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Stellingen behorende bij het proefschrift
van Aswin Draad

. Het draaien van de aarde kan leiden tot een sterke asymmetrie van het axiale snelheids-

profiel in een laminaire buisstroming (dit proefschrift, appendix C).

Het is een tekortkoming dat in de meeste numerieke codes voor het rekenen aan stromings-
problemen alleen de mogelijkheid bestaat om een drukgradiént op te leggen, terwijl voor
het rekenen aan omslagverschijnselen in stromingen het van essentieel belang is om een
constant debiet te kunnen opleggen (dit proefschrift, hoofdstuk 4 en appendix C).

De ‘information super-highway’ dreigt een file-gevoelige polderweg te worden.

De term Assistent In Opleiding is een zeer juiste benaming voor promovendi die tijdens
hun promotie-onderzoek veel tijd moeten steken in het opbouwen van een onderzoeks-
opstelling en juist op het moment dat ze als volleerd onderzoeker de vruchten van hun
werk kunnen gaan plukken, gedwongen worden met hun onderzoek te stoppen.

. Onderzoek bestaat voor 1% uit inspiratie en voor 99% uit frustratie. Ziehier, het belang

van motivatie.

. Klussende medewerkers zijn vaak erger dan bijklussende hoogleraren.

. Een van de grootste problemen bij het maken van een planning is dat de wens vaak de

vader is van de gedachte.

. Als je zelf geen keuzes maakt, dan maakt Vadertje Tijd ze wel voor je.

. Personen die, bij het doorrekenen van een stromingsprobleem op een supercomputer,

spreken van een ‘numeriek experiment’ diskwalificeren zichzelf als experimentator.

Een goed zakmes, tape, touw, en ijzer-/koperdraad zijn onmisbaar bij het experimenteren.
Dit wil niet zeggen dat een basisopstelling van het type ‘houtje-touwtje’ voldoende is.

De uitspraak ‘meten is weten’ is een onderschatting van de complexiteit van metingen. Het
is daarom beter het devies van Kamerlingh Onnes: ‘Door meten tot weten’ te gebruiken
en het zou goed zijn de van Dale op dit punt te wijzigen.

Hoewel veel Nederlanders zeggen dat ze tijdens hun wintersportvakantie gaan langlaufen,
beoefenen slechts weinigen deze tak van sport; de meesten gaan skiwandelen.

Sporten is niet alleen ontspanning door inspanning maar ook een ‘way of living’.

Geluk moet je een handje helpen.
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Summary

Laminar—Turbulent transition in pipe flow for Newtonian
and non-Newtonian fluids

Aswin A. Draad

Dissolving a minute amount of long-chain polymers in a turbulent flow can have very large ef-
fects on the turbulence. An example is the spectacular drag reduction in turbulent pipe flow of
such dilute polymer solutions, with reductions up to 80%. The central theme of this thesis is to
throw light on the influence of polymers on the transition process. This transition process has
even for a Newtonian fluid many unsolved questions and for non-Newtonian fluids the situation
is even less clear. For instance, in most cases the results seem to indicate that the transition oc-
curs at the same Reynolds number as for the solvent. Sometimes a delay in transition to higher
Reynolds numbers is found and occasionally transition occurs at lower Reynolds numbers than
what is found for the solvent. Information on transition is important because, when the flow
becomes turbulent, flow features like mixing, heat transfer and flow resistance are considerably
increased and for many applications it is therefore necessary to know beforehand whether the
flow will be laminar or turbulent.

In this thesis we aim to identify the most important parameters that govern laminar-
turbulent transition in general and for polymer solutions in particular. In order to reach this
goal, we have performed strongly nonlinear stability calculations in plane Poiseuille flow for
a visco-elastic fluid described by the Upper Convected Maxwell model. The results of these
computations are discussed in the first part of this thesis, and show that elasticity destabilizes
until the Weissenberg number ( We), i.e. the ratio of the relaxation time of the fluid to the flow
time scale, reaches unity. Increasing We further leads to an increase in the critical Reynolds
number which can be interpreted as a stabilizing effect.

In the remainder of the thesis, we will be occupied with stability measurements for water
and polymer solutions in pipe flow. In particular, the effect of the polymer configuration on
the flow stability is elucidated. To carry out the measurements on transition, we constructed
an experimental pipe-flow facility especially suited to perform stability measurements on New-
tonian and non-Newtonian fluids. To be able to study the flow behavior in detail we use a pipe
with a diameter of 40 mm. The length of 800 diameters (32m) ensures that the flow is fully
developed till high Reynolds numbers (Re=14300). Fully developed flow facilitates comparison
with theory and numerical simulations. By suppressing entrance disturbances, we can increase
the natural transition Reynolds number in our pipe for water, a Newtonian fluid, from the
common value of 2300 to more than 60000. However, at these large Reynolds numbers, the
laminar velocity profile is no longer parabolic, i.e. Poiseuille flow. There are several reasons for
this non-parabolic velocity profile. First, our pipe is too short for these Reynolds numbers to
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allow the flow to develop fully. Second, we found that small temperature differences between
the water and the ambient air significantly skew the laminar velocity profile. Third, it appears
that the Coriolis force resulting from the rotation of the earth strongly deforms the laminar
velocity profile, an effect which increases strongly with the Reynolds number.

To trigger transition to turbulence in this laminar flow, we added a well controlled distur-
bance to the flow. Both the frequency (related to the wave number) and the amplitude of the
disturbance could be varied. In this way we can determine the disturbance magnitude and wave
number combinations that trigger transition for a wide range of Reynolds numbers. Comparing
the measurements for a Newtonian fluid with those for polymer solutions, gives information
on the effect that polymers have on the stability of pipe flow and on the Reynolds number at
which transition to turbulence occurs.

In our experimental study, we first investigated the stability of water, which is a Newtonian
fluid. The critical relative disturbance velocity (v},), i.e. the ratio of disturbance velocity that
triggers transition to the bulk velocity, decreases when the Reynolds number is increased. The
sensitivity of v}, to the dimensionless wave number (a*) is small for large o*. We find that for
low Reynolds numbers, the flow is most sensitive to long-wave disturbances. For Re>30000,
the flow becomes increasingly more sensitive to disturbances with 0.5Sa*S1. This suggests
that depending on the Reynolds number, different modes are involved in the transition process.
Multiple transition points, found for 2<a*<6, seem to be related to this. Here, the term ‘mul-
tiple transition point’ indicates the sequence of laminar-turbulent transition, relaminarization,
and next a second transition to turbulence as a function of increasing v}.. Apart from the
transition points, we also study how the critical disturbance amplitude varied with Re as this
plays a role in various theoretical studies of transition. For large wave numbers, we find that v},
scales according to Re!, while for small wave numbers v} ~Re~2/3. The latter is in agreement
with weakly nonlinear stability calculations.

Second, we investigated the pipe flow stability of polymer solutions (non-Newtonian fluids).
For the concentrations that we investigated (20 — 40 ppm) we found that the viscosity of the
solutions is significantly increased by the polymers and also that shear thinning is present.
In particular, shear thinning occurs for those solutions where the polymers adopt a stretched
conformation. We accounted for these viscosity effects by defining the Reynolds number with
the viscosity at the wall, which gives good results for the Moody diagram, i.e. friction factor as
a function of Reynolds number. From the stability measurements, it follows that the polymers
reduce the natural transition Reynolds number and at the same time have a stabilizing effect,
viz. the critical relative disturbance velocity v, for the polymers solutions is larger than for
water. The stabilization is stronger for fresh polymer solutions and it is also larger when the
polymers become more extended. However, a delay in transition, i.e. the critical Reynolds
number below which the flow remains laminar at any disturbance, is increased to values larger
than that for Newtonian fluids, was only found for fresh polymers that adopt an extended
conformation.
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In a related research project on drag reduction (Toonder 1995) it was shown that the key
property for drag reduction is the anisotropic stress which is introduced by extended polymers,
whereas elasticity has an adverse effect on drag reduction. This complements our findings for
transition and the picture that arises is that the polymers have to adopt the extended confor-
mation in order to influence the transition to turbulence as well as to generate drag reduction
in turbulent flows. Our nonlinear stability calculations for plane Poiseuille flow show that elas-
ticity has a destabilizing effect for We<1, while for We>1 a stabilizing effect can be observed
as well as large stretching in the flow direction. Thus, also stability computations for plane
Poiseuille flow seem to indicate that the stabilizing effect of elasticity is related to the stretching
of the polymers by the flow. The decrease in natural transition Reynolds number caused by
the polymers remains unclear, but it may be related to a destabilizing effect of the elasticity
on the developing boundary layers in the entry region of the flow.
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Samenvatting

De omslag van laminair naar turbulent in pijpstroming
voor Newtonse en niet-Newtonse vloeistoffen

Aswin A. Draad

Het oplossen van zeer kleine hoeveelheden polymeren met hele lange ketens in een turbulente
stroming kan zeer grote effecten hebben op de turbulentie. Bijvoorbeeld, in deze verdunde
polymeeroplossingen kan de stromingsweerstand soms wel met 80% gereduceerd worden. Het
centrale thema van dit proefschrift is het krijgen over meer duidelijkheid van het effect dat deze
polymeren hebben op het omslagpunt van een laminaire naar een turbulente stroming. Zelfs
voor Newtonse vloeistoffen zijn nog veel zaken niet goed begrepen, wat in nog sterkere mate
geldt voor niet-Newtonse vloeistoffen. Om een voorbeeld te geven, in de meeste gevallen is geen
verandering merkbaar in vergelijking tot het oplosmiddel. Soms wordt de omslag uitgesteld tot
hogere waarden van het Reynoldsgetal maar een enkele keer vindt er ook omslag plaats bij
waarden van het Reynoldsgetal die lager zijn dan die voor het oplosmiddel. Kennis over het
omslagproces is belangrijk, omdat zaken als mixen, warmte-overdracht en stromingsweerstand
sterk toenemen wanneer de stroming turbulent wordt, en het is daarom voor veel toepassingen
erg belangrijk om van te.voren te kunnen voorspellen of de stroming laminair dan wel turbulent
zal zijn.

In dit proefschrift willen we duidelijkheid krijgen over wat de meest belangrijke parameters
zijn die de omslag bepalen van laminair naar turbulent in het algemeen en voor polymeer-
oplossingen in het bijzonder. Om deze doelstelling te realiseren hebben we sterk niet-lineaire
stabiliteitsberekeningen uitgevoerd voor een twee-dimensionale stroming tussen twee vlakken
platen van een visco-elastische vloeistof waarvan het gedrag beschreven wordt door het Up-
per Convected Maxwell-model. De resultaten van deze berekeningen worden beschreven in het
eerste deel van dit proefschrift en laten zien dat elasticiteit destabiliserend werkt voor We<1.
Hierbij staat We voor het Weissenberggetal en beschrijft de verhouding van de relaxatietijd van
het polymeer tot de tijdschaal van de stroming. Wanneer het Weissenberggetal wordt verhoogd
tot waarden groter dan 1, neemt het kritisch Reynoldsgetal voor deze verstoringen weer toe.
Dit kan worden gezien als een stabiliserende werking.

