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Laminar dispersion at high Péclet numbers in finite-length channels:
Effects of the near-wall velocity profile and connection
with the generalized Leveque problem
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Dipartimento di Ingegneria Chimica, Sapienza Università di Roma, Via Eudossiana 18, Roma 00154, Italy

�Received 22 July 2009; accepted 7 October 2009; published online 3 December 2009�

This article develops the theory of laminar dispersion in finite-length channel flows at high Péclet

numbers, completing the classical Taylor–Aris theory which applies for long-term, long-distance

properties. It is shown, by means of scaling analysis and invariant reformulation of the moment

equations, that solute dispersion in finite length channels is characterized by the occurrence of a new

regime, referred to as the convection-dominated transport. In this regime, the properties of the

dispersion boundary layer and the values of the scaling exponents controlling the dependence of the

moment hierarchy on the Péclet number are determined by the local near-wall behavior of the axial

velocity. Specifically, different scaling laws in the behavior of the moment hierarchy occur,

depending whether the cross-sectional boundary is smooth or nonsmooth �e.g., presenting corner

points or cusps�. This phenomenon marks the difference between the dispersion boundary layer and

the thermal boundary layer in the classical Leveque problem. Analytical and numerical results are

presented for typical channel cross sections in the Stokes regime. © 2009 American Institute of

Physics. �doi:10.1063/1.3263704�

I. INTRODUCTION

The dispersion of a solute flowing slowly through a

channel is a classical transport problem
1,2

that attracted great

attention in the past. It still provides a source of interest

within the fluid dynamic community, especially in connec-

tion to microfluidic applications.
3–5

The first analysis of this

problem is due to Taylor,
6

and has been subsequently elabo-

rated in an elegant way by Aris
7

using moment analysis, in

what is currently referred to as the Taylor–Aris laminar dis-

persion theory.

Starting from the works by Taylor and Aris, a wealth of

further contributions in laminar dispersion theory has been

proposed, either aimed at generalizing the theory, or at pin-

pointing some specific dispersion properties in different

channel geometries. Ananthakrishnan et al.
8

developed a de-

tailed analysis of different dispersion regimes describing

their region of validity in the parameter space. Moment

analysis originally proposed by Aris has been developed fur-

ther by Barton
9

and Nadim et al.
10

Formal perturbation ap-

proaches, alternative to moment analysis, have been devel-

oped, such as projection operator analysis,
11

perturbation,

and multiple-scale expansions
12,13

for channel of varying

cross section and in diverging-converging channels. The gen-

eralization of Taylor dispersion theory to Brownian particles

possessing internal degrees of freedom has been developed

by Frankel and Brenner.
14

Several authors considered Taylor–Aris dispersion in

mildly curved channels and sinusoidal tubes,
15–17

in time-

periodic �pulsatile� flows,
18–21

as well as the effect of rough-

ness on dispersion,
22

which determines a significant increase

in the dispersion coefficient. A Lagrangian �stochastic� ap-

proach to Taylor dispersion has been proposed by Haber and

Mauri.
23

Stone and Brenner
24

consider the properties of a

particular flow �i.e., the radial flow between two parallel

plates� to address solute dispersion in the presence of stream-

wise variations of the mean velocity. Numerical studies of

dispersion in more complex flows, giving rise to Lagrangian

kinematic chaos, have been developed by Jones and Young
25

and Bryden and Brenner.
26

Jones and Young consider the

flow in a twisted pipe and find some anomalous dependence

of the dispersion coefficient on the molecular diffusivity, giv-

ing rise to a logarithmic behavior, in contrast with the clas-

sical Taylor scaling in which the effective dispersion coeffi-

cient is inversely proportional to the diffusivity. Bryden and

Brenner analyze the time-periodic flow between two eccen-

tric cylinders.

As regards the application of dispersion theory �we limit

the analysis to channel flows and do not consider the wide

literature on dispersion in porous media and related

hydrological applications�,1,27
recent literature thoroughly

analyzed the impact of channel cross section on the disper-

sion coefficient, in order to optimize dispersion in microflu-

idic systems for chemical analytical applications

�microchromatography�.5,28,29
Zhao and Bau

29
analyze the in-

fluence of cross flows, whereas Dutta and Leighton
28

con-

sider the coupling of a pressure-driven flow in an electroki-

netically driven microchannel for reducing dispersion in

microchromatographic columns. Dutta and Ghosal
30

analyze

Taylor dispersion under nonideal electro-osmotic conditions

in microfluidic systems by means of a perturbative approach.

Chen and Chauhan
31

analyze the impact of Taylor dispersion

in electric flow field fractionation. The influence of Taylor–

Aris dispersion in typical biomolecular processes such as
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polymerase chain reaction and DNA-hybridization is consid-

ered in Refs. 32 and 33, while Leconte et al.
34

study the

occurrence of Taylor regimes in the evolution of autocata-

lytic reaction fronts.

This brief review indicates how wide and physically

comprehensive is the range of application of dispersion

theory originating from Taylor and Aris original

contributions.
6,7

According to Brenner and Edwards,
1

Taylor–Aris theory constitutes a paradigmatic example of a

macrotransport theory, in which the “microtransport equa-

tions” accounting for advection and diffusion can be used

and elaborated in order to determine emerging physical prop-

erties, in this case represented by the dispersion coefficient,

that are nontrivial consequences of the interplay between an

ordered motion �advection� and thermal fluctuations �diffu-

sion�.
Essentially, all the analyses of solute dispersion in chan-

nel flow �such as those reviewed above� are rooted within the

classical paradigm framed by Taylor and Aris, which implies

the investigation of asymptotic long-distance long-time prop-

erties of solute concentration. This essentially means to con-

sider infinitely extended channels, in which the sole charac-

teristic lengthscale is related to the diameter of the cross

section.

A research line has been developed which considers the

short-time properties of dispersion.
35–40

These works either

develop computational approaches,
37,38,40

or consider low

values of the Péclet number.
39

A short time solution that can

be applied over all the Péclet range is developed in Ref. 40.

However, the authors neglect the contribution of radial dif-

fusion, justifying it with some observations
41

by Chatwin.
35

Indeed, Chatwin properly observes that “In many important

flows, the time taken for a molecule of contaminant to wan-

der over the tube cross-section, is much greater than the time

taken for it to be carried right through the tube,”
35

but in his

analysis of dispersion via Fourier transform the dispersion

regime occurring whenever the axial advection time is much

shorter than the cross-sectional diffusion time is neglected.

In later work, Chatwin
36

analyzes the early stages of longi-

tudinal dispersion by means of a stochastic approach.

In point of fact, a systematic analysis of dispersion prop-

erties in finite length channels has never been developed,

especially for slowly diffusing solutes �high Péclet numbers�.
The characterization of dispersion regimes in short columns

at high Péclet numbers is also important in microfluidic ana-

lytical and separation devices related to the application of

wide-bore chromatography,
42–44

which is used for character-

ization and separation of nanoparticles and micelles. The dic-

tion wide-bore chromatography refers to solute dispersion

�chromatographic� experiments in mini- and microchannel in

which the length �L� to radius �R� aspect ratio �=L /R is not

too high ���300�. Indeed, a transport theory for dispersion

in finite length channels at high Péclet numbers is lacking,

and this parameter region corresponds to the no man’s land

where no analytical results are available �see, e.g., Fig.

20.5.2 in a classical reference book on transport

phenomena,
45

based on the classical work on dispersion by

Ananthakrishnan et al.
8�.

The aim of this article is to develop a systematic analysis

of dispersion in finite length channels for high Péclet num-

bers. This analysis completes the classical theory due to Tay-

lor and Aris and generalizes it to the operating conditions

where the characteristic axial advection time is much shorter

than the characteristic time for diffusion in the cross section.

Specifically, in a finite-length channel, a transition occurs

from Taylor–Aris scaling to a new regime, which can be

referred to as the convection-dominated dispersion regime, in

which the moments of the outlet solute concentration scale

either logarithmically or as a power law of the Péclet

number. Indeed, the occurrence of the transition from

Taylor–Aris dispersion to convection-dominated regime,

which has been qualitatively described by Vanderslice

et al.,
46

is the physical principle underlying the application of

wide-bore chromatography as a hydrodynamic separation

technique.
43,44

A complete scaling analysis for laminar paral-

lel flows in channels of arbitrary cross section is developed,

and it is shown that the scaling properties of the moment

hierarchy depend strongly on the regularity of the cross-

sectional perimeter. If this perimeter is smooth �as in the case

of circular capillaries� one observes that the variance of the

outlet concentration profiles scales as Pe1/3 �where Pe is the

Péclet number, see Sec. II for its definition�. The one-third

scaling is formally analogous to the classical scaling in the

thermal boundary layer, occurring as a consequence of a lo-

cally linear velocity profile,
47,48

to the anomalies occurring in

the behavior of the mixing layer close to channel walls in

rectangular microchannels,
49–51

to the spectral properties

characterizing the convection-enhanced branch of the

advection-diffusion operator in simple flow systems,
52

to the

phenomenon of accelerated diffusion in a vortex flow.
53

The

Pe1/3-scaling has been recently observed by Vikhansky
54

in

the tails of residence time distributions of passive scalars in

chaotic channel flows. However, when more complex and

nonsmooth channel geometries are considered �as in the case

of rectangular channels or in channel possessing local cusps�
different scaling laws can be observed, as a consequence of

the highly localized properties of the dispersion-boundary

layers associated with the evolution along the channels of the

hierarchy of moments of the solute concentration field. The

dispersion boundary layers develop in the neighborhood of

the most “critical” points of the cross-sectional boundary,

where the velocity vanishes as a function of the local coor-

dinates with the highest nonlinearity exponent �see Secs. III

and IV for a precise formulation of this statement�. This phe-

nomenon marks the difference between the dispersion

boundary layers and the thermal boundary layer in the clas-

sical Leveque problem.
47,48

The article is organized as follows. Section II develops

the mathematical formulation of the problem �via moment

analysis� and describes phenomenologically the occurrence

of different dispersion regimes in finite length channels. Sec-

tion III develops a scaling analysis of convection-dominated

dispersion, by considering first the case of a spatially local-

ized �impulsive� inlet solute feeding. The scaling theory is

subsequently generalized to account for a uniform inlet feed-

ing. Section IV analyzes the implications of the geometry of

the cross section on the scaling exponents associated with the

dependence of the moment hierarchy on the Péclet number.
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Section V develops a rigorous invariant rescaling of the mo-

ment equations for several channel geometries, from which

the scaling properties of the dispersion boundary layers can

be established. Finally, Sec. VI addresses the analogies and

the difference between the present theory of dispersion and

the scaling theory of the thermal boundary layer in the

Leveque problem.

