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Lamin A/C Depletion Enhances DNA Damage-Induced Stalled
Replication Fork Arrest

Mayank Singh,a* Clayton R. Hunt,a,e Raj K. Pandita,b,e Rakesh Kumar,a,e* Chin-Rang Yang,c* Nobuo Horikoshi,a,e Robert Bachoo,d

Sara Serag,a Michael D. Story,a Jerry W. Shay,b Simon N. Powell,e* Arun Gupta,a,e Jessie Jeffery,f Shruti Pandita,e

Benjamin P. C. Chen,a Dorothee Deckbar,g Markus Löbrich,g Qin Yang,e Kum Kum Khanna,f Howard J. Worman,h Tej K. Panditaa,e

Department of Radiation Oncology,a Department of Cell Biology,b Simmons Cancer Center,c and Department of Neuro-oncology,d UT Southwestern Medical Center,

Dallas, Texas, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USAe; Signal Transduction Laboratory, Queensland

Institute of Medical Research, Brisbane, Queensland, Australiaf; Darmstadt University of Technology, Darmstadt, Germanyg; Department of Medicine and Department of

Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, New York, USAh

The human LMNA gene encodes the essential nuclear envelope proteins lamin A and C (lamin A/C). Mutations in LMNA result

in altered nuclear morphology, but how this impacts the mechanisms that maintain genomic stability is unclear. Here, we report

that lamin A/C-deficient cells have a normal response to ionizing radiation but are sensitive to agents that cause interstrand

cross-links (ICLs) or replication stress. In response to treatment with ICL agents (cisplatin, camptothecin, and mitomycin),

lamin A/C-deficient cells displayed normal �-H2AX focus formation but a higher frequency of cells with delayed �-H2AX re-

moval, decreased recruitment of the FANCD2 repair factor, and a higher frequency of chromosome aberrations. Similarly, fol-

lowing hydroxyurea-induced replication stress, lamin A/C-deficient cells had an increased frequency of cells with delayed disap-

pearance of �-H2AX foci and defective repair factor recruitment (Mre11, CtIP, Rad51, RPA, and FANCD2). Replicative stress

also resulted in a higher frequency of chromosomal aberrations as well as defective replication restart. Taken together, the data

can be interpreted to suggest that lamin A/C has a role in the restart of stalled replication forks, a prerequisite for initiation of

DNA damage repair by the homologous recombination pathway, which is intact in lamin A/C-deficient cells. We propose that

lamin A/C is required for maintaining genomic stability following replication fork stalling, induced by either ICL damage or rep-

licative stress, in order to facilitate fork regression prior to DNA damage repair.

Lamins are intermediate filament proteins that form a protein
meshwork lining the inner nuclear membrane, where they

contribute to maintaining the shape and mechanical stability of
the nucleus (1). Lamin proteins interact with histone H2A (2, 3)
and also form nucleoplasmic foci that perform dynamic organi-
zational roles in the nucleus (4, 5). Human lamins A and C (lamin
A/C) are generated from a single LMNA gene (Lmna in mice) by
alternative splicing, and mutations that disrupt splicing are the
basis for a variety of degenerative disorders, including premature
aging syndromes and cancer. Mutations in the LMNA gene have
also been linked to chromatin modifications that, when defective,
are associated with altered DNA transcription, replication, and
repair. About 200 disease-associated LMNA mutations have been
identified (6), and the resulting laminopathies all are character-
ized by chromosomal aberrations (7, 8). Although lamins are im-
plicated in chromatin organization, DNA replication, RNA poly-
merase II-dependent gene expression, and DNA damage response
(DDR) (8–11), Lmna deletion in mice is not lethal (12, 13). How-
ever, cells from Lmna�/� mice do display loss of chromatin integ-
rity with deformation or blebbing of the lamina and nuclear en-
velope (13). Chromatin changes related to loss of structural shape,
in conjunction with transcription regulatory changes (12, 14, 15),
can also alter the DDR, resulting in DNA damage accumulation
(16). While chromatin changes have been linked with altered gene
expression, altered expression of DDR-related genes due to lamin
A/C deficiency have not yet been identified. We compared the
gene expression profile between cells with and without Lmna and
report here that loss of lamin A/C results in decreased cyclin D1
levels. In an examination of clonogenic survival and DNA damage
response/repair, we found that cells deficient in lamin A/C have

decreased survival, defective DNA damage response, and de-
creased restart of stalled replication forks after exposure to agents
that cause interstrand cross-links (ICLs), DNA adducts, and rep-
lication stress.

MATERIALS AND METHODS

Colony-forming assay and chromosomal aberration analysis. Lmna�/�,

Lmna�/�, 293, MCF7, and GM5849 cells were maintained and trans-

fected with plasmids as described previously (17, 18). A cDNA fragment

encoding wild-type lamin A was cloned into the mammalian expression

vector pcDNA3.1 (Invitrogen, Carlsbad, CA) as described previously (17,

19). Small interfering RNAs (siRNAs) for human LMNA, cyclin D1,

RAD51, ORCA1, polymerase � (Pol �), and control luciferase (Luc) were

obtained from Dharmacon Research (Lafayette, CO). RNA interference

(RNAi) treatment of cell lines was performed as described previously (17,

19, 20). Cells were used 72 h after transfection for all experimental pur-

poses. Colony-forming assays and analysis of metaphase spreads to mea-
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sure chromosomal aberrations were carried out as described previously

(20).