In het overige deel van dit werk beslaat uit het meten van de stabiliteit van polymeer-
oplossingen in een buisstroming. Hierbij is vooral gekeken naar de invloed die de gestrektheid
van de polymeren heeft op de stromingsstabiliteit. Voor het uitvoeren van deze metingen
hebben we een nieuwe buisopstelling gebouwd die speciaal geschikt is voor het doen van sta-
biliteitsmetingen aan stromingen van Newtonse en niet-Newtonse vloeistoffen. Hierbij hebben
we gekozen voor een buisdiameter van 40mm, zodat ook de details van de stroming goed on-
derzocht kunnen worden. Met een lengte van 800 pijpdiameters (32m) is de buis tevens lang
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genoeg om tot hoge Reynoldsgetallen (Re=14 300) nog steeds een volledig ontwikkelde stroming
te krijgen. Dit laatste is vooral gedaan om de vergelijking tussen de resultaten van de metingen
en die van theorieén en numerieke simulaties te vergemakkelijken. Door verstoringen bij de
instroming zo goed mogelijk te onderdrukken is het mogelijk om voor water (een Newtonse
vloeistof) in onze buis het Reynoldsgetal waarbij de stroming van nature omslaat van laminair
naar turbulent, te verhogen van de normale waarde van +2 300 naar meer dan 60 000. Echter,
bij deze hoge Reynoldsgetallen is het axiale snelheidsprofiel niet langer parabolisch, d.w.z. een
Poiseuille stroming. Dit wordt veroorzaakt door een aantal factoren. Ten eerste is voor deze
hoge Reynoldsgetallen de buis niet lang genoeg om een volledig ontwikkelde stroming te krijgen.
Ten tweede blijkt dat een klein temperatuurverschil tussen het water en de omringende lucht al
een forse vervorming van het laminaire snelheidsprofiel oplevert. Een derde oorzaak is dat de
Coriolis-kracht, die het gevolg is van het draaien van de aarde, groot genoeg is om het laminaire
snelheidsprofiel enorm scheef te drukken, een effect dat snel toeneemt met de verhoging van
het Reynoldsgetal.

Om de omslag van laminair naar turbulent te induceren wordt een goed gecontroleerde ver-
storing aanbracht in een laminaire stroming. De frequentie en de amplitude van de verstoring
zijn beide instelbaar. Hiermee zijn we in staat om voor een groot bereik van Reynoldsgetallen
de combinatie van verstoringssnelheid en -frequentie te bepalen die omslag veroorzaken. Door
vervolgens de resultaten voor een Newtonse vloeistof te vergelijken met die van polymeeroplos-
singen, krijgen we informatie over het effect dat de polymeren hebben op de stabiliteit van de
stroming en het omslag-Reynoldsgetal bepalen.

Allereerst hebben we in onze proefopstelling de stabiliteit van de Newtonse vloeistof wa-
ter bestudeerd. Verhoging van het Reynoldsgetal leidt tot een daling van de kritieke relatieve
verstoringssnelheid (v} ,), de verhouding van de verstoringssnelheid tot de bulksnelheid waarbij
omslag van laminair naar turbulent plaats vindt. De gevoeligheid van v}, voor het dimensieloze
golfgetal (o) is klein voor grote o*. Bij lage Reynoldsgetallen is de stroming het gevoeligst voor
langgolvige verstoringen. Boven Re~30000 laat de pijpstroming een verhoogde gevoeligheid
zien voor verstoringen met 0.5<0*<1. Dit suggereert dat afhankelijk van het Reynoldsgetal,
andere modes betrokken zijn bij het omslagproces. Dit lijkt gerelateerd te zijn aan de meer-
voudige omslagpunten die optreden bij 2<a*<6. De term ‘meervoudig omslagpunt’ betekent
dat wanneer v}, wordt verhoogd, er eerst omslag van laminair naar turbulent optreedt, ver-
volgens bij een hogere waarde relaminarisatie gevonden wordt om bij nog hogere waarden van
v, toch weer turbulent te worden. Uit de stabiliteitsmetingen kan ook worden bekeken hoe
v, vari”’eert met het Reynoldsgetal. Voor grote golfgetallen suggereren de metingen dat v},
schaalt met Re~! terwijl bij lage golfgetallen v} ,~Re~?/3. Deze laatste wordt ook voorspeld
door zwak niet-lineaire stabiliteitsberekeningen.

Als tweede hebben we de stabiliteit van polymeeroplossingen (niet-Newtonse vloeistoffen)
bestudeerd. Voor de gebruikte concentraties (20 — 40 ppm) blijkt dat de viscositeit van de
oplossing duidelijk toeneemt door het toevoegen van polymeren en tevers vertoont de oplossing
afschuifverdunnend gedrag. Dit gedrag komt vooral sterk naar voren in die oplossingen waarin
de polymeren gestrekt zijn. Deze effecten zijn niet te verwaarlozen en door een Reynoldsgetal
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te definiéren gebaseerd op de viscositeit aan de wand, is hiervoor te corrigeren wat prima werkt
voor Moody-diagram metingen (frictiefactor als functie van het Reynoldsgetal). Uit de sta-
biliteitsmetingen volgt dat de polymeren in het algemeen het natuurlijk omslag-Reynoldsgetal
verlagen en tegelijkertijd een stabiliserend effect hebben, d.w.z. dat de kritieke relatieve ver-
storingssnetheid v, groter is voor de polymeeroplossingen dan voor water. De stabilisatie is
sterker voor verse polymeeroplossingen en naarmate de polymeren meer gestrekt zijn. Echter,
uststel van omslag, d.w.z. het kritieke Reynoldsgetal waaronder geen omslag van laminair naai
turbulent kan plaatsvinden, ongeacht de verstoring, verschuift naar waarden die groter zijn
dan die voor het oplosmiddel, wordt alleen gevonden voor verse polymeeroplossingen waarin de
polymeren gestrekt zijn.

Een nauw gerelateerd promotie-onderzoek naar weerstandsvermindering door polymeer-
toevoeging laat zien dat de pure anisotrope viskeuze spanning die wordt veroorzaakt door
gestrekte polymeren de belangrijkste eigenschap is voor weerstandsvermindering, terwijl elas-
ticiteit een verminderend effect heeft op weerstandsvermindering {(Toonder 1995). Dit comple-
menteert onze bevindingen betreffende de omslag van laminair naar turbulent en het plaatje dat
ontstaat is dat de polymeren gestrekt moeten zijn om de omslag van een laminaire naar turbu-
lente stroming te kunnen beinvloeden en tevens om voor weerstandsvermindering in turbulente
stromingen te kunnen zorgen. Onze niet-lineaire stabiliteitsberekeningen voor een stroming
tussen vlakke platen laat zien dat elasticiteit een destabiliserend effect heeft wanneer We<1, ter-
wijl voor We>1 een stabiliserend effect is gevonden gecombineerd met een sterke elastische rek
in stromings richting. Dus ook de berekeningen voor vlakke Poiseuille stroming lijken te wijzen
op een stabiliserend effect van de elasticiteit welke is gerelateerd aan het gestrekt worden van de
polymeren door de stroming. De oorzaak voor de reductie in natuurlijk omslag-Reynoldsgetal
blijft vooralsnog onduidelijk. Het zou gerelateerd kunnen zijn aan een destabiliserende werking
van elasticiteit in de zich ontwikkelende grenslaag in het intreegebied van de stroming.
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Chapter 1

General introduction

1.1 Context of project

Research on transition started with the publication of Reynolds (1883) on the study of the
transition to turbulence in pipe flow. He found that transition to turbulence occurred when
a dimensionless group, now called the Reynolds number (Re), exceeds a certain critical value.
The Reynolds number is the ratio of the nonlinear inertia forces to the viscous forces. For small
values of Re, the viscous forces dominate the flow behavior and fluid particles move through the
pipe following straight lines, i.e. the flow is laminar. For flows with a Reynolds number above
the critical value, nonlinear inertia forces control the behavior of the fluid and an irregular
chaotic motion emerges, which we call turbulence.

With respect to a laminar flow, turbulence causes large changes in flow-related processes, e.g.
mixing, the transfer of heat, and the resistance or drag are dramatically increased. However,
these processes are precisely the key ingredients of the flow problems that we encounter in
every day life and in industrial applications. For example, we stir our tea to enhance mixing,
we design a heat exchanger with turbulent flow to promote heat transfer, and we shape our
cars, ships, and airplanes aerodynamically to reduce drag. An industrial application where
accurately predicting pressure losses caused by drag becomes increasingly important is drilling
for oil and gas. Since the present thesis follows from the questions asked in this field of research,
let us take a more detailed look at this application.

During a drilling operation, drilling fluid is pumped down through the drill pipe to the drill
bit, and flows up in the annular space between the drill pipe and the well casing. At the drill
bit the fluid should remove excess heat caused by the drilling operation. So here heat transfer
properties are important. The upward flow through the annulus is used to remove the cuttings.
Also, the drilling fluid is used to counterbalance the pressure in the drilling zone. This pressure
has to be kept within its sometimes narrow margin. The minimum (hydrostatic) pressure of
the fluid is regulated by adjusting its density, and should be larger than the pressure of the
oil/gas present at the drill bit. This prevents inflow of oil/gas that would lead to a danger of
explosion at the surface. The maximum pressure should be lower than the stress at which the
rock fractures, to avoid the loss of drilling fluid. Apart from the hydrostatics, the pressure at
the drill bit is also influenced by the flow circulation. The total pressure, i.e. the sum of these
two contributions could exceed the maximum pressure, leading to a breakdown of the drilling
operation. For this reason, it is important to accurately predict the flow resistance. In pursuit
of cost reduction, attempts are made to decrease the size of the drill hole, so-called slim hole
drilling, which considerably increases the flow resistance. Since the latter is directly related to
the type of flow, we need to be able to predict whether the flow will be laminar or turbulent.

For flows of, for example, water and air, empirical correlations exist with which we can

1
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predict the type of flow and the related pressure losses for the conditions encountered in practical
applications. For drilling fluids, prediction of laminar—turbulent transition is more difficult, the
reason being their complex composition. Drilling fluids consist of a mixture of water, clay,
polymers, chemicals, and sometimes oil. These mixtures behave differently from water and
therefore unexpected behavior can occur. Drilling fluid is not the only fluid that displays this
behavior. In fact, water-like fluid behavior is an exception. For example, blood, polymer
solutions, polymer melts, suspensions, paints, glue, and many every day fluids that can be
found in our kitchens, like yoghurt, ketchup, jam, and butter all show complex behavior and
are known as non-Newtonian fluids, to distinguish them from Newtonian fluids like water. The
field of science which deals with these non-Newtonian fluids is called rheology.

This explains the main goal of this thesis: The prediction of laminar-turbulent transition in
fluids with rheological properties similar to drilling fluids. In view of this longterm goal, we set
ourselves to this study in which we have to combine two more or less separate scientific issues;
i.e. laminar—turbulent transition and non-Newtonian fluid flow.

1.2 Laminar-Turbulent transition

In the previous section we have highlighted the direct application of transition in non-Newtonian
fluids to drilling operations. Here we will study this transition process for the idealized geometry
of a fully developed cylindrical pipe flow. The theoretical understanding of laminar-turbulent
transition, in particular transition in pipe flow, is still rather poor despite the vast amount
of work which has been done in this field over past century. The understanding of laminar-
turbulent transition mechanisms active in non-Newtonian fluid flows has progressed even less
due to the complex nature of these fluids. Hence, in order enhance the understanding of
laminar-turbulent transition for non-Newtonian fluids much work still needs to be done in two
very exciting fields of fluid mechanics, being laminar-turbulent transition and rheology.