II. PROBLEM SETTING AND DISPERSION REGIMES

Consider a channel � defined as the Cartesian product

�=�� �0,L� of a two-dimensional �2D� domain �, repre-

senting the channel cross section times the interval �0,L�
associated with the axial extent. Let x�= �x ,y� be a Cartesian

coordinate system on �, and z� �0,L� the axial coordinate.

Consider a parallel flow, in which the velocity defined in �
only possesses axial component, vz�x��, which depends on

the sectional coordinates x�. This velocity profile can be

viewed as the solution of the Stokes problem in the presence

of a pressure drop. This is the classical setting for studying

dispersion in the Taylor–Aris regime for slow flows through

a tube.
1,7,8

Transport of solute, the concentration of which is

c�t ,x� ,z�, is described by the advection-diffusion equation

�c

�t
= − vz�x��

�c

�z
+ D�2c , �1�

where D is the solute diffusivity.

Let W be a characteristic length scale of the cross section

�. Depending on the geometry of �, W can be either the

radius in circular capillary, or the shortest edge in a rectan-

gular channel, or the diameter �in the more general meaning

of diameter for a point set� for a generic �.

Let Vm be the mean axial velocity, ��vz�x��dx�=VmA�,

where A� is the area of �. By introducing the dimensionless

coordinates �= tVm /L, �=x /W, �=y /W, 	=z /L, and 

=c /Cref, where Cref is a reference concentration value �see

below�, Eq. �1� becomes

�


��
= − u��,��

�


�	
+

1

Pe

�2


�	2
+

�2

Pe
� �2


��2
+

�2


��2� , �2�

where

Pe =
VmL

D
, � =

L

W
, u��,�� =

vz�W�,W��
Vm

. �3�

Let �� and �� the flow domain and the cross section in the

new system of nondimensional coordinates, ��=��� �0,1�.
Due to the normalization, it follows that

�
��

u��,��d�d� =
A�

W2
= A��

, �4�

where A��
is the area of the nondimensional cross section ��.

Therefore u�� ,�� admits unit mean. Equation �2� is equipped

with the initial condition 
 	�=0=0, since no solute is initially

present in the column, with vanishing flux conditions at the

solid boundary ��� of ��, �
 /�n 	���
=0, where � /�n is the

normal derivative, and with the inlet condition


	=0 = 
in��,�,�� . �5�

As regards the outlet boundary condition, different choices

are possible. A typical approach is to consider the infinite-

length approximation, i.e., the column is regarded as infi-

nitely extended, 	� �0,�� �so that solely the regularity con-

dition at infinity applies�, but the outlet concentration profile

is evaluated at 	=1, i.e., at the outlet section of the actual

column. Alternatively, one may use Danckwerts’ outlet

boundary condition that dictates �
 /�	 		=1=0, i.e., the outlet

solute flux is purely convective. In the present analysis,

which is focused on the high-Péclet dispersion behavior, the

outlet condition is practically irrelevant, since the contribu-

tion of axial dispersion is negligible �see Sec. II B�.
With respect to the classical Taylor–Aris theory, which

considers dispersion in infinitely extended columns, we ana-

lyze a flow device of finite length. Correspondingly, the na-

ture of the inlet condition is important. The most convenient

inlet condition in a dispersion experiment is an impulsive

feeding in time, i.e.,


in��,�,�� = 
̄in��,������ , �6�

where ���� is Dirac’s delta distribution, and the reference

concentration value Cref is chosen in such a way that

���

̄in����d�d�=A��

. The case 
̄in=1 will be referred to as

the uniform impulsive feeding. Equation �6� for 
̄in=1 is also

the mathematical representation of the typical feeding condi-

tions used in chromatographic practice via a syringe pump-

ing of the solute, the duration of which is much smaller than

the column residence time L /Vm.

A. Moment analysis

Following Aris,
1,7

the analysis of dispersion in tubular

channels can be approached by considering the moments of

the nondimensional distribution 
. In finite length channels,

it is convenient to consider the temporal moments of 
 �i.e.,

the moments with respect to the time variable ��, and spe-

cifically those associated with the outlet concentration pro-

file. To this end, let us first introduce the local moments

m�n��� ,� ,	� defined in �� as

m�n���,�,	� =
1

A��

�
0

�

�n
��,�,�,	�d�, n = 0,1,2, ¯ .

�7�

In chemical analytical practice, such as in hydrodynamic

chromatography, one does not measure the whole spatial pro-

file of the moment hierarchy 
m�n��� ,� ,	��, but rather the

average outlet moments m
out

�n�
at the outlet �	=1� of the flow

channel,

mout
�n� =

1

A��

�
��

d�d��
0

�

�n
��,�,�,	�		=1d�

= �
��

m�n���,�,	�		=1d�d� . �8�

There is a difference between the present definition of the

moment hierarchy and that used in the Aris analysis of an

123601-3 Laminar dispersion at high Péclet numbers Phys. Fluids 21, 123601 �2009�
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infinitely extended channel.
7

In the latter situation, moments

are defined with respect to a nondimensional axial coordinate

in a reference system that moves with the mean axial veloc-

ity. In the analysis of finite length channels, moments are

defined in a fixed reference system, and the main quantities

are the outlet moments m
out

�n�
evaluated at the outlet section of

the conduit.

From Eq. �7�, it follows that the local moment hierarchy

satisfies the system of equations

u��,��
�m�0�

�	
=

1

Pe

�2m�0�

�	2
+

�2

Pe
�

�

2 m�0�, �9�

u��,��
�m�n�

�	
=

1

Pe

�2m�n�

�	2
+

�2

Pe
�

�

2 m�n�

+ nm�n−1�, n = 1,2, ¯ , �10�

where �
�

2 =�2
/��2+�2

/��2. These equations are equipped

with the boundary conditions �m�n�
/�n 	���

=0, n=0,1 ,2 ,¯,

and

m�0���,�,	�		=0 =

̄in��,��

A��

,

�11�
m�n���,�,	�		=0 = 0, n = 1,2, ¯ .

For a uniform inlet feeding, Eq. �9� admits the constant so-

lution m�0��� ,� ,	�=1 /A��
uniformly in ��. Equations �9�

and �10� can be simplified at high Pe. In the next section we

show that for �1, and Pe /�2�10, the contribution of

axial dispersion to the shape of the outlet concentration pro-

file and to the values of the outlet moments is practically

negligible. Consequently, the axial diffusion term �2m�n�
/�	2

in Eqs. �9� and �10� can be dropped out. With this simplifi-

cation, which can be referred to as the NAD �acronym for

neglecting axial diffusion� approximation, there is no need

for specifying any outlet boundary condition.

The equations for the moment hierarchy, Eqs. �9� and

�10�, and the advection-diffusion equation �2�, have been

solved in 2D and three-dimensional �3D� geometries by

means of a finite volume algorithm. The results were also

checked with a commercial finite element code �COMSOL,

Multiphysics� with an adaptive mesh refinement. Specifi-

cally, in 3D structures, the moment equations within the

NAD approximation have been solved using a finite volume

code by considering a uniform grid N�N in cross-sectional

coordinates. The values of N ranged from 300 at small Pe

values �up to Pe�5��2�, up to 5000 at the highest Pe

values. The results for the moment hierarchy have also

checked by performing a stochastic analysis of solute par-

ticle motion, i.e., by solving the Langevin equation of motion

�see Appendix A�. In all cases, the differences among the

three numerical methods �finite volume, stochastic analysis,

commercial code COMSOL� were less than 1% of the com-

puted �first and second� moments.

B. Dispersion regimes

In order to illustrate the basic phenomenology of disper-

sion in finite length channels, and the occurrence of different

transport regimes, we refer to a 2D channel. Letting � and 	
be the nondimensional transverse and axial coordinates, sol-

ute transport in a 2D channel can still be described by Eq. �2�
in which the second derivative with respect to � is absent,

and the axial velocity u=u��� is a function solely of �. For a

2D Poiseuille flow, u���=6��1−��. Throughout this section

and also in Sec. III we consider exclusively this 2D model.

In 2D straight channels, the cross-sectional area A� entering

the expressions for the moments should be substituted by the

channel width W �0�y�W�, and A��
by 1.

As discussed in the previous section, the simplest experi-

mental characterization of solute dispersion in finite-length

capillaries is by means of the outlet concentration profile


�� ,� ,	� 		=1, starting from a time impulsive inlet condition

�Eq. �6��. It is also natural to consider global �averaged�
quantities, which are those customarily measured in experi-

mental practice. Specifically, the average outlet concentration


out���= �A��
�−1���


 		=1d�d� can be introduced. In a 2D

channel flow, 
out���=�0
1
�� ,� ,1�d�. Henceforth, we use

the diction “average outlet profile” or “outlet chromato-

gram,” interchangeably, to indicate 
out���.
For infinitely extended channels, i.e., whenever the char-

acteristic axial lengthscale is much larger than the character-

istic transverse lengthscale, the Taylor–Aris theory provides

a complete description of the dispersion properties. However,

whenever finite length channels are considered, new disper-

sion features arise, which are associated with dispersion re-

gimes that deviate from the Taylor–Aris predictions.

To show this, let us consider the time behavior of the

outlet chromatogram in a 2D channel flow for �=100 at

different Péclet values in the case of a uniform impulsive

feeding.
55

As can be observed from Fig. 1�a�, for 5�103

� Pe�104, the shape of the outlet chromatogram tends to

become symmetric �Gaussian� with a peak �modal abscissa

of 
out���� approaching the mean axial residence time �=1.