Microirradiation. Lmna�/� and Lmna�/� cells expressing yellow flu-

orescent protein (YFP)-labeled polymerase � were grown on coverslips.

Microirradiation and quantification of polymerase � signal at different

time points postirradiation was done as described previously (18).

Cell cycle analysis. Murine embryonic fibroblasts (MEFs) were syn-

chronized by culturing in Dulbecco’s modified Eagle medium (DMEM)

containing 0.1% fetal calf serum (FCS) for 72 h and then stimulated with

DMEM supplemented with 10% FCS at various time points. After serum

stimulation, cells were harvested by trypsinization and processed for flu-

orescence-activated cell sorter (FACS) analysis by a previously described

procedure (21, 22). To determine the frequency of S-phase cells after

nocodazole treatment, Lmna�/� and Lmna�/� cells were treated for 20 h

with nocodazole to arrest them in G2/M, and after release cells were har-

vested at the indicated time points, stained with propidium iodide (PI),

and subjected to FACS analysis to determine percentage of cells entering

G1 phase.

Immunofluorescence microscopy. Cell culture in chamber slides, fix-

ation, and immunostaining were done as previously described (23–25).

For depletion of lamin A/C, 293 cells were transfected with the specific

siRNA and allowed to grow for 48 h before treatment with the indicated

DNA-damaging agent or mock treatment. Cells then were treated with an

extraction buffer for 5 min before fixation in 4% paraformaldehyde

(PFA). A standard procedure for capturing fluorescent images of foci was

followed (26). Sections through nuclei were captured, and the images

were obtained by projection of the individual sections as recently de-

scribed (27). The results shown are from three to four independent exper-

iments.

Expression profiling. A previously described method was used for

microarray analysis of gene expression (28). Total RNA was isolated from

cells using the RNeasy kit (Qiagen), and gene expression analyses were

performed using the Illumina mouse gene expression array (MouseWG-6

v2). The array images were processed using Illumina Genome Studio per

the manufacturer’s instructions, and the intensity values were back-

ground subtracted and quantile normalized. The differential gene expres-

sion was detected by fold change cutoff (�2 or ��2), and the gene list

was uploaded to the ingenuity pathway analysis (IPA) program for cellu-

lar function enrichment and biological network analyses.

DNA replication restart assay. Exponentially growing cells were

pulsed with 50 mM 5-iododeoxyuridine (IdU) for 20 min, washed three

times with phosphate-buffered saline (PBS), treated with 2 mM hy-

droxyurea (HU) for the indicated intervals, washed three times with PBS,

incubated in fresh medium containing with 50 mM 5-chlorodeoxyuridine

(CldU) for 20 min, and then washed three times in PBS. DNA fiber

spreads were made by a modified procedure described previously (29).

Briefly, cells labeled with IdU and CldU were mixed with unlabeled cells in

a ratio of 1:10, and 2-�l cell suspensions were dropped onto a glass slide

and then mixed with a 20-�l hypotonic lysis solution (10 mM Tris-HCl,

pH 7.4, 2.5 mM MgCl2, 1 mM phenylmethylsulfonyl fluoride [PMSF],

and 0.5% Nonidet P-40) for 8 min. Air-dried slides were fixed, washed

with 1� PBS, blocked with 5% bovine serum albumin (BSA) for 15 min,

and incubated with primary antibodies against IdU and CldU (rat mono-

clonal antibody [MAb] anti-IdU [1:150 dilution; Abcam] and mouse

MAb anti-CldU [1:150 dilution; BD]) and secondary antibodies (anti-rat

Alexa Fluor 488-conjugated [1:150 dilution] and anti-mouse Alexa Fluor

568-conjugated [1:200 dilution] antibodies) for 1 h each. Slides were

washed with 1� PBS with 0.1% Triton X-100 and mounted with

Vectashield mounting medium without 4=,6-diamidino-2-phenylindole

(DAPI). Image J software was used to analyze the DNA fibers.

Determination of collapsed replication fork. Mouse embryonic fi-

broblasts were labeled with 1 �M 5-ethynyl-2=-deoxyuridine (EdU) for 30

min to stain S-phase cells, washed twice with 1� PBS, incubated in me-

dium with 0.1 mM HU for 12 h, washed again with 1� PBS to remove HU,

and incubated in fresh medium for 8 h after HU treatment. Cells were

stained for �-H2AX and EdU, and EdU-positive G2-phase cells (deter-
mined by their DAPI intensity) were evaluated. First, we scored only large
�-H2AX foci, which only arise after long HU treatment times and thus are
supposed to represent collapsed replication forks (30). Second, we scored
the percentage of EdU-positive cells, which migrated into G1 during the
8-h time period after HU treatment. We found delayed progression into
G1 phase in Lmna�/� cells. That is, despite the lower focus numbers, the
Lmna�/� cells did not readily progress into G1, again consistent with the
model that the lamin A/C-deficient cell is arrested in S phase because fork
collapse is impaired.

