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Abstract

Laminar or low Reynolds number flows are usually obtained when liquid foods with high viscosity are processed in plate heat exchangers

(PHEs). The tortuosity coefficient is a key parameter used by PHEs manufacturers to estimate Fanning friction factors and convective heat transfer

coefficients. Using the finite-element computational fluid dynamics program POLYFLOW®, fully developed laminar flows in double-sine chevron-

type PHEs passages are analysed in this work. The corrugation angle and channel aspect ratio of the passages vary in a broad range, PHEs with

common area enlargement factors and with high area density being studied. The tortuosity coefficient and the coefficient K (Kozeny’s coefficient

in granular beds) from the friction factor correlations increase with the increase of the channels aspect ratio and the decrease of the chevron angle.

The shape factor from the PHEs passages also increases with the decrease of the chevron angle and is weakly influenced by the channel aspect

ratio. In this paper, relations to predict the tortuosity coefficient and shape factor are proposed, the coefficient K being predicted resorting to the

tortuosity coefficient and shape factor. The coefficient K compares well with literature data in the region of common chevron angles, channels

aspect ratio and area enlargement factor.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Laminar flow in plate heat exchangers

Laminar flow in complex ducts geometries is of both funda-

mental and practical interest [1–6]. Of particular interest is the

PHE which is extensively used in the chemical, pharmaceuti-

cal and food industries, among others [1,7,8]. Laminar or low

Reynolds number flows are usually obtained when liquid foods

are processed in PHEs, this low Reynolds number range being

also observed in micro PHEs [7,9–12]. Besides the importance

in pressure drops estimations, the development of Fanning fric-
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tion factor correlations, determined for the isothermal laminar

flow of Newtonian fluids in PHEs, can be useful in other areas.

One of them is the prediction of port-to-channel flow maldis-

tribution in these equipments [13,14], the referred correlations

being also involved in the development of methodologies that

allow the establishment of a single friction curve equation for

both Newtonian and power law fluids, in different flow regimes

[12,15].

In the referred methodologies, geometrical parameters of

the ducts need to be estimated in order to define generalized

Reynolds numbers. The geometrical parameters are estimated

using Fanning friction factor expressions, determined for the

laminar flow of Newtonian fluids in PHE passages [15] or other

type of ducts [16].

Physical processing brings about irreversible textural and

sensorial properties of nearly all the fluids in the food industry

[17,18]. The above mentioned Fanning friction factor corre-

lations can be helpful in the calculation of wall shear rates
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developed during the flow of Newtonian or power law fluids

inside the PHE channels [11,12,15]. These wall shear rates can

then be used to predict the viscosity breakdown of liquid food-

stuffs during their processing [17].

Stirred yoghurt is very sensitive to physical processing, a low

viscosity being a common manufacturing defect of this foodstuff

[17]. During the flow through the cylindrical filling nozzles, the

yoghurt is subjected to high wall shear rates (typical values are

between 800 and 1250 s−1) and this may lead to an irreversible

breakdown of yoghurt viscosity [17].

PHEs are commonly used during the cooling of stirred

yoghurt [7,19]. In the work from Fernandes et al. [19], it can

be observed that in a commercial PHE and for a Reynolds num-

ber of 12.3 wall shear rate reaches 1800 s−1, this value being

substantially superior to the observed in the filling nozzles.

1.2. Corrugation geometry

Between the more than 60 different plate surface corrugation

patterns, the most used PHEs consist of plates with chevron-

type corrugations that have a sinusoidal shape [1] (Fig. 1). The

thermal–hydraulic performance of PHEs is strongly dependent

on the geometrical properties of the chevron plates [20–22],

namely on the corrugation angle, β, area enlargement factor, φ,

defined as the ratio between the effective plate area and projected

plate area, and channel aspect ratio (Fig. 1).

Fig. 1. (a) Schematic representation of a chevron plate; (b) corrugation dimen-

sions.

The channel aspect ratio is usually defined by 2b/pc, pc being

the corrugation pitch and b the inter-plates distance (Fig. 1). In

the present work, a different definition of channel aspect ratio,

γ , will be used:

γ =
2b

px

, (1)

px being the corrugation pitch in the main flow direction (Fig. 1).

