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Introduction

The systematic study of generating grammars was started by N. Chomsky in
the 50s (cf. [10]). He defined several classes of generating grammars, which are
interesting for both linguists and mathematicians, e. g. context-sensitive gram-
mars, context-free grammars, and linear grammars. On the other hand, catego-
rial grammars were studied by Y. Bar-Hillel, J. Lambek and others. The notion
of a basic categorial grammar was introduced in [1]. In the same paper it was
proved that the languages recognized by basic categorial grammars are precisely
the context-free ones.

Another kind of categorial grammar was introduced by J. Lambek [15]. These
grammars are based on a syntactic calculus, presently known as the Lambek
calculus. Chomsky [11] conjectured that these grammars are also equivalent to
context-free ones. In [12] Cohen proved that every basic categorial grammar
(and, thus, every context-free grammar) is equivalent to a Lambek grammar.
He also proposed a proof of the converse. However, as pointed out in [6], this
proof contains an error. Buszkowski proved that some special kinds of Lambek
grammars are context-free [6, 8, 9]. These grammars use weakly unidirectional
types or types of order at most two.

The first result of this paper (Theorem 1) says that Lambek grammars gener-
ate only context-free languages. Thus they are equivalent to context-free gram-
mars and also to basic categorial grammars. This fact (sometimes called the
Chomsky Conjecture) was proved in [16] and [17].

The inteneded syntactic string models, i.e., free semigroup models (also called
language models or L-models) for the Lambek calculus were considered in [3], [4],
and [5]. The more general class of groupoid models has been studied in [7], [13],
and [14]. In [4] W. Buszkowski established that the product-free fragment of
the Lambek calculus is L-complete (i.e., complete w.r.t. free semigroup models),
using the canonical model. The question of L-completeness of the full Lambek
calculus remained open (cf. [2]).

The second result of this paper (Theorem 2) gives a positive answer to this
question. The proof has been publised in [18] and [19].
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1 Preliminaries

For any set M we denote by M+ the set of all finite non-empty strings consisting

of elements of M. The set of all subsets of M is denoted by P(M).
We consider the syntactic calculus introduced in [15]. The types of the Lam-

bek calculus are built of primitive types pι,p2, and three binary connec-
tives , \, /. We shall denote the set of all types by Tp. Capital letters A,B, ...
range over types. Capital Greek letters range over finite (possibly empty) se-
quences of types. Sequents of the Lambek calculus are of the form Γ—ϊA, where

jΓ is a nonempty sequence of types.
Axioms: A—ϊA
Rules:

Γ-+A Δ-+B , } ΓABΔ-+C , *
ΓΔ-+A B [ j Γ(A B)Δ->C l '

where Π is non-empty

Π i

(CUT)

Π^A\B v v ^ J ΓΠ(A\B)Δ-^C
Π^A ΓBΔ-+C
Γ(B/A)ΠΔ->C

Π-+B ΓBΔ-+A
ΓΠΔ^A

The cut-elimination theorem for this calculus is proved in [15].

2 Lambek grammars recognize context-free languages

Definition. We assume that a finite alphabet T and a distinguished type D are

given. A Lambek grammar is a mapping / such that, for all t 6 T, f ( t ) C Tp

and f ( t ) is f inite.

The language generated by the Lambek grammar is defined as the set of all
expressions t\ . . .tn over the alphabet T for which there exists a derivable se-

quent BI . . . Bn-ϊD such that β, £ /(tf, ) for all i < n.

Definition. We assume that two disjoint alphabets T and W are given. The

elements of T are called terminal symbols and those of W are auxiliary symbols.

A context-free rewrite rule is of the form X =Φ e, where X is an auxiliary
symbol and e is a non-empty word in the alphabet T U W.

A context-free grammar is a finite set 7£ of context-free rewrite rules, with
one auxiliary symbol S designated as its start symbol.

By G(T, W, 5, 7£) we denote the set of all expressions over the alphabet TUW
that arise through some finite sequence of rewritings of the start symbol S via
the rules of 7£.

The language generated by the context-free grammar is defined as

Theorem 1. For any Lambek grammar there exists a context-free grammar such
that the languages generated by these grammars coincide.
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3 L-completeness of the Lambek calculus

Definition. We define L-model (also called language model or free semigroup

model) to be a triplet (W+,o,w), where W is an arbitrary alphabet, o denotes

concatenation of words from W+, and w is a function w: Tp — > P(>V+) such
that

(1) w(A B) = w(A)ow(B);

(2) w(A\B) = {7 E W+ I u;(A) o {7} C w(B)}',

(3) w(B/A) = {7 6 W+ I {7} o tι (Λ) C w(B)}.

Here for any two sets A C W+ and B C W+ by .4 o β we denote the set

{α o β \ a £ A and β G B}.

Definition. A sequent A\ . . .An—ϊB is true in a model (W"1", o, w) iff

tu(Aι) o . . . o w(An) C w(B).

Theorem 2. A sequent is derivable in the Lambek calculus if and only if it is
true in every L-model.

Theorems. A sequent is derivable in the Lambek calculus if and only if it is

true in every L-model over an alphabet W consisting of two symbols.
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