Since Reynolds (1883) published his results of the “... the circumstances which determine
whether the motion of water shall be direct or sinuous ... ¥, many investigators have tackled
the transition problem in pipes as well as in other flow geometries. The classical theoretical ap-
proach is to linearize the equations of motion and study the growth of very small disturbances.
For 2-D Poiseuille flow between parallel plates, it has been found that these small disturbance
grow above a critical value of the Reynolds number, i.e. Re.. This results has been confirmed
experimentally (Nishioka et al. 1975). However, the value of Re, found from linear stability
theory is more than 5 times as high as the critical value that is obtained in practical conditions.
From the fact that the flow becomes turbulent at values of Re where infinitesimal disturbances
are stable, it was concluded that in general finite amplitude disturbances are responsible for
the transition to turbulence. Although calculations show that for finite amplitude disturbances
the critical Reynolds number is indeed much lower, the disagreement with experiments remains
still more than a factor of 2. Stability theory for cylindrical Poiseuille flow is even less suc-
cessful. Although no rigorous proof exists, the theory indicates that infinitesimal disturbances
are stable (e.g. Davey & Drazin 1969 and Salwen & Grosch 1972). Calculations for finite am-
plitude disturbances show no critical Reynolds number values above which disturbances will
grow. Indirectly, by calculating Landau constants, the threshold amplitudes above which finite
amplitude disturbances can grow have been calculated (e.g. Davey & Nguyen 1971 and Sen
et al. 1985).
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An alternative to solving (linearized) stability equations is direct numerical simulation
(DNS) of the three-dimensional equations of motion. Although extremely computationally
expensive, excellent results have been achieved for transitional flow between parallel plates and
for boundary layers (Kleiser & Zang 1991). Also, for pipe flow, DNS of fully turbulent flows
emerged (Eggels et al. 1994) but transition calculations in this geometry have not reached the
stage where they can be considered as reliable. This is mainly due to the very high resolution
that is required.

Recently, using DNS, Trefethen et al. (1993) showed that a small disturbance which consists
of a combination of (linearly stable) eigenmodes, can grow during a finite period of time before
it decays as is predicted by linear stability theory. This initial growth is a result of the non-
orthogonality of the linear Navier-Stokes operator and such behavior of disturbances is called
transient growth. The results of Trefethen et al. (1993) have been extended to pipe flows by
O’Sullivan & Breuer (1994a, 1994b), who find a nonlinear disturbance which shows transient
growth and develops into a transitional flow structure which is similar to the transitional flow
structure called puff, observed experimentally by Wygnanski et al. (1975). Unfortunately, the
Reynolds number in their calculations is slightly too small and after initial growth the flow
decays to a laminar state. Given the continuing increase in computing power and the devel-
opment of massively parallel computers, one may expect considerable progress from numerical
simulations of transition within the next decade or so.

In this thesis we will primarily concentrate on an experimental study on transition since the-
ory is unable to predict transition for Newtonian pipe flow, let alone for flows of non-Newtonian
fluids. For this we have constructed a new and specialized experimental pipe flow setup to be
discussed in detail in this thesis. Developments of measurement techniques has also evolved
significantly. A non-intrusive measurement technique like Laser Doppler Velocimetry has more
or less become established techniques and allow for a very detailed study of flow characteristics.
Unfortunately, with this technique the velocity can only be measured at one location in the
flow. A very promising new technique in this respect is Particle Image Velocimetry (PIV). PIV
can measure velocity fields in a plane or even in a volume of the flow as-a function of time
(Westerweel 1993). Application of PIV to turbulent and transitional pipe flows has already
shown exciting results (Westerweel et al. 1994, Draad et al. 1995), and will no doubt lead to
more information in the future. Probably the largest potential for this technique is that it
permits a direct comparison between velocity fields obtained in experiments and those from
DNS.

1.3 Non-Newtonian fluid flow

Our application area forces us to look not only to transition of Newtonian flow, which is a
problem in itself, but also to transition of non-Newtonian fluids. Basically, all materials that
show behavior which is in between that of a purely viscous fluid with a constant viscosity and
an elastic solid fall in the category of non-Newtonian fluids. Very often, materials that possess
both viscous and elastic behavior, are designated by the term visco-elastic fluids.
Non-Newtonian fluids can show some astonishingly different behavior from Newtonian fluids
like water. Most non-Newtonian fluids have a viscosity that is not constant but depends on
the shear rate. More spectacular differences are rod-climbing and the tubeless-siphon effects.
When a rod is rotated in a beaker, strongly elastic fluids can climb the rod whereas no climbing
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occurs for Newtonian fluids. When a siphon is retracted above the free surface, the flow for
Newtonian fluids will stop whereas for strongly elastic fluids it will continue to flow! Such
elastically behaving fluids can be obtained by dissolving several weight percent of a high-
molecular weight polymer in water. Another surprising effect occurs when we dissolve minute
amounts of these polymers (typically 0.001%) in a turbulent flow. The drag of the flow can
then be decreased by as much as 80%. A more extensive review of such differences in behavior
between Newtonian and non-Newtonian fluids is given in Bird et al. (1987a).

Laminar—turbulent transition in non-Newtonian fluids can also be different from that in
Newtonian fluids. For many dilute polymer solutions, transition in pipe flow occurs at roughly
the same Reynolds number as for Newtonian fluids (Virk et al. 1967), but also delay in tran-
sition has been reported (e.g. Chung & Graebel 1972) as well as ‘early’ transition (e.g. Zakin
et al. 1977). Stability calculations for non-Newtonian fluids in plane Poiseuille flow show a
reduction in critical Reynolds number when elasticity is added (e.g. Porteous & Denn 1972a
and Sureshkumar & Beris 1995b) or an increase for suspended rods (Bark & Tinoco 1978)).
The results of the stability calculations vary considerably with the choice of the constitutive
equation, which describes the relationship between the stresses and the deformation rates.
However, validation of such a relationship is possible only in very simple flows. The choice of
the constitutive equation which best describes the behavior of polymers in such a complex flow
as transition is very difficult, viz. it is not even known if any of the existing models performs
satisfactorily in such flows.

Thus, no clear picture is presently available on whether and how non-Newtonian fluid be-
havior affects laminar—turbulent transition.

1.4 Aim and outline of this thesis

The aim of the work described in this thesis is to disclose some characteristics and properties
that accompany the transition from laminar to turbulent pipe flow in both Newtonian and
non-Newtonian fluids, where we are interested in the difference in behavior between both fluids.
For this we concentrate on performing detailed stability measurements in laminar pipe flow of
Newtonian and non-Newtonian fluids. For the Newtonian fluid we have used water and for
non-Newtonian fluids dilute polymer solutions. Also, numerical simulation of two-dimensional
visco-elastic fluid flow has been used to study the nonlinear stability of laminar flow between
parallel plates.

The outline of this thesis is as follows. In chapter 2 and 3 we present a review of the literature
on laminar-turbulent transition for Newtonian and non-Newtonian fluids respectively. Results
on flow between parallel plates as well as in pipes are discussed. In chapter 4 we will discuss
the results of the numerical computations that we carried out of the stability of flow between
parallel plates. For the visco-elastic fluid we have taken the Upper Convected Maxwell model.
We explore the range of Reynolds number—wave number combinations for which saturated two-
dimensional disturbances exist. We compare the results for various levels of elasticity with
those of a Newtonian fluid in order to explore the difference in transition behavior between
both fluids. A

In the following chapters, we focus on the experimental investigation of pipe flow stability.
In chapter 5 we give a detailed description of the flow facility that we have designed with
the aim to perform a study of pipe-flow stability. The flow in this facility can be maintained
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laminar up to high Reynolds numbers (Re>60000) and transition to turbulence is triggered by
adding a well controlled disturbance. Special attention is given to details and features of the
settling chamber and the measurement pipe which are necessary to obtain a very stable flow.
Also, the disturbing influence of convection and the rotation of the earth on laminar pipe flow
is measured and discussed. The results of the stability experiments are presented in chapters 6
and 7 for water (Newtonian) and dilute polymer solutions (non-Newtonian) respectively. We
show results of the disturbance magnitude which is needed to trigger transition from laminar to
turbulence flow as a function of a large range of disturbance frequencies and Reynolds numbers.
For the non-Newtonian solutions, the effect of the polymer configuration, i.e. coiled or extended,
on the flow stability is investigated. Also, the shear-rate-dependence of the viscosity of these
dilute solutions is measured and a method to correct the experimental results for this effect is
presented. We end this thesis with our main conclusions and suggest some possible directions
for future research in chapter 8.
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Chapter 2

Newtonian flow stability

Abstract

In this chapter we will briefly review the literature on theory and experiments of transition in
both plane and cylindrical Poiseuille flow for Newtonian fluids.

2.1 Introduction

Transition to turbulence in a cylindrical pipe goes back more than one-hundred years when
Osborne Reynolds in 1883 performed his famous experiments. His findings, which are still not
explained satisfactorily by theory, showed that smooth laminar flow of Newtonian fluid in a
pipe becomes unstable if a dimensionless number exceeds a certain critical value. This number
UmaxR/v is known as the Reynolds number, where U,,,, is the maximum velocity, R the radius
of the pipe and v the kinematic viscosity of the fluid. Presently, after more than a century,
we still know relatively little about the processes and mechanisms of the transition in pipe
flow. More progress has been made for Poiseuille flow between parallel plates. In this overview,
the results on 2-D Poiseuille flow will be presented in section 2.2 and the results dealing with
cylindrical Poiseuille flow in section 2.3. The more recent developments concerning transient
growth phenomena are the subject of section 2.4 as far as they are important for both plane
and cylindrical Poiseuille flow.

2.2 Plane Poiseuille Flow

First, we discuss some theory concerning plane Poiseuille flow rather than starting with the
much more complicated case of cylindrical Poiseuille flow. Much of the material presented here
can also be found in the book by Drazin & Reid (1981) and in the excellent review papers on
‘Instability mechanisms in shear-flow transition’ (Bayly et al. 1988) and ‘Numerical simulation
of transition in wall-bounded shear flows’ (Kleiser & Zang 1991). All quantities that we use in
this section are made dimensionless with the centerline velocity and the channel half-width.

2.2.1 Linear Instability Theory

The most obvious and direct route to investigate the stability of a flow is linear instability
theory. In this theory, the solution to the Navier-Stokes equation is disturbed by infinitesimal
disturbances which have the following form:

U (T, y, 2, 1) = d(y)elemtFech (2.1)

in which the real part of this expression represents the physical quantity. z and z are the
homogeneous streamwise and spanwise direction respectively, and y is the inhomogeneous wall
normal direction, where homogeneous indicates that flow properties are not a function of the
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spatial coordinate and inhomogeneous means the opposite. From the assumption of homogene-
ity in the z and z-directions follows that  and S are real wave numbers. The wave speed ¢
may be complex. If the imaginary part of c becomes positive the linear disturbance will grow
exponentially and the flow is then by definition unstable. Substitution of u + u’ and p + o/
in the Navier-Stokes equations, where ' and p' are disturbances, and keeping only the linear
terms in the disturbances gives a set of linearized stability equations; one continuity equation
and the Navier-Stokes equation. For plane shear flows it can be shown (Squire’s theorem) that
only two-dimensional disturbances have to be considered (Drazin & Reid 1981, pp. 129 & 155).

