
LAMBDA STATION: ON-DEMAND FLOW BASED ROUTING FOR DATA

INTENSIVE GRID APPLICATIONS OVER MULTITOPOLOGY

NETWORKS.

A. Bobyshev , M. Crawford , P. DeMar, V. Grigaliunas, M. Grigoriev, A.Moibenko,

D. Petravick, R. Rechenmacher, FNAL, Batavia, IL 60510, USA

H. Newman, J. Bunn, F. Van Lingen, D. Nae, S. Ravot, C. Steenberg, X. Su, M. Thomas,

Y. Xia , California Institute of Technology, Pasadena, CA 91125, U.S.A.

Abstract

 Lambda Station is an ongoing project of Fermi National

Accelerator Laboratory and the California Institute of

Technology. The goal of this project is to design, develop

and deploy network services for path selection, admission

control and flow based forwarding of traffic among data-

intensive Grid applications such as are used in High

Energy Physics and other communities. Lambda Station

deals with the last-mile problem in local area networks,

connecting production clusters through a rich array of

wide area networks. Selective forwarding of traffic is

controlled dynamically at the demand of applications.

 This paper introduces the motivation of this project,

design principles and current status. Integration of

Lambda Station client API with the essential Grid

middleware such as the dCache/SRM Storage Resource

Manager is also described. Finally, the results of

applying Lambda Station services to development and

production clusters at Fermilab and Caltech over

advanced networks such as DOE's UltraScience Net and

NSF's UltraLight is covered.

PROJECT OVERVIEW

 The main goal of Lambda Station project is to design,

develop and deploy a network path selection service to

interface production storage and computing facilities with

advanced research networks. In the future, when

corresponding API are available Lambda Station will also

take on the task of negotiating with reservation or

provisioning systems that may regulate the WAN control

planes.

 Policy based routing (PBR) is used to implement flow-

specific routing in the LAN and at the border between

LAN and WAN. In the next section of this paper we will

discuss how Lambda Station serves the unprecedented

demands for data movement by running experiments such

as CDF, D0, and BaBar as well as upcoming LHC

experiments. From our point of view, available data

communication technology will not be able to satisfy

these demands simply by increasing bandwidth in LANs

and commodity WANs due to technology limitations and

high deployment and operational costs. Selective

forwarding on per flow basis to alternate network paths is

desirable for high impact data while leaving other traffic

on regular paths. The ability to selectively forward traffic

requires developing a control unit that is able to

dynamically reconfigure forwarding of specific flows

within local production-use routers on demand of

applications. We refer to such a control unit as Lambda

Station. If one envisions the optical network paths

provided by advanced optical-based research networks as

high bandwidth data railways, then Lambda Station

would functionally be the railroad terminal that regulates

which flows at the local site get directed onto the high

bandwidth data railways. Lambda Station coordinates

network path availability, scheduling, and setup, directs

appropriate forwarding within the local network

infrastructure, and provides the application with the

necessary information to utilize the high bandwidth path.

Having created Lambda Station, we introduce awareness

and exploitation of advanced networking into data

management services of our experiments. Figure 1

illustrates this main idea of the project. To fulfill its main

goal the following parts of the project can be emphasized:

• Building a Wide Area testbed infrastructure

• Developing Lambda Station software, network aware

applications, adapting production-use mass storage

systems, running full-scale Scientific Discovery

through Advanced Computation (SciDAC)

applications to exploit advanced research networks

FERMILAB-PUB-06-276-CD

• Researching the behaviour of network aware

applications with flow-based path selection

MOTIVATION OF THE PROJECT

 The SciDAC Particle Physics Data Grid Collaboratory

Pilot (PPDG) project develops, acquires and delivers

vitally needed Grid-enabled tools for data-intensive

requirements of these experiments. To fully exploit the

science potential latent in their data, CDF and D0 at

Fermilab and BaBar at SLAC are expanding their data

analysis to integrated distributed systems based on Grids.

Moreover, U.S. physicists preparing for the analysis of

data from the CMS and ATLAS detectors at the Large

Hadron Collider (LHC) at CERN face unprecedented

challenges:

• massive, globally distributed datasets growing to the

100 petabyte level by 2010

• petaflops of distributed computing

• collaborative data analysis by global communities of

thousands of scientists.