As Pe increases beyond Pe=104, this scenario changes

abruptly. The average outlet profiles for Péclet values at the

transition point are depicted in Fig. 1�b�. The outlet chro-

matogram becomes significantly asymmetric, with a modal
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FIG. 1. �a� Average outlet concentration profile 
out��� vs � for the 2D

Poiseuille flow at �=100, near the transition point from Taylor–Aris to

convection-dominated regime. The dashed arrows indicate increasing Pe

values, Pe=5�103 , 104 , 105 , 2�105 , 5�105 , 106. �b� 
out��� vs � in

the Péclet range �104 ,105� corresponding to the transition: curve �a� Pe

=104, �b� Pe=2�104, �c� Pe=5�104, and �d� Pe=105.
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abscissa that approaches the value �=2 /3. This new scenario

corresponds to a regime transition in the solute transport

within the column and can be conveniently described by con-

sidering the modal abscissa, �mod, as an order parameter.

Figure 2 depicts �mod, i.e., the time instant corresponding

to the local peak of 
out���, for different aspect ratios �, as a

function of the effective Péclet number Peeff,

Peeff =
Pe

�2
=

W2

D
� L

Vm

. �12�

The dimensionless group Peeff corresponds to the effective

Péclet number in the transverse direction. It is the ratio of the

transverse diffusional timescale �W2
/D� to the axial convec-

tive timescale �L /Vm�, and is the reciprocal of the prefactor

multiplying the transverse Laplacian operator �
�

2 , describing

transverse diffusion in Eq. �2� and in Eqs. �8� and �9�.
In the limit where � tends to infinity �see the two straight

horizontal lines in Fig. 2�, the graph of �mod vs Peeff ap-

proaches a decreasing sigmoidal curve, with �mod1 for

Peeff�1, and �mod2 /3 for Peeff10. For finite values of �
�such as those corresponding to the data depicted in Fig. 2�,
an intermediate Peeff interval defines the region where

�mod1.

Values of �mod1 correspond to the Taylor regime and

span a Peeff interval which becomes larger and larger as �
increases. This is rather intuitive, since the Taylor–Aris dis-

persion theory has been derived for an infinitely extended

column, i.e., for �→�. For smaller values of Peeff, transport

is dominated by axial diffusion.

For Peeff10, the modal abscissa approaches the value

�mod=2 /3, corresponding to the minimum nondimensional

kinematic residence time for a solute particle starting at �
=1 /2 �umax=6y�1−y� 	y=1/2=3 /2, �mod,min=umax=2 /3�. In

this parameter region, the effect of axial convection becomes

predominant, and consequently this transport regime can be

referred to as the convection-dominated dispersion regime.

Observe that for Peeff10 all the data, independently of the

aspect ratio �, collapse into a single curve, and this effect

provides an indication that transport properties in this regime

are controlled exclusively by the interaction between axial

convection and transverse diffusion. With reference to Fig. 2,

the region 1� Peeff�10 corresponds to the transition from

the Taylor–Aris regime to the convection-dominated trans-

port �Peeff10�.

The transition from the Taylor–Aris dispersion to new

dispersion regimes has been described by several

authors,
43,44,46

but no theoretical work thoroughly elucidated

its properties. In point of fact, the scope of this article is

precisely that of developing a comprehensive theory for dis-

persion in this regime.

It is worth observing that the occurrence of convection-

dominated regime is the working principle of the wide-bore

hydrodynamic chromatography, which operates either in the

transition zone between the Taylor–Aris and convection-

dominated regime for separation purposes,
43

thus exploiting

the abrupt change in the shape and peak location of the outlet

chromatogram near Peeff=1, as depicted in Fig. 1, or com-

pletely in the convection-dominated regime for analytical

chemical applications, such as nanoparticle and micellar

characterization.

The “critical value” Peeff=1 separating the two asymp-

totes of �mod vs Peeff �horizontal lines in Fig. 2� admits a

simple physical interpretation. It corresponds to the mini-

mum value of Peeff for which solute particles traveling all

the way from the inlet to the outlet section may have �statis-

tically� the possibility to explore, by transverse diffusion, the

entire channel cross section. This concept will be further

elaborated in Sec. III.

Still keeping the analysis at a phenomenological descrip-

tion, let us pinpoint the salient properties that characterize

the convection-dominated regime, as can be directly ob-

served from the analysis of 
out��� and of its moment hier-

archy 
m
out

�n��. These properties, considering a uniform inlet

feeding, can be summarized as follows:

�1� The average outlet concentration profile 
out��� con-

verges for Peeff→� to the kinematic limit 
out,kin���,
which is the kinematic residence time distribution for

solute particles, uniformly distributed at the inlet sec-

tion, and advected by the axial velocity. For the 2D

Poiseuille flow, elementary calculations yield


out,kin��� = �
0, � � 2/3,

1

��9�2 − 6�
, �  2/3. � �13�

�2� The moment hierarchy m
n

�n�
for n=1,2 ,¯ diverges for

Peeff→�. This is a consequence of the fact that

�0
��n
out,kin���d�=� for n=1,2 ,¯.

The behavior of the first order moment m
out

�1�
and of the

outlet variance �out
2 =m

out

�2�
− �m

out

�1��2 for a uniform inlet feeding

is depicted in Figs. 3 and 4, respectively. A logarithmic di-

vergence of m
out

�1� �A log Peeff �A is a constant� can be ob-

served, while �out
2 � Peeff

1/3 for high Peeff. The theoretical ex-

planation of these results is developed in Secs. III and V.

Let us analyze in greater detail the outlet variance that is

depicted in Fig. 4 for different values of the aspect ratio. As

regards dispersion, Fig. 4 shows the occurrence of three dif-

ferent regimes, as discussed in connection with the behavior

of the modal abscissa:

• The Taylor–Aris regime �lines �a�, �b�, and �c� in Fig. 4

up to Peeff� Peeff
� 10�, which can be further subdi-
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FIG. 2. Peak instant �mod vs Peeff for the 2D Poiseuille flow. Symbols ���
refer to �=5, ��� to �=20, and ��� to �=100. The solid horizontal lines

represent �mod=1 and �mod=2 /3, respectively.
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vided into an axial-diffusion controlled regime �for

very small values of the diffusivity, i.e., for Pe�1�,
followed by the Taylor regime for which �out

2 � Peeff.

• A transition zone, for Peeff
� � Peeff� Peeff

��, where

Peeff
�� 5�103 for the 2D Poiseuille flow.

• The asymptotic convection-dominated regime �line �d�
in Fig. 4� for large Peeff Peeff

��.

In the Taylor–Aris regime, which occurs for Peeff�10,

the outlet variance can be expressed as a function of the

Taylor–Aris Péclet number PeTA,

�out
2 =

2

PeTA

, �14�

where the Taylor–Aris Péclet number is defined by the

expression

PeTA =
VmL

DTA

, DTA = D +
Vm

2
W2�TA

D
, �15�

where DTA is the Taylor–Aris dispersion coefficient, and �TA

the Taylor–Aris factor ��TA=1 /210 for the 2D Poiseuille

flow�.
From Eqs. �14� and �15�, it follows that

�out
2 =

2DTA

VmL
=

2

Pe
+

2Pe�TA

�2
=

2

Peeff�
2

+ 2Peeff�TA.

�16�

Equation �16� provides the connection between the Taylor–

Aris theory in infinitely extended channels and the dispersion

properties of finite-length columns. For finite-length ducts

Eq. �16� applies up to Peeff� Peeff
� , where Peeff

� 10.

The outlet variance in the Taylor–Aris regime �Eq. �16��
consists of two contributions: �i� the factor 2 / Peeff�

2 corre-

sponding to axial diffusion, which is important for very low

Péclet values, and �ii� the term 2Peeff�TA, which is the Taylor

enhancement due to the interplay between transverse diffu-

sion and a nonuniform axial velocity profile, for values of the

Péclet number at which each solute particle entering the inlet

section of the channel has the possibility of exploring com-

pletely the cross section. Strictly speaking, this phenomenon

occurs for Peeff�1, but numerical simulations depicted in

Fig. 4 indicate that the Taylor–Aris regime for the scaling of

the outlet variance can be extrapolated in a 2D Poiseuille

flow even further, up to Peeff�10. We return to this issue in

the next section.

The transition region from Taylor–Aris to convection-

dominated regime occurs for Peeff� �Peeff
� , Peeff

���, where

Peeff
�� 5�103. the outlet variance starts to deviate from the

Taylor–Aris scaling, which is linear in Peeff, while for Peeff

 Peeff
�� a fully developed convection-dominated dispersion

regime sets in, which is associated with the power-law scal-

ing �out
2 � Peeff

1/3.

Starting from Peeff=10, the behavior of �out
2 becomes

practically independent of the aspect ratio � ��1�. This is

a consequence of the fact that the effect of axial diffusion

becomes practically negligible. This phenomenon is specifi-

cally depicted in Fig. 5, which shows the behavior of �out
2

obtained from numerical simulations with and without the

NAD approximation. For a “short” channel ��=5�, the ef-

fects of axial diffusion become practically negligible for

Peeff10, and the region of applicability of the NAD ap-

proximation becomes broader as � increases.
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III. SCALING ANALYSIS OF CONVECTION-
DOMINATED DISPERSION

The convection dominated regime is a consequence of

the localized kinematics of solute particles near the stagna-

tion points of the axial velocity. This phenomenon is illus-

trated in Fig. 6 with the aid of some trajectories of the biased

Brownian motion of solute particles in a 2D Poiseuille chan-

nel flow ��=100�. The kinematic equations of motion corre-

sponding to Eq. �1�, i.e., the Langevin equation for solute

particles, read in a 2D channel as

d� =� 2

Peeff

dw1, d	 = u���d� +� 2

Pe
dw2, �17�

where w1 w2 are two uncorrelated Wiener processes possess-

ing zero mean and unit variance.
56

See Appendix A for

details.

For Peeff=0.4 �Fig. 6�a��, i.e., within the region of oc-

currence of the Taylor–Aris regime, particle trajectories ex-

plore generically the entire cross section of the channel. This

corresponds to the fact that Taylor–Aris equation �16� results

from the homogenization of the nonuniformities in the axial

velocity throughout the entire cross section.