MOF retention in Lmna
�/� and Lmna

�/� cells. Cells growing in ex-
ponential phase were irradiated and fixed with 4% formaldehyde at dif-
ferent times postirradiation, and total DNA was coimmunoprecipitated
with MOF antibody after in vivo cross-linking by using the standard pro-
cedure described previously (31, 32). Immunoprecipitated DNA was pu-
rified by the phenol-chloroform procedure (33), DNA was quantified
with a NanoDrop 2000 spectrometer (Thermo Scientific), and the
amount of DNA retained by MOF is presented in arbitrary relative units of
retention (MOF retention).

Telomeric circle detection and strand-specific FISH. Genomic DNA
from exponentially growing cells was isolated, digested by standard pro-
tocols (31, 32), and fractionated on a 0.7% agarose gel containing 0.1
�g/ml ethidium bromide in 1� Tris-acetate-EDTA at �2 V/cm over-
night. Neutral-neutral two-dimensional (2D) gel electrophoresis was per-
formed according to the established protocols (34), with modifications as
described previously (35). Strand-specific chromosome orientation fluo-
rescent in situ hybridization (CO-FISH) was performed by the described
procedure (26, 36).

RESULTS

Effect of lamin A/C depletion on gene expression. To elucidate
the relationship between lamin A/C and genomic stability, a lamin
A/C functional interaction network (Fig. 1A) based on the litera-
ture was first generated from IPA. Relative mRNA expression data
were obtained by a microarray analysis of Lmna�/� versus
Lmna�/� mouse embryonic fibroblast (MEF) RNA (Fig. 1B and
C), and the up- and downregulated genes were overlaid on the IPA
network (Fig. 1A). Lamin A/C clearly impacts multiple cellular
functions (major altered functions are shown in Fig. 1A) and DNA
damage repair, and the expression levels of several known DNA
damage repair genes are also affected by lamin A/C (specific func-
tions of interest are shown in Fig. 1C). The complete microarray
data are available at http://www.ncbi.nlm.nih.gov/geo/query/acc
.cgi?acc�GSE38777. We have summarized the top five genes that
are up- or downregulated in Lmna�/� cells compared to Lmna�/�

cells (Fig. 1C) in the following categories.
Cancer-related genes. Upregulated cancer-related genes are

those for prostaglandin I2 (prostacyclin) synthase (PTGIS), kera-
tin 14 (KRT14), uroplakin 3B (UPK3B), keratin 8 (KRT8), and
basonuclin 1 (BNC1). Downregulated genes are the genes for in-
terferon-induced protein with tetratricopeptide repeats 3 (IFIT3),
collagen type VI alpha 3 (COL6A3), alpha interferon-inducible
protein 27-like 2 (IFI27L2), aquaporin 1 (Colton blood group)
(AQP1), and fibroblast growth factor 7 (FGF7).

Proliferation and growth genes. Upregulated proliferation
and growth genes are the transferrin (TF), KRT8, basonuclin 1
(BNC1), homeobox B7 (HOXB7), and tripartite motif-contain-
ing 25 (TRIM25) genes. Downregulated genes are those for cyto-
chrome P450 family 7 subfamily B polypeptide 1 (CYP7B1),
COL6A3, dickkopf homolog 3 (Xenopus laevis) (DKK3) FGF7,
and lamin A/C (LMNA).

Cell cycle-related genes. Upregulated cell cycle-related genes
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FIG 1 Functions of lamin A/C. (A) Ingenuity pathway analysis of lamin A/C based on mRNA microarray expression data from comparisons of mRNA from
Lmna�/� to that of Lmna�/� cells. Pink indicates upregulated and green downregulated genes. The top 12 relevant biological functions and disease associations
from the analysis are shown on both sides of the figure. (B) Comparison of mRNA expression status between Lmna�/� and Lmna�/� cells. The expression is
organized into eight major groups involved in cellular metabolism. The eight major groups are cancer, proliferation and growth, cell cycle, cell death, signaling
ligands and NF-	B, lipid metabolism, interferon signaling, and glutathione metabolism. (C) mRNA expression is organized from highest to lowest in Lmna�/�

cells compared to Lmna�/� cells. Details of the expression levels are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE38777. (D) Western
blot showing cyclin D1 protein levels in Lmna�/� and Lmna�/� cells. (E) Western blot showing lamin A/C knockdown by LMNA-specific siRNA. (F) Western
blot showing decreased cyclin D1 levels in 293 cells treated with lamin A/C-specific siRNA. (G) Coimmunoprecipitation of endogenous lamin A/C and cyclin D
with anti-lamin A/C antibody detected by immunoblotting.