The reason for the use of a channel aspect ratio defined in the

main flow direction is explained in Section 3.

Introducing Eq. (1) in the expression proposed by Martin

[23] and resorting to the geometric relation between pc and px

(Fig. 1), the area enlargement factor can be estimated by:
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The area enlargement factor typically assumes values between

1.1 and 1.5 [22], b normally lies in the range 2–5 mm [21,24]

and β is typically located in the range 22–65◦ [21,22].

1.3. Friction factor, shape factor and tortuosity coefficient

Fanning friction factors correlations, fRe, in the laminar

regime take the form [21,22]:

f = KRe−1, (3)

where K is a coefficient dependent of the corrugation angle and

channel aspect ratio and Re the Reynolds number:

Re =
ρuDH

η
, (4)

ρ and η representing the fluid density and viscosity, respectively.

In Eq. (4) the mean velocity, u, in the PHE channel and the

hydraulic diameter, DH, can be calculated by [21,22]:

u =
Mv

wb
, (5)

and

DH =
4 × channel flow area

wetted surface
∼=

2b

φ
, (6)

where Mv is the volumetric flow rate and w the channel width.

The Fanning friction factor, f, can be estimated by:

f =
�PDH

2Lρu2
, (7)

where �P is the pressure drop and L the length of the channel.

In the experimental studies of Kumar [20] it was found that the

critical Reynolds number (the Reynolds number where laminar

flow ends) increased with the increase of the corrugation angle.

Using plates with chevron angles of 30◦ and 65◦ the author
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observed laminar flow for Reynolds numbers below 10 and 50,

respectively.

The cross-corrugated passages from PHEs containing plates

of the chevron-type are characterized by Kumar [20] as being

tortuous. As the corrugation angle is reduced from 90◦ – a

double-sine duct [1] – the passage becomes more tortuous

and offers greater hydrodynamic resistance [20]. The pressure

drop across a tortuous channel with a shape factor K0 can be

related with the average interstitial velocity, v, according to

Hagen–Poiseuille’s formula [25]:

�P =
2K0ηLavv

D2
H

, (8)

where Lav is the average travel distance of a fluid element in the

channel. The mean velocity and v are related by [25]:

v = u
Lav

L
= uτ, (9)

τ being the tortuosity coefficient of the 3D fluid flow in the

corrugated passage. Introducing Eq. (9) in Eq. (8) and taking

into account that τ = Lav/L it follows that:

�P

L
=

2K0τ
2η

D2
H

. (10)

From Eqs. (3), (4), (7) and (10) a mathematical expression that

relates the coefficient K from the fRe relation with the shape

factor and tortuosity can be obtained:

K = K0τ
2. (11)

In the granular beds area, the product K0τ
2 is well known as

Kozeny’s coefficient [26]. Making use of an analogy developed

for the laminar flow through granular beds [26,27], the company

CIAT developed a model for the design and optimisation of

PHEs geometries, Lav being one of the parameters that need to

be determined in order to estimate heat transfer coefficients and

friction factors [28].

Taking into account the tortuous character of cross-

corrugated chevron-type PHEs passages Wanniarachchi et al.

[29] proposed, starting from a coefficient K = 24 for infinite flat

parallel plates, a coefficient K = 26.4/sin(β) for fully developed

laminar flow in cross-corrugated chevron-type PHEs. Since the

flow passage reduces to a collection of tubes for β = 90◦, the

referred authors abandoned the limit of 26.4 and developed an

alternate correlation for fully developed laminar flow [29]:

K =
1774

β1.026
. (12)

Using this expression for laminar flow and another one for

turbulent flow, Wanniarachchi et al. [29] proposed a unified cor-

relation, satisfying the three flow regimes. It is important to note

that this pressure loss correlation apply to the loss in the passages

alone and exclude any losses in the PHEs entry and exit port man-

ifolds. From the unified correlation is possible to conclude that

the critical Reynolds numbers are located in the approximate

range 20–100 and that this Reynolds numbers increase as the

chevron angle increases, as observed also by Kumar [20].