Conversely, for higher Peeff at the boundary of, or be-

yond the region of validity of the Taylor–Aris dispersion

equation �such as for Peeff=10 depicted in Fig. 6�b��, a ge-

neric particle starting its trajectory at the inlet section �	
=0� does not explore the entire channel cross section while

traveling downstream the column to the outlet �	=1�. This is

a fortiori true for solute particles starting from �=0, i.e., just

at the walls which correspond to the velocity stagnation

points �Fig. 6�c��. As Peeff increases, these particles tend to

be confined in a thin layer close to the walls, and this

“kinematic” localization close to the stagnation points deter-

mines the long-time properties of the outlet concentration

profile, and ultimately the divergent scaling of the moment

hierarchy.

Convection dominated dispersion can be thus viewed as

a boundary-layer phenomenon. In a continuum framework,

the boundary layers refer to the cross-sectional behavior of

the local moments as a function of the transverse coordinate.

Figure 7�a� depicts the behavior of m�1��� ,	� as a function of

the transverse coordinate � at Peeff=106 for the 2D

Poiseuille flow at different axial locations. Figure 7�b� de-

picts the graph of m�2��� ,1� at the outlet section for increas-

ing values of Peeff. As Peeff increases, the values of the local

moments become more peaked close to the velocity stagna-

tion points.

Below, we develop a scaling theory and a rigorous in-

variant rescaling of the moment equations. The scaling

analysis is developed in two steps. First, the scaling of the

moment hierarchy is considered starting from a spatially im-

pulsive inlet feeding. Subsequently, the analysis is extended

to the case of a spatially uniform feeding. This strategy for

tackling the problem has some technical advantages, espe-

cially when more complex 3D flows are to be dealt with.

A. Leveque-like analysis of spatially
impulsive feeding

From the above discussion on the localized behavior of

particle kinematics determining the occurrence of boundary

layers associated with the moment hierarchy, it is clear that

solely the local behavior of the velocity close to the walls

influences the asymptotic properties �large Peeff� in the

convection-dominated regime.

It is therefore possible to follow a Leveque-like ap-

proach, and consider the local behavior of the velocity close
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to the walls to the leading order. The differences between the

classical Leveque problem and the dispersion boundary lay-

ers are thoroughly addressed in Sec. VI.

Consider a 2D channel in the presence of the prototypi-

cal axial velocity

u��� = u0��, �18�

which can be referred to as a generalized shear flow. The

case �=1 corresponds to a 2D shear flow with the upper wall

that moves with nondimensional velocity u0, and, to the lead-

ing order, to the Poiseuille flow in a 2D channel close to �
=0. The case where �1, albeit unphysical in 2D channel

configurations, is indeed relevant for understanding the dis-

persion properties in 3D channel flows, as discussed in

Sec. IV.

Two main simplifications can be assumed: �i� For high

Peeff the effect of axial diffusion can be neglected, and the

NAD approximation can be enforced. Moreover, �ii� while

considering spatially impulsive feeding, i.e.,


̄in��� = 
0���� �19�

�which, by Eq. �6�, implies that 
in�� ,� ,��=
0���������, the

transverse coordinate can be defined for 0���� �the nor-

malization constant 
0 is defined such that the zeroth order

moment at the outlet section equals unity�. This simplifica-

tion is consistent with the occurrence of a localized boundary

layer close to �=0, since the behavior for large � ���1� is

absolutely irrelevant. However, observe that the assumption

of an infinitely extended cross section makes sense for the

impulsive feeding expressed by Eq. �19�, but it would be

meaningless for a uniform inlet feeding �the dimensionless

concentration would not be summable�.
The assumption of an infinitely extended cross section is

just a purely technical simplification that does not modify the

physics of the problem, which has been introduced in order

to obtain an exact rescaling of the advection-diffusion equa-

tion.

Under the above assumptions, the 2D advection-

diffusion equation becomes

�


��
= − u0���


�	
+ �

�2


��2
, �20�

where �= Peff
−1. Equation �20� is equipped with the initial con-

dition 
 	�=0=0. Let us normalize time and the transverse

coordinate by defining the new variables �� and �� as

� = c��, � = b��. �21�

By choosing the factors b and c as

b = b��� = � �

u0

�1/��+2�

, c = c��� = � 1

u0

�2/��+2�

�−�/��+2�,

�22�

Eq. �20� takes the form

�


���
= − ������


�	
+

�2


�����2
, �23�

in which � does not appear explicitly. Therefore, the solution

of Eq. �20� can be expressed in an invariant form as


��,�,	� = A�������,��,	� , �24�

where A��� is a normalization factor. Let ��n� be the mo-

ments at the outlet section �i.e., for 	=1� associated with the

spatially impulsive feeding equation �19�. From the expres-

sion of the first order moment, the normalization constant

A��� can be identified

��0� = A����
0

�

d��
0

�

�� �

c
,
�

b
,1�d� = A���bcM0, �25�

where M0=�0
�d���0�

����� ,�� ,	�d��. Therefore, since ��0� is

normalized to 1, it follows that

A��� =
1

bcM0

. �26�

For ��n� one obtains

��n� = A����
0

�

d��
0

�

�n�� �

c
,
�

b
,1�d� = A���bcn+1Mn,

�27�

where Mn=�0
�d���0�

�����n���� ,�� ,	�d��. Substituting the

expression for A��� �Eq. �26�� into Eq. �27�, it follows that

��n� = �c����n
Mn

M0

� �−n�/��+2� = Peeff
n�/��+2�. �28�

Therefore, from Eq. �28�, one obtains

��1� � Peeff
�/��+2�, ��

2 = ��2� − ���1��2 � Peeff
2�/��+2�. �29�

As can be observed, even for �=1 �i.e., for a physically

realizable flow�, the scaling of the impulsive moments ��n�,

�i.e., those associated with a spatially impulsive inlet condi-

tion�, is different from the scaling of the outlet moments m
out

�n�

in the case where the feed is spatially uniform throughout the

inlet section. Specifically, for �=1, ��n�� Peeff
1/3 �and not

logarithmically as m
out

�1��, and ��
2 � Peeff

2/3 �which is different

from the scaling of �out
2 � Peeff

1/3�.
Figure 8 depicts the behavior of ��1� and ��

2 for a 2D

Poiseuille flow obtained from the Langevin equations, Eq.

�17�, describing solute particle motion. The simulations have

been performed by considering N=106 particles that, starting

10
2

10
0

10
-2

10
6

10
4

10
2

10
0

µ
( 1

) ,
σ

2 µ

Peeff

a

b

FIG. 8. First order moment ��1� �symbols ���� and outlet variance ��
2 �sym-

bols ���� vs Peeff for the 2D Poiseuille channel at �=20 with localized

impulsive feeding. Lines �a� and �b� are the scalings ��1�� Peeff
1/3 and ��

2

� Peeff
2/3, respectively.

123601-8 Giona et al. Phys. Fluids 21, 123601 �2009�

Downloaded 31 Oct 2011 to 131.155.151.93. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



from �=0 at 	=0, reach the outlet section �	=1�. Results

from random walk simulations are therefore in agreement

with those predicted by Eq. �29�.

B. Uniform inlet feeding conditions:
Scaling exponents

Given the impulsive moment hierarchy ��n�, it is pos-

sible to derive the scaling of m
out

�n�
associated with a uniform

inlet feeding. Specifically, it is reasonable to assume that m
out

�n�

is proportional to ��n� times the area of the boundary layer

ABL close to solid walls at the outlet section,

mout
�n� � ��n�ABL, �30�

where ABL is the area of dispersion boundary layer DBL in

3D channels.

Consider first the case of a 2D channel flow with an

axial velocity given by Eq. �18�. In this case, ABL is the width

of the boundary layer, and

ABL = ��, �31�

where the interval �0,��� corresponds to the dispersion

boundary layer at the outlet section, and �� is its end point.

The width �� of the boundary layer can be defined as the

mean transverse distance covered by a particle located at �
=0 during its overall displacement from 	=0 to 	=1. Let ��

be the mean time of flight of such a particle,

�� =
1

u����
=

1

u0����� . �32�

Since along the transverse direction solely molecular diffu-

sion is active, �� and �� are related to each other via the

Einstein relation,

����2 =
2

Peeff

��. �33�

From Eqs. �32� and �33� it follows that

�� � Peeff
�/��+2�, �34�

and, by Eq. �32�,

�� � ����1/� � Peeff
−1/��+2�. �35�

Substituting Eq. �35� into Eqs. �30� and �31�, the asymptotic

scaling of the outlet moment hierarchy in 2D channel flows

can be predicted

mout
�n� � Peeff

�n , �36�

where the scaling exponents �n are functions of the velocity

exponent �, and can be expressed as

�n = �n��� =
n� − 1

�� + 2�
, n = 1,2, ¯ . �37�

The case �=1 corresponds to a Poiseuille flow since, to the

leading order u����6� near �=0 �and similarly in the

neighborhood of �=1, u����6�1−���. Equation �37� pre-

dicts for �=1, �1=0, and �2=1 /3. These exponents are con-

sistent with the data depicted in Figs. 3 and 4. The scaling of

the first-order moment requires some further discussion. The

result �1=0 �for �=1� should be interpreted as follows: The

asymptotic behavior of m
out

�1�
as a function of Peeff is slower

than any power of Peeff, and in this respect the result �1=0 is

consistent with the numerical results. However, the scaling

theory developed above is not so refined to be able to predict

the logarithmic divergence of m
out

�1�
. This result is obtained in

Sec. V, by following a more rigorous approach based on an

exact invariant reformulation of the equations for the mo-

ment hierarchy. For n=2, Eq. �37� predicts �out
2 � Peeff

1/3

which is the correct asymptotic scaling, as for the higher

order moments.