1212 mcb.asm.org Molecular and Cellular Biology
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FIG 2 Ionizing radiation response in cells with and without lamin A/C. (A) Clonogenic survival of Lmna�/� and Lmna�/� mouse cells after exposure to
increasing radiation doses. (B) Western blot showing depletion of cyclin D1 by specific siRNA in Lmna�/� and Lmna�/� cells. (C) Clonogenic survival of cells with and
without cyclin D1 knockdown after exposure to graded doses of IR. (D) Exponentially growing cells were irradiated with 2 Gy, and the appearance/disappearance of
�-H2AX foci was determined by immunostaining. (E) Lmna�/� and Lmna�/� cells were irradiated with 6 Gy, and 53BP1 focus formation was quantified by immu-
nostaining at different time points postirradiation. (F) Exponential-phase Lmna�/� and Lmna�/� cells were irradiated with different IR doses, and RAD51 focus
formation was quantified 4 and 8 h postirradiation. (G) Ionizing radiation-induced phosphorylation of ATM Ser1981, detected by immunoblotting, in exponentially
growing Lmna�/� and Lmna�/� cells after irradiation with 5 Gy. (H) Ionizing radiation-induced phosphorylation of DNA-PK catalytic subunit (DNA-PKcs) in 293 cells
with and without siRNA depletion of lamin A/C detected by DNA-PKcs and phospho-Ser2056 immunoblotting. Cells were irradiated with 10 Gy and collected at
different time points postirradiation for analysis. (I) Chromosomal aberrations in Lmna�/� and Lmna�/� cells after IR exposure. For analysis of G1-phase aberrations,
cells were irradiated (3 Gy), incubated for 12 h, and then treated for 3 h with colcemid before collecting metaphases for scoring. Categories of asymmetric chromosome
aberrations scored included dicentrics, centric rings, interstitial deletions-acentric rings, and terminal deletions. For S-phase-specific aberrations, cells were irradiated
with 2 Gy and incubated for 6 h, and metaphases were harvested after 3 h of colcemid treatment. For G2-type chromosome aberrations, exponential-phase cells were
irradiated (1 Gy) and incubated for 1 h, followed by 3 h of colcemid treatment to collect metaphases.
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are those for transferrin (TF), TRIM25, insulin-like growth factor
binding protein 3 (IGFBP3), bone morphogenetic protein 4
(BMP4), and paired-like homeodomain 2 (PITX2). Downregu-
lated genes are those for interleukin 7 (IL-7), interferon regulatory
factor 7 (IRF7), lymphocyte antigen 6 complex, locus C1 (LY6C1),
FGF7, and LMNA.

Cell death-related genes. Upregulated cell death-related genes
are those for PTGIS, TF, KRT8, IGFBP3, and IGFBP6. Downregu-
lated genes are those for matrix Gla protein (MGP), ubiquitin
specific peptidase 18 (USP18), necdin homolog (mouse) (NDN),
DKK3, and FGF7.

Signal ligand and NF-�B genes. Upregulated signal ligand and
NF-	B genes are those for IGFBP3, insulin-like growth factor 1
(somatomedin C) (IGF1), intercellular adhesion molecule 1
(ICAM1), vascular endothelial growth factor C (VEGFC), and
nuclear factor of kappa light polypeptide gene enhancer in B cells
2 (p49/p100) (NFKB2). Downregulated genes are those for myo-
sin light chain 6B, alkali, smooth muscle and nonmuscle
(MYL6B); fibroblast growth factor receptor 1 (FGFR1); signal
transducer and activator of transcription 1 (STAT1); IGFBP5; and
chemokine (C-C motif) ligand 5 (CCL5).

Lipid metabolism genes. Upregulated lipid metabolism genes

FIG 3 Clonogenic survival of Lmna�/�, Lmna�/�, and lamin A/C-depleted 293 cells treated with DNA-damaging agents. For survival assay, the required
number of cells were plated, incubated for 6 h, treated with the indicated doses of drug or irradiated with UV, and incubated for 10 to 12 days to form countable
colonies. Lmna�/� cells, Lmna�/� cells, and Lmna�/� cells with ectopic lamin A expression were treated with cisplatin (A), mitomycin C (B), camptothecin (C),
hydroxyurea (D), formadehyde (F), VP16 (G), UV (H), and MNNG (I). (E) Surviving fraction of 293 cells with and without lamin A/C depletion with specific
siRNA after HU treatment. *, P 
 0.05; **, P 
 0.01.

Singh et al.

1214 mcb.asm.org Molecular and Cellular Biology
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are those for glutathione S-transferase alpha 3 (GSTA3), glutathi-
one peroxidase 7 (GPX7), paternally expressed 3 (PEG3), COP9
constitutive photomorphogenic homolog subunit 8 (Arabidopsis)
(COPS8), and glutathione S-transferase kappa 1 (GSTK1). Down-
regulated genes those for are corneodesmosin (CDSN), micro-
somal glutathione S-transferase 3 (MGST3), adrenomedullin
(ADM), glutathione S-transferase alpha 5 (GSTA5), and LMNA.

Glutathione metabolism genes. Upregulated glutathione me-
tabolism genes are those for GSTA3, GPX7, GSTK1, GSTA4, and
MGST1. Downregulated genes are those for acyl coenzyme A syn-
thetase short-chain family member 2 (ACSS2), glutathione
S-transferase theta 3 (GSTT3), glutaredoxin (thioltransferase)
(GLRX), MGST3, and GSTA5.

Interferon signaling genes. The upregulated interferon signal-
ing gene is that for Janus kinase 2 (JAK2) (only one gene is up-
regulated in this category). Downregulated genes are those for
STAT2; transporter 1, ATP-binding cassette, subfamily B (MDR/
TAP) (TAP1); myxovirus (influenza virus) resistance 1, interfer-
on-inducible protein p78 (mouse) (MX1); 2=,5=-oligoadenylate
synthetase 1 (OAS1); and IFIT3.

Ubiquitin pathway genes. Lmna�/� cells have 230-fold de-
creased USP18 levels compared to those of Lmna�/� cells.