Palm and Claesson [30] concluded in a literature survey that

the existent correlations for single-phase heat transfer and pres-

sure drop in PHEs do not take all geometrical parameters into

account and that there is still a need for the verification of the

correlations for values of geometrical parameters differing from

those most commonly used. The same authors suggested that

numerical calculations using unit cells [31,32] could allow the

integration and averaging across the referred cells, resulting in

correlations including the influence of all PHEs parameters [30].

In the present work it will be study numerically the coeffi-

cient K from the fRe correlations for fully developed laminar

flow in cross-corrugated chevron-type PHEs passages. Typical

values of the geometric parameters (β and γ) will be used to

design the chevron-type plates as well as values that provide

heat exchangers with high area densities. The numerical values

of the tortuosity coefficient and the values of K0 allow estimating

the coefficient K for the different passages (Eq. (11)).

2. Model details

Numerical simulations in the laminar regime were performed

resorting to a Newtonian fluid with constant physical proper-

ties. The numerical calculations were performed in four steps

(Fig. 2), using the commercial finite element software package

POLYFLOW®. Details associated to these different steps are

provided below.

Fig. 2. Program structure.
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Fig. 3. Representation of half of the PHE channel with plate P6 and β = 59◦.

2.1. Geometry setup and mesh generation

The corrugations were described, in the main flow direction

(xx axis), by a sine curve [19,31]:

y(x) =
b

2
sin

(

2π

px

(

x −
px

4

)

)

+
b

2
. (13)

In the present work the corrugation angle for the distinct

plates assumed the values: 29.0◦, 39.8◦, 48.0◦, 59.0◦, 74.5◦ and

84.9◦. For each corrugation angle, the geometrical properties

varied as summarized in Table 1.

In previous studies [19,33–35], a uniform flow was consid-

ered inside each channel and, for this reason, a symmetry axis

was established (Fig. 1) simplifying the geometrical domain to

half of a channel (Fig. 3). This type of geometry was used in the

referred investigations on the numerical simulation of the lam-

inar non-isothermal flow of yoghurt [33], and their numerical

results were in very good agreement with the experimental data

from Afonso et al. [7].

Analysing the results obtained in the referred studies, it was

possible to observe the periodicity of the flow along the width

(zz axis) of the channel, which allowed the simplification of the

geometrical domain to the channel represented in Fig. 4.

The geometrical periodicity in the width of the channel could

also be observed on its length. Periodic unitary cells (Fig. 5(a)),

including 5 contact points between the plates – 1 in the middle

and 4 in the corners (Fig. 5(b)) – could be also found along the

length of the channel. The concept of unitary cell has already

been used by different authors [31,32]. In these works the unitary

cell was bound by 4 adjacent contact points while the one used

Fig. 4. Representation of the computational domain used in the present work

for the PHE channel obtained with plate P6 and β = 59◦.

in the present work includes an additional contact point in the

centre.

Local Fanning friction factors were calculated in each of the

consecutive unitary cells an asymptotic value (hydrodynamic

fully developed flow) being found on the fifth or sixth cell. Since

the last cell was non-periodic, the simulations were performed in

channels constituted by seven consecutive unitary cells (Fig. 4).

As in past investigations [19,33–35], due to the complexity

of the computational domain, an unstructured mesh constituted

by tetrahedral, hexahedral and pyramidal elements was used

(Fig. 5). The grid generation procedure can be divided on three

steps [36]: first, all the faces that could not be meshed with

triangular elements were meshed by means of quadrilateral ele-

ments; second, if any quadrilateral face elements exist on the

volume faces, pyramidal elements were generated to create the

transition from the associated hexahedral/quadrilateral elements

to the tetrahedral elements that will occupy the remainder of the

volume; and finally, the remainder of the volume was meshed

with tetrahedral elements.

As presented in Table 1, the 36 geometries studied in the

present work have very distinct geometrical properties. Thus,

the size of the grid elements differed from geometry to geometry

(the nodal distance on the edges of the volume varied between

0.1 and 0.3 mm).