Let us discuss the dependence of the exponents �n��� on

the velocity exponent �. If the velocity is locally quadratic

��=2� or possesses a higher exponent � close to the stagna-

tion point, then �10. Specifically, �1��=2�=1 /4, �1��=3�
=2 /5. This means that for �1 the first-order moments do

not diverge in a logarithmic way, but follow a power-law

scaling for large Peeff. This effect is important when consid-

ering 3D flows, as discussed in Sec. V. The numerical evi-

dence of this phenomenon is depicted in Figs. 9�a�–9�d�,
which show m

out

�1�
, m

out

�2�
, and m

out

�3�
for the generalized shear

flows with �=1,2 ,3. Numerical simulations confirm the

scaling theory expressed by Eqs. �36� and �37�. Specifically

�2�2�=3 /4, �2�3�=1, �3�1�=2 /3, �3�2�=5 /4, and �3�3�
=8 /5.

As regards the dependence on the axial coordinate 	, a

simple scaling argument indicates that

m�n���,	� � 	�n
	
, �n

	��� = n − �n��� , �38�

see Appendix B for details. The numerical evidence for the

prediction expressed by Eq. �38� is depicted in Fig. 10,

showing the axial dependence of the quantity Mn�	�
=�0

1m�n��� ,	�d� for a 2D Poiseuille flow. Specifically for �
=1 Eq. �38� predicts �1

	 =1, �2
	 =5 /3, and �3

	 =7 /3.
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FIG. 9. Outlet moments for the generalized shear flow in a 2D channel.

Symbols ��� refer to �=1, ��� to �=2, and ��� to �=3. The solid lines

represent the theoretical scaling equations �36� and �37�.
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IV. 3D CHANNELS: INFLUENCE OF BOUNDARY
REGULARITY

The scaling theory developed in the previous section can

be extended to 3D straight channels of arbitrary cross section

to predict the exponents controlling the behavior of the mo-

ment hierarchy in the convection-dominated regime as a

function of the local properties of the velocity field and of

the geometry of the cross section �.

The starting point is represented by Eq. �30� which de-

couples the effects of the near wall velocity, entering the

expression for ��n�, from the geometric effects that are ac-

counted for in the area ABL of the dispersion boundary layer.

Strictly speaking, Eq. �30� is not a decoupling of hydrody-

namic effects from geometry, as both the quantities ��n� and

ABL depend, more or less implicitly, on the flow field and on

the geometric structure. Nevertheless, Eq. �30� is extremely

powerful in the analysis of 3D flows, as it permits to identify

the factor affecting the scaling of the outlet moments �i.e.,

the flow exponent � entering ��n�, and the area of the bound-

ary layer ABL� and to analyze them separately.

We consider Stokes flows in the presence of no-slip ve-

locity at the solid walls. This means that the axial velocity

satisfies the Stokes equation �
�

2
vz�x��=−�P /�L, where �P

is the pressure difference, between the inlet and the outlet

sections, and � is the viscosity, equipped with the boundary

condition vz�x�� 	x
�

���=0. The analysis is developed by

considering channels of increasing degree of singularity in

their cross-sectional perimeter ���, starting from smooth

boundaries up to non-Lipschitz structures.

A. Smooth cross-sectional perimeter

Consider first the case of a smooth �differentiable�
boundary ��. This means that the cross-sectional perimeter

��� is at least a C1 closed curve. A typical example of this

family of channels is the circular tube, where �� is the unit

circumference. Let �� �0,1� be the nondimensional radial

coordinate. For a cylindrical channel the dispersion boundary

layer develops uniformly around the whole external perim-

eter of �� with a width equal to 1−��. Let s=1−� be the

distance from the solid walls. The velocity field near s=0 is

a linear function of the distance s, i.e., u�s�=2s+O�s2�.
Therefore �=1, and from Eq. �28� it follows

��n� � Peeff
n/3. �39�

In the nondimensional formulation the area of the dispersion

boundary layer ABL= �0,s��� �0,2�� is ABL=2�s�, where

the scaling of s� with Peeff can be obtained by applying the

same approach developed in the previous section for 2D

channel. It follows that s�� Peeff
1/3, and therefore the scaling

exponents �n are expressed by

�n =
n − 1

3
, n = 1,2, ¯ , �40�

and are identical to the exponents in a 2D Poiseuille channel

��=1�. Equation �40� applies to 3D channel possessing an

arbitrarily complex yet smooth cross-sectional perimeter.

B. Lipschitz but not differentiable
cross-sectional perimeter

Next we consider the case of a cross section that is not

smooth �differentiable� but solely Lipschitz continuous. This

means that the perimeter ��� is piecewise smooth and can be

decomposed in the union of a finite number of smooth curve

arcs forming nonvanishing angles at the intersection points

�corners�. Examples of this kind of channels are the rectan-

gular, the triangular, and the trapezoidal channels, which are

relevant in microfluidic applications.

As a prototypical example we consider a square channel

�Fig. 11�a��. As regards the behavior of the axial velocity, a

distinction should be made between almost all the points of

the perimeter ���, in the neighborhood of which the axial

velocity is a linear function of the normal coordinate from

the wall and the four corner points. Let �� ,��= �0,0� be the

coordinate of one of the corners. The local velocity field near

the corner behaves as

u��,�� = u0�� . �41�

The asymptotic scaling in convection-dominated regime

is controlled by a dispersion boundary layer that becomes

localized near the most “critical” points of the external pe-

rimeter. The four corner points are critical in the meaning

that, at these points, the perimeter curve does not admit a

tangent direction, but solely left and right tangents, which are

different from each other, and form a nonvanishing angle 

�see Fig. 12�a� for a schematic representation of a generic

corner structure�. In the case of square channels 
=� /4.

Let �p ,q� be a local coordinate system in the neighbor-

hood of a corner, where q corresponds to the transverse di-

rection bisecting the angle formed by the two perimeter

curve arcs �see Fig. 12�a��. Along the transverse direction at

p=0 the axial velocity behaves as

u  u0q�, �42�

where the velocity exponent is �=2. The scaling theory de-

veloped in Sec. III for 2D channel flows can be applied also

to this case, and Eq. �28� yields
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FIG. 10. Scaling of Mn�	� vs 	 for the 2D Poiseuille flow at Peeff=106.

Symbols ��� refer to n=1, ��� to n=2, and ��� to n=3. The solid lines

represent the scaling equation �38�.
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��n� � Peeff
n/2. �43�

Let q� be the width of the dispersion boundary layer in

the transverse direction. By following the same analysis de-

veloped in Sec. III for 2D channels, and letting �� be the

threshold time scale of the dispersion boundary layer, it fol-

lows that

�� =
1

u0�q��2
, �q��2 =

2

Peeff

��, �44�

from which it follows that q�� Peeff
−1/4. The area of the dis-

persion layer close to the four corners is proportional to the

square of q�. With reference to Fig. 12�a�,

ABL = bq� = �q��2 sin 
 � Peeff
−1/2. �45�

Gathering these results, it follows for the exponents �n asso-

ciated with the scaling of the moment hierarchy are ex-

pressed by

�n =
n − 1

2
, n = 1,2, ¯ . �46�

Equation �46� predicts �1=0 �as discussed in Sec. III, this

corresponds to a logarithmic divergence of the first-order

moment, slower than any power of Peeff� and �2=1 /2. Fig-

ures 13�a� and 13�b� show the behavior of m
out

�1�
and �out

2 for a

square channel ��= �0,1�� �0,1� �lines �a� and symbols

���� and confirm the predictions of the scaling theory.

The effect of the Lipschitz but nondifferentiable struc-

ture of the wall perimeter can be further appreciated by con-

sidering a geometric perturbation of the square channel rep-

resented by a square channel with rounded corners �Fig.

11�b��. Replace the four corners with one-fourth of a circle of

nondimensional radius 1/10. This perturbation makes the

cross-sectional perimeter ��� of this channel C1-regular.

Corner localization characterizing the square channel is de-

stroyed, and the dispersive boundary layer becomes localized

uniformly throughout the wall perimeter of ��. It follows

(a)

(b)

FIG. 11. �Color online� Cross sectional geometries and contour plots of the

normalized Stokes flow. �a� Square channel. �b� Square channel with

rounded corners.

(a) (b)

FIG. 12. �a� Representation of the local coordinate system at a corner of ��.

�b� Representation of a cusp singularity at �� of order �.
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FIG. 13. �a� First-order moment m
out

�1�
vs Peeff in a channel with square cross

section �line �a� and symbols ���� and for a rounded-corner square section

�line �b� and symbols ����. �b� Outlet variance �out
2 vs Peeff in a channel

with square cross section �symbols ���� and for a rounded-corner square

section �symbols ����. Line �c� represents the Taylor–Aris prediction for a

square channel, line �a� the scaling �out
2 � Peeff

1/2, line �b� the scaling �out
2

� Peeff
1/3.
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from the analysis developed in Sec. IV A that the scaling

behavior of the moment hierarchy fulfills Eq. �40� as for any

smooth channel, and specifically �2=1 /3. This phenomenon

is depicted in Fig. 7�b� �lines �b� and symbols ����. Observe

that in the Taylor–Aris regime �in this case up to Peeff

�102�, the square channel and the square channel with

rounded corners do not show significant differences �see line

�c� that corresponds to the Taylor–Aris prediction�. The onset

of the two different asymptotic scaling behaviors occurs ap-

proximately at Peeff=104. Conversely, as expected by the

theory, the first-order moments in the two channels display

an asymptotic logarithmic divergence �Fig. 13�a��.

C. Continuous but non-Lipschitz
cross-sectional perimeter

A further extension of the theory is represented by con-

tinuous but non-Lipschitz channel boundaries, i.e., whenever

the perimeter curve ��� possesses points in which the bound-

ary curves are the graph of a non-Lipschitz continuous func-

tions. Two typical situations arise: �i� The cross sectional

perimeter possesses local cusps and �ii� ��� contains a fractal

curve arc. Below we consider exclusively the first case, leav-

ing the analysis of dispersion in fractal channels to future

work.

A typical channel with isolated non-Lipschitz points is

depicted in Fig. 14�a�. Its cross section is the interstitial

space between four identical just-touching circles with non-

dimensional radius equal to 1/2. This channel geometry can

be referred to as a quadratic cusp channel. This diction

stems from the fact that close to each cusp point, say �� ,��
= �0,0� �see Fig. 12�b� for a schematic representation of a

cusp singularity and of its local coordinate system�, the pe-

rimeter ��� can be locally expressed as �= 	�	1/� with �=2.