 PPDG, together with the NSF-funded iVDGL and

GriPhyN projects, is moving to the development of next

generation integrated Grid systems to meet these

challenges, and to fully exploit the LHC’s potential for

physics discoveries. Today, all these high energy physics

PPDG experiments’ grid systems are limited by their

treatment of the network as an external, passive, and

largely unmanaged resource. Moreover, to date, no

advanced network linking the U.S. HEP Laboratories and

key universities involved in Grid and network

development has been available to research and prototype

solutions to these limitations.

Another important use for very high throughput networks

is to move the LHC data across the Atlantic from CERN

in Geneva, Switzerland, to the U.S. Tier-1 regional

centres: Fermilab for the CMS experiment and

Brookhaven for ATLAS. From there data will be

distributed to Tier-2 regional centres at universities like

Caltech and UCSD. These data transfer facilities will

have components of a quasi-real-time system as data

taken at the LHC will have to be continuously distributed

to the regional centers. Data streams of raw and

reconstructed data ready for analysis are being spread

over the distributed regional centers, selected and

targeted to specific physics interests, to ensure full data

access for U.S. physicists to LHC data and to serve

analysis hot spots making data available to specific

regional centers.

 While the LHC model assumes logically dedicated

10Gb links between Tier0(CERN) and Tier1 centers,

computing resources and network paths for most Tier1,

Tier2 centers are not dedicated to LHC-only

experiments. These sites, such as Fermilab are involved

in several different scientific programs and need to have a

mechanism capable of steering high impact LHC related

traffic across the campus network, and on to available

high bandwidth alternate paths.

 To ensure full connectivity of the U.S. to CERN and full

access of U.S. scientists to LHC data, the U.S. LHC

software and computing efforts have started to put up

U.S. LHC Edge Computing elements at CERN with

sufficient data caching and data selection resources and

10Gbit connectivity from these systems across the

Atlantic to the DOE funded link to CERN in Chicago. At

both endpoints clusters of CPUs and storage elements are

being used that are similar to the systems described

Figure 1: Lambda Station in control of traffic path

above. LHC data taking will start in 2007, and the LHC

experiments are conducting a program of work to scale up

to the required throughputs and functionalities that

employs yearly “data challenges” that exercise the

emerging end-to-end data flow systems to increasing

degrees of complexity and size of data volumes.

Over the past several years, there has been a great deal of

research effort and funding put into the deployment of

optical advanced research networks, such as National

Lambda Rail, CAnet4, Netherlight, UKLight, and most

recently, the DOE UltraScience Net. These networks

potentially have the capacity and capabilities to meet the

data movement requirements of the particle physics

collaborations. To date, the focus of research efforts in the

advanced network area have been primarily to provision,

dynamically configure and control, and monitor the wide

area optical network infrastructure itself. Application use

of these facilities has been largely limited to

demonstrations using test stands or small numbers of

expensive high performance computing systems. The

issue of integrating existing production computing

facilities on production local network infrastructure with

advanced, high bandwidth research networks is now

beginning to be addressed. Fundamentally, this is a “last

mile” problem between HEP production-scale computing

facilities and the advanced networks. Lambda Station

project is aimed at taking the first steps to address these

issues.

LAMBDA STATION TESTBED

Building a WAN testbed for the Lambda Station project

is challenging task itself. Such a testbed should include

components of the production infrastructures, both at the

network site and computing and storage servers. At this

time two HEP sites, Fermilab and Caltech, are involved in

our testbed which is built around UltraScience Net (USN)

and UltraLight (UL). At each site there are several test

servers with 10Gb/s connections, storage clusters of

“white box” nodes with 1Gb/s connections, a Lambda

Station server, as well as a production LAN. The

topology of the testbed is depicted in Figure 2. The

Lambda Station at each site is allowed and able to

reconfigure production routers on its own site to steer

traffic of test or production clusters onto USN or UL

instead of the standard ESNET path.

LAMBDA STATION SOFTWARE

An overview of Lambda Station's design and software

was presented in [3] and [4]. Software version 1.0 was

built based on that design and released in February 2006.

The goal of that initial release was to evaluate proposed

solutions and interfaces and to demonstrate a system

supporting the full functional cycle involving interactions

between applications and Lambda Station, Lambda

Station and the site LAN, and pairs of Lambda Stations

synchronizing network configurations at their sites. The

services implemented in software version 1.0 are

accessible via SOAP, however no great efforts were made

yet for interoperability across heterogeneous Web

Services platforms.