Fig. 5. Unitary cell obtained with plate P3 and β = 59◦. (a) Representation of the

mesh with nodal distance on the edges 0.3 mm. (b) Mesh in the plane of contact

points (y = 0) with nodal distance on the edges 0.3 mm.
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Table 1

Geometrical properties of the plates

Name b (mm) px (mm) γ

P1 1.9 10 0.38

P2 2.6 13.7 0.38

P3 2.6 10 0.52

P4 3.2 10 0.64

P5 2.6 6.8 0.76

P6 3.8 10 0.76

The size of the elements, for each of the channels, was fixed

after a grid independence test. The calculations were carried

out using meshes with different element sizes [37–39] and the

obtained Fanning friction factors were compared, the results

being considered independent of the mesh when a deviation

below 1% [40] was observed.

In Table 2 it is presented the grid independence test for plate

P3 and β = 59◦ (plate and mesh illustrated in Fig. 5). It can

be observed that the value of K obtained using the mesh with

160,910 elements differs less than 1% of that obtained with the

mesh containing 269,380 elements. By this reason the former

mesh was chosen to perform the calculations.

For β = 60◦ Kumar [20] predicts K = 24, while Wanniarachchi

et al. [29] predicts K = 27.0433 for β = 59◦ (Eq. (12)). The result

presented in Table 2 compares well with these values. In Section

3 it can be observed that the numerical results of K obtained in

the region of common used area enlargement factors are in good

agreement with literature data for different values of β.

The unit cell used in the present work includes five con-

tact points between the plates, low velocities being observed in

the nearby of these points [41]. The existence of contact points

require the use of meshes containing elements small enough

(Table 2) in order to be achieved a good agreement between the

numerical results and experimental data from the literature.

2.2. Boundary conditions

Distinct flow rates were imposed in the plane x = 0, the out-

let being located in the plane x = l (i.e., the total length of the

channel).

As described earlier, the geometry used on this work is one

of the periodic channels found in the width of one complete

channel of a PHE. Since periodicity in the width of the channel

was observed, planes of symmetry were imposed on the sides

(xy planes) of the geometry (Fig. 4). In the interfaces between

the fluid and the inferior and superior plates (Fig. 4), slip was

assumed to be non-existent.

Table 2

Grid independence test

Nodal distance (mm) Number of elements Number of nodes K

0.25 269,380 55,691 26.9685

0.30 160,910 34,848 27.0013

0.35 121,500 26,593 27.6627

2.3. Numerical calculations

The problem was numerically solved using the finite-element

computational fluid dynamics software POLYFLOW® and the

simulations were performed using a Dell Workstation PWS530

with 1GB of RAM.

The equations solved were the conservation of mass and

momentum equations for laminar incompressible flow. This

problem is a non-linear problem, so it was necessary to use

an iterative method to solve the referred equations. In order

to evaluate the convergence of this process, a test based on

the relative error in velocity field was performed [42], and the

convergence test value was set to 10−4 [19,33–35], i.e., the

process is assumed to be convergent on the iteration where

||ui − ui−1||/||ui−1|| < 10−4, ‖u‖ =
√

u2
x + u2

y + u2
z being the

norm of the velocity vector.

2.4. Model validation

In order to verify the reliability and exactness of the model,

fully developed laminar flow inside double-sine ducts (Fig. 6)

were first studied. The fluid was Newtonian and had constant

physical properties. Since Ding and Manglik [1] studied analyt-

ically the same problem, the present numerical values of K were

compared with the solutions from the referred authors. When

the PHE channels have a corrugation angle β = 90◦, a bundle of

straight double-sine ducts are observed.

Three double-sine ducts with distinct ratios b/a (Fig. 7) were

used. All of them presented a distance between plates, b, of

2.6 mm and the ratio b/a assumed the values of 0.5, 1 and 2.

The grid used to perform this study was obtained by the

procedure described on Section 2.1 and a representation of

the unstructured mesh, on a cross section of a double-sine

duct, is shown in Fig. 7. The distribution of the grid ele-

ments obtained with these ducts, with β = 90◦, is similar to the

distribution observed in the meshes of the remaining studied

geometries (Fig. 5(a)), with corrugation angles located in the

interval 29◦ < β < 85◦. In each cross section of the double-sine

ducts it can also be observed contact points between the plates.

The simulations were carried out in the conditions detailed in

Section 2.2. The numerical results of the coefficient K, for fully

Fig. 6. Double-sine duct with a ratio (b/a) of 0.5.
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Fig. 7. Double-sine duct with a ratio (b/a) of 0.5 mesh on a cross section.