This means that the external perimeter is not Lipschitz con-

tinuous but solely Hölder continuous C0,h with h�1 /�.

Figure 14�a� depicts the geometry of the quadratic cusp

channel �the nondimensional distance between two opposite

cusps equals 1� and the contour plot of the normalized ve-

locity profile solution of the Stokes equation.

In the neighborhood of any cusp point, say �= 	�	1/�

�pointing downward, as in the schematic Fig. 12�b��, the ve-

locity profile behaves as

u��,�� = u0��2 − ����2 + �� , �47�

as can be easily verified from the inspection of the solution

of the Stokes equation. This means that close to the cusp

point ��0�, the axial velocity behaves as

u�0,��  u0��, �48�

with a velocity exponent �=4 as depicted in Fig. 15.

We can therefore apply the scaling approach developed

in Sec. III, indicating that the spatially impulsive moment

hierarchy follows Eq. �28� with �=4. For the width �� of the

dispersion boundary layer, Eq. �35� can still be applied, and

the area of the dispersion boundary layer can be estimated as

ABL = 2�
0

��

d��
0

��

d� =
2

� + 1
�����+1 � Peeff

−��+1�/��+2�.

�49�

As a consequence, from Eq. �30�, it follows that the scaling

exponents �n of the outlet moment hierarchy are given by

(a)

(b)

FIG. 14. �Color online� �a� Contour plot of the velocity profile in the qua-

dratic cusp channel. �b� Contour plot of the local moment m�2��� ,� ,	=1� at

the outlet section for Peeff=105. A 10-base logarithmic scale has been used

for m�2�.
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�n =
n� − � − 1

� + 2
. �50�

Equation �50� applies to any channel possessing isolated

cusps of order �. For the quadratic cusp channel ��=2,�
=4�, it predicts �1=1 /6 and �2=5 /6. Figures 7�a� and 7�b�
depict the behavior of m

out

�1�
and �out

2 as a function of Peeff,

respectively. The asymptotic scaling of these quantities con-

firms the theoretical predictions.

Specifically, the case of cusp channels shows that in 3D

Stokes flows it is possible the occurrence of a power-law

scaling of the first-order moments, as in the case of proto-

typical 2D flows �generalized shear flows� with ��2 ana-

lyzed in Sec. III, provided that the cross-section perimeter is

non-Lipschitz continuous.

A more careful inspection of the numerical data for the

first order moment �Fig. 16�a�� indicates that a crossover

occurs between two scaling laws. In the range 102� Peeff

�106 an intermediate scaling m
out

�1� � Peeff
1/4 �dashed line �a� in

Fig. 16�a�� is observed and, starting from Peeff106, it re-

laxes toward the asymptotic behavior predicted by the scal-

ing theory m
out

�1� � Peeff
1/6 �line �b� in Fig. 16�a��. The occur-

rence of this intermediate scaling is a consequence of the

complex interplay between geometry and flow in a situation

where the dispersion boundary layer is not yet fully devel-

oped close to the cusp points, and cannot be predicted by the

asymptotic scaling theory developed throughout this article.

The asymptotic scaling sets in when the dispersion boundary

layer becomes localized deep inside the four cusp points of

the channel, as illustrated in Fig. 14�b� for the spatial profile

of the second-order moment at the outlet section at a Péclet

value �Peeff=105� just at the onset of the asymptotic regime.

Observe that in Fig. 14�b� base-10 logarithms are used.

Equation �50� is one of the main results of this article

and generalizes the expressions found for smooth and

Lipschitz cross-sectional boundaries. In a smooth channel �
=1 and �=0, so that Eq. �40� is recovered from Eq. �50�. In

a channel with corners �=2 and �=1, and from Eq. �50�, one

obtains Eq. �46�. Equation �50� applies for generic channels

with isolated cusp points. However, the geometric exponent

� and the velocity exponent � are not independent of each

other when the axial velocity is solution of the Stokes equa-

tion. Specifically, for cusp singularities of order �0 �in the

meaning defined in Fig. 12�b��, �=2�, and therefore Eq. �50�
can be rewritten exclusively in terms of the geometric expo-

nent � as

�n =
2�n − � − 1

2� + 2
. �51�

The extremal value of �n is achieved for �→�. Specifically,

lim
�→�

�1 =
1

2
, lim

�→�
�2 =

3

2
. �52�

This result indicates that for Stokes flow within a straight

channel with localized geometric singularities �the case of

fractal cross section does not fall in this category� the scaling

exponents of the first-order outlet moment and of the outlet

variance, for an uniform inlet feeding, cannot exceed the

values 1/2, and 3/2, respectively.

V. INVARIANT RESCALING

This section develops an exact rescaling of the moment

equations in the presence of uniform inlet feeding for high

Péclet numbers. This, more refined, analysis provides a the-

oretical support for the logarithmic scaling of the first-order

outlet moment observed in 2D Poiseuille flows and in 3D

square channels.

A. 2D Poiseuille flow

Consider a 2D Poiseuille flow, u���=u0��1−��, and as-

sume that the NAD approximation applies. This approxima-

tion is justified by the fact that we are interested in the high

Péclet region. The equations for the moment hierarchy

become

u�y�
�m�n�

�	
= �

�2m�n�

��2
+ nm�n−1�, n = 1,2, ¯ , �53�

where m�0�=1, and �= Peeff
−1. Let us assume the following

invariant rescaling:
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FIG. 15. Axial velocity u�0,�� �solid line� in the quadratic cusp channel as

a function of the transverse distance � �see Fig. 12�b� for the setting of the

coordinate system� from a cusp point. The dashed lines represent
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FIG. 16. �a� First-order moment m
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vs Peeff in a quadratic cusp channel

�symbols ����. Dashed line �a� represents the intermediate scaling m
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� Peeff
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ance �out
2 �symbols ���� vs Peeff. The solid line represents the scaling �out
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m�n���,	;�� = �−�n	�nfn��−�	−�u���� , �54�

where the exponents �n , �n , � , ��0 should be deter-

mined. Since we are interested in the rescaling of the mo-

ment hierarchy with respect to 	 and to the parameter �, the

dependence of m�n��� ,	 ;�� on � is explicitly indicated in Eq.

�54�. Substituting Eq. �54� into Eq. �53�, and neglecting the

term containing the second-order derivative of u���, since

for a Poiseuille flow the behavior of the moment hierarchy in

convection-dominated dispersion is controlled by the linear

behavior of the axial velocity field near the solid walls, one

obtains

�n��n−1−�n	�n−1−�n−1u���fn�s�

− ���n−1−�n−�	�n−�−1−�n−1�u����2fn��s�

− ��n−1+1−�n−2�	�n−2�−�n−1�u�����2fn��s� − nfn−1�s�

= 0, �55�

where

s = �−�	−�u��� , �56�

and fn��s�=dfn�s� /ds, fn��s�=d2fn�s� /ds2, u����=du��� /d�.

By replacing u��� in terms of the rescaled variable s via Eq.

�56�, and approximating u����u0, u0 being the velocity

derivative at the walls �this is justified by the fact that close

to the walls the velocity is linear, to the leading order�, Eq.

�55� becomes

�n��n−1−�n+�	�n−1−�n−1+�sfn�s�

− ���n−1−�n+�	�n+�−1−�n−1s2fn��s�

− ��n−1+1−�n−2�	�n−2�−�n−1u0
2fn��s� − nfn−1�s� = 0.

�57�

The validity of the invariant rescaling equation �54� dictates

that the exponents of the powers of � and 	 entering Eq. �57�
should be all equal to zero. This leads to the following

conditions:

�n−1 − �n + � = �n−1 + 1 − �n − 2� = 0, �58�

�n − 1 + � − �n−1 = �n − 2� − �n−1 = 0. �59�

Subtracting the first equation from the second in Eq. �58�,
and similarly in Eq. �59�, one obtains

� =
1

3 , � =
1

3 . �60�

Given � and � from Eq. �60�, Eqs. �58� and �59� provide two

recursive relations for �n and �n, namely,

�n = �n−1 + �1 − ��, �n = �n−1 + � . �61�

Since �0=�0=0 �this is a consequence of the fact that m�0�

=1, identically, and this expresses the condition that a uni-

form inlet feeding is considered�, Eq. �61� can be solved for

�n and �n to give

�n =
2n

3
, �n =

n

3
, n = 1,2, ¯ . �62�

The differential equation �57� for the invariant moment hier-

archy 
fn�s��n=1
� in a 2D Poiseuille flow thus becomes

fn��s� +
1

3u0
2
s2fn��s� −

2n

3u0
2
sfn�s� = −

n

u0
2

fn−1�s�, n = 1,2, ¯ ,

�63�

and f0�s�=1, identically. Equations �63� are equipped with

the boundary conditions

fn��s�	s=0 = 0, n = 1,2, ¯ , �64�

and with the regularity conditions for s→�, i.e.,

lim
s→�

fn�s� = 0, n = 1,2, ¯ . �65�

Indeed, the estimate of fn�s� can be recast in the form of a

shooting problem, by defining the Cauchy problem associ-

ated with Eq. �63� in the presence of the initial conditions,

fn�0� = Fn, n = 1,2, ¯ , �66�

and equipped with the Neumann conditions �Eq. �64��. The

non-negative parameters Fn, n=1,2 ,¯ are such that Eq.

�65� is fulfilled.

Figure 17 depicts the application of the shooting proce-

dure to estimate the invariant first-order moment function

f1�s� in a 2D Poiseuille flow, starting from the solution of the

Cauchy problem �Eqs. �63�, �64�, and �66�� for n=1. For

values of F1�F1
� �where F1

�0.432 064 is the correct initial

value resulting from the regularity condition, Eq. �65��, the

solutions of Eq. �63� diverge to −�. For F1F1
�,

lims→� f1�s�=�, and F1
� is the unique inlet condition, repre-

senting the separatrix between the divergence to −� and �,

such that Eq. �65� is fulfilled.