The initial design of Lambda Station created

challenging requirements for underlying implementation.

In order to build an interoperable decentralized system,

we decided to employ a Service Oriented Architecture

(SOA) approach. The Lambda Station in that case would

be built as an orchestrated composition of loosely

coupled services with message flow strongly defined by

XML schemata. That could be achieved by utilizing the

web services and XML APIs provided by each

programming language we decided to support – Java,

Perl and Python. For Java, we adopted the JClarens [6]

framework as a convenient grid-aware toolkit. JClarens

is implemented as a container on top of the open source

Apache Axis [12] web services platform and provides

authorization, access control and discovery services as

well as SOAP messaging secured by transport layer for

all Lambda Station (LS) services. The core of

authentication is based on the gLite [7] security library

and supports Standard Grid proxies or KCA-issued

certificates to establish user connections to LS services,

while authentication between Lambda Stations is based

on Grid host certificates. The client interface to LS is

being implemented with secure document/literal wrapped

SOAP messages following recommendations of the Web

Services-Interoperability Profile [8]. The document/literal

format means that every message is sent as a validated

XML document inside of a SOAP envelope.

Lambda Station API

To request a flow-based path, applications and remote

Lambda Stations are provided several API calls [4],

including:

• openServiceTicket

• cancelTicket

• completeTicket

• getTicket

• getTicketStatus

• getFlowSpecification

• getKnownLambdaStations

• getKnownPBRClients

and many others.

The detailed description of all API calls is out of scope

of this paper. However, we would like to give some

overview of the most important API function,

openServiceTicket, which is used by applications and

remote Lambda Stations to request an alternative network

path. First we need to give two definitions, “PBR client”

and “flow,” although the latter term was used above with

its common meaning. In this paper, flow is a stream of IP

packets with some attributes in common such as endpoint

IP addresses (or address ranges), protocols, ports and

differentiated services code point (DSCP). Any

combination of these attributes can be used to identify a

flow, and addresses and ports may be specified by CIDR

blocks and ranges. Lambda Station is capable of

dynamically reconfiguring local network infrastructure

for PBR routing based on these attributes. Lambda

Station controls a network path for PBR clients. A PBR

client is an entity residing on one or more end system that

generates flows that could be subjected to policy based

routing. End systems sourcing and sinking traffic need to

be connected to a PBR capable network infrastructure.

PBR clients are identified or created by cooperation of

system and network administrators and defined in terms

of flow attributes. Hence, multiple PBR clients can be

defined on the same set of end systems. Lambda Station

identifies PBR clients by site-wide unique identifiers.

Combined with a site identifier, it identifies a PBR client

globally. Predefined PBR client's information or more

specific information provided in an openServiceTicket

request allows Lambda Station to decide what parts of the

local area network need to be reconfigured.

There are several different scenarios of how Lambda

Station controls selective forwarding of traffic. In the

simplest case, an application or a remote Lambda Station

places an openServiceTicket request, and specifies

source and destination PBR clients, desired bandwidth,

boarding (a time when Lambda Station can begin

configuring the network), start and end times for data

movement. A unique ID will be returned immediately in

response to an authenticated and authorized

openServiceTicket request. This ID can be used by

applications to track the status of path provisioning,

getting additional information needed for flow marking,

e.g. DSCP assigned by remote Lambda Station to the

corresponding ticket at its end, as well as to synchronize

actions with the remote site if, for example, the remote

application cancels the ticket.

 Many data movement applications, for example

Storage Resource Manager [10,11] get requests to move

or to schedule movement of additional files “on the fly”

and may initiate an additional openServiceTicket call. If

the flow parameters in the new call fall within those of an

existing ticket, Lambda Station does not need to repeat all

negotiations and network configuring. It will return the

ID of an already existing ticket, possibly with an

extension of its end time. This is the Join mode of

OpenServiceTicket. Configurable authorization and quota

parameters govern extension of existing tickets.

