminate redundant formal parameters generated by the standard algorithm
(Section 4).

Throughout the main part of the article, we consider Johnsson’s algorithm
[27, 28]. Other styles of lambda-lifting, however, exist: we describe them as
well, together with addressing related work (Section 5). Finally, we describe an
instance of lambda-lifting in Java compilers (Section 6) and point out how it
could benefit from lambda-lifting in quadratic time.

1.5 Notation and assumptions

We operate on the subset of ML conforming to the simple syntax of Figure 1,
where we distinguish between function names and variable names.

p ∈ Program ::= {d1, . . . , dm}
d ∈ Def ::= f ≡ λ(v1, . . . , vn).e
e ∈ Exp ::= literal | v | f | if e0 then e1 else e2 |

e0 . . . en | letrec {d1, . . . , dk} e0

v ∈ Variable
f ∈ FunctionName∪ PredefinedFunction

Figure 1: Syntax of source programs

Our complexity analysis assumes that sets of variables are represented using
bit vectors, where element insertion and removal are performed in constant time
and set union is performed in linear time. The algorithm for parameter lifting, in
Figure 9, makes use of a number of graph and list procedures. These procedures
are specified in Figure 2.

Graph.add-edge :: Graph(α) → (α, α) → (α, α)
Graph.add-edge G (n1, n2) : Updates G to contain the nodes n1 and n2 as

well as an edge between the two.

Graph.coalesceSCC :: Graph(α) → Graph(Set(α))
Graph.coalesceSCC G : Returns G with its strongly connected components

coalesced into sets [1].

Graph.reverseBreadthFirstOrdering :: Graph(α) → List(α)
Graph.reverseBreadthFirstOrdering G : Returns a list containing the nodes

of G, in a reverse breadth-first or-
dering.

Figure 2: Graph and list procedures

11

2 Lambda-lifting in cubic time

2.1 Johnsson’s parameter-lifting algorithm

Johnsson’s parameter-lifting algorithm is shown in Figures 3 and 4. It assumes
that variable names are unique. The functions FV and FF map expressions to
their set of free variables and of free function names. The algorithm descends
recursively through the program structure and calculates the minimal set of
variables that are needed by each function. The descent is performed primarily
by the function parameterLiftExp, whose parameter S denotes the current set
of solutions (i.e., needed variables). The set of solutions is used to compute
the set of solutions for each inner scope, by solving set equations describing the
dependencies between functions. First, the sets of free variables (Vfi) and free
functions (Ffi) are computed, and S is used to extend each Vfi for each free
function from the enclosing scope. Then, the free variables are propagated by
adding Vfi to Vfj when fi is in Ffj . The dependencies between the functions can
be arbitrarily complex since a function can depend on any variable or function
that is lexically visible. In particular, mutually recursive functions depend upon
each other, and so they give rise to mutually recursive set equations.

We analyze the complexity of this algorithm as follows. The mutually recur-
sive set equations are solved using fixed-point iteration. A program containing
m function declarations gives rise to m set equations. In a block-structured
program the functions are distributed across the program, so we solve the set
equations in groups as we process each block of local functions. Each set equa-
tion unifies O(m) sets of size O(v), where v is the number of variables in the
program. However, the total size of all the equations is bounded by the size of
the program n, so a single iteration involves O(n) set-union operations. Each
set-union operation takes times O(v), so a single iteration takes time O(nv).
The number of iterations needed to perform a full transitive closure is O(m),
so the time needed to solve all the set equations is O(mnv), or simply O(n3),
which is the overall running time of parameter lifting.

Figure 5 shows the standard (globally applied) block-floating algorithm.
Johnsson’s original lambda-lifting algorithm includes steps to explicitly name
anonymous lambda expressions and replace non-recursive let blocks by appli-
cations. These steps are trivial and omitted from the figure. To block-float a
program of size n, the scope-insensitive functions are simply collected, which
can be done in one pass and therefore in time O(n). Therefore, the overall
running time of Johnsson’s lambda-lifting algorithm is O(n3).

2.2 An alternative specification based on graphs

Lambda-lifting can be specified with a graph rather than with set equations.
This graph describes the lexical dependencies between source functions. Peyton
Jones also uses such a dependency graph [39], but for a different purpose (see
Section 5.1). Each node in the graph corresponds to a function in the program,
and is associated with the free variables of this function. An edge in the graph

12

parameterLiftProgram :: Program → Program
parameterLiftProgram p = map (parameterLiftDef ∅) p

parameterLiftDef :: Set(FunName × Set(Variable)) → Def → Def
parameterLiftDef S (f ≡ λ(v1, . . . , vn).e) =

applySolutionToDef S (f ≡ λ(v1, . . . , vn).(parameterLiftExp S e))

parameterLiftExp :: Set(FunName × Set(Variable)) → Exp → Exp
parameterLiftExp S literal = literal
parameterLiftExp S v = v
parameterLiftExp S f = applySolutionToExp S f
parameterLiftExp S (if e0 then e1 else e2) =

let e′i = parameterLiftExp S ei for 0 ≤ i ≤ 2
in if e′0 then e′1 else e′2

parameterLiftExp S (e0 . . . en) =
let e′i = parameterLiftExp S ei for 0 ≤ i ≤ n
in e′0 . . . e′n

parameterLiftExp S (LetRec {d1, . . . , dk} e0) =
foreach (fi ≡ li) ∈ {d1, . . . , dk} do

Vfi := FV(li);
Ffi := FF(li)

foreach Ffi ∈ {Ff1 , . . . , Ffk
} do

foreach (g, Vg) ∈ S such that g ∈ Ffi do
Vfi := Vfi ∪ Vg;
Ffi := Ffi\{g}

fixpoint over {Vf1 , . . . , Vfk
} by

foreach Ffi ∈ {Ff1 , . . . , Ffk
} do

foreach g ∈ Ffi do
Vfi := Vfi ∪ Vg

let S′ = S ∪ {(f1, Vf1), . . . , (fk, Vfk
)}

fs = map (parameterLiftDef S′) {d1, . . . , dk}
e′0 = parameterLiftExp S′ e0

in letrec fs e′0

Figure 3: Johnsson’s parameter-lifting algorithm (part 1/2) — time O(n3).