Table 3

Coefficient K in double-sine ducts

b/a Nodal distance on the

edges (mm)

Computed Ref. [1] Difference (%)

0.5 0.22 15.0722 15.0527 0.13

1 0.18 15.5795 15.5744 0.03

2 0.14 16.3196 16.2861 0.21

developed laminar flow, are summarized on Table 3 and it can

be observed that the numerical results compare very well with

the analytical solutions from Ding and Manglik [1].

3. Results

The heat transfer area can be increased by using larger

exchangers, but the more cost-effective way is to use a heat

exchanger having a large area density per unit volume [43].

In the present investigation, for 29◦ < β < 60◦ (commonly used

chevron angles) and plates P1, P2 and P3 common area enlarge-

ment factors (1.1 < φ < 1.5) were obtained. In this range of β,

plates P4, P5 and P6 provided values of higher φ (up to 1.85).

For β > 60◦, φ assumes large values (Fig. 8) for all the studied

plates (Table 1).

The area enlargement factors of the studied plates can be esti-

mated by Eq. (2) and geometrical properties from Table 1. These

values compare very well with the ones obtained numerically

(Fig. 8).

Fig. 8. Area enlargement factor for the different plates. (�) Plate P1; (�) Plate

P3; (△) Plate P4 and (©) Plate P6. Lines represent Eq. (2).

For a constant chevron angle, φ increases when the channel

aspect ratio in the main flow direction increases (Eq. (2)). The

variation of γ and β in a broad range can be useful to study the

behaviour of the tortuosity coefficient, τ. As already mentioned,

the company CIAT [28] uses the values of the tortuosity coeffi-

cient of the passages in their PHE optimization model. In a first

step, horizontal and vertical tortuosity coefficients are measured

τ being obtained by the product of the former coefficients [28].

The horizontal (xz plane) tortuosity is related with the chevron

angle of the PHEs passages. As can be seen in Fig. 9, when the

chevron angle is low (Fig. 9(a)) the fluid has a fluid velocity com-

ponent in the z direction superior to that when the chevron angle

is high (Fig. 9(b)). It seems reasonably to admit that the hori-

zontal tortuosity is directly proportional to 1/sin(β), as suggested

by Wanniarachchi et al. [29], and easily induced by geometric

considerations.

The vertical tortuosity is related with the waving behaviour

of the flow on the xy plane provoked by the corrugations, this

behaviour being associated to the γ values (Eq. (1)). When the

value of γ is low (Fig. 10(a)) the fluid has a component of the

velocity on the y direction inferior to that when the value of γ

Fig. 9. Velocity vectors, in the plane of the contact points, for PHE channels

with plates P5 and different β. (a) β = 29.0◦ and (b) β = 74.5◦.
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Fig. 10. Velocity vectors in a plane z = cte. for PHE channels with β = 29.0◦ and

different γ . (a) γ = 0.38 (plate P2) and (b) γ = 0.76 (plate P5).

is high (Fig. 10(b)). Thus, the vertical tortuosity increases with

the increase of γ .

Using POLYFLOW® it was possible to evaluate the aver-

age interstitial velocity in fully developed laminar regime for

the different passages of Table 1. Since the mean velocity is

known (Eq. (5)), the tortuosity coefficient was calculated by Eq.

(9) (Fig. 11). In Fig. 11 it can be observed that the tortuosity

coefficient increases with the increase of γ and decrease of β.

As can be seen in Table 1, plates P1 and P2 are characterized

by different values of b and px but produce the same tortuosity

coefficients (Fig. 11). This is explained by the fact that these

plates presents the same value of γ (0.38) and the same can be

concluded with respect to plates P5 and P6 (γ = 0.76). Thus,

the geometric parameters γ and β unambiguously define the

tortuosity coefficient.

The tortuosity coefficient was modelled by Eq. (14), resorting

to the function 1/sin(β) (related with the horizontal tortuosity)

and γ (related with the vertical tortuosity).

τ = 1 + 0.5

√

(

1

sin(β)

)γ

− 1. (14)

Fig. 11. Tortuosity coefficient for different channels. (�) Plate P1 (γ = 0.38);

(×) plate P2 (γ = 0.38); (�) plate P3 (γ = 0.52); (△) plate P4 (γ = 0.64); (*) plate

P5 (γ = 0.76) and (©) plate P6 (γ = 0.76). Lines represent Eq. (14).