Figure 18 shows the validity of the invariant rescaling

for the moment hierarchy of the 2D Poiseuille flow, as re-

gards both � and 	. The solid lines are the invariant moment

functions fn�s�, n=1,2 ,3, obtained by solving the second-

order differential problem �Eq. �63�� via a shooting proce-

dure, while symbols represent the rescaled simulation data

for different values of � �in the convection-dominated re-

gime� and 	. The agreement between theory and simulations

is excellent. Observe that, in the definition of the rescaled

variable s Eq. �56� we made use of the velocity u��� and not

10
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FIG. 17. Estimate of the invariant curve f1�s� associated with the first-order

moment by means of shooting for the 2D Poiseuille flow. The arrow indi-

cates increasing values of f1�0�=F1=0.43, 0.432, 0.432 064; �the correct

one, F1
��, 0.4322, 0.45.
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of �. This way, all the moment profiles corresponding to

values of � in the interval �0,1� can be rescaled into invariant

curves �more precisely, a single invariant curve for each or-

der n of the moment hierarchy�.

B. Generalized shear flows

The extension to the generalized shear flows expressed

by Eq. �18� is straightforward. Making use of the same in-

variant rescaling expressed by Eqs. �54� and �56� one obtains

the following equations for the exponents:

�n−1 − �n + � = 0, �n−1 + 1 − �n − 2� +
2��� − 1�

�
= 0

�67�

and

�n − 1 − �n−1 + � = 0, �n − 2� − �n−1 +
2��� − 1�

�
= 0,

�68�

from which one derives

� = � =
�

� + 2
�69�

and

�n =
n�

� + 2
, �n =

2n

� + 2
, n = 1,2, ¯ . �70�

The differential equation for the invariant moment functions

reads as

a1
2s2��−1�/�fn��s� + ��s2 + a2s��−2�/��fn��s� − �nsfn�s�

= − nfn−1�s�, n = 1,2, ¯ , �71�

where a1=�u0 /u
0

��−1�/�
, and a2=���−1�u0 /u

0

��−2�/�
. For �=1

Eq. �71� reduces to Eq. �63�.

C. Logarithmic behavior of mout
„1…

and asymptotic
moment scaling

From Eq. �63� or Eq. �71� it is possible to infer the

asymptotic behavior of fn�s� as a function of the rescaled

variables s and, out of it, predict the asymptotic properties of

the outlet moment hierarchy. First, consider the case of a 2D

Poiseuille flow. By assuming the asymptotic scaling �for

large s�,

fn�s� =
An

scn
+ o�s−cn� , �72�

and substituting it into Eq. �63�, it follows that

cn = cn−1 + 1, An��n + �cn� = nAn−1. �73�

Since c0=0, A0=1, from Eq. �73�, by considering the actual

values of the exponents �n and �, see Eqs. �60� and �62�, it

follows that

cn = n, An = 1. �74�

Since close to the walls �=0, the rescaled variable s is pro-

portional to �, s�u�����, it follows that f1�s� 	s=�−��−�u���

�1 /�, f2�s��1 /�2, and so forth, fn�s��1 /�n.

In a similar way, from Eq. �71� it follows that Eq. �73�
still applies to generalized shear flows with cn=n. Since

u������, this implies f1�s��1 /��, f2�s��1 /�2�. This

means that, for �1, the scaling of the first-order moment

function f1�s� 	s=�−��−�u��� decays as a function of � not

slower than 1 /�2.

The asymptotic behavior of fn�s� is useful to predict

the fine structure of the scaling of the first-order outlet

moment, and as a by-product, to recover the results of the

scaling analysis developed in Sec. III. Let Mn�	 ;��
=�0

1m�n��� ,	 ;��d�. For the generalized shear flows, it fol-

lows from Eq. �54� that

Mn�	;�� = �−�n	�n�
0

1

fn��−�	−�u0���d� . �75�

Let q=�−�/�	−�/�u0
1/��. Equation �75� can be rewritten as

Mn�	;�� = ��/�−�n	�n+�/�u0
−1/��n�	;�� ,

�76�

�n�	;�� = �
0

�−�/�	−�/�u0
1/�

fn�q�dq .

Two cases should be discussed separately. If

fn�s� 	s=�−��−�u����1 /�, which occurs solely for n=1, and �

=1 �i.e., for the first-order moment of the 2D Poiseuille

flow�, then the function �1�	 ;�� behaves, for large Peeff

=�−1, as

�1�	;��  �
0

1

fn�q�dq + �
1

�−�	−�u0 A1

q
dq

= �1,0 + A1 log��−�	−�u0� , �77�

where �1,0=�0
1f1�q�dq is a constant �the invariant functions

fn�s� are bounded�. Since for �=1, ��/�−�1 =1, due to �=�1

=1 /3, Eq. �76� implies that
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FIG. 18. Invariant rescaling of the moment hierarchy for a 2D Poiseuille

flow. Lines �a�–�c� are the invariant rescaling curves and refer to n=1, n

=2, n=3, respectively. Symbols ��� refer to �−1= Peeff=105, 	=0.1, ��� to

Peeff=105, 	=1, ��� to Peeff=106, 	=0.1, and ��� to Peeff=106, 	=1.
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mout
�1� = Mn�1;�� = u0

−1/��1��,1�

 u0
−1/���1,0 + A1 log�Peeff�� , �78�

which explains the logarithmic divergence of the first order

outlet moment observed in the 2D Poiseuille flow �see

Fig. 3�.
Conversely, if fn�s� 	s=�−��−�u��� decays for large � faster

than 1 /�, which occurs for �=1 and n1, and for �2

independently of n0, the factor �n�	 ;�� converges to a

constant value for large �−1, and does not contribute to the

scaling of Mn�	 ;��. Taking into account this observation, Eq.

�76� directly yields the estimate for the exponent �n and �n
	,

�n
	 = �n +

�

�
=

2n + 1

� + 2
, �n = −

�

�
+ �n =

n� − 1

� + 2
, �79�

consistently with Eqs. �37� and �38�.

D. 3D flows

The invariant rescaling derived for the generalized shear

flows can be applied to predict the invariant properties of

more complex flows, as the Stokes flow in a quadratic cusp

channel. In Eq. �56� we defined the rescaled variable s with

respect to u���. If u������, by rescaling with respect to �
in place of u���, it readily follows that

m�n���,	;�� = �−�n	�n f̃n��−��	−���� , �80�

where ��=� /�, and ��=� /�.

Figure 19 depicts the invariant rescaling of the first and

second local moments at 	=1 as a function of the rescaled

variable �−�4�, where �� �0,1� �the lower cusp point is lo-

cated at �� ,��= �0,0��. In analogy with the case of the gen-

eralized shear flow with �=4, Eqs. �69� and �70� predict �4

=� /4=1 /6, �1=2 /3, and �2=4 /3. This example indicates

that the rescaling developed for 2D generalized shear flows

can be used to infer and predict the invariant rescaling of

more complex 3D structures.

As a final case, consider the square channel in Stokes

regime. In this case, close to one of the four corners, say

�� ,��= �0,0�, the axial velocity behaves as u�� ,��=u0��. It

is therefore natural to express the moment hierarchy in the

invariant form,

m�n���,�,	;�� = �−�n	�nfn��−�	−��,�−�	−��� , �81�

thus introducing the rescaled coordinates

r = �−�	−��, s = �−�	−�� . �82�

After some calculations, analogous to those developed in

Secs. V A and V B, one obtains the following values for the

exponents:

� = � =
1

4
, �n = �n =

n

2
, n = 1,2, ¯ , �83�

while the invariant moment functions fn satisfy the elliptic

equation

�nu0fn�r,s� − �u0rs�r
� fn�r,s�

�r
+ s

� fn�r,s�
�s

� − �̃2fn�r,s�

− nfn−1�r,s� = 0, �84�

where �̃2=�2
/�r2+�2

/�s2. From Eqs. �81� and �83� the val-

ues for the scaling exponents �n and �n
	 can be derived,

namely, �n= �n−1� /2, �n
	 = �n+1� /2, in agreement with the

scaling analysis developed in Sec. IV.

VI. ANALOGIES AND DIFFERENCES
WITH THE GENERALIZED LEVEQUE PROBLEM

The analysis of the convection dominated dispersion

shows some analogies with the classical Leveque problem of

heat transfer.
48

However, there are significant differences that

are worth addressing, as discussed in this section.

Consider the generalized Leveque problem in a 2D chan-

nel flow in the presence of the axial velocity equation �18�.
Here the diction “generalized” refers to the fact that we are

considering a model flow in which the leading order can be

nonlinear �quadratic, cubic, etc.�. Let 
 be the dimensionless

temperature and consider the stationary heat transfer problem

in a duct in the presence of a conducting fluid, where the

normalized inlet temperature is 
=0, and the wall tempera-

ture is 
=1. By making use of the NAD approximation, and

defining the rescaled variables 	�=�	 /u0, where �= Peeff
−1 is

the reciprocal of the thermal Péclet number, the steady con-

duction equation for 
 is

�� �


�	�
=

�2


��2
, �85�

and we assume that the cross section is infinitely extended,

i.e., �� �0,��. The boundary conditions thus become


		�=0 = 0, 
	�=0 = 1, �86�

supplemented with the regularity condition for �→�.

The generalized Leveque problem admits a simple

rescaling. Introducing the lumped representation
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FIG. 19. Invariant rescaling of the moment hierarchy for the quadratic cusp

channel at the outlet section 	=1 with �4=� /4=1 /6, �1=2 /3, and �2

=4 /3. Lines �a� and �b� are the invariant rescaling curves for n=1 and n

=2, respectively, obtained from the simulation data at Peeff=108. Symbols

��� refer to n=1 and �−1= Peeff=106, ��� to n=1 at Peeff=107, ��� to n

=2 and Peeff=106, and ��� to n=2 at Peeff=107.
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��,	�� = f���	��−�� = f�s� , �87�

where s=��	��−�, the boundary conditions become

f�0� = 1, f��� = 0. �88�

Substituting Eq. �87� in Eq. �85�, it follows that the exponent

� attains the expression

� =
1

� + 2
, �89�

and the function f�s� satisfies the equation

f��s� − �s�+1f��s� , �90�

where f��s�=df�s� /ds, which can be easily solved with the

boundary conditions �Eq. �88��,

f�s� = 1 −
1

A
�

0

s

e−x�+2
/�� + 2�2

dx, A = �
0

�

e−x�+2
/�� + 2�2

dx .