13

applySolutionToDef :: Set(FunName × Set(Variable)) → Def → Def
applySolutionToDef {. . . , (f, {v1, . . . , vn}), . . .} (f ≡ λ(v′1, . . . , v

′
n′).e) =

(f ≡ λ(v1, . . . , vn).λ(v′1, . . . , v
′
n′).e)

applySolutionToDef S d = d

applySolutionToExp :: Set(FunName × Set(Variable)) → Exp → Exp
applySolutionToExp (S as {. . . , (f, {v1, . . . , vn}), . . .}) f =

(f (v1 . . . vn))
applySolutionToExp S e = e

Figure 4: Johnsson’s parameter-lifting algorithm (part 2/2) — time O(n3).

blockFloatProgram :: Program → Program
blockFloatProgram {d1, . . . , dm} =

(blockFloatDef d1) ∪ . . . ∪ (blockFloatDef dm)

blockFloatDef :: Def → Set(Def)
blockFloatDef (f ≡ λ(v1, . . . , vn).e) =

let (F, e′) = blockFloatExp e
in F ∪ {f ≡ λ(v1, . . . , vn).e′}

blockFloatExp :: Exp → Set(Def) × Exp
blockFloatExp literal = (∅, literal)
blockFloatExp v = (∅, v)
blockFloatExp f = (∅, f)
blockFloatExp (if e0 then e1 else e2) =

let (Fi, e′i) = blockFloatExp ei for 0 ≤ i ≤ 2
in (F0 ∪ F1 ∪ F2, if e′0 then e′1 else e′2)

blockFloatExp (e0 . . . en) =
let (Fi, e′i) = blockFloatExp ei for 0 ≤ i ≤ n
in (F0 ∪ . . . ∪ Fn, e′0 . . . e′n)

blockFloatExp (letrec {d1, . . . , dk} e0) =
let F = (blockFloatDef d1) ∪ . . . ∪ (blockFloatDef dk)

(F0, e′0) = blockFloatExp e0

in (F ∪ F0, e′0)

Figure 5: Block floating: block structure is flattened

14

from a node f to a node g indicates that the function f depends on g, because
it refers to g. Mutually recursive dependencies give rise to cycles in this graph.
Rather than solving mutually recursive set equations, we propagate the variables
associated with each node backwards through the graph, from callee to caller,
merging the variable sets, until a fixed point is reached.

2.3 Example

Figure 6 shows a small program that uses three mutually recursive functions,
each of which has a different free variable.

We can describe the dependencies between the local block of functions using
set equations, as shown in Figure 7. To solve these set equations, we need
to perform three fixed-point iterations, since there is a cyclic dependency of
size three. Similarly, we can describe these dependencies using a graph, also
shown in Figure 7. The calculation of the needed variables can be done using
this representation, by propagating variable sets backwards through the graph.
A single propagation step is done by performing a set union over the variables
associated with a node and the variables associated with its successors. Similarly
to the case of the set equations, each node must be visited three times before a
fixed point is reached.

When the set of needed variables has been determined for each function,
solutions describing how each function must be expanded with these variables
are added to the set of solutions. The result is shown in Figure 8.

3 Lambda-lifting in quadratic time

3.1 The basic idea

We consider the variant of the parameter-lifting algorithm that operates on
a dependency graph (Section 2.2). This variant propagates needed variables
backwards through the graph since the caller needs the variables of each callee.

It is our observation that functions that belong to the same strongly con-
nected component of the call graph must be parameter-lifted with the same set
of variables (as was illustrated in Section 1.3). We can thus treat these func-
tions in a uniform fashion, by coalescing the strongly connected components
of the dependency graph. Each function must define at least its free variables
together with the free variables of the other functions of the strongly connected
component. Coalescing the strongly connected components of the dependency
graph produces a directed acyclic graph with sets of function names for nodes.
A breadth-first backwards propagation of variables can then be done in linear
time, which eliminates the need for a fixed-point computation.

Our contribution is

• to characterize the fixed-point operations on the set equations as propa-
gation through the dependency graph, and

15

fun main (x, y, z, n)

= let fun f1 i

= if i = 0 then 0 else x + f2 (i - 1)

and f2 j

= let fun g2 b = b * j

in if j = 0 then 0 else g2 y + f3 (j - 1)

end

and f3 k

= let fun g3 c = c * k

in if k = 0 then 0 else g3 z + f1 (k - 1)

end

in f1 n

end

Figure 6: Three mutually recursive functions




Sf1 = {x} ∪ Sf2

Sf2 = {y} ∪ Sf3

Sf3 = {z} ∪ Sf1




Sg2 = {j}
Sg3 = {k}

(f1, {x})

		
(f2, {y})

44

{{vv
vvv

v
(f3, {z})

ii

##HH
HHHH

(g2, {j}) (g3, {k})

Figure 7: Dependencies between the local functions in Figure 6

fun main (x, y, z, n)

= f1 (x, y, z) n

and f1 (x, y, z) i

= if i = 0 then 0 else x + f2 (x, y, z) (i - 1)

and f2 (x, y, z) j

= if j = 0 then 0 else g2 j y + f3 (x, y, z) (j - 1)

and g2 j b

= b * j

and f3 (x, y, z) k

= if k = 0 then 0 else g3 k z + f1 (x, y, z) (k - 1)

and g3 k c

= c * k

Figure 8: Lambda-lifted counterpart of Figure 6

16

• to recognize that functions in the same strongly connected component
require the same set of variables.

We can therefore first determine which variables need to be known by each
function in a strongly connected component, and then add them as formal pa-
rameters to these functions. In each function, those variables not already passed
as parameters to the function should be added as formal parameters.

This approach can be applied locally to work like Johnsson’s algorithm,
processing each block independently. It can also be applied globally to the
overall dependency graph. The global algorithm limits the propagation of free
variables to their point of definition.