Consider plane shear flow between two rigid boundaries. After elimination of the pressure
and «', follows the famous Orr-Sommerfeld equation, which reads:

_ 2 _ N\ TS = 1 2 __ A 2\24
[U - (D* = )b UU_iaRe(D a®)*o (2.2)

where U(y) is the dimensionless velocity profile, © is the y-component of the dimensionless
amplitude of the velocity disturbance, and D is an operator which stands for differentiating
to the dimensionless y-coordinate. An alternative form which is often encountered, can be
obtained by introducing in equation 2.2 the streamfunction ¢'(z, y, t) such that the two velocity
components of the disturbance are given by:

= il and V' =-——— (2.3)

Let the disturbance be of the form:

(2, y,1) = ply)e (2.4)
Then it follows that ¢(y) also satisfies the Orr—Sommerfeld equation:
1
U—d(D*-a?)p—-U'¢p= D? - o?)? 2.5
U= (D~ a?) ~ U'9 = ——(D* ~*)'o (2.5)

For inviscid flow can be obtained by simply ignoring the term with the Reynolds number.
We then obtain the Rayleigh equation which is identical to the Taylor-Goldstein equation
(Nieuwstadt 1992, p. 28 and Drazin & Reid 1981, p. 329) for homogeneous temperature fields.
Analysis of the Rayleigh equation leads to a well known criterion for instability (Drazin &
Reid 1981, pp. 131-132): Rayleigh’s inflection-point theorem. It implies that a necessary
condition for instability is that the basic profile U(y) should have an inflection point. Note that
the criterion gives only a necessary condition for instability, viz. an inflection point does not
always lead to instability in an inviscid flow. However, plane Poiseuille flow has no inflectional
velocity profile, but the flow is nevertheless unstable at finite Reynolds numbers. This indicates
that inviscid theory is not always sufficient and we have to consider solutions of the full Orr-
Sommerfeld equation.

The Orr-Sommerfeld equation applied to plane Poiseuille flow gives a critical Reynolds
number of Re,=5772.22 and o,=1.021 (Drazin & Reid 1981, p. 192), where Re is based on
half the distance between the plates and the maximum velocity. These unstable modes are
called Tollmien-Schlichting (TS) waves since these same waves were predicted by Tollmien and
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Figure 2.1: Linear stability diagram for plane Poiseuille flow. From Porteous & Denn (1972a).

Schlichting in the early 1930’s for boundary layer instability. The linear stability diagram for
plane Poiseuille flow is shown in figure 2.1. The shape of the disturbance will be discussed in
more detail in chapter 4 in relation to the numerical calculations for plane Poiseuille flow of
Newtonian and non-Newtonian fluids.

2.2.2 Nonlinear Instability Theory

As we have seen in the previous section, linear stability theory for plane Poiseuille flow gives a
critical Reynolds number of 5772.22. On the other hand, in experiments we find transition to
turbulence at Reynolds numbers as low as 1 000. As infinitesimal disturbances are stable at this
Re, clearly, finite amplitude disturbances must be relevant. The idea is that for larger ampli-
tude disturbances the critical Reynolds number decreases (Drazin & Reid 1981, pp. 370-375),
see figure 2.2. Chen & Joseph (1973) showed that the finite-amplitude solutions which bifurcate
from the linear stability diagram can be subcritical, i.e. finite-amplitude instability exists for
Reynolds numbers smaller than the linear critical Reynolds number. Therefore, the diagram
in figure 2.2 is known as subcritical bifurcation. For small disturbance amplitudes, behavior as
depicted in figure 2.2 has been found for the plane Poiseuille flow by Porteous & Denn (1972a)
(see also figure 3.7 on page 39.). Zahn et al. (1974) and Herbert (1976) showed that a nonlinear
neutral surface in the parameter space (Re, o, E') exists as is shown in figure 2.3. E’ is the
disturbance energy. The top neutral surface is attracting (upper-branch solutions are stable)
whereas the bottom part of the surface (Jower branch) is unstable. Herbert gives for the critical
Reynolds number for these 2-D nonlinear disturbances, located at the nose of this nonlinear
neutral surface; the value Re,x1,=2935 and o=1.32. Note that here the Reynolds number is
based on the pressure gradient, as is indicated by the subscript p. However, due to the effect of
the large nonlinear disturbances the corresponding flow rate has decreased by roughly 10%, so
that the critical Reynolds number based on flow rate becomes Reynp~2640. This latter value
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Figure 2.2: Sketch of the dependence of the critical Reynolds number on the disturbance amplitude. Re.,r
denotes the linear critical Reynolds number and Re. nyz is the nonlinear critical Reynolds number.

is in broad agreement with results presented by Jiménez (1990).

Weakly nonlinear theory, which extends the linear eigenfunction to finite amplitude solutions,
is able to give the lower-branch solutions for small amplitudes, i.e. near Re.. Essentially these
are horizontal cross-sections for E'=constant in figure 2.3. A plot of « versus Re for weakly

nonlinear constant amplitude solutions is given in figure 2.4.
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Figure 2.3: Nonlinear neutral surface for finite-amplitude two-dimensional waves in plane Poiseuille flow. From
Herbert (1980).
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Figure 2.4: Finite amplitude neutral stability curves (lower branch) obtained by weakly nonlinear theory. Ao,
designates the disturbance magnitude. From Porteous & Denn (1972b).

Apart from linear and nonlinear stability equations, these 2-D disturbances have been also stud-
ied by numerical simulation, e.g. the Direct Numerical Simulation of 2—-dimensional Poiseuille
flow by Jiménez (1987, 1990). Since transition to turbulence is essentially 3-dimensional,
2-dimensional transition cannot give the complete picture. However, Jiménez found a sweep—
ejection cycle which is shown in figure 2.5, and he shows that a group of waves travels at a
higher speed than an individual wave. The active front of the group triggers new waves, which
produces a strong ejection. After that, the wave immediately begins to decay. The vorticity of
the ejection is enough to trigger another new wave in the undisturbed flow in front of the first
wave and so the wave group propagates.

Recently, Price et al. (1993) presented the existence of stable localized wave packets which are
created through a saddle-node bifurcation at Re=2330. This Reynolds number is lower than
the critical Reynolds number for the finite-amplitude TS—waves described above but still a large

gap remains with the experimentally found critical Reynolds numbers of approximately 1000
(Nishioka & Asai 1985).

2.2.3 Secondary Instability

In the last decade, numerical calculations have revealed an interesting mechanism in the tran-
sition to turbulence. Shear flows can be divided into three groups according to their linear
stability characteristics. The first group of flows that have an inflectional velocity profile is
inviscidly unstable to infinitesimal disturbances. The second group consists of flows that are
inviscidly linearly stable, but can be unstable to infinitesimal viscous disturbances. Examples
of such flows are plane Poiseuille flow and boundary layer flow. The third group includes flows
that are linearly stable to all infinitesimal disturbances. Prototypes are cylindrical Poiseuille
flow and plane Couette flow.

We have seen in the previous section, that in plane Poiseuille flow finite amplitude solutions
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Figure 2.5: Sweep—ejection cycle in 2-D Poiseuille flow. From Jiménez (1990).

(oscillating flows) which are neutrally stable exist for Re22640. These are called secondary
flows (the primary flow is the parabolic Poiseuille flow itself). Orszag & Patera (1983) study the
linear stability of three-dimensional disturbances in plane Poiseuille flow in the presence of non-
linear two-dimensional disturbances. They show that the growth rate for 3-D disturbances in
such a flow can reach values of 0.12, which is very fast compared with the TS-waves and which
is close to the convective time scale (i.e. O(1) in this nondimensional notation). Also, below
Re~2 640 (Re,~2900) (where no neutral finite amplitude TS-waves exist, and where thus the
analysis can be regarded only as an approximation) three-dimensional disturbances grow above
Re,~400. Applying direct numerical simulation techniques of time dependent flows, Orszag
& Patera (1983) showed that the three-dimensional disturbances grow for Reynolds numbers
exceeding 1000. This critical Reynolds number cannot be taken as a precise number since the
number of modes in the y-direction in their simulation is limited. Also, in the simulation by
Orszag & Patera, the three—dimensional disturbance does not influence the two-dimensional
finite amplitude disturbance and as all two—dimensional states decay for Re,<2 900 the infinites-
imal three-dimensional disturbances will eventually also have to decay for ¢ — co. Continuing
the calculations beyond the point where three-dimensional disturbances can be considered as
linear does not result in a saturated tertiary state but results in chaotic behavior normally
associated with turbulent flow. This shows that when the initially small three-dimensional
disturbances are able to grow large enough, and they might trigger transition to turbulence at
Reynolds numbers close to those found in experiments. This suggests a scenario of linear dis-
turbances growing to become nonlinear, which in turn are linearly unstable to 3-D disturbances.
The latter may grow and eventually trigger transition.

The growth of 3-D disturbances on top of the large amplitude 2-D waves is known as sec-
ondary instability. The secondary instabilities can in appear in several modes. They may take
the form of a double periodic array of A-shaped vortices (Klebanoff modes) as is shown in
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figure 2.6. These Klebanov modes (also named K-type instabilities) have the same wavelength
as the fundamental TS-wave. They occur for the upper-branch TS-waves. For the unsta-
ble lower-branch TS-waves, Herbert (1983) discovered subharmonic secondary instabilities, i.e.
their wavelength is twice that of the fundamental TS-wave. These so-called Herbert modes (or
H-type instabilies) consist of staggered A-vortices (see figure 2.6).
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Figure 2.6: Schematic of A-vortex patterns resulting from secondary instability: (a) fundamental modes known
as Klebanov-modes (K-type) and (b) subharmonic modes known Herbert-modes (H-type). From Herbert (1983).

Bayly et al. (1988) give a review of instability mechanisms in shear flows and also discuss
a time-scale which is important for our nonlinear stability calculations on plane Poiseuille flow
presented in chapter 4. They show that the 2-D nonlinear waves approach their saturated am-
plitudes on a viscous time-scale. This requires long calculation times in numerical simulations,
a point to which we will return in chapter 4.

2.2.4 Direct Numerical Simulations

As we have seen above, Orszag & Patera used Direct Numerical Simulation (DNS) of the
Navier-Stokes equation already in 1983 to investigate the growth of secondary instabilities.
However, Gilbert & Kleiser were the first to provide an accurate simulation of the complete
transition process from laminar to turbulence in a channel flow. They distinguish three phases
in the transition process (see Kleiser & Zang 1991):

1. The initial two- and three-dimensional disturbance growth  (dimensionless time smaller
than 100),

2. The formation and development of 3-D transitional flow structures, such as A-vortices
and high shear layers (100 < ¢ < 150), and

3. The breakdown phase (150 < ¢ < 200), in which the transitional flow structures on the
scale of the TS-wave disappear and turbulence sets in.

In figure 2.7 the lambda-vortex structure is shown and in figure 2.8 the break-down phase
is shown.
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Figure 2.7: Lambda-vortex structures as computed by Gilbert. From Kleiser & Zang (1991).
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Figure 2.8: Breakdown process in plane Poiseuille flow. From Kleiser & Zang (1991).
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2.2.5 Experiments

From the Orr-Sommerfeld equation it was deduced that linear instabilities should be present
in a boundary layer, known as Tollmien—Schlichting waves. However, it remained uncertain
whether or not these waves exist in actual flows. Only after Schubauer and Skramstad strongly
reduced the background turbulence level, in their facility 0.0459% (see Drazin & Reid 1981, p.
239), actual TS-waves could be detected. A similar landmark for plane Poiseuille flow were the
measurements by Nishioka, lida & Ichikawa (1975). The experiments by Nishioka et al. were
done in a low turbulence air channel flow with a background turbulence level of only 0.05%.
The height of their channel was 14.6 mm. The channel was 27.4 heights wide and 411 heights
long. They roughly confirmed the neutral stability curve for plane Poiseuille flow, as shown in
figure 2.9.
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Figure 2.9: Neutral stability curve for linear disturbances in plane Poiseuille flow as measured by Nishioka et
al. (1975).