Specifically, cyclin D1 mRNA was significantly downregulated
in Lmna�/� cells (Fig. 1C), and consequently cyclin D1 protein
was barely detectable in Lmna�/� cells (Fig. 1D). Ectopic lamin A
expression in Lmna�/� cells restored cyclin D1 to the levels ob-
served in Lmna�/� cells (Fig. 1D). Similarly, in human 293 cells,
siRNA depletion of lamin A/C (Fig. 1E) greatly reduced cyclin D1
levels (Fig. 1F). In addition, cyclin D1 coimmunoprecipitates with

lamin A, suggesting the two proteins interact either directly or
indirectly (Fig. 1G).

Role of lamin A/C on ionizing radiation response. Jirawatno-
tai et al. (37) reported that cyclin D1 plays a role in ionizing radi-
ation response and DNA repair, and we observed that exponen-
tially growing Lmna�/� MEFs and human 293 cells depleted for
lamin A/C had marginally higher survival postirradiation than the
respective control cells (Fig. 2A and data not shown); however, the
differences were not statistically significant. This was unexpected,
since lamin A/C-deficient cells have reduced levels of cyclin D1
(Fig. 1D and F). Cyclin D1 interacts with DNA repair proteins,
and cyclin D1 depletion was previously shown to reduce postirra-
diation survival (37). Depletion of cyclin D1 from Lmna�/� cells
(Fig. 2B) did, however, reduce clonogenic survival postirradiation
(Fig. 2C), in line with the previously published results, suggesting
that lamin A/C depletion reverses the increase in ionizing radia-
tion (IR)-induced cell death resulting from cyclin D1 depletion.

Consistent with the clonogenic survival results, comparison of
Lmna�/� to Lmna�/� exponential-phase cells following IR expo-
sure did not reveal any significant difference in the DDR as deter-
mined by the appearance/disappearance kinetics of �-H2AX foci
(Fig. 2D). Similarly, 53BP1, Rad51, FANCD2, CtIP, and RAP80
focus formation in exponential-phase Lmna�/� or Lmna�/� cells
was nearly identical (Fig. 2E and F and data not shown). In addi-
tion, neither ATM nor DNA-dependent protein kinase (DNA-
PK) phosphorylation following irradiation was altered by lamin
A/C loss (Fig. 2G and H). Furthermore, when cells were irradiated
in different phases of the cell cycle, the frequency of residual chro-
mosome aberrations observed at metaphase was similar in

FIG 4 Impaired DNA damage response in lamin A/C-depleted cells. (A to C) Cells with �-H2AX foci after treatment with cisplatin (A), MMC (B), and
camtothecin (C). (D) Cells with FANCD2 foci after cisplatin and MMC treatment. (E) Frequency of Lmna�/� and Lmna�/� metaphases with chromosome
aberrations after cisplatin treatment. (F) Frequency of 293 metaphases with and without lamin A/C with chromosome aberrations after cisplatin treatment. (G)
Frequency of Lmna�/� and Lmna�/� metaphases with chromosome aberrations after MMC treatment. *, P 
 0.05; **, P 
 0.01.

Lamin A/C and Replication Stalled Fork Arrest

March 2013 Volume 33 Number 6 mcb.asm.org 1215

 o
n
 J

a
n
u
a
ry

 1
1
, 2

0
1
4

 b
y
 g

u
e
s
t

h
ttp

://m
c
b
.a

s
m

.o
rg

/
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://mcb.asm.org
http://mcb.asm.org/
http://mcb.asm.org/


Lmna�/� and Lmna�/� cells (Fig. 2I). Lamin A/C therefore ap-
pears to play no role in the cellular response to ionizing radiation
as determined by clonogenic cell survival, DNA damage signaling,
or chromosome repair.

Response of lamin A/C-deficient cells to DNA cross-linking
and adduct-inducing agents. The results described above indi-
cate that IR-induced DDR in lamin A/C-deficient cells is largely
unaltered. Therefore, we asked whether lamin A/C is involved in
the repair of DNA intra- or interstrand cross-links (ICLs) or sim-
ple DNA adduct damage. ICLs create obstructions to fundamental
DNA transactions and are repaired predominantly during
S-phase, initiated by replication fork convergence at ICL sites
(38). As measured by cell survival, Lmna�/� cells were more sen-
sitive to intra- and interstrand cross-linking agents like cisplatin,

mitomycin C (MMC), and formaldehyde (Fig. 3A, B, and C). The
Lmna�/� cells were more sensitive to DNA topoisomerase inhib-
itors like camptothecin and VP16 (Fig. 3D and E) and thymidine
dimer formation induced by UV (Fig. 3F). DNA monoalkylating
drugs like N-methyl-N=-nitro-N-nitrosoguanidine (MNNG)
(Fig. 3G) were also more lethal to Lmna�/� cells. In addition, we
found that Lmna�/� cells were much more sensitive to replication
stress induced by HU treatment than Lmna�/� cells, as deter-
mined by clonogenic assay (Fig. 3H and I). Depletion of lamin A/C
from human 293 cells (Fig. 1F) also resulted in hypersensitivity for
cell survival to HU (Fig. 3I), and these cells also had a higher
frequency of cells with delayed disappearance of �-H2AX foci/
signal after treatment with cisplatin, MMC, camptothecin, or HU
compared to cells expressing lamin A/C (Fig. 4A to C and 5A).