3.2 The new algorithm

Figure 9 shows the main part of our (locally applied) O(n2) parameter-lifting
algorithm; the remainder of the algorithm is identical to Johnsson’s algorithm
as presented in Figures 3 and 4. The algorithm makes use of several standard
graph and list operations that were described in Figure 2, page 11. Again, the
set of solutions S is constructed during the recursive descent of the program
structure by the function parameterLiftExp. For each block of mutually recur-
sive functions, the dependency graph is constructed and the strongly connected
components are coalesced. The local function propagateFunNames propagates
free variables through the graph, as follows. For each node, the solution for
all functions associated with this node is extended with the solutions of the
other functions from that node and the solutions of all the successor nodes. To
achieve the backward propagation, the nodes are processed in reverse breadth-
first ordering, so that the successors of a node are processed before the node
itself.

3.3 Revisiting the example of Section 2.3

Applying the algorithm of Figure 9 to the program of Figure 6 processes the
function main by processing its body. The letrec block of the body is processed by
first constructing a dependency graph similar to that shown in Figure 7 (except
that we simplify the description to not include the sets of free variables in the
nodes). Coalescing the strongly connected components of this graph yields three
nodes, one of which contains the three functions {f1,f2,f3}. The free variables
of g2 and g3 are propagated backwards to their callees. For the node containing
{f1,f2,f3}, the propagation step serves to associate each function in the node
with the union of the free variables of each of the functions in the component.
These variable sets directly give rise to a new set of solutions.

Each of the functions defined in the letrec block and its body are traversed
and expanded with the variables indicated by the set of solutions. Block floating
according to the algorithm of Figure 5 yields the program of Figure 8.

17

parameterLiftExp S literal = literal
parameterLiftExp S v = v
parameterLiftExp S f = applySolutionToExp S f
parameterLiftExp S (if e0 then e1 else e2) =

let e′i = parameterLiftExp S ei for 0 ≤ i ≤ 2
in if e′0 then e′1 else e′2

parameterLiftExp S (e0 . . . en) =
let e′i = parameterLiftExp S ei for 0 ≤ i ≤ n
in e′0 . . . e′n

parameterLiftExp S (LetRec {d1, . . . , dk} e0) =
let G = ref (∅, ∅)

Vfi = ref (FV(fi)) for 1 ≤ i ≤ k and di = (fi ≡ λ(v1, . . . , vn).e)
in foreach fi ∈ {f1, . . . , fk} do

foreach g ∈ FF(fi) ∩ {f1, . . . , fk} do
Graph.add-edge G(fi, g)

let (G′ as (V ′, E′)) = Graph.coalesceSCC G
succp = {q ∈ V ′|(p, q) ∈ E′}, for each p ∈ V ′

Fp =
⋃

q∈succp
q, for each p ∈ V ′

propagateFunNames :: List(Set(FunName)) → ()
propagateFunNames [] = ()
propagateFunNames (p :: r) =

let V = (
⋃

f∈p Vf) ∪ (
⋃

g∈Fp
Vg)

in foreach f ∈ p do Vf := V ;
propagateFunNames r

in propagateFunNames (Graph.reverseBreadthFirstOrdering G′);
let S′ = S ∪ {(f1, Vf1), . . . , (fk, Vfk

)}
fs = map (parameterLiftDef S′) {d1, . . . , dk}
e′0 = parameterLiftExp S′ e0

in letrec fs e′0
Figure 9: The improved parameter lifting algorithm — time O(n2)

3.4 Complexity analysis

The parameter-lifting algorithm must first construct the dependency graph,
which is done by computing the sets of free functions; this takes time O(n),
where n is the size of the program. The resulting graph has m nodes, where m is
the number of local functions, and O(n) edges (one edge for every free function).
Each node contains a set of size O(v), where v is the number of variables in
the program. The strongly connected components of the graph can then be
computed in time O(m + n), or simply O(n), whereas coalescing the nodes
takes time O(mv). The reversed breadth-first ordering of these nodes can then
be computed in time O(n). The ensuing propagation requires one step for each
node since we are now operating on a directed acyclic graph. Each propagation

18

step consists of a number of set operations, each of which take at mostO(v) time.
Specifically, computing the set V inside the function propagateFunNames for a
given node consists of unifying the variable sets associated with the functions of
the node and the variable sets associated with the successor nodes (which have
already been computed). Thus, the total number of sets which are unified over
the O(m) steps is bounded by the number of edges in the graph. The number
of edges is bounded by the number of function calls in the program, which is
bounded by the size of the program O(n). Each set union operation takes time
O(v), so the overall running time is O(nv) or simply O(n2), where n is the size
of the program and v is the number of variables.

3.5 Lower bound and optimality

Consider the program shown in Figure 10. The main function has k formal
parameters {x1, . . . , xk} and declares k mutually recursive local functions, each
of which has a different variable from {x1, . . . , xk} as a free variable. For this
program, k = Θ(n) = Θ(m), where n is the size of the program and m is the
number of functions in the program. Lambda-lifting this program produces the
program shown in Figure 11. This program has k new global functions, each of
which has been expanded with the k formal parameters of the formerly enclosing
function. The output program is therefore of size Ω(m2), which in this case is
also Ω(n2). One thus cannot perform lambda-lifting faster than Ω(n2), which
means that our time complexity of O(n2) is optimal. The lower bound also
implies that our algorithm operates in time Θ(n2).

fun main x1 ... xk y =

let fun f1 z

= f2 (z + x1)

...

and fk z

= f1 (z + xk)

in f1 y

end

Figure 10: Lower-bound example

fun main x1 ... xk y =

let fun f1 (x1, ..., xk) z

= f2 (x1, ..., xk) (z + x1)

...

and fk (x1, ..., xk) z

= f1 (x1, ..., xk) (z + xk)

in f1 y

end

Figure 11: The program of Figure 10, after parameter-lifting

19

In contrast, Johnsson’s algorithm operates in time O(n3). Again, we can
use the program of Figure 10 to find a lower bound. Johnsson’s algorithm will
for this program construct k set equations which each perform one set union
operation. To solve the set equations, k propagation steps are needed: the free
variable of each function must be propagated to all the other functions. Since
the sets grow by one element at each step, propagation step i operates on sets
of size i. On average, each step takes time Θ(k

2k) = Θ(k2). The total time
taken for this program is thus Θ(k3) which in this case is Θ(n3). Johnsson’s
algorithm thus has a worst-case lower bound of Ω(n3) [14]. As shown above, for
this worst-case program, our algorithm operates in time Θ(n2).