�91�

The scaling behavior controlling heat transfer in the Leveque

problem is similar to the scaling found in the convection-

dominated regime. Specifically, if one considers the normal-

ized heat flow � rescaled with respect to �,

� = �
0

1 �


��
d	 � �−� = �Peeff�

�. �92�

For �=1 �i.e., for the Poiseuille flow or for the linear shear

flow�, Eqs. �89� and �92� provide

� � Peeff
1/3. �93�

Although there is an evident analogy between the scaling

equation �93� and the scaling of the outlet variance in

Poiseuille or linear shear flows, there are significant differ-

ences between the two boundary layer theories.

The analogy is twofold: �i� Both theories use a linearized

expansion of the axial velocity field in the neighborhood of

the solid walls, since the leading order term in the expansion

of the velocity with respect to the cross-sectional coordinates

controls the structure and the scaling properties of the bound-

ary layers �this is somehow a common legacy of all bound-

ary layers theories�; and �ii� for �=1, and in the presence of

smooth boundaries, the two theories substantially coincide.

There are some peculiarities in the dispersion problem asso-

ciated with the logarithmic behavior of m
out

�1�
that do not admit

a direct counterpart in the heat transfer problem, but the 1/3-

scaling found in the two cases for the outlet variance �out
2 and

for the normalized heat flow �, respectively, stems from a

common mechanism of interaction between axial advection

and transverse diffusion. There are, however, some major

differences in these two boundary layer theories, associated

with the structural properties of the convection-dominated

and of the thermal boundary layers.

To show this, consider the Leveque problem in a qua-

dratic cusp channel. The boundary conditions are 
 		=0 and


 	���
=1. Figure 20�a� depicts the contour plot of the concen-

tration profile 
 solution of the stationary heat transfer prob-

lem for Peeff=106 at the outlet section 	=1. As can be ob-

served, the boundary layer is localized all around the

external perimeter ��� of the cross section and not solely at

the most singular points �the four cusp points�. This phenom-

enon has a simple explanation. For all the boundary points

but the cusp points, the velocity is a linear function of the

coordinate normal to the wall, and therefore at these points

the flow exponent is �=1. As a consequence, the local linear

behavior of the axial velocity at the boundary, apart from a

set of point of zero measure �the four cusp points�, controls

the geometry and the width of the thermal boundary layer in

the Leveque problem. It follows that the normalized heat flux

� fulfills Eq. �93� as depicted in Fig. 20�b�.
Conversely, the dispersion boundary layer, which arises

in connection with a nonhomogeneous boundary value prob-

lem �for the moment hierarchy� in the presence of Neumann

boundary conditions at the solid walls, is controlled by the

most critical points of the velocity field at the cross-sectional

boundary �highest values of ��, corresponding geometrically

to the singularities of the cross-sectional perimeter. This phe-
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FIG. 20. �Color online� �a� Contour plot of the thermal profile for the

Leveque problem in a quadratic cusp channel at Peeff=105. �b� Scaling of

the normalized heat flow � vs Peeff. The solid line is the Leveque scaling

equation �92� with �=1, �� Peeff
1/3.
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nomenon gives rise to the localization of the dispersion

boundary layer at the four cusp points of the channel cross

section �as depicted in Fig. 14�b��. There is also another im-

portant difference in the two problems. The dispersion

boundary layer is intrinsically associated with a dynamic

�time-dependent� phenomenon. The use of the moment hier-

archy transforms the problem in a family of steady subprob-

lems for m�n�. The dispersion boundary layer is intrinsically

associated with this representation �i.e., through the moment

hierarchy� and cannot be defined directly starting from the

�time-dependent� concentration field, as for the thermal

Leveque problem. A spectral analysis of the advection-

diffusion operator in channel flows, which presents some

analogies with the properties of the dispersion boundary

layer, is developed in Ref. 57.

VII. CONCLUDING REMARKS

We developed a thorough analysis of dispersion proper-

ties in finite-length straight channels in laminar flow condi-

tions for high Péclet numbers. This theory complements the

classical Taylor–Aris theory in that it allows to predict ana-

lytically the scaling of the outlet moments with Peeff in the

region where Taylor–Aris theory fails. In finite length

channels a transition occurs between Taylor–Aris scaling

and convection-dominated dispersion representing the

asymptotic transport regime for high Péclet numbers.

Convection-dominated transport is characterized by a

rich scaling behavior depending on the interaction between

transverse diffusion and axial flow near the boundary point

of the cross section where the velocity decays faster to zero

as a function of the local transverse coordinates. This deter-

mines the main difference between the properties of the dis-

persion boundary layers and the boundary layers in heat/

mass transfer in the classical Leveque problem associated

with the local velocity structure near the solid walls. While

the Leveque boundary layer is controlled by the generic �in a

measure-theoretical meaning� properties of the velocity field

near the solid stagnation boundaries, the dispersion boundary

layer captures the singularities in the geometry of the cross

section, with which different scaling laws for the moment

hierarchy are associated.

Qualitatively different scaling behaviors in the first- and

second-order �variance� outlet moments can be observed, de-

pending on the regularity of the cross-sectional perimeter ��.

Specifically, the first-order outlet moment exhibits either a

logarithmic or a power-law divergence as a function of the

effective Péclet number depending on whether the cross-

sectional perimeter is smooth/Lipschitz-continuous or pos-

sesses non-Lipschitz singularities. We analyzed all the main

geometric singularities that occur in straight channel with the

sole exception of fractal cross sections �for which at almost

every point �� a tangent direction does not exist�. The analy-

sis of dispersion in fractal channels requires some attention,

both as regards the accuracy of the numerical simulations

and theoretical analysis, and will be addressed in a forthcom-

ing work specifically dedicated to this subject.

Let us next suggest some possible directions where the

theoretical approach presented in this article can be useful.

As for the Taylor–Aris theory, the theory of convection-

dominated dispersion developed throughout this article can

be extended to a broad physical phenomenology including

the coupling between hydrodynamics and the action of ex-

ternal fields modulating solute particle motion, as in flow-

field fractionation, the analysis of inertial particles and of

particles possessing internal degrees of freedom.
1

All of

these problems require a generalization of the theory which

will be developed elsewhere.

The theory of convection-dominated transport does not

make explicit reference to microchannels and applies on

equal footing to micro-, laboratory, or plant scale flow de-

vices provided that the assumption of laminar flow holds

true. Nevertheless, microfluidics represents the primary field

of application of the theory, and wide-bore chromatography

in capillaries is the analytical technique that explicitly ex-

ploits the transition from Taylor–Aris to convection-

dominated transport for analytical and separation purposes.

In this article we considered exclusively no-slip flows. In

point of fact, the scaling properties of the moment hierarchy,

and specifically of the outlet variance, provide a simple,

transport-based method to investigate the possible occur-

rence of slip flows in microchannels, and for defining

transport-based techniques for indirect microvelocimetric

measurements. This is made possible by the fact that in the

convection-dominated regime, quantitative information on

the velocity can be obtained by deconvoluting the outlet con-

centration profile of solute particles. This issue will also be

addressed elsewhere to provide a valuable application of the

theory of convection-dominated transport.

APPENDIX A: STOCHASTIC FORMULATION
OF PARTICLE MOTION

Given a system of stochastic differential equations

dxh = bh�x�dt + chdwh, h = 1, . . . ,d , �A1�

where d=2 or d=3 depending on whether 2D or 3D model

structures are considered, x= �x1 , . . . ,xd�, b�x�
= �b1�x� , . . . ,bd�x��, c= �c1 , . . . ,cd� is a vector of constant co-

efficients, and w= �w1 , . . . ,wd� is a vector-valued function of

d independent Wiener processes,
56

the corresponding

Fokker–Planck equation for the probability density function


�x , t� associated with the stochastic variable x is

�


�t
= − �

h=1

d
��bh
�

�xh

+ �
h=1

d

Dh

�2


�xh
2 , �A2�

where Dh=ch
2
/2, which is formally analogous to the

advection-diffusion equation �2�. Specifically, for d=2 �i.e.,

for a 2D channel�, x= �� ,	�, b= �0,u����, D1=D�=1 / Peeff,

D2=D−	=1 / Pe, and therefore

c1 = c� =
2

Peeff

, c2 = c	 =
2

Pe
. �A3�

Equation �A1� with this choice of parameters corresponds to

the Langevin equation �17�. The 3D generalization of Eq.

�17� is simply
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d� =� 2

Peeff

dw1, d� =� 2

Peeff

dw2,

�A4�

d	 = u��,��d� +� 2

Pe
dw3,

equipped with reflecting conditions at the walls ��� of the

cross section.

APPENDIX B: DERIVATION OF EQ. „38…

In order to prove Eq. �38�, consider the advection-

diffusion equation in a 2D straight channel

�


��
= − u���

�


�	
+ �

�2


��2
. �B1�

Let 	=	��, where 	� is the axial position at which we are

interested in estimating the moment hierarchy, and � is the

new axial coordinate. From Eq. �B1� we have

�


���/	��
= − u���

�


��
+ �	�

�2


��2
. �B2�

Let ��=� /	�, ��=�	�, and Peeff� = Peeff /	�, so that Eq. �B2�
becomes

�


���
= − u���

�


��
+ ��

�2


��2
. �B3�

Therefore, with respect to the variable ��, the nth order outlet

moment m
out

�n�� at �=1 scales with Peeff� = ����−1 as

mout
�n�� � �Peeff� ��n. �B4�

The nth order moment with respect to � at 	� is related to

m
out

�n�� by the equation

m�n��	�� = mout
�n���	��n � �	��n�Peeff

	�
��n

, �B5�

and this means that m�n��	��� Peeff
�n �	��n−�n, which proves Eq.

�38�.
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