The OpenServiceTicket API call relies on pre-defined

PBR clients at both ends because it tells Lambda Stations

what network devices need to be reconfigured. At this

time such information can not be automatically

discovered. How can an application know the names of

these clients? There are several ways to provide this

information for applications. In the first, if the

application is capable of invoking other Lambda Station

services it can ask the local site's Lambda Station for the

information (with getKnownLambdaStations,

Figure 2: A Lambda Station Wide Area Testbed

getKnownPBRClients, ipToPBRclient). The second way

is to add this information into the application's specific

configuration files. And, finally, openServiceTicket

allows specification of source and/or destination

addresses of the systems involved in data transfers rather

than their PBR client names. The site Lambda Station will

try automatically to determine corresponding PBR clients

at both sites to use it for network configuring.

DSCP Tagging.

Provisioning of alternate paths involves generating

requests for service, negotiating parameters with the

remote site, configuring local and wide area networks and

marking specific flows. Obviously it takes some time to

prepare the networks. Lambda Station software version

1.0 is capable of completing all these steps including

dynamic reconfiguring of networks within 3 to 5 minutes.

Many applications use ephemeral transport ports that are

not known before a connection is opened. They may also

change dynamically during a session. Therefore it is

desirable, but not strictly necessary, to know the criteria

for selecting flows before data transfer begins. A DSCP

value is one of a few keys that can be specified in

advance. A Lambda Station design does not require

DSCP but can use it when available.

 Although DSCP can help solve the problem of

defining a flow prior to the start of data transfer, it also

introduces additional complexity. First, preservation of

DSCP is not guaranteed in the WAN. Second, for

dynamically configurable networks DSCP tagging needs

to be synchronized between sites and depends on the

status of their networks. At this time, Lambda Station

software does support two different modes to work with

DSCP. In the first mode, a site may choose to use fixed

DSCP values to identify all traffic that will be switched by

Lambda Station. Lambda Station then advises

applications when to apply that DSCP value, and router

configurations remain constant. This mode will typically

be used by sites that do not want their network devices

dynamically reconfigured under Lambda Station's control.

 In the second mode, a DSCP value is assigned on a per

ticket basis by the local Lambda Station. The same DSCP

code can be used by multiple tickets as long as the source

and/or destination IP addresses are used as additional flow

selectors.

Authorization and Authentication

A Lambda Station relies on the authentication schemes

of the operating environment and frameworks used to

integrate its components. The current Lambda Station

v1.0 software uses basic (password) authentication over

SSL or X.509 client and host certificates. Version 2 is

being implemented in java based on gLite[7] security

libraries.

Authorization rules control access to certain functions

based on the identity of the requester. Three privileges

are defined:

• new ticket operations (alias new) allow the requester

to create, complete, cancel and modify tickets

• join mode operations (alias join) allow joining

new requests to existing ticket.

• extension mode allows joining to an existing

unexpired ticket and extending the active time of the

original ticket.

Resource Monitoring

 The final objective of provisioning an alternate path

for selective flow is to increase overall performance of

data movement. Achieving high data transfer rates

depends on many factors. Researching aspects of high

performance transport is not a goal of this project.

However, when we steer selected flows onto an alternate,

high bandwidth path, the user expects increased

performance. Even advanced R&D networks are finite.

That is why Lambda Station controls a site's use of high

impact networks to avoid assigning too many tickets on

the same links. At this time monitoring of resources is

based on bandwidth requested via openServiceTicket call

(or assigned by default). Determination of true available

bandwidth by network monitoring is not yet integrated. In

the future, we plan to add real-time monitoring and

short-term forecasting capabilities to the Lambda Station

Resource Allocation and Monitoring module.

Network Configuration

 Lambda Station deals with the last-mile problem in

local networks. It provides the means to adapt

production network facilities to support access to

advanced and/or research networks. At this time, Policy

Based Routing is chosen as the technology for selective

flow based forwarding. PBR rules are created

dynamically on-demand of applications, and applied

within the LAN on work group, core and border routers.

Configuring PBR rules involves the completion of several

tasks including creating route map statements, applying

them to appropriate interfaces and creating access control

lists to match traffic. At the current stage of the project,

we are using statically pre-configured route map

statements applied to the interfaces. However, extended

access control lists can be created dynamically based on

flow match criteria provided in the application's requests.