Kozlov & Ramazanov (1984a, 1984b) visualized both the fundamental (Klebanov or K-type)
and the subharmonic (Herbert or H-type) secondary instability modes as depicted in figure 2.6.
One of their results is depicted in figure 2.10.

For small amplitudes of the 2-D wave, theory predicts that the Herbert modes will dominate
transition. For larger amplitudes of the 2-D wave, the fundamental and subharmonic modes
compete. However, most experiments show that the fundamental Klebanov modes prevail even
in conditions where theory predicts the domination of subharmonic Herbert modes. Singer et
al. (1989) performed calculations using DNS and show that the presence of weak streamwise
vortices can cause the K-type structure to dominate transition. An alternative explanation
is offered by Kim & Moser (1989). Their simulations show that the initial growth of the
streamwise velocity of the spanwise modes (which they call “minus” modes) acts as a forcing
for the fundamental (K-type) modes.



2.3. Cylindrical Poiseuille Flow 17

Figure 2.10: Secondary instabilities as visualized by Kozlov & Ramazanov (1984b). Re=3850, (a) 73 Hz, (b) 55
Hz and (c) 57 Hz. (a) and (b) depict fundamental modes (K-type) whereas (c) is an example of a subharmonic
(H-type) secondary instability.

When experimental investigations in relation to the minimum transition Reynolds number
in plane Poiseuille flow are discussed, mostly the work of Davies & White (1928) and Patel &
Head (1969) is mentioned. Both these experiments give minimum transition Reynolds number
of around 1000 (1080 and 1035 respectively). Since in both experiments the inlet flow was
disturbed by possible flow separation on the right-angled entrance corners. Therefore, some un-
certainty remained about the validity of this minimum transition Reynolds number. However,
Nishioka & Asai (1985) also found a transition number of 1000 using three types of disturbance
generators, viz. placing 1 or 6 cylinders at the entrance or periodic injection from a hole in the
wall. The threshold intensity of the external disturbance that is able to trigger the transition,
is comparable to the maximum intensity of u-fluctuations in fully turbulent channel flows (i.e.
13-15%).

2.3 Cylindrical Poiseuille Flow

In this section we will briefly discuss the literature of transition in cylindrical pipe flow transi-
tion. As we will see, our understanding of pipe-flow transition is much less progressed than for
plane Poiseuille flow. This is mainly due to the problems related to linear stability theory, as
we will see in the next section.
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2.3.1 Linear Instability Theory
In cylindrical Poiseuille flow, Squire’s transformation can be used only for axisymmetric dis-
turbances (Drazin & Reid 1981, p. 217). Thus, for axisymmetric disturbances it is suffi-
cient to consider disturbances having velocity components (0, u., u,). Here the z-axis co-
incides with the axial flow direction. In analogy to plane Poiseuille flow, a streamfunction
P (1, 2,t) = $(r)e*#= is introduced related to the disturbance velocities by:
, 1oy , 18y’

=i A w=g,
The real part of this equation represents the physical disturbance velocity. It can be shown
that ¢(r) satisfies the equation:

(2.6)

1wy 1 . ? 1d

W - (L%~ a®)¢— - (7) ¢ = iaRe(£2 —a?)? with L= R (2.7
Here W designates the axial velocity component. Davey & Drazin (1969) studied this equa-
tion numerically and found stability for all axisymmetric disturbances. Investigation of non-
axisymmetric disturbances is important since for plane Poiseuille flow is stable to disturbances
having the same symmetry as the base flow but nonsymmetric ones are unstable. Salwen
& Grosch (1972) performed numerical calculations for non-axisymmetric disturbances (distur-
bances varying like €’ and found stable solutions for azimuthal wave numbers m=0, ... , 5,
axial wave numbers o between 0.1 and 10.0, and aRe<50000. Furthermore, the least stable
mode for large Reynolds number is a fast mode (dimensionless wave speed approaches unity)
whereas for plane Poiseuille flow the least stable mode is a slow mode (dimensionless wave
speed approaches zero). .

As we will see later, experiments show that by suppressing disturbances, pipe flow can be
maintained laminar up to very high Reynolds numbers and values of 100 000 have been reported
in the literature. Combined with the results from linear stability theory, this has led to the
hypothesis (not strictly proven using linear stability theory) that cylindrical Poiseuille flow is
stable to all linear disturbances. Thus nonlinear disturbances are needed to bridge the gap
between Re=oco and the experimentally observed value of Re=x2 300.

2.3.2 Nonlinear Instability Theory

Several results have been reported in the literature regarding the (weakly) nonlinear instability
of cylindrical Poiseuille flow. The scenario of subcritical instability as illustrated in figure 2.2 is
not obvious for cylindrical Poiseuille flow since this flow is believed to be stable to all linear dis-
turbances. Rosenblat & Davis (1979) suggested that bifurcations from infinity could indeed be
applicable to pipe flow but not in the classical sense. They studied nonlinear diffusion equations
as model equations and show that an infinite number of small finite amplitude disturbances
bifurcates from infinity and they all are of the same order of magnitude. The spatial structure
of the eigenfunctions of the linear stability problem for the null solution (stable) and the spatial
structure of the bifurcating solutions are inherently different. Since classical stability theories
assume the same spatial structure for the bifurcating solutions as for the eigenfunctions in the
linear stability problem, classical theory could be inapplicable to the stability problem of cylin-
drical Poiseuille flow. This may explain why the present weakly nonlinear stability theories are
unable to give accurate quantitative results.
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Davey & Nguyen (1971) studied stability of pipe flow to finite amplitude axisymmetric
disturbances. They found that the first Landau constant for axisymmetric disturbances is
negative, which gives rise to a subcritical bifurcation and an equilibrium amplitude (for an
explanation see e.g. Drazin & Reid 1981, pp. 370-376. Disturbances having a smaller amplitude
than the equilibrium value will decay while for larger amplitudes the solution will break down
at finite time, suggesting a transition to turbulence. Davey & Nguyen found that the minimum
energy of a critical center-mode disturbance is smaller than that of a critical disturbance close to
the wall. Hence, the flow containing axisymmetric disturbances is expected to become unstable
at the center first. In the appendix of Davey & Nguyen’s paper, Gill shows that, when using as
scaling parameters quantities defined at the center of the pipe, i.e. the kinematic viscosity v and
the curvature of the velocity profile |d?W/dr?|, the scaling ‘laws’ for the energy and the wave
number found by Davey & Nguyen are indeed correct. The velocity scale of the disturbance is
demonstrated to be:

2

we ~ (V2 |d2W/dr?])? ~ W Re~3 (2.8)

These results are extended by Sen et al. (1985) to include non-axisymmetric disturbances with
azimuthal wave number of unity.

2.3.3 Asymptotic Theory

Smith & Bodonyi (1982) show the existence of finite amplitude neutral modes in Hagen—
Poiseuille (pipe) flow with the use of asymptotic theory. Their solution is a helical wave having
a fully nonlinear and three-dimensional critical layer. In the critical layer, where the wave
speed equals the average flow velocity, the disturbance magnitude scales as § = O(Re~'/3).
Neutral solutions are found only for nondimensional wave speeds 0.248 < ¢ < 1 and m = 1,
where m is the azimuthal wave number. They believe that these neutral modes are linked to
upper-branch properties. Furthermore, they suggest that in a numerical or experimental study
of Hagen-Poiseuille flow instability, the critical disturbance amplitude would be about 1% for
Re=10% (according to scaling as Re~'/®) with azimuthal wave number 1. A 3-D plot of the
axial disturbance velocity according to Smith & Bodonyi is shown in figure 2.11.

2.3.4 Secondary Instability _

For plane Poiseuille flow the secondary instability analysis could be extended below Re,=2 900
where no stationary secondary flow exists. For pipe Poiseuille low no such two-dimensional
secondary flow equilibria are known to exist. However, although the analysis is less precise than
in plane Poiseuille flow, secondary instability does explain some aspects of cylindrical pipe-flow
transition. To be able to study the secondary instability in pipe flow, Orszag & Patera (1983)
used direct numerical simulation. The initial velocity field is a two-dimensional (i.e. axisymmet-
ric) least stable wall mode (energy is 4% of the mean flow) combined with a three-dimensional
(i-e. non- axisymmetric) linear disturbance. At high Reynolds numbers the strong exponential
growth of the 3-D disturbances persists for long times. At low Reynolds numbers this growth
is rapidly cut off by the decay of the 2-D disturbances, as is illustrated in figure 2.12. These
results suggest that secondary instability mechanisms can play a role in pipe flow transition if
large two-dimensional disturbances are initially present.
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Figure 2.11: A 3-D plot of the axial disturbance velocity of the Smith & Bodonyi type over the cross section of
the pipe. Only the solution for r/R < 1 is meaningful. The solution at the critical surface is singular and as
chopped to finite values. From Aanen (1995).
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Figure 2.12: Reynolds number dependence of the three-dimensional growth rate for flow at &« = 8 = 1. Note
the very strong two-dimensional decay. From Orszag & Patera (1983).
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2.3.5 Experiments

Most of the experiments concerned with pipe-flow transition study triggered transition, i.e. the
transition to turbulence is triggered by adding a disturbance to a laminar flow. In this way,
the magnitude and other parameters of the disturbances can be varied in a controlled way and
their influence on the transition evaluated. A brief review of these experiments will be given
below, but first we will discuss the two structures that have been found in transitional pipe
flows, i.e. puffs for Re<2 700 and turbulent slugs for Re23 000.

Puffs and slugs

The most extensive experimental work on puffs and turbulent slugs has been done by Wygnanski
and coworkers (Wygnanski & Champagne 1973, Wygnanski et al. 1975, Rubin et al 1980).
Recently, Darbyshire & Mullin (1995) extended this work to constant mass-flux flows. Let
us recapitulate the main results of these and some other investigations on transitional flow
structures in cylindrical pipes.

e The characteristic shape of the centerline-velocity time-trace for a puff and a turbulent
slug are sketched in figure 2.13 from which it is clear that the centerline-velocity time-
trace is quite different for puffs and turbulent slugs. The leading edge (LE) of a puff
is not very well defined, i.e. velocity traces at the pipe axis show a gradual decrease in
velocity. The trailing edge (TE) of a puff can be fairly well determined as a sharp increase
in velocity. Turbulent slugs have a clear interface at both the leading and trailing edges.

ol puff Vol slug

leading T T T
interface

time time

Figure 2.13: Sketch of the centerline-velocity time-trace of a puff and a turbulent slug. LE=leading edge and
TE=trailing edge.

e By means of ensemble averaging over many slugs, it is found that profiles of the leading
and trailing edge interface of slugs are on average axisymmetric and identical in shape.
Also, the ensemble-averaged interfaces extend over approximately 3 pipe diameters, when
comparing the axial location of the edge at the centerline and close to the wall, and are
blunt around the pipe axis (Wygnanski & Champagne 1973).

e Streamwise velocity fluctuations in a puff are strongest in the central region of the pipe
and rather small near the pipe wall whereas for slugs fluctuations are present across
the entire cross section of the pipe (Wygnanski & Champagne 1973, Rubin et al. 1980).
Ensemble averaged streamline patterns for puffs closely resemble that of turbulent slugs
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at low Reynolds numbers when only the leading and trailing interfaces are considered
(Rubin et al. 1980). This suggests that puffs and slugs are related structures.