4 Flow-sensitive lambda-lifting

in quadratic time

The value of a free variable might be available within a strongly connected
component under a different name. Johnsson’s algorithm (and therefore our
algorithm as well), however, includes all the variables from the outer scopes as
formal parameters because it only looks at their name. It therefore can produce
redundant lambda-lifted programs with aliasing.

4.1 A simple example of aliasing

The following program adds its parameter to itself.

(* main : int -> int *)

fun main x

= let (* add : int -> int *)

fun add y

= x + y

in add x

end

In the definition of add, the free variable x is an alias of the formal parameter y.
(NB. Unless one were willing to duplicate the definition of add, there would be no
such aliasing if there were additional calls to add with other actual parameters
than x.)

Lambda-lifting this program yields two recursive equations:

(* main : int -> int *)

fun main x

= main_add x x

(* main_add : int -> int -> int *)

and main_add x y

= x + y

The extraneous parameter of the second recursive equation illustrates the alias-
ing mentioned above. Such aliased parameters can for example occur after
macro expansion, inlining, refactoring, or partial evaluation

20

In extreme cases, the number of extraneous parameters can explode: consider
the lower bound example of Section 3.5, where if the k formal parameters were
aliases, there would be Θ(k2) extraneous parameters. Such extra parameters can
have a dramatic effect. For example, Appel’s compiler uses register-allocation
algorithms that are not linear in the arity of source functions [2]. Worse, in
partial evaluation, one of Glenstrup’s analyses is exponential in the arity of
source functions [21].

4.2 Handling aliasing

Making the lambda-lifting algorithm context-sensitive would require us to look
at the flow graph of the source program, as we did for a related transformation,
lambda-dropping [16]. Variables coming from an outer scope that are present
in a strongly connected component and that retain their identity through all
recursive invocations do not need to be added as formal parameters. Doing so
would solve the aliasing problem and yield what we conjecture to be “optimal
lambda-lifting.”

Looking at the flow graph is achieved by a first-order flow analysis that
computes the unique definition point (if any) of the value bound to each formal
parameter of the first-order functions of the program. Such a use/def-chain
analysis works in one pass and therefore its time complexity is linear in the size
of the program.

The parameter-lifting algorithm presented in Figure 9 can be modified to
perform flow-sensitive lambda-lifting. Given a program annotated with use/def
chains, parameter lifting proceeds as in the flow-insensitive case, except that
a free variable already available as a formal parameter is not added to the set
of solutions, but is instead substituted for the formal parameter that it aliases.
The block-lifting algorithm remains unchanged. Since the time complexity of
use/def-chain analysis is linear, the overall time complexity of the flow-sensitive
lambda-lifting algorithm is quadratic.

4.3 Revisiting the example of Section 4.1

Getting back to the program of Section 4.1, the flow-sensitive lambda-lifter
yields the following recursive equations.

(* main : int -> int *)

fun main x

= main_add x

(* main_add : int -> int *)

and main_add y

= y + y

This lambda-lifted program does not have redundant parameters.

21

5 Related work

We review alternative approaches to handling free variables in higher-order,
block-structured programming languages, namely supercombinator conversion,
closure conversion, lambda-dropping, and incremental versions of lambda-lifting
and closure conversion. Finally, we address the issues of formal correctness and
typing.

5.1 Supercombinator conversion

Peyton Jones’s textbook describes the compilation of functional programs to-
wards the G-machine [39]. Functional programs are compiled into supercombi-
nators, which are then processed at run time by graph reduction. Supercombi-
nators are closed lambda-expressions. Supercombinator conversion [18, 26, 38]
generalizes bracket abstraction [9] and produces a series of closed terms. It thus
differs from lambda-lifting that produces a series of mutually recursive equations
where the names of the equations are globally visible [35].

Peyton Jones also uses strongly connected components for supercombinator
conversion. First, dependencies are analyzed in a set of recursive equations.
The resulting strongly connected components are then topologically sorted and
the recursive equations are rewritten into nested letrec blocks. There are two
reasons for this design: (1) it makes type-checking faster and more precise;
and (2) it reduces the number of parameters in the ensuing supercombinators.
Supercombinator conversion is then used to process each letrec block, starting
outermost and moving inwards. Each function is expanded with its own free
variables, and made global under a fresh name. Afterwards, the definition of
each function is replaced by an application of the new global function to its
free variables, including the new names of any functions used in the body. This
application is mutually recursive in the case of mutually recursive functions,
relying on the laziness of the source language; it effectively creates a closure for
the functions.

Peyton Jones’s algorithm thus amounts to first applying dependency analysis
to a set of mutually recursive functions and then to perform supercombinator
conversion. As for dependency analysis, it is only used to optimize type checking
and to minimize the size of closures.

In comparison, applying our algorithm locally to a letrec block would first
partition the functions into strongly connected components, like dependency
analysis. We use the graph structure, however, to propagate information, not
to obtain an ordering of the nodes for creating nested blocks. We also follow
Johnsson’s algorithm, where the names of the global recursive equations are free
in each recursive equations, independently of the evaluation order. Johnsson’s
algorithm passes all the free variables that are needed by a function and its
callees, rather than just the free variables of the function.

To sum up, Peyton Jones’s algorithm and our revision of Johnsson’s algo-
rithm both coalesce strongly connected components in the dependency graph,
but for different purposes, our purpose being to reduce the time complexity of

22

lambda-lifting from cubic to quadratic.

5.2 Closure conversion

The notion of closure originates in Landin’s seminal work on functional pro-
gramming [30]. A closure is a functional value and consists of a pair: a code
pointer and an environment holding the denotation of the variables that oc-
cur free in this code. Making this pair explicit in the source program is called
‘closure conversion’; it yields scope-insensitive programs, and is a key step in
Standard ML of New Jersey [5, 6]. Closure conversion is akin to supercombina-
tor conversion, though in the case of mutually recursive definitions, the closure
environments hold the values of the free variables of the mutually recursive def-
initions, whereas in supercombinator conversion, closures are created through a
mutually recursive application.

In his textbook [39], Peyton Jones concluded his comparison between lambda-
lifting and supercombinator/closure conversion by pointing out a tension be-
tween

• passing all the [denotations of the] free variables of all the callees but not
the values of the mutually recursive functions (in lambda-lifting), and

• passing all the values of the mutually recursive functions but not the free
variables of the callees (in closure conversion).