When β tends to 90◦ the PHEs passages become closer to a

collection of straight tubes [1,23,29] and the tortuosity should

become closer to one. The numerical results and Eq. (14) express

this trend (Fig. 11). The referred equation compares very well

with the numerical values (maximum difference of 1.7%) and

can be used to estimate the tortuosity coefficient of double-

sine chevron-type PHEs ducts in the ranges 29◦ < β < 85◦ and

0. 38 < γ < 0.76.

After determining the numerical values of τ, the numerical

values of the shape factor (Fig. 12) of each designed duct were

calculated by Eq. (10), resorting to the numerical values of �P

across a unitary cell, in fully developed laminar regime (in the

fifth or sixth consecutive unit cell, Figs. 4 and 5).

As can be seen in Fig. 12, the shape factor is only weakly

influenced by γ , the variations of K0 with γ being more obvious

for the lower angle. The shape factor increases with the decrease

of β and assumes a value, for β = 29◦, of about twice that from

a cylindrical channel (16). The shape factor can be predicted –

in the ranges 29◦ < β < 85◦ and 0. 38 < γ < 0.76 – with accuracy

(maximum deviation of 3%) by the following expression:

K0 = 16

(

90

β

)0.6554−0.0929γ

. (15)

In Eq. (15) a reference value of 16 for K0 was considered for

β = 90◦, since in all the simulations (six) for β = 84.9◦ the factor

K0 was in the range 16–17. However, it is well known [1] that

for β = 90◦ a bundle of double-sine ducts are obtained and the

value of K0 can fall below 16. This can be seen in Table 3 for

the ratios b/a of 0.5 and 1.

For the sake of clarity of Fig. 12, the curves obtained with

Eq. (15) are not included. An approximate value to replace the

function 0.6554 − 0.0929γ is 0.6 since this function varies in

the range 0.58–0.62.

Resorting to the numerical values of τ and K0 the numerical

values of the coefficient K were estimated trough Eq. (11) and

are shown in Fig. 13. In this figure the curves obtained by Eq.

(11), with τ given by Eq. (14) and K0 given by Eq. (15) are

also shown. The numerical values of K are well described by the

analytical model (maximum difference of 3.5%).

Fig. 12. Shape factor for the different channels. (�) PLATE P1; (×) plate P2;

(�) plate P3; (△) plate P4, (*) plate P5 and (©) plate P6.
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Fig. 13. Coefficient K for different channels. (�) Plate P1; (×) plate P2; (�)

plate P3; (△) plate P4, (*) plate P5 and (©) plate P6. Lines (- - -) represent Eq.

(11) with τ given by Eq. (14) and K0 given by Eq. (15). Line (—) represents Eq.

(12).

The coefficient K is also unambiguously defined by γ and β,

as it was found for the shape factor and tortuosity coefficient.

For β = 75◦ and 84.5◦, plates with very different geometrical

properties (Table 1 and Fig. 8) give rise to similar coefficients

K. This coefficient is much more sensitive to PHEs geometrical

properties variations for low corrugation angles.

In the K coefficient case it is possible to try to compare the

present results with literature data, although this is scarce in the

laminar region. For example, Ayub [22] recommended the rela-

tions from Wanniarachchi et al. [29] for elaborate calculations,

namely Eq. (12).

In Fig. 13 it is possible to observe that Eq. (12) is located

within the bounds found in the present work for γ = 0.38 and

0.52 when the corrugation angle is located in commonly used

β range 30–60◦. Since in this region, φ varies (in the present

investigation) between 1.1 and 1.47 (the usual range) and Eq.

(12) was developed for this φ region, there is a good agreement

between the present calculations and Eq. (12). For β > 70◦ (a not

commonly studied region) the values of K found in the present

investigation are lower than the predicted by Wanniarachchi et

al. [29].

4. Concluding remarks

Numerical simulations and unitary cells with five contact

points between plates were used to predict the hydraulic per-

formance trends, in fully developed laminar flow, with varying

the geometrical properties of PHEs passages.