FIG 5 Hydroxyurea treatment response in cells with and without lamin A/C. (A) Frequency of cells with �-H2AX at different time points after treatment. (B)
Lmna�/� and Lmna�/� cells stained for DNA with DAPI and �-H2AX immunostaining. EdU-positive S/G2 cells (selected by DAPI staining) were selected only
for �-H2AX focus counting. (C) The number of larger �-H2AX foci counted in late S/G2-phase cells in Lmna�/� and Lmna�/� cells represent collapsed forks.
The quantification of EdU-positive late S/G2-phase cells was performed by using scatter blots obtained by scanning the slides for DAPI and EdU intensity .
�-H2AX foci were counted in �40 cells per data point and experiment per slide. (D) Histogram showing percent EdU-positive G1 cells. A total of 3,000 cells were
counted, and the means from three experiments are plotted. *, P 
 0.05; **, P 
 0.01. (E to H) Frequency of cells with Mre11 (E), CtIP foci (F), RAD51 (G), RPA
(H), and FANCD2 (I) foci after HU treatment. (J) HU-treated lamin A/C-depleted 293 cells at metaphase with chromosome aberrations, including a triradial
(arrow). (K) Histogram showing a comparison of chromosome aberrations per metaphase in Lmna�/� cells, Lmna�/� cells, and Lmna�/� cells with ectopic
expression of lamin A.
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Furthermore, FANCD2 focus induction after cisplatin or MMC
treatment was strongly reduced in Lmna�/� cells compared to
that in Lmna�/� cells (Fig. 4D). Both mouse (Fig. 4E) and human
(Fig. 4F) lamin A/C-deficient cells displayed a higher frequency of
metaphases with chromosome aberrations after cisplatin, mito-
mycin, or camptothecin treatment compared to cells with lamin
A/C (Fig. 4E to G and data not shown). Treatment of Lmna�/�

cells with HU also significantly delayed the disappearance of
�-H2AX foci (Fig. 5A); reduced the number of large �-H2AX foci
(Fig. 5B), which are an indication of collapsed forks (Fig. 5C); and
delayed cell cycle progression (Fig. 5D). Consistent with the ob-
servation of abnormally sized �-H2AX foci, a significant defect in
the recruitment of Mre11, CtIP, RAD51, RPA, and FNACD2 into
foci was observed in lamin A/C-deficient cells (Fig. 5E to I). In
addition, lamin A/C-deficient cells had a high frequency of HU-
induced chromosome aberrations, including triradials that could
be suppressed by lamin A cDNA expression in Lmna�/� cells
(Fig. 5J and K).

During repair of DNA strand cross-links, DNA polymerase �

plays an important role in translesion DNA synthesis (39, 40).
Cells deficient for either lamin A/C or polymerase � (Fig. 6A) had
a higher frequency of MMC- and HU-induced chromosome ab-
errations than cells expressing lamin A/C, and an even higher level
of aberrations was observed in doubly deficient cells (Fig. 6B and

C). Furthermore, polymerase � recruitment to UV550-induced
DNA damage sites was significantly delayed in Lmna�/� cells
(Fig. 6D and E). Thus, lamin A/C-deficient cells have compro-
mised DNA interstrand cross-link repair.

Role of lamin A/C in the restart of stalled replication forks.
To determine the mechanism by which lamin A/C deficiency re-
sults in defective ICL repair, we compared the restart of stalled
replication forks in Lmna�/� and Lmna�/� cells by using the DNA
fiber technique (41). We first determined the frequency of stalled
replication forks and new origins. Cells were pulse-labeled with
5-iododeoxyuridine (IdU), treated with HU for different time pe-
riods to deplete the nucleotide pool, and then washed and pulse-
labeled with 5-chlorodeoxyuridine (CldU) (Fig. 7A) as described
previously (42, 43). Replication fork restart was quantified by de-
termining the total number of replication tracks labeled with
CldU (Fig. 7B). After removal of the HU block, contiguous IdU/
CldU signal, indicating restarting forks, was rarely seen in
Lmna�/� cells compared to Lmna�/�cells that readily resumed
DNA synthesis (Fig. 7B to D). Thus, replication had not restarted
at the stalled replication forks during the period analyzed in
Lmna�/� cells. While analyzing DNA fibers (Fig. 7Aii), we found
that the percentage of stalled forks in Lmna�/� cells after 1 or 21 h
of HU treatment was higher than that of Lmna�/� cells (Fig. 7E
and F). Ectopic expression of lamin A reduced stalled forks and

FIG 6 Effect of polymerase � depletion in cells with and without lamin A/C for DNA damage response. (A) Western blot showing polymerase � depletion with
specific siRNA in Lmna�/� and Lmna�/� cells. (B and C) Comparison of chromosome aberrations per metaphase in Lmna�/� and Lmna�/� cells with and
without polymerase � depletion after mitomycin (B) and HU (C) treatment. (D) Recruitment of polymerase � onto laser-induced DNA damage. Exponentially
growing Lmna�/� and Lmna�/� cells transfected with cDNA coding for YFP-polymerase � were microirradiated, and time-lapse images were captured. (E)
YFP-polymerase � relative fluorescent intensity kinetics measured in Lmna�/� and Lmna�/� cells after microirradiation. *, P 
 0.05; **, P 
 0.01; ***, P 
 0.005.
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increased new origins in Lmna�/� cells treated with HU (Fig. 7E
and F). To test whether the failure to initiate new replication re-
start was due to differences in the median IdU track length be-
tween Lmna�/� and Lmna�/� cells, we measured IdU track length
with and without treatment of HU for 5 h and found that in
HU-treated Lmna�/� cells the IdU tract length is maintained,
whereas in Lmna�/� cells IdU tract length is significantly reduced
(Fig. 7G).