He left this tension unresolved, stating that future would tell which algorithm
(lambda-lifting or closure conversion) would prevail. Today, most compilers
for functional languages (Haskell, ML, Scheme) use closure conversion, most
compilers for functional logic languages (Curry, Escher) use lambda-lifting, and
most program transformers (Similix, Stratego, etc.) use lambda-lifting.

5.3 Lambda-dropping

Lambda-dropping is the inverse of lambda-lifting [16]:

recursive equations

lambda
dropping

��
block-structured program

lambda
lifting

OO

We developed it to be able to compile programs after program transformation.
Indeed program transformers tend to be geared to lambda-lifted source programs
and they tend to yield lambda-lifted residual programs. In contrast, compilers
tend to be geared to source programs written by humans and therefore with few
parameters.1 Therefore, high numbers of formal parameters are not optimized

1For example, the magic numbers of parameters, in OCaml, are 0 to 7.

23

and often they form a major run-time overhead to invoke procedures. Lambda-
dropping reduces the number of formal parameters by restoring block structure:

scope-free
recursive equations

block
sinking

��
lambda

dropping

��

scope-insensitive
block-structured program

block
floating

OO

parameter
dropping

��
scope-sensitive

block-structured program

lambda
lifting

EE

parameter
lifting

OO

The block-floating phase of lambda-lifting is reversed by a block-sinking phase.
This phase creates block structure by (1) creating local blocks and (2) relocating
the definition of functions that are used in only one function into the local block
of this function. The parameter-lifting phase of lambda-lifting is reversed by a
parameter-dropping phase. This phase removes redundant formal parameters
that are originally defined in an outer scope and that always take on the same
value.

A few years ago, Appel pointed out a correspondence between imperative
programs in SSA form and functional programs using block structure and lexical
scope [3]; he showed how to transform an SSA program into its functional rep-
resentation [4]. We were struck by the fact that this transformation corresponds
to performing block sinking on the recursive equations defining the program. As
for the transformation into optimal SSA form (which diminishes the number of
Φ-nodes), it is equivalent to parameter dropping. Lambda-dropping can there-
fore be used to transform programs in SSA form into optimal SSA form [16].
This observation prompted us to improve the complexity of the lambda-dropping
algorithm to O(n log n), where n is the size of the program, by using the dom-
inance graph of the dependency graph. We then re-stated lambda-lifting in a
similar framework using graph algorithms, which led us to the result presented
in the present article.

5.4 Flow sensitivity, revisited

We observe that lambda-dropping is flow sensitive, in the sense that it removes
the aliased parameters identified as a possible overhead for lambda-lifting in Sec-
tion 4. Therefore flow-sensitive lambda-lifting can be achieved by first lambda-
dropping the program, and then lambda-lifting the result in the ordinary flow-
insensitive way. Since the time complexity of lambda-dropping is lower than the
time complexity of lambda-lifting and since lambda-dropping never increases the

24

size of the program, using lambda-dropping as a preprocessing transformation
does not increase the overall time complexity of lambda-lifting.

5.5 Mixed style

In order to preserve code locality, compilers such as Twobit [12] or Moby [40]
often choose to lift parameters only partially. The result is in the mixed style
described in Section 1.1.

In more detail, rather than lifting all the free variables of the program,
parameter lifting is used incrementally to lift only a subset of the free variables
of each function. If a function is to be moved to a different scope, however,
it needs to be passed the free variables of its callees as parameters. As is the
case for global lambda-lifting, propagating the additional parameters through
the dependency graph requires cubic time. To improve the time complexity,
our quadratic-time parameter-lifting algorithm can be applied to the subsets of
the free variables instead. The improvement in time complexity for incremental
lambda-lifting is the same as what we observed for the global algorithm.

We note that a partial version of closure conversion also exists, namely Steck-
ler and Wand’s [42], that leaves some variables free in a closure because this
closure is always applied in the scope of these variables. We also note that
combinator-based compilers [45] can be seen as using a partial supercombinator
conversion.

5.6 Correctness issues

Only idealized versions of lambda-lifting and lambda-dropping have been for-
mally proven correct. Danvy has related the fixed points of lambda-lifted func-
tionals and of lambda-dropped functionals [15]. Fischbach and Hannan have
capitalized on the symmetry of lambda-lifting and lambda-dropping to formal-
ize them in a logical framework, for a simply typed source language [20].

Nevertheless, although there is little doubt that Johnsson’s original algo-
rithm is correct, its formal correctness still remains to be established.

5.7 Typing issues

Fischbach and Hannan have shown that lambda-lifting is type-preserving for
simply typed programs [20]. Thiemann has pointed out that lambda-lifted ML
programs are not always typeable, due to let polymorphism [43]. Here is a very
simple example. In the following block-structured program, the locally defined
function has type ’a -> int.

fun main ()

= let fun constant x

= 42

in (constant 1) + (constant true)

end

25

The corresponding lambda-lifted program, however, is not typeable because of
ML’s monomorphic recursion rule [34]. Since constant is defined recursively, its
name is treated as lambda-bound, not let-bound:

fun main ()

= (constant 1) + (constant true)

and constant x

= 42

The problem occurs again when one of the free variables of a local recursive
function is polymorphically typed.

To solve this problem, one could think of making lambda-lifting yield not just
one but several groups of mutually recursive equations, based on a dependency
analysis [39]. This would not, however, be enough because a local polymorphic
function that calls a surrounding function would end up in the same group of
mutually recursive equations as this surrounding function.

There is no generally accepted solution to the problem. Thiemann proposes
to parameter-lift some function names as well, as in supercombinator conver-
sion [43]. Fischbach and Hannan propose to use first-class polymorphism instead
of let-polymorphism [20]. Yet another approach would be to adopt a polymor-
phic recursion rule, i.e., to shift from the Damas-Milner type system to the
Milner-Mycroft type system, and to use a dependency analysis as in a Haskell
compiler. Milner-Mycroft type inference, however, is undecidable [25] and in
Haskell, programmers must supply the intended polymorphic type; correspond-
ingly, a lambda-lifter should then supply the types of lifted parameters, when
they are polymorphic.