Wygnanski & Champagne (1973) have observed pufls in the range 2 000< Re<2700. Wyg-
nanski et al. (1975) showed that puffs decay as a function of distance below Re~2 200.
Above Rea:2300 the puffs grow as they move downstream at almost the bulk velocity.
As a puff grows, it can split into new puffs to a maximum of four new puffs at Re=2600.
When Re is further increased, the number of puffs decreases until at Re=2 800 a single
turbulent region resembling a turbulent slug was found. This is caused by the merging
of puffs which leads to the formation of turbulent slugs (Rubin et al. 1980). A schematic
diagram of the regions in which puffs and slugs occur is shown in figure 2.14. Recently,

o b
=
£ g
g* 2
< turbulent
8 |
g |
g I |
&
i I ! | Y%
o [ [ |
laminar | |
] o
| I
| | -
8 D D
2 =8 Reynolds number

Figure 2.14: Sketch of the regions where the puffs and turbulent slugs can be found.

Darbyshire & Mullin (1995) found that below Re=s1760 no turbulent structures can be
sustained. However, it is not clear from their results whether or not these structures
decay when moving downstream and if their relatively short pipe has affected the results.
Compared to most of the other experiments, this value is rather small.

Wygnanski & Champagne (1973) found that in their experiment the puffs originated
from large disturbances already present in the inlet of the pipe and that turbulent slugs
originate from the developing boundary layer in the pipe inlet. Another method to gen-
erate puffs and slugs is to inject fluid in a developing flow (Wygnanski et al. 1975) or in
a fully developed pipe flow (Rubin et al. 1980, Teitgen 1980, and Darbyshire & Mullin
1995). Thus, the puffs and turbulent slugs appear to be universal structures in the sense
that they are relatively insensitive to the instability generating source, be it natural or
triggered.

The propagation speed of the leading interface and trailing edge of puffs approach the
bulk velocity. In contrast, the leading and trailing edges of slugs propagate at a velocity of
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roughly 1.5 and 0.5 times the bulk velocity respectively (however, some dependence with
Re is present Wygnanski & Champagne 1973). As a result, the slug strongly grows as it
moves downstream and the length of the slug becomes proportional to the distance that
is has traveled. The natural transition mechanism in a smooth pipe seems to be a result
of the slugs that are generated in the developing boundary layer in the pipe inlet flow;
the difference in propagation speed between the leading and trailing edge then results in
turbulent slug lengths comparable to the pipe length. For artificially generated puffs and
slugs, Teitgen (1980) showed that the propagation speeds of the interfaces are identical
to those found in natural transition.

The strong growth of turbulent slugs when moving downstream can also explain why tur-
bulent slugs only appear for a small range of disturbance velocities at a certain location
downstream of a source which continuously generates disturbances. For a certain mini-
mum disturbance velocity, transition occurs just upstream of the measurement location
and a train of slugs can be observed in e.g. the signal of a Laser Doppler Velocime-
ter. When the disturbance velocity above this minimum value, the turbulent slugs are
generated further upstream leaving them more time to grow before they reach the LDV-
position. When the disturbance velocity is large enough such that consecutive slugs can
grow and merge, a full turbulent flow will be seen at the measurement station far down-
stream of the disturbance mechanism.

e In a recent experiment, Darbyshire & Mullin (1995) showed that transition in a constant
mass-flux system results in the same puffs and slugs as those found in pressure-driven
systems of Wygnanski & Champagne (1973), Wygnanski et al. (1975), and Rubin et al.
(1980), in which the Reynolds number varies. From this they conclude that relaminar-
ization at the trailing edge of puffs and slugs is not related to the decrease in Reynolds
number as a result of the increase in flow resistance due to turbulence. We note that
this mechanism has been put forward as an explanation for the relaminarization in the
trailing interfaces of puffs and slugs and is thus has been shown to be false. The facility
that we used is also a constant mass-flux system.

In conclusion we may summarize that these literature results show that in the range
2000<Re<3500 puffs and turbulent slugs are related structures. Puffs occur for the lower
Reynolds number ranges (Re<2700). When the Reynolds number is increased to e.g. Re=3 000,
they transform into slugs, a process which consist of splitting, growing, and merging of puffs.
Perhaps, every slug is born as a puff but is very rapidly transformed into a turbulent slug
provided that the Reynolds number is large enough to permit such transformation.

Triggered transition

In order to investigate the magnitude of the disturbance that is needed to trigger transition
to turbulence, well-controlled disturbances are added to a laminar flow. The response of the
flow is monitored by means of pressure gauges, LDV, and injection of dye. A more detailed
description of the various experimental facilities that have been used in the past to perform
transition experiments, is given in the chapter on the design of our experimental pipe-flow
facility in section 5.2. Here, some main results will be discussed.
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Leite (1959) performed experiments in a horizontal pipe with a length of 700 diameters,
operated with air. The flow was found to be stable up to Reynolds numbers of 20000 (the
maximum capacity of the system). Due to thermal problems, his velocity profile was not
parabolic, and he used a heating element in the top-half the pipe to generate a symmetric profile.
The background turbulence level was about 0.01%. Leite introduced small disturbances by
oscillating a cylindrical sleeve at the wall. The amplitude of the disturbance was in the order of
0.1% to 1% of the maximum velocity. No transition to turbulence was found and all disturbances
decayed. The disturbances were not axisymmetric and some evidence was given that the non-
axisymmetric part of the disturbance decays more rapidly than the axisymmetric part. Large
disturbances were introduced by a ring airfoil which triggered transition for Re>8 000.

Fox et al. (1968) studied the stability of pipe flow to non-axisymmetric disturbances for a
range of frequencies with 2000<Re<4000. The maximum disturbance velocity was less than
2% of the centerline velocity of the laminar flow. They find a cigar-shaped instability region as
is shown in figure 2.15. From their results they estimate the minimum Reynolds number to be
Re=x2130.
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Figure 2.15: Neutral stability curve in the frequency-Reynolds number plane. From Fox et al. (1968).

Recently, Darbyshire & Mullin (1995) used a constant-mass-flux system to investigate transition
to turbulence and concentrated their experiments in the range 1700<Re<2800. Comparing
these results with several measurement they performed up to Re<10000, a significant increase
in critical disturbance amplitude was found when the Reynolds number was decreased below
Re=:2800. They do not find a large dependence on the actual form of the disturbance. Dar-
byshire & Mullin use a single disturbance as opposed to a continuous forcing. No turbulent
structures were sustained below Rex1760. However, it is not clear from their paper whether
puffs decay for Re<2200 as is found by Wygnanski et al. (1975).

2.4 Transient Growth

From the discussions above, both for plane and cylindrical Poiseuille flow, we have seen that
linear stability theory cannot predict the transition Reynolds numbers which are found in ex-
periments. For plane Poiseuille flow, nonlinear theory and secondary instability mechanisms
appear to be able to describe the development of structures found in experiments. However,
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secondary instabilities require the presence of 2-D nonlinear waves which decay for Re<2 640
and this value is much larger than the experimentally observed Reynolds numbers. For cylin-
drical Poiseuille flow, the discrepancy between theory and experiments is even larger. This
is mainly related to the stability of the pipe flow to linear disturbances. Due to this linear
stability, the scenario of secondary instability cannot be applied to the cylindrical pipe and any
theory must by necessity be fully nonlinear.

In recent years, the mechanism known as transient growth is proposed as a possible expla-
nation which could bridge the gap between theory and experiments. In the remainder of this
section, the basic ideas behind this theory are briefly recapitulated and some results are dis-
cussed. An excellent introduction on transient growth and related effects is given by Trefethen
et al. (1993).

The mechanism of transient growth has its origin in the property of the linear operators.
For instance, the linear operators that arise in the Bénard convection and Taylor-Couette flow
have orthogonal eigenfunctions and predictions of eigenvalue analysis are in good agreement
with experiments. However, for the plane and cylindrical Poiseuille flow, the eigenfunctions of
the linear operator are not orthogonal. For these flows, extremely large amplification of small
disturbances can occur through interaction of the non-orthogonal eigenfunctions. Plane and
cylindrical Poiseuille flow as well as Couette flow fall into these categories and amplification
factors of many thousands are reported. The flow features associated with this amplification
process have a distinctive form: A perturbation to the velocity field in the form of a streamwise
vortex evolves into a higher amplitude streamwise streak, i.e. an elongated region of high or
low velocity. These disturbances are essentially three dimensional and thus cannot be captured
by the commonly used two-dimensional analysis, based on the Squires theorem. The streaks
are not eigenmodes of the linearized flow problem but they are called pseudomodes.

An unstable eigenvalue of a linear operator is a value for which the accompanying eigen-
functions can be amplified unboundedly. If one replaces infinity with 1/¢, we obtain an “e-
pseudoeigenvalue” and the corresponding “e-pseudomode”. Thus, if € is small, an e-pseudomode
can grow to large values. At Re=>5000, for example, a streamwise streak is an e-pseudomode
of the linearized plane Poiseuille flow for €xs1.2 - 1075, This shows that such a streak can be
excited by a streamwise vortex that is five orders of magnitude weaker. Small disturbances,
that are linearly stable, can grow by several orders of magnitude, but also pseudoresonance can
occur. For an orthogonal linear operator, resonance occurs when the frequency is close to an
eigenvalue. For non-orthogonal operators, strong resonance can occur even when the frequency
is far from an eigenvalue. When a nonlinear term feeds back some of the energy to the origi-
nal pseudomode, even larger growth can occur than for linear disturbances. Combined, these
mechanisms may cause a very small disturbance to grow to a magnitude where it can trigger
transition to turbulence.

Quite a number of papers have been published already on transient growth in plane and
cylindrical Poiseuille flow. Here, we will only summarize some of the main results for cylindri-
cal Poiseuille flow. Bergstrém (1993) shows analytically that the largest amplification through
transient growth is obtained for disturbances with zero streamwise wave number and with an az-
imuthal wave number of unity. Axisymmetric disturbances display almost no transient growth.
Small disturbances can grow four to five orders in magnitude (O’Sullivan & Breuer 1994a).
Transient growth attains a maximum at dimensionless times ¢{/Re~0.05 and the amplitude
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magnification scales with Re both for =0 (Bergstrém) and for non-zero . To continue the
calculations into the nonlinear range, O’Sullivan & Breuer (1994b) perform a direct numerical
simulation of & pipe flow at Re=2200. They study the transient growth of a pair of helical
waves with long streamwise wave length. For the calculation with the largest disturbance that
they use, i.e. the energy is 1.6 - 1073 compared to the basic flow, they can generate transition
and they find a structure resembling a puff. However, the Reynolds number is just too low
and the flow seems to decay to a laminar state. This is in good agreement with the results
by Wygnanski et al. (1975) on the puffs, who show that the puffs only grow for ReZ2 300.
A higher initial disturbance does not always result in a higher disturbance energy peak. The
reason is that the disturbances displaying transient growth become so large such that nonlinear
effects become important. This is caused by the transfer of energy from the mean flow to the
disturbance which has an adverse effect for the transient growth process.

Schmid & Henningson (1994) construct the shape of the linear disturbance that gives the
maximum possible transient growth. For a=0, such a disturbance is a pair of counter-rotating
vortices near the centerline embedded in a strongly azimuthal flow near the wall. For a=1,
the optimal disturbance consists of a swirling flow field leading to an overall helical motion.
These shapes are rather complex and difficult to realize in an experiment. Nevertheless, also
other disturbances that do not attain the maximum possible growth, still show very large
amplification. Transient growth of experimental disturbances could therefore play an important
role in transition to turbulence in pipe flow. More research, in particular experimental in nature,
is needed to test the importance of transient growth for laminar-turbulent transition.