Cells deficient in lamin A/C have undetectable levels of cyclin
D1 (Fig. 1D and F), which is associated with lamin A in wild-type

cells, but treatment of Lmna�/� cells with HU decreases this in-
teraction (Fig. 8A and B). To determine whether the enhanced
replication fork stalling seen in Lmna�/� cells could be due to low
levels of cyclin D1, we examined HU-treated Lmna�/� cells
with and without ectopic expression of cyclin D1 for stalled
forks as well as new origins. Depletion of cyclin D1 significantly
increased the number of stalled forks and decreased new ori-
gins in Lmna�/� but not in Lmna�/� cells (Fig. 8C and D).
Increased cyclin D1 in Lmna�/� cells did not rescue the defect
in stalled forks or new origins (Fig. 8E and F). These results

FIG 7 Reinitiation of stalled DNA replication forks and initiation of new origins in Lmna�/� and Lmna�/� cells. (A) Shown are DNA labeling and HU treatment
protocol for single DNA fiber analysis (i) and three major types of labeled DNA tracts for analysis (ii). (B) Comparison of global DNA replication restart after
release from 2 h of HU treatment. Cells were prelabeled with IdU, treated with HU, and then postlabeled with CldU, fixed, immunostained with IdU (green) and
CldU (red) antibodies, and counterstained with DAPI (blue). Equal intensities of CldU and IdU as well as strong colocalization was observed in Lmna�/� MEFs,
indicating that DNA replication was able to restart. In contrast, CldU staining in Lmna�/� cells was very weak, and little colocalization was detected. (C)
Quantification of percentages of cells with stalled forks after HU treatment. Lmna�/� cells have the least incorporation of CldU and thus the maximum frequency
of cells with stalled forks. (D) Representative images of replication tracks from Lmna�/� and Lmna�/� cells after 1 h of HU treatment (i), after 21 h of HU
treatment (ii), and in cyclin D1-depleted cells after 21 h of HU treatment (iii). (E) Quantification of stalled forks determined by fiber analysis with only IdU signal
after 1 or 21 h of HU treatment. Lmna�/� cells ectopically expressing lamin A were designated Lmna�/� � lamin A. (F) Quantification of new origins as
determined by CldU signal after 1 or 21 h of HU treatment. (G) Distribution of IdU track length from DNA fibers from control Lmna�/� and Lmna�/� cells and
Lmna�/� and Lmna�/� cells treated with HU for 5 h.
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suggest that lamin A has a critical role in the process of stalled
replication fork resolution.

Stalled replication fork collapse results in DNA double-strand
breaks (DSBs) that are repaired by HR. Since lamin A/C-deficient
cells have a high frequency of stalled replication forks, which do
not collapse in order to initiate the process of HR for DNA repair,
we examined whether DNA DSB repair by HR is different in cells
with and without lamin A/C. Since cyclin D1 interacts with Rad51
(37) and cyclin D1 is also associated with lamin A (Fig. 1G), we
expected defective HR repair of DNA DSBs in lamin A/C-deficient

cells. However, the frequency of HR repair of a green fluorescent
protein (GFP) reporter gene (pDR-GFP) in MCF7 cells after
lamin A/C depletion with siRNA (Fig. 9A) was unaltered from the
level in control-transfected cells (Fig. 9B), suggesting that lamin
A/C does not have a role in DNA DSB repair via the HR pathway.

Lamin A/C is localized to the inner nuclear membrane, and
telomeres are known to be associated with the nuclear matrix (44,
46). Telomeres of two sister chromatids at the end of a duplicated
chromosome can recombine, and these exchanges are an indica-
tion of relaxed control of DNA repair at telomeres. We visualized
metaphase chromosomes by chromosome orientation fluorescent
in situ hybridization (CO-FISH) (26, 36) and measured telomere
region recombination events in Lmna�/� and Lmna�/� cells
(Fig. 9C). Neither Lmna�/� nor Lmna�/� cells displayed any loss
of telomere signals or telomere-specific sister chromatid ex-
changes, indicating that lamin A/C deficiency does not affect telo-
mere stability or global sister chromatid exchange repair pro-
cesses. Similarly, analysis of Lmna�/� and Lmna�/� cells for
telomere circular DNA (35, 47) did not detect any difference in
new arc telomeric DNA (Fig. 9D), indicating a normal recombi-
nation phenotype at the telomeres. Thus, the role of lamin A/C in
DNA DSB repair is minimal, supporting the argument that lamin
A/C plays a critical role in the restart of stalled replication forks
(Fig. 9E).