6 Lambda-lifting in Java

The Java programming language supports block structure and lexical scope in
the form of inner classes [29]. The Java virtual machine on the other hand
only supports scope-insensitive programs [31]. For this reason, the compilation
process from Java source code to Java bytecode must make inner classes scope
insensitive. We observe that part of this process is based on lambda-lifting.

6.1 Java inner classes

In Java, an inner class can be declared as a member of an enclosing class or as
a local declaration within a method. The free variables of an inner class can
be divided into two categories: variables that are declared as a field of some
enclosing class and variables that are declared locally to an enclosing method.

The fields of an enclosing class are accessed using a static link. Specifically,
the program is transformed by the compiler to access the free field variables
from the enclosing class using a static link stored in a field. The static link is
initialized by the constructor when instances of the inner class are created. A

26

special classfile attribute is added to both the enclosing class and the inner class
to allow the inner class to access private members of the enclosing class.

The Java language specification states that local variables which are ac-
cessed by an inner class must be declared final, i.e., immutable once they are
initialized [29, §8.1.2]. Therefore their denotation can be safely copied. And
indeed, variables that are declared locally to an enclosing method are accessed
by copying the value they denote when an instance of the inner class is created.
Specifically, the program is transformed to access the values of the free local
variables from the immediately enclosing method through local copies stored in
fields of the inner class, and to access the values of the free local variables from
the outer enclosing methods through the static link. The values of the local
variables are passed as constructor arguments when instances of the inner class
are created.

As a net effect of the transformation, the inner classes are scope insensitive
and the compiler can lift them.

6.2 A simple example of inner classes

Figure 12 illustrates inner classes declared within methods. The program is
written in a functional style of programming using objects as closures, and is
essentially equivalent to the ML program shown in Figure 13. The interface
Function describes objects that represent functions that map an integer to an
integer. The class Make fn has a method make fn which returns a Function object
created using the two inner classes Add x and Add x Add y. The inner class Add x

has x as a free variable, whereas Add x Add y has y as a free variable. A use of
this class could be:

Function f = (new Make_fn()).make_fn(1,2);

int result = f.apply(3);

The effect is that result is assigned the value 6.
The compiled version of the program of Figure 12 is shown in Figure 14,

after decompilation (for our purposes, Java byte code and Java source code
contain the same information, so for readability we use decompiled Java source
code). The class Add x (compiled name: Make fn$1Add x) now takes the enclosing
class and the variable x as additional constructor parameters and stores them in
the fields this$0 and val$x. Similarly, the class Add y Add x takes the enclosing
class and the variable y as additional constructor parameters and stores them
in fields. However, since it also needs to create an instance of the class Add x, it
needs the value of x, and is therefore also passed x as an additional constructor
parameter which is stored in a field.

The ML counterpart of Figure 14 is displayed in Figure 15. It is the
parameter-lifted version of Figure 13.

For local variables occurring free in inner classes, the transformation from
Java source code to Java byte code therefore coincides with lambda-lifting, since
the free variables are passed as additional arguments to the constructor. More-
over, as illustrated by the example, the free variables of other inner classes that

27

public interface Function {

public int apply(int i);

}

public class Make_fn {

Function make_fn(final int x, final int y) {

class Add_x implements Function {

public int apply(int i) {

return i+x;

}

}

class Add_y_Add_x implements Function {

public int apply(int i) {

return (new Add_x()).apply(i)+y;

}

}

return new Add_y_Add_x();

}

}

Figure 12: Inner classes with free variables in Java

fun make_fn (x, y)

= let fun add_x i

= i+x

fun add_x_add_y i

= (add_x i) + y

in add_x_add_y

end

Figure 13: ML counterpart of Figure 12

28

public interface Function {

public int apply(int i);

}

public class Make_fn {

Function make_fn(final int x, final int y) {

return new A$1Add_y_Add_x(this,x,y);

}

}

class Make_fn$1Add_x implements Function {

private final Make_fn this$0;

private final int val$x;

public Make_fn$1Add_x(Make_fn a, int x) { this$0=a; val$x=x; }

public int apply(int i) { return i+valx; }

}

class Make_fn$1Add_y_Add_x implements Function {

private final Make_fn this$0;

private final int val$x;

private final int val$y;

public Make_fn$1Add_y_Add_x(Make_fn a, int x, int y) {

this$0=a; val$x=x; val$y=y;

}

public int apply(int i) {

(new Make_fn$1Add_x(this$0,val$x)).apply(i)+val$y;

}

}

Figure 14: The program of Figure 12, after compilation and decompilation

fun make_fn (x, y)

= let fun add_x x i

= i+x

fun add_x_add_y (x, y) i

= (add_x x i) + y

in add_x_add_y (x, y)

end

Figure 15: ML counterpart of Figure 14

29

are instantiated within the inner class are also passed as constructor arguments,
in a transitive fashion, again similarly to parameter lifting.

6.3 Time complexity

In actuality, lambda-lifting in Java is simpler than lambda-lifting in a func-
tional language because inner classes defined within methods only have forward
visibility. In the absence of mutual recursion, the dependencies between inner
classes always form a directed acyclic graph. Therefore the propagation of free
variables can be done in quadratic time, as in our lambda-lifting algorithm.

Should Java be revised one day to allow mutually recursive inner classes
defined within methods, Java compilers would need to perform full lambda-
lifting. It is our point here that they could do so in quadratic time rather than
in cubic time.

7 Conclusion

We have shown that a transitive closure is not needed for lambda-lifting. We
have reformulated lambda-lifting as a graph algorithm and improved its time
complexity from O(n3) to O(n2), where n is the size of the program. Based on
a simple example where lambda-lifting generates a program of size Ω(n2), we
have also demonstrated that our improved complexity is optimal.

The quadratic-time algorithm can replace the cubic-time instances of lambda-
lifting in any compiler, partial evaluator, or program transformer, be it for global
or for incremental lambda-lifting.