Typically, a campus network can be presented by a

hierarchical design with several logical layers. Such a

hierarchical layout for a work group based approach to

build campus networks is depicted in figure 3. It consists

of work group, core and border layers. Depending on

site's specific network structure, access to R&D networks

for different user groups may need to be configured at

several layers. For the architecture in figure 3, outbound

traffic of WG-B can be switched to R&D networks at the

work group layer because it has a direct connection to the

R&D admission devices. In order to get incoming traffic

from R&D networks forwarded via a symmetric path, the

inbound route for WG-B needs to be configured at the

R&D layer. WG-A has no direct connection to R&D from

its work group layer, so PBR rules must be applied at the

network core and R&D layer for both inbound and

outbound traffic. Generally speaking, work groups may

require PBR rules to be applied on multiple layers of the

campus network for one or both directions of traffic.

Lambda Station does not need to deal with such

architecture rather then use more simple logical grouping

based on the same set of policy rules (Figure 4).

Components of that model are PBR-clients, groups of

network devices and multiple external network

connections. Let us assume that there are several alternate

wide-area networks available to a site. In figure 4 the

drawings in blue represent the regular production

network topology. In green and red are alternative R&D

Networks with perhaps higher bandwidth available but

not intended for production or commodity use. The NG-

A, NG-B and NG-C are network group devices

connecting correspondent PBR clients. In figure 4, it will

be necessary to apply RED rules to NG-A workgroup

devices and NG-ADM border group in order for nodes

in network A to reach the red topology. This is because

there is a direct connection from NG-A to the admission

point of the RED topology. However, to access the

GREEN topology, Lambda Station needs to reconfigure

workgroup NG-A, NG-C network core devices and the

NG-ADM border devices.

 The goal of Lambda Station is to forward traffic of

PBR-Clients, designated down to per- flow granularity,

toward the alternate networks, on demand from

applications. In order to accomplish that goal Lambda

Station will need to reconfigure one or several groups of

devices with a set of rules for one or both directions of

traffic. Possibly different sets of rules will be applied to

different groups of devices. How to group these devices

depends on the site network design and involves

considering physical topology of the network and a need

to minimize management efforts. For example, if a

network administrator can reduce the number of rules or

use the same set of rules for all work groups on several

network layers it will certainly simplify management. As

long as the same PBR rules are applied on several layers

of hierarchical work group architecture Lambda Station

network model can be represented by only one group of

devices.

Figure 3: A hierarchical network model

NETWORK AND LAMBDA STATION

AWARE APPLICATIONS

In the case of selective flow based forwarding, a

network and host system may both be involved in the

forwarding decision. Thus applications need to be aware

of the network, instant status and current capabilities. If

the application is designed to exploit advanced R&D

networks it needs to be aware of Lambda Station service

and be able to interact with the site Lambda Station to

acquire the necessary information.

Lambda Station awareness (LS-awareness) is the

capability in an application to request Lambda Station

service. In addition to interfacing to the Lambda Station

server, this may mean marking the DSCP values in

packets appropriately for a service. It may also mean

communicating additional information between local and

remote applications.

lsiperf – a sample Lambda Station aware

application

As an example of a Lambda Station aware application

we developed a wrapper for the well-known iperf

network performance measurement tool. The lsiperf

starts iperf as usual. In the background it initiates a

Lambda Station client process which places a ticket

request for an alternate path and watches its progress. If

the path is established it starts DSCP marking of iperf's

packets as requested. It also performs some other actions

related to the ticket's status. For example, if the ticket is

cancelled it will stop tagging.

A Lambda Station aware Storage Resource

Manager.

Storage Resource Manager (SRM)[11] provides access

to storage elements distributed over a variety of storage

systems in the grid architecture. It specifies a unified

interface for initiating data transfer between

heterogeneous storage systems. Fermilab's SRM

implementation has been modified to invoke Lambda

Station to set up policy based routing and reserve

network paths for data transfer. The use of Lambda

Station is controlled by a new SRM configuration

parameter, and a new file defines the mapping between

data URLs and PBR clients. Modifications, including

enabling and disabling use of Lambda Station, can be

made without restarting the SRM server. During file copy

requests SRM server sends a request to the local Lambda

Station for a data transfer path. The local Lambda Station

communicates with the remote Station to resolve the path.