With the help of geometrical considerations, the numerical

values of the tortuosity coefficient were modelled. Resorting

to the tortuosity coefficients and shape factor of the ducts the

coefficient from the fRe correlations was also modelled. The

models proposed for these coefficients take into account their

dependence on the corrugation angle and channel aspect ratio.

The channel aspect ratio and corrugation angle unambigu-

ously define the tortuosity coefficient, shape factor and the

coefficient from fRe correlations. The tortuosity coefficient and

the coefficient K from the friction factor correlations increase

with the increase of the channels aspect ratio and the decrease

of the chevron angle. The shape factor from the PHEs passages

increase with the decrease of the chevron angle and is weakly

influenced by the channel aspect ratio.

The present study can be useful in order to determine pressure

drops in PHEs channels, convective heat transfer coefficients,

prediction of port-to-channel flow maldistribution, estimation of

wall shear rates and definition of generalised Reynolds numbers

that allow the establishment of a single friction curve equa-

tion for both Newtonian and power law fluids, in different flow

regimes.

Appendix A. Nomenclature

a geometrical parameter (Fig. 7) (m)

b inter-plates distance (m)

DH hydraulic diameter, DH = 2b/φ (m)

f Fanning friction factor, f = �PDH/(2Lρu2)

K coefficient of fRe expression

K0 shape factor

L plate length (m)

Lav average travel distance (m)

Mv volumetric flow rate (m3/s)

pc corrugation pitch (m)

px corrugation pitch on the main flow direction (m)

�P pressure drop (Pa)

Re Reynolds number, Re = ρuDH/η

u mean velocity (m/s)

v average interstitial velocity (m/s)

w width of the channel (m)

x, y, z Cartesian coordinates (m)

Greek letters

β corrugation angle (◦)

φ area enlargement factor (Eq. (2))

γ channel aspect ratio on the main flow direction, γ =
2b/px

η fluid viscosity (Pa s)

ρ fluid density (kg/m3)

τ tortuosity
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tion angle on the thermal behaviour of power-law fluids during a flow

in plate heat exchangers, in: Proceedings Fifth International Conference

on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science,

Engineering and Technology, Whistler, Canada, 2005, pp. 496–501.

[36] GAMBIT 2 Modelling Guide, vol. l.2, Fluent Inc., Lebanon, USA, 2001,

pp. 160–162.

[37] A. Thakker, T.S. Dhanasekaran, Experimental, computational analysis on

guide vane losses of impulse turbine for wave energy conversion, Renew.

Energy 30 (2005) 1359–1372.

[38] T.W.H. Sheu, H.P. Rani, Exploration of vortex dynamics for transitional

flows in three-dimensional backward-facing step channel, J. Fluid Mech.

550 (2006) 61–83.

[39] A. Valencia, A. Zarate, M. Galvez, L. Badilla, Non-Newtonian blood flow

dynamics in a right internal carotid artery with a secular aneurysm, Int. J.

Numer. Methods Fluids 50 (2006) 751–764.

[40] H.M. Metwally, R.M. Manglik, Enhanced heat transfer due to curvature-

induced lateral vortices in laminar flows in sinusoidal corrugated-plate

channels, Int. J. Heat Mass Transfer 47 (2004) 2283–2292.

[41] T.K. Kho, H. Müller-Steinhagen, An experimental and numerical investi-

gation of heat transfer fouling and fluid flow in flat plate heat exchangers,

Trans. Inst. Chem. Eng. 77 (1999) 124–130.

[42] POLYFLOW 3.9 User’s Guide, Fluent Inc., Lebanon, USA, 2001, p. 3.

[43] P. Stehlı́k, V.V. Wadekar, Different strategies to improve industrial heat

exchange, Heat Transfer Eng. 23 (2002) 36–48.


	Laminar flow in chevron-type plate heat exchangers: CFD analysis of tortuosity, shape factor and friction factor
	Introduction
	Laminar flow in plate heat exchangers
	Corrugation geometry
	Friction factor, shape factor and tortuosity coefficient

	Model details
	Geometry setup and mesh generation
	Boundary conditions
	Numerical calculations
	Model validation

	Results
	Concluding remarks
	Nomenclature
	References