Acknowledgements: We are grateful to Mads Sig Ager, Lars R. Clausen,
Daniel Damian, Kristoffer Arnsfelt Hansen, Julia Lawall, Jan Midtgaard, Kevin
S. Millikin, Laurent Réveillère, Henning Korsholm Rohde, and Kristian Støvring
Sørensen for their comments on an earlier version of this article, and to Andrzej
Filinski for a clarification about ML typing. Thanks are also due to the anony-
mous referees for very perceptive and useful reviews.

This work is supported by the ESPRIT Working Group APPSEM (http:
//www.appsem.org) and by the Danish Natural Science Research Council, Grant
no. 21-03-0545.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. World Student Series. Addison-Wesley, Reading,
Massachusetts, 1986.

[2] Andrew W. Appel. Compiling with Continuations. Cambridge University
Press, New York, 1992.

30

[3] Andrew W. Appel. Modern Compiler Implementation in {C, Java, ML}.
Cambridge University Press, New York, 1998.

[4] Andrew W. Appel. SSA is functional programming. ACM SIGPLAN No-
tices, 33(4):17–20, April 1998.

[5] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing
style. In Michael J. O’Donnell and Stuart Feldman, editors, Proceedings
of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, pages 293–302, Austin, Texas, January 1989. ACM Press.

[6] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
Jan Ma luszyński and Martin Wirsing, editors, Third International Sympo-
sium on Programming Language Implementation and Logic Programming,
number 528 in Lecture Notes in Computer Science, pages 1–13, Passau,
Germany, August 1991. Springer-Verlag.

[7] Lennart Augustsson. A compiler for Lazy ML. In Guy L. Steele Jr., editor,
Conference Record of the 1984 ACM Symposium on Lisp and Functional
Programming, pages 218–227, Austin, Texas, August 1984. ACM Press.

[8] Adam Bakewell and Colin Runciman. Automatic generalisation of function
definitions. In Middeldorp and Sato [33], pages 225–240.

[9] Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume
103 of Studies in Logic and the Foundation of Mathematics. North-Holland,
revised edition, 1984.

[10] Anders Bondorf and Olivier Danvy. Automatic autoprojection of recur-
sive equations with global variables and abstract data types. Science of
Computer Programming, 16:151–195, 1991.

[11] Rod M. Burstall and Robin J. Popplestone. POP-2 reference man-
ual. In Bernard Meltzer and Donald Michie, editors, Machine Intelli-
gence, volume 5, pages 207–246. Edinburgh University Press, 1968. http:
//www-robotics.cs.umass.edu/~pop/functional.html.

[12] William Clinger and Lars Thomas Hansen. Lambda, the ultimate label,
or a simple optimizing compiler for Scheme. In Carolyn L. Talcott, editor,
Proceedings of the 1994 ACM Conference on Lisp and Functional Program-
ming, LISP Pointers, Vol. VII, No. 3, pages 128–139, Orlando, Florida, June
1994. ACM Press.

[13] Charles Consel. A tour of Schism: A partial evaluation system for higher-
order applicative languages. In David A. Schmidt, editor, Proceedings of the
Second ACM SIGPLAN Symposium on Partial Evaluation and Semantics-
Based Program Manipulation, pages 145–154, Copenhagen, Denmark, June
1993. ACM Press.

31

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. The MIT Press, Cambridge, Mas-
sachusetts, second edition, 2001.

[15] Olivier Danvy. An extensional characterization of lambda-lifting and
lambda-dropping. In Middeldorp and Sato [33], pages 241–250.

[16] Olivier Danvy and Ulrik P. Schultz. Lambda-dropping: Transforming re-
cursive equations into programs with block structure. Theoretical Computer
Science, 248(1-2):243–287, 2000.

[17] Olivier Danvy and Ulrik P. Schultz. Lambda-lifting in quadratic time. In
Zhenjiang Hu and Mario Rodriguez-Artalejo, editors, Sixth International
Symposium on Functional and Logic Programming, number 2441 in Lecture
Notes in Computer Science, pages 134–151, Aizu, Japan, September 2002.
Springer-Verlag. Extended version available as the technical report BRICS-
RS-03-26.

[18] Gilles Dowek. Lambda-calculus, combinators and the comprehension
scheme. In Mariangiola Dezani-Ciancaglini and Gordon D. Plotkin, edi-
tors, Second International Conference on Typed Lambda Calculi and Appli-
cations, number 902 in Lecture Notes in Computer Science, pages 154–170,
Edinburgh, UK, April 1995. Springer-Verlag. Extended version available
as the INRIA research report 2535.

[19] Kerstin I. Eder. EMA: Implementing the Rewriting Computational Model
of Escher. PhD thesis, Department of Computer Science, University of
Bristol, Bristol, UK, November 1998.

[20] Adam Fischbach and John Hannan. Specification and correctness of lambda
lifting. Journal of Functional Programming, 13(3):509–543, 2003.

[21] Arne John Glenstrup. Terminator II: Stopping partial evaluation of fully
recursive programs. Master’s thesis, DIKU, Computer Science Department,
University of Copenhagen, June 1999.

[22] Paul T. Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Automatically restructuring programs for the web. In
Martin S. Feather and Michael Goedicke, editors, 16th IEEE International
Conference on Automated Software Engineering (ASE 2001), pages 211–
222, Coronado Island, San Diego, California, USA, November 2001. IEEE
Computer Society.

[23] Michael Hanus (ed.). Curry: An integrated functional logic language (ver-
sion 0.8). Available at http://www.informatik.uni-kiel.de/~curry,
2003.

[24] Michael Hanus (ed.). PAKCS 1.6.0 the Portland Aachen Kiel Curry sys-
tem user manual. Available at http://www.informatik.uni-kiel.de/
~pakcs, 2004.

32

[25] Fritz Henglein. Type inference with polymorphic recursion. ACM Transac-
tions on Programming Languages and Systems, 15(2):253–289, April 1993.

[26] John Hughes. Super combinators: A new implementation method for ap-
plicative languages. In Daniel P. Friedman and David S. Wise, editors,
Conference Record of the 1982 ACM Symposium on Lisp and Functional
Programming, pages 1–10, Pittsburgh, Pennsylvania, August 1982. ACM
Press.

[27] Thomas Johnsson. Lambda lifting: Transforming programs to recursive
equations. In Jean-Pierre Jouannaud, editor, Functional Programming Lan-
guages and Computer Architecture, number 201 in Lecture Notes in Com-
puter Science, pages 190–203, Nancy, France, September 1985. Springer-
Verlag.