2.5 Summary & Discussion

For plane Poiseuille flow, the results of stability theory, experiments, and DNS have led to a
picture which is fairly clear and one may say that many aspects of transition to turbulence are
understood. Although in experiments not all phases can be separated, the transition process to
turbulence in a low disturbance environment is thought to be given by the following sequence:

1. The basic parabolic profile is disturbed with two-dimensional TS-waves which grow
slowly. The critical Reynolds number is 5772 for infinitesimal TS-waves, but finite am-
plitude (nonlinear) TS-waves can exist down to Reas2600 (i.e. based on flow rate), and
Re,=2900 (based on pressure drop. For 2600<Re<5772, threshold amplitudes exist
(lower branch of the stability curve) above which the solution grows and saturates as an
upper-branch disturbance.

2. The saturated TS—waves are subject to three-dimensional instabilities which are charac-
terized by much larger growth rates than TS-waves. These so called secondary instabili-
ties form lambda-shaped vortices and cause layers with high shear rates.

3. These three-dimensional structures do not saturate and they eventually break down into
small scale structures which eventually result in fully developed turbulence.

Most of the characteristics described above, have also been found in experiments. However,
the scenario described above relies on the existence of saturated nonlinear 2-D disturbances,
which do not exist for Re<2 600 while transition to turbulence is found for Re>1000. Perhaps
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the concept of transient growth can provide large disturbances which slowly decay but on which
other disturbances can grow and trigger transition.

The results for plane Poiseuille flow cannot be applied to cylindrical pipe flow. A cylindrical
pipe flow is generally believed to be linearly stable to all 2-D and 3-D disturbances. The route
of infinitesimal disturbances that grow exponentially to become nonlinearly saturated and on
which secondary instabilities can grow cannot exist. No 2-D saturated disturbances have been
observed in pipe flow. Nonetheless, calculations of Orszag & Patera (1983) in which they
artificially prevent the 2-D disturbances from decaying, do show that 3-D disturbances can
grow in such flows. Another possible mechanism is transient growth and direct numerical
simulations of this phenomenon may be of help to bridge the large gap between theory and
experiments. The results presented by O’Sullivan & Breuer (1994b) look very promising in this
respect.

Experiments show that so-called puffs and turbulent slugs are the characteristic flow struc-
tures that are present in transitional pipe flows. The mechanisms involved the generation and
propagation of these structures are still far from being understood. Also, only limited data are
available regarding frequency and Reynolds number dependence of the threshold disturbance
needed that is needed to trigger transition. Much work remains to be done in this area.

In the next chapter we will give a brief review of the literature related to laminar-turbulent
transition for non-Newtonian fluids.
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Chapter 3

Non-Newtonian flow stability

Abstract

In this chapter we briefly review the literature that is related to stability and transition for
non-Newtonian fluids. Most of the material can be classified into two categories; the stability
theory/simulations for plane Poiseuille flow, and transition ezperiments in pipe Poiseuille flow.
With regard to the latter, it should be stated that only a limited amount of literature on non-
Newtonian pipe flows deals specifically with transition. Most of the experiments focus on drag
reduction by polymer additives and only a few brief remarks are devoted to transition.

Also, a very extensive body of work is present for stability measurements and theory at ex-
tremely low Reynolds numbers. Such work is commonly associated with concentrated polymer
solutions and polymer melts and their manufacturing processes like extrusion. As these flows
are extremely viscous and elastic, but generally not turbulent we will disregard them in this
review.

3.1 Introduction

The term ’Newtonian fluid’ is used for fluids that obey the constitutive equation Eq. 18.4-1 of
Transport Phenomena (Bird et al. 1960, p. 565). All other fluids are ‘non-Newtonian fluids’.
By stating that a fluid does not behave as a Newtonian one does not give a clue how these non-
Newtonian fluids then behave. When one is used to Newtonian fluids, non-Newtonian fluids
can be regarded to misbehave, i.e. the effects encountered in non-Newtonian fluids are very
often radically different from Newtonian flows. Water and air are well-known Newtonian fluids
and their viscosity is constant, i.e. independent of shear rate. In contrast, most non-Newtonian
fluids have a viscosity that depends on the shear rate. Other, more spectacular properties of
non-Newtonian fluids are rod-climbing and the tubeless-siphon effects. The first effect occurs
when a rod is rotated in a beaker. Strongly elastic fluids can then climb the rod whereas no
climbing occurs for Newtonian fluids. The second effect applies to a siphon when it is retracted
above the free surface. The flow for Newtonian fluids will then stop whereas for strongly elastic
fluids it will continue to flow! Both effects are caused by the elasticity which is present in some
non-Newtonian fluids. These elastic fluids can be obtained by dissolving several percent of a
high-molecular weight polymer in a solvent such as water. Another surprising effect occurs
when dissolving a minute amount of these polymers (typically 0.001%). In that case, the drag
in a turbulent flow can be decreased by as much as 80%. For a more extensive review of such
differences in behavior between Newtonian and non-Newtonian fluids see Bird et al. (1987a).

Non-Newtonian fluids could be defined in general terms as all materials that display behavior
in between that of a Newtonian fluid and a purely elastic solid. The field of fluid mechanics

29
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involved with the description of non-Newtonian fluid behavior is called rheology!. Besides the
term non-Newtonian fluids, very often the name ‘visco-elastic’ fluids is used. This stresses
the presence in the fluid of both viscous and elastic behavior. Which of the two prevails,
depends strongly on the type and rate of deformation. On the other hand, the term ‘generalized
Newtonian’ fluid is used for models of fluids that exhibit only a shear-rate-dependent viscosity
behavior of the fluid and no elasticity. These models are particularly useful for laminar flow
in simple geometries. The power-law model and the Carreau-model are well know examples of
generalized Newtonian models.

To illustrate the wide variety of flow behavior that can be found for non-Newtonian fluids,
even in a non-complex flow geometry like a straight pipe, we will begin with a brief overview
of the transition experiments in pipe flows in section 3.2. In particular, the difference in
flow behavior for polymers and fibers will be addressed. Related to this is the effect of the
conformation of the polymer. Then, in section 3.3, the results are reviewed obtained from
theory and numerical simulations. Following the trend in literature, this section will almost
entirely deal with plane Poiseuille flow. Finally, a brief discussion follows in section 3.4 in which
we present the ideas that form the basis of the research direction in the present thesis.

3.2 Experimental

3.2.1 Polymer solutions
Already for several decades, researchers have been doing flow rate-pressure drop measurements
for non-Newtonian fluids. The motivation is the shear-thinning behavior and the drag-reduction
found in dilute polymer solutions. The latter is known since 1949 and which is still an object
of study (see den Toonder (1995)). For Newtonian fluids, data on pressure drop/flow rate are
commonly presented in a Moody diagram, i.e. a dimensionless pressure drop as a function of
dimensionless flow rate in the form of a Reynolds number. The details of the Moody diagram
will be further discussed in section 5.12 and 7.4 for Newtonian fluids and non-Newtonian fluids
respectively. In 1955 Metzner & Reed introduced a generalized Reynolds number for shear
thinning fluids described with the power-law model (for a definition see also section 7.4.2)
which collapsed all laminar flow data to the Newtonian curve. In figure 3.1 we show data of
Dodge & Metzner (1959) of a 0.3% CarboxyMethylCellulose (CMC) solution. For laminar flow,
because of the choice of the modified Reynolds number, the laminar flow data are forced to fall
on the Newtonian laminar curve (f = 16/Re).
However, it is also clear that for turbulent flow, the data of this CMC solution do not fall on the
Newtonian flow curve and that different curves are obtained when varying the diameter of the
pipe. With decreasing pipe diameter, the reduction in drag when compared to the Newtonian
case increases and also a delay of transition to turbulence towards higher generalized Reynolds
numbers occurs. The fact that different curves for the same fluid are found is an indication that
the Reynolds number alone is no longer sufficient to completely characterize the flow behavior,
as is the case for Newtonian fluids. At least one additional parameter besides a Reynolds
number is needed to describe this flow.

Other evidence is given by White & McEligot (1970) used the long unbranched polymers
Polyox WSR-35 (molecular weight MW=2 - 10%), Polyox WSR-301 (MW=4 - 10°) and Separan

IRheology is not restricted to the behavior of fluids but includes also the behavior of solid materials.
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Figure 3.1: Flow data of CMC-solution for 3 pipe diameters illustrating the influence of the pipe diameter. Note
that for Newtonian fluids no such dependence on pipe diameter is present. From Dodge & Metzner (1959).

AP-30 (MW=2 — 3-10°) for their transition experiments. Some of their results are shown in
figure 3.2. They detected transition to turbulence from the usual jump in the Moody diagram
and by using oscillograph traces of the pressure measurements. These two detection criteria
were found to give approximately the same result.

In order to minimize degradation effects, White & McEligot used a syringe rather than a
pump to achieve the desired flow rate. The diameter of their pipe section was 0.0235 inch
(0.60mm). The Moody diagrams of Polyox WSR-35 and Separan AP-30 are displayed in
figures 3.2a and b respectively. As can be seen, for Polyox WSR-35 with the small molecular
weight, drag reduction can be observed to increase with higher concentrations but no delay in
transition Reynolds number is found. For Separan AP-30 (and Polyox WSR-301 not shown
here), which have both approximately a ten times larger molecular weight, not only more
drag reduction is found in the turbulent flow regime but also a delay in transition Reynolds
number which increases with increasing concentration. By mixing polymers with different
molecular weights, White & McEligot show that the delay in transition is dominated by the
higher molecular weight polymers, while the effect on drag reduction is roughly additive.

Chung & Graeble (1972) used Polyox WSR-301 in their transition experiments. They
also find a delay in transition Reynolds number. However, the transition Reynolds number
increases most for the solutions having a small concentration of polymer, which is different
from the results by White & McEligot. From this experimental evidince, it seems as if a delay
in laminar-turbulent transition for dilute polymer solutions is found only for height molecular
weight in small pipe diameters, typically less than 1cm (Castro & Squire 1967, White &
McEligot 1970, Chung & Graebel 1972, Wéjs 1993). A delay in transition has also been
reported for concentrated solutions of low molecular weight polymers (e.g. S4 Pereira & Pinho
1994).

A very different behavior was found by Paterson & Abernathy (1972) who used a smooth-
nozzle inlet for a 6.3 mm pipe. For water, the nozzle inlet provides a smooth inflow and the
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Figure 3.2: Flow measurements in a 0.6 mm diameter pipe for two linear unbranched polymers of which Separan
has a ten times larger molecular weight. From White & McEligot (1970).
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flow remained laminar till Re~10000. Adding polyethylene polymers results in-a decrease in
natural transition Reynolds number. The effect of decrease in natural transition Re number
increases with the polymer concentration. However, using a pipe inlet with squared corners,
they found that the transition Reynolds numbers for all polymer solution were approximately
the same and equal to that found for water. Paterson & Abernathy have also studied the
propagation velocity of the leading and trailing edges of turbulent slugs in polymer flows and
they found good agreement with the values reported for Newtonian fluids.

A transition Reynolds number smaller than the Newtonian minimum of approximately 2 300
is reported by Forame et al. (1972). This effect is known as ‘early transition’. Earlier studies
have also reported this effect for dilute solutions in capillary tubes. By increasing the viscosity
of the solvent, Forame et al. find onset of turbulence for Reynolds numbers as low as 500 in
pipes of approximately 6 mm diameter. The transition Reynolds number seems only weakly
dependent on polymer concentration but increases almost linearly with the viscosity. Zakin et
al. (1977) performed Laser Doppler Velocimetry (LDV) measurements of early turbulence and
show that the mean velocity profile becomes progressively flatter with increasing flow rate. The
rms of the axial velocity fluctuations is about half of the value for turbulent flow of Newtonian
fluids. Recently, early turbulence has been reported in a 26.2 mm pipe for 200 to 1000 ppm
solutions of polyacrylamide in deionized water (Li & McCarthy 1995). They used time averaged
nuclear magnetic resonance imaging techniques to study the velocity profile.