DISCUSSION

LMNA mutations can result in synthesis of altered lamin proteins
termed progeria. The accumulation of LMNA mutations may
cause chromatin perturbations affecting DDR and DSB produc-
tion (16). Furthermore, progerin accumulation is proposed to
disrupt some replication and repair factor functions. As a result,
xeroderma pigmentosum group A protein may mislocate to rep-
lication forks and affect replication fork stalling with subsequent
DNA DSB induction (16). We compared cells with and without
Lmna to identify DNA DSB repair-associated genes that are down-
regulated in Lmna-null cells. The main defect revealed was that
Lmna-null cells have reduced levels of cyclin D1. Recent studies
have shown that reducing cyclin D1 levels in human cancer cells
increased sensitivity to IR-induced cell killing, impaired recruit-
ment of RAD51 to damaged DNA, and impeded HR-mediated
DNA DSB repair (37). While lamin A/C-deficient cells have de-
creased cyclin D1 protein levels, they do not display any major IR
response defects. Instead, lamin A/C is required for efficient repair
of damage induced by agents which cause DNA adducts or lesions
that are repaired mostly during S phase. In cultured cells, DNA
replication sites can be visualized as discrete early or late replica-
tion foci in the nucleoplasm (48), and lamin A/C is present at sites
of early replication in normal human fibroblasts (34, 49). The
prevalence of triradial chromosomes after treatment with MMC,
cisplatin, or HU, as well as the impaired recruitment of DNA
polymerase � to UV550 laser-induced damage in Lmna�/� cells,
strongly suggests defective resolution of stalled replication forks.
Replication fork restarts after deoxynucleotide pool depletion in-
dicates how quickly cells are able to recover from a replication
block and resume normal DNA synthesis. Lamin A/C-depleted
cells were unable to restart most replication forks after treatment
with HU compared to cells with lamin A/C, indicating that lamin
A/C is required for the resolution of stalled replication forks. DNA
fiber analysis confirmed this requirement and indicated that
lamin A/C deficiency resulted in shorter track lengths. Since lamin

FIG 8 Cyclin D1 is released from lamin A complexes after HU treatment. Cells
were treated with 6 mM HU and collected at the indicated times. (A) Lamin A
immunoprecipitates blotted for lamin A and cyclin D1. (B) Quantitation of
cyclin D1 coimmunoprecipitated by lamin A antibody. The means and SD are
from four independent experiments. (C) Effect of cyclin D1 depletion in
Lmna�/� and Lmna�/� cells on stalled forks after 1 or 21 h of HU treatment.
(D) Effect of cyclin D1 depletion in Lmna�/� and Lmna�/� cells on new
origins by determining the CldU signal after 1 or 21 h of HU treatment. (E)
Frequency of stalled forks in HU-treated Lmna�/� and Lmna�/� cells with
and without ectopic cyclin D1 expression, as determined by DNA fibers anal-
ysis of tracks labeled with IdU only. Percentages are based on the total number
of IdU tracks that were counted in the different fields. (F) Quantification of
new origins in HU-treated Lmna�/� and Lmna�/� cells, with and without
ectopic cyclin D1 expression.
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A/C-deficient cells have normal homology-directed repair as well
as repair of IR-induced DNA damage, even in the absence of cyclin
D1, such repair may be mechanistically different from ICL and
stalled fork repair.

Based on these observations, we speculate that lamin A/C pro-
vides a platform for the resolution of stalled replication fork in-
termediates (Fig. 9E). The platform requires both lamin A/C and
cyclin D1. Since cyclin D1 is released from lamin A after HU treat-

FIG 9 Lamin A/C depletion does not affect DSB repair by homologous recombination. (A) Western blot analysis of lamin A/C depletion in MCF7 cells by siRNA.
(B) HR frequencies in MCF7 cells are shown with or without I-SceI induction in untreated cells, in cells treated with control siRNA, and in cells treated with
LMNA- or BRCA1-specific siRNA. The results presented are the means and standard errors from three independent experiments. (C) Telomere strand-specific
orientation analysis at metaphase. Metaphase chromosome CO-FISH showing strand-specific telomeres was performed as described in Materials and Methods.
(D) Lmna�/� and Lmna�/� cells do not show any difference in telomeric circles. Genomic DNA from Lmna�/� and Lmna�/� cells was separated by neutral-
neutral 2D gel electrophoresis first in size (x axis) and then in shape (y axis), blotted, and probed for telomeric DNA. U2OS cells (ALT cells) were used as a positive
control. (E) Model for the role of lamin A/C showing the start of homologous recombination (HR) repair at the proposed site for the collapse of stalled DNA
replication forks in order to enable origins to restart and initiate homology-mediated repair.
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ment, release of cyclin D1 from lamin A may be regulating an
activity, possibly a nucleolytic step, required for collapse of stalled
replication forks prior to initiation of homology-directed repair.
Moreover, cyclin D1 interacts with Rad51, which may assist re-
pairosome formation. This is consistent with defective Rad51 fo-
cus formation, as well as other repairosome factors related to re-
section, after HU or cisplatin treatment in Lmna�/� cells or cells
depleted of cyclin D1. These and other results suggest that the
absence of lamin A/C and cyclin D1 impacts the resolution of the
stalled replication fork. Based on our results, we propose that
lamin A/C provides a platform (Fig. 9E) with a protective function
during replication fork stalling that is dependent upon cyclin D1
which in turn interacts with Rad51, thus assisting repairosome
formation in a manner that is mechanistically followed by initia-
tion of the HR repair pathway to repair the collapsed stalled forks.
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