[28] Thomas Johnsson. Compiling Lazy Functional Languages. PhD thesis,
Department of Computer Sciences, Chalmers University of Technology,
Göteborg, Sweden, 1987.

[29] Bill Joy, Guy Steele, James Gosling, and Gilad Bracha. The JavaTM Lan-
guage Specification. Addison-Wesley, 2nd edition, 2000.

[30] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[31] Tim Lindholm and Frank Yellin. The JavaTM Virtual Machine Specifica-
tion. Addison-Wesley, 2nd edition, 1999.

[32] Karoline Malmkjær, Nevin Heintze, and Olivier Danvy. ML partial eval-
uation using set-based analysis. In John Reppy, editor, Record of the
1994 ACM SIGPLAN Workshop on ML and its Applications, Rapport de
recherche No 2265, INRIA, pages 112–119, Orlando, Florida, June 1994.

[33] Aart Middeldorp and Taisuke Sato, editors. Fourth Fuji International Sym-
posium on Functional and Logic Programming, number 1722 in Lecture
Notes in Computer Science, Tsukuba, Japan, November 1999. Springer-
Verlag.

[34] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

[35] Flemming Nielson and Hanne Riis Nielson. 2-level λ-lifting. In Harald
Ganzinger, editor, Proceedings of the Second European Symposium on Pro-
gramming, number 300 in Lecture Notes in Computer Science, pages 328–
343, Nancy, France, March 1988. Springer-Verlag.

[36] Atsushi Ohori. The logical abstract machine: A Curry-Howard isomor-
phism for machine code. In Middeldorp and Sato [33], pages 300–318.

33

[37] Dino P. Oliva, John D. Ramsdell, and Mitchell Wand. The VLISP veri-
fied PreScheme compiler. Lisp and Symbolic Computation, 8(1/2):111–182,
1995.

[38] Simon L. Peyton Jones. An introduction to fully-lazy supercombinators.
In Guy Cousineau, Pierre-Louis Curien, and Bernard Robinet, editors,
Combinators and Functional Programming Languages, number 242 in Lec-
ture Notes in Computer Science, pages 176–208, Val d’Ajol, France, 1985.
Springer-Verlag.

[39] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice Hall International Series in Computer Science.
Prentice-Hall International, 1987.

[40] John Reppy. Optimizing nested loops using local CPS conversion. Higher-
Order and Symbolic Computation, 15(2/3):161–180, 2002.

[41] André Santos. Compilation by transformation in non-strict functional lan-
guages. PhD thesis, Department of Computing, University of Glasgow,
Glasgow, Scotland, 1996.

[42] Paul A. Steckler and Mitchell Wand. Lightweight closure conversion. ACM
Transactions on Programming Languages and Systems, 19(1):48–86, 1997.

[43] Peter Thiemann. ML-style typing, lambda lifting, and partial evaluation.
In Proceedings of the 1999 Latin-American Conference on Functional Pro-
gramming, CLAPF ’99, Recife, Pernambuco, Brasil, March 1999.

[44] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9. In Lengauer et al., editor, Domain-
Specific Program Generation, volume 3016 of Lecture Notes in Com-
puter Science. Springer-Verlag, June 2004. (To appear). See http://www.
stratego-language.org/Stratego/LiftDefinitionsToTopLevel for a
discussion of lambda-lifting in the Stratego Compiler.

[45] Mitchell Wand. From interpreter to compiler: a representational deriva-
tion. In Harald Ganzinger and Neil D. Jones, editors, Programs as Data
Objects, number 217 in Lecture Notes in Computer Science, pages 306–324,
Copenhagen, Denmark, October 1985. Springer-Verlag.

34

Recent BRICS Report Series Publications

RS-04-12 Olivier Danvy and Ulrik P. Schultz. Lambda-Lifting in
Quadratic Time. June 2004. pp. To appear inJournal of Func-
tional and Logic Programming. This report supersedes the ear-
lier BRICS report RS-03-36 which was an extended version
of a paper appearing in Hu and Rodŕıguez-Artalejo, editors,
Sixth International Symposium on Functional and Logic Pro-
gramming, FLOPS ’02 Proceedings, LNCS 2441, 2002, pages
134–151.

RS-04-11 Vladimiro Sassone and Paweł Sobociński. Congruences for
Contextual Graph-Rewriting. June 2004. 29 pp.

RS-04-10 Daniele Varacca, Hagen V̈olzer, and Glynn Winskel. Proba-
bilistic Event Structures and Domains. June 2004.

RS-04-9 Ivan B. Damg̊ard, Serge Fehr, and Louis Salvail. Zero-
Knowledge Proofs and String Commitments Withstanding Quan-
tum Attacks. May 2004. 22 pp.

RS-04-8 Petr Jaňcar and Jiř ı́ Srba. Highly Undecidable Questions for
Process Algebras. April 2004. 25 pp. To appear in Lévy, Mayr
and Mitchell, editors, 3rd IFIP International Conference on
Theoretical Computer Science, TCS ’04 Proceedings, 2004.

RS-04-7 Mojḿır K řetı́nský, Vojt ěch Řehák, and Jan Strejček. On the
Expressive Power of Extended Process Rewrite Systems. April
2004. 18 pp.

RS-04-6 Gudmund Skovbjerg Frandsen and Igor E. Shparlinski. On
Reducing a System of Equations to a Single Equation. March
2004. 11 pp. To appear in Schicho and Singer, editors,ACM
SIGSAM International Symposium on Symbolic and Algebraic
Computation, ISSAC ’04 Proceedings, 2004.

RS-04-5 Biernacki Dariusz and Danvy Olivier.From Interpreter to Logic
Engine by Defunctionalization. March 2004. 20 pp. To ap-
pear in Bruynooghe, editor, International Symposium on Logic
Based Program Development and Transformation, LOPSTR ’03
Proceedings, Revised Selected Papers, LNCS, 2003. This report
supersedes the earlier BRICS report RS-03-25.

RS-04-4 Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and
Kim G. Larsen. Optimal Strategies in Priced Timed Game Au-
tomata. February 2004. 32 pp.