If the path can be established fitting the parameters of the

request, the requesting SRM server gets a ticket from the

Figure 4: A Lambda Station logical groups network model

local Lambda Station with several parameters describing

reserved resources. Currently SRM server relies on the

end time information to assess whether the reservation

time is enough for transferring data. Knowing the size of

data to be transferred and an estimate of transfer rates, the

SRM server estimates transfer time and, if needed,

requests extension of the end time of the ticket. Lambda

Station aware SRM servers exist in dCache clusters at

Fermilab's Feynman Advanced Projects Laboratory

(FAPL) and at Caltech's CMS Tier-2 centre for

development and test purposes. The FAPL dCache cluster

runs two SRM servers on different TCP ports. One of

them is standard and another is Lambda Station aware,

this demonstrating a low-risk migration path.

THE RESULTS OF FLOW BASED ON-

DEMAND ROUTING

 The current software version was used to build a

Lambda Station testbed to evaluate a number of network

aware applications between Fermilab and Caltech. The

ESNet was our production path and two high bandwidth

networks, UltraScienceNet and UltraLight were used as

alternative network topologies. The graphs in Figure 5

demonstrate typical behaviour of switched flows on two

paths with different characteristics. One can see the TCP

sending rate ramping up in the usual way when the traffic

is shifted form a congested ESNET tail circuit (red) to

UltraScience Net (blue). Then there is a sharper rise in

the throughput when Path MTU Discovery finds that

jumbo frames are supported on the alternate path. Other

tests as proof of concept were done at SuperComputing

2005 and demonstrated flow based switching between

SCinet and Fermilab [5].

SUMMARY

The current status of Lambda Station project provides

sufficient results to anticipate a production quality system

interfacing storage and computing facilities with

Advanced R&D Networks. The capability of Lambda

Stations to complete all negotiations and site's network

configuration within 3 to 5 minutes upon receiving

requests from applications is considered tolerable because

applications need not wait for completion of Lambda

Station procedures. While negotiations are in progress

traffic will go by the regular path.

Experience with Lambda Station to use different

applications has also demonstrated that there are still a

lot issues that need to be worked out. Fully utilizing

Figure 5: Selective flow switching onto two different paths

Lambda Station capabilities makes it desirable to have

network awareness capabilities in applications. It

introduces a significant level of complexity.

However, in our view the Lambda Station project is

based on a long term perspective driven by the increasing

need to operate networks in a world with dynamically

provisioned optical paths, diverse local network

infrastructures and a great number of end-nodes at each

facility.

REFERENCES

[1] Lambda Station Project Web site

http://www.lambdastation.org/

[2] Donald L. Petravick, Fermilab, LambdaStation:

Exploring Advanced Networks in Data Intensive

High Energy Physics Applications, Project Proposal,

http://www.lambdastation.org/omnibus-text.pdf

[3] Phil DeMar, Donald L. Petravick. LambdaStation: A

forwarding and admission control service to

interface production network facilities with advanced

research network paths, Proceedings of CHEP2004,

Interlaken, Switzerland, 27
th
 September - 1

st
 October

2004.

[4] A.Bobyshev, M.Crawford et al., Lambda Station:

Production applications exploiting advanced

networks in data intensive high energy physics,

Proceedings of CHEP06, TIFR, Mumbai, India, 13-

17 February 2006.

[5] A.Bobyshev, M.Crawford, V.Grigalinus,

M.Grigoriev, R.Rechenmacher. Investigating the

behavior of network aware applications with flow-

based path selection, Proceedings of CHEP06, TIFR,

Mumbai, India, 13-17 February 2006

[6] M. Thomas, C. Steenberg et al., "JClarens: A Java

Framework for Developing and Deploying Web

Services for Grid Computing," ICWS, pp. 141-148,

IEEE International Conference on Web Services

(ICWS'05), Orlando, FL, 2005.

[7] EGEE Global Security Architecture, EU Deliverable

DJRA3.1,EGEE-JRA3-TEC-487004-DJRA3.1-v-1.1,

http://edms.cern.ch/document/487004/

[8] WS-I Basic Profile Version 1.1, Final Material,

2004-08-24, Editors: K. Ballinger(Microsoft), D.

Ehnebuske(IBM), et al., the Web Services-

Interoperability Organization.

[9] GARA - Globus Architecture for Reservation and

Allocation (grid middleware),

http://www.globus.org/research/resource-

management.html

[10] Fermilab mass storage including dCache,

http://grid.fnal. g ov/

[11] Fermilab SRM Project,

https://srm.fnal.gov/twiki/bin/view/Main/WebHome

[12] Apache Web Services Project, http://ws.apache.org/