Transition by controlled disturbances in non-Newtonian flow has been performed by Berman
& Cooper (1972) who studied the response of 20 ppm solutions of Separan AP-30 and Polyox
WSR-301 to disturbances generated by an oscillating sleeve at the wall. The response of the
dilute polymer solutions to the sleeve is different when compared to water. Fewer higher
frequencies were generated in the wake. They found that the wake spreads faster in water
and that the turbulence far downstream was less developed for the polymer solutions. Since
they performed measurements for Re<2 000, proper transition could not be studied since the
turbulence decayed far downstream.

Mizunuma & Kato (1988) investigated the transition in plane Poiseuille flow of a 200 ppm
Separan AP-30 solution in water and found no delay in transition. They also found that
polymers reduce the spreading angle of an artificially generated turbulent spot.

With respect to the extent of the transition region, i.e. the range of Reynolds number in
which the flow changes from laminar to fully turbulent, different effects have been reported.
Park et al. (1989) find a shorter transition regime for a non-Newtonian slurry whereas Pinho
& Whitelaw (1990) find a delay in transition and an extended transition region for a sodium
CMC solution.

3.2.2 Coiled vs. stretched conformation

Several pieces of evidénce point to the importance of polymer conformation in flow dynamics.
In drag reduction research of dilute polymer solutions, polyethyleneoxide (Polyox family by
Union Carbide) and polyacrylamide (Separan family by Floerger/France and previously Dow
Chemical) are commonly used. These polymers are forced to have, on the average, a randomly-
coiled conformation in the rest state where no deformation is imposed. Virk (1975) and Virk &
Wagger (1990) show some very interesting results using a partially hydrolyzed polyacrylamide
(PAMH) of high molecular weight. In the absence of salt these polymers are forced to have,
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on the average, an extended conformation whereas adding salt forces the polymers to assume
the randomly-coiled conformation. They show that the configuration of the polymer has a
very large effect on the drag reduction capability, as is displayed in figures 3.3 and 3.4. Since
extended polymers also seem to show quite different behavior from randomly coiled polymers,
Virk introduced the terms ‘type-A’ and ‘type-B’ to distinguish between the drag reduction
behavior of randomly-coiled and extended polymers respectively.

To summarize here both cases, as can be expected, in the presence of salt, PAMH displays the
same behavior that we know for random coiled polymers; known as drag reduction type—A (see
figure 3.3). For this type of drag reduction the transition point is located at the same Reynolds
number as for the solvent (Re.A2300). In the turbulent flow regime, the Blasius friction line is
followed up to the point of onset of drag reduction. When Prandtl-Karmén (P-K) coordinates
are being used, i.e. 1//f as a function of Re\/f, the Prandtl-Kérmén line (labeled ‘N’ in
figures 3.3 and 3.4) is followed up to the onset point and then the lines fan out with increasing
slope for higher concentrations. Drag reduction increases with increasing Rey/f. In type-B
drag reduction, a family of polymer solutions yields segments that are roughly parallel to, but
displaced upwards from the P-K line. The drag reduction increases in this case with increasing
concentration but is essentially independent of Re./f. Type-B drag reduction is commonly
found for fiber solutions, soaps, clays and extended polyelectrolytes such as PAMH and is
displayed in figure 3.4.

Besides effects on drag reduction, the polymer conformation also affects the viscosity. Inter-
estingly enough, the solutions in the presence of salt leading to a coiled polymer conformation
show hardly any increase in viscosity when compared to the solvent while in the absence of salt,
the polymers are forced to have the extended conformation and cause a significant increase in
viscosity compared with the solvent. In the case of extended polymers, the laminar flow curve
stays parallel to the solvent line, this indicates that the indeed the viscosity is increased but
no shear thinning is present. For very low concentrations (<2 ppm), no appreciable difference
in transition Reynolds number can be found. If for the higher concentrations the curves are
corrected for the increase in viscosity, i.e. shifting the curves to the left in the P-K plot until
they collapse on the solvent line, then for the 10 ppm solution the transition Reynolds number
can be estimated to be 6500. After this correction, the flow curves are also in between the
laminar flow curve and the maximum drag reduction asymptote named after Virk. Without
correction, the curves seem to touch the maximum drag reduction asymptote. Virk (1975) does
not mention this delay in transition. Note that Virk & Wagger (1990) find a delay in transition
for dilute polymer solution in a relatively large diameter pipe (14.6 mm).

PAMH is not the only polymer showing type-B drag reduction. Another example is Xan-

than gum which is a high-molecular weight polysaccharide which has a rigid helical structure.
Bewersdorf & Singh (1988) used Xanthan gum in concentrations ranging from 250 to 1000 ppm
in pipe-flow experiments. Such solutions show a distinct shear thinning behavior and they use
the viscosity at the wall in their definition of Re in the Moody diagram. A clear delay in
transition is found which increases with concentration as is shown in figure 3.5.
The configuration of Xanthan gum is found to be also sensitive to the salt concentration, al-
though not as sensitive as PAMH. A delay in transition for Xanthan gum without salt has been
also found by Rochefort & Middleman (1985) in a glycerin/water mixture in a 2.4 mm pipe.
Adding salt decreases the delay. ;
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Figure 3.3: Type-A drag reduction for PAMH in the presence of salt: randomly coiled polymer configuration.
From Virk & Wagger (1990). The lines labeled ‘L', ‘N’, and ‘M’ represent laminar Poiseuille flow, turbulent
pipe flow, and Virk’s maximum drag-reduction asymptote for polymer solutions respectively.
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Figure 3.4: Type-B drag reduction for PAMH in the absence of salt: extended polymer conformation. From
Virk & Wagger (1990).
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Figure 3.5: Moody diagram for Xanthan gum. From Bewersdorff & Singh Bewersdorff & Singh 1988.

3.2.3 Fibers
We have seen that extended polymers seem to be able to delay the transition. Taking this idea
one step further, one could speculate that fibers will also show similar behavior to stretched
polymers. For a 5000 ppm solution of asbestos fibers, Vaseleski & Metzner (1974) indeed find
a delay in transition. The flow is laminar till Re>2 - 10°, corresponding to the maximum flow
rate of the experimental setup. However, they use the solvent viscosity in their definition of
the Reynolds number. Estimating the viscosity from their data to be 12 times as high as the
solvent, results in a delay of transition to Re>16000. In contrast to polymer solutions, they
do not find a dependence of drag reduction on the pipe diameter, indicating that fibers and
extended polymers show similar but not identical flow behavior.

Rod-like particles can also be generated by some surface active agents (surfactants). Above
a certain concentration, some surfactants form so-called rod-like micelles. The advantage of
surfactants is that they can recuperate from mechanical degradation, something polymers are
unable to do. Bewersdorff (1990) is able to delay transition till Re=4000 — 5000. Sabadell
(1988) who used rod-like micelles in a boundary layer flow, showed that the surfactants sup-
pressed the development of a turbulent spot which results in a delay in transition.

3.3 Stability Analysis

3.3.1 Introduction

In this section we review the stability calculations and their results that have been reported
in the literature. Basically, stability analysis and more in particular a linear stability analysis
for non-Newtonian fluid models is not very different from the Newtonian case. Again, the
behavior is studied for infinitesimal disturbances superimposed on steady state base flows. In
the linear case the equations of motion are linearized and an equation similar to the Orr-
Sommerfeld equation is found. For some simple visco-elastic fluid models this exercise has
been performed and the results will be reviewed in section 3.3.2, together with some additional
nonlinear analyses.
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The experiments discussed in the previous section, have shown the influence of the confor-
mation of the polymer on the drag reduction and transition. Long rigid molecules seem to be
more effective for transition delay than flexible molecules. It is thus interesting to look at the
stability analysis for rods suspended in a fluid. This is the subject of section 3.3.3.

3.3.2 Visco-elastic fluids

On of the earliest attempts to study the stability of visco-elastic fluids is work by Walters
(1962). He shows that the derivation of a generalized Orr-Sommerfeld equation is possible
only for fluids having a short memory. For plane Poiseuille flow, elasticity is found to have
a destabilizing effect, viz. the critical Reynolds number above which linear disturbances can
grow decreases with increasing elasticity (Chan Man Fong & Walters 1965). This result has
been confirmed many times.

Most of the stability calculations have been performed for plane Poiseuille flow and for one
of the most simple visco-elastic fluids: the Upper Convected Maxwell (UCM) model. The UCM
model describes the relationship between the extra-stress tensor 7 and the rate-of-deformation
tensor ¥ in the following way:

T+ =77 (3.1)

Here, A is a time constant, often called the relaxation time, and 7 is the viscosity taken to be
constant. Thus, the Maxwell model does not describe shear thinning behavior which is found
for most non-Newtonian fluids. As a result, the UCM model gives as laminar solution the
parabolic velocity profile in plane Poiseuille flow. The time derivative (v) in equation 3.1 is a
special so-called upper-convected time derivative (Bird et al. 1987a, p. 342) which is needed to
ensure objectivity of the stress. For a more detailed discussion of the Maxwell model we refer
to the next chapter, section 4.3.

For the discussion of the literature results on stability we need only to know two dimen-
sionless numbers in addition to the Reynolds number. Both can be defined for a Maxwell fluid
flow. They are the elasticity number £ and the Weissenberg number We:

_ua _n

We A =iz

(3.2)
where U is the centerline velocity and h is the channel half-width. The relationship between
the Reynolds number and these two numbers is:

We=Re-E (3.3)

The Weissenberg number is the ratio of the relaxation time of the polymer to the time-scale
of the flow. The elasticity number can be interpreted as the ratio of elastic forces to viscous
forces. Note that for a given flow geometry, E depends solely on fluid parameters. A line for
constant E' can therefore be interpreted as a line describing the behavior of a polymer solution
in a given flow geometry.

For plane Poiseuille flow, Porteous & Denn (1972a) calculated the neutral curves for linear
disturbances for E=0 (Newtonian) up to £=5-1072, i.e. Wea10. They find a continuing
destabilization with increasing E. For E>2.5 - 1073, they find second and third instability
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modes. The results up to £=10"2 have been confirmed by for example Ho & Denn (1978) and
Sureshkumar & Beris (1995b). The latter also find the second eigenmodes. However, as opposed
to the monotonic decrease in critical Reynolds found by Porteous & Denn, Sureshkumar & Beris
find a minimum of Re,~1670 for E~2.5 - 1073, as is illustrated in figure 3.6.
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Figure 3.6: The critical Reynolds number as a function of the elasticity number for the Upper Convected
Maxwell model. Solid lines: first eigenfunction, dashed lines: second eigenfunction. Here € is equal to our
elasticity number E. Results from Sureshkumar & Beris (1995b).

The corresponding Weissenberg number of the minimum value is Wea4, i.e. a stabilizing effect
occurs for linear disturbances once the flow time-scale is more than four times the relaxation
time of the fluid. Sureshkumar & Beris (1995b) also studied the Oldroyd-B model and the
Chilcott-Rallison model. The Oldroyd-B model has an additional solvent viscosity which has a
pronounced stabilizing effect on the flow. Introducing finite extensibility of the polymer through
the Chilcott-Rallison model results in further stabilization. Note that all these calculations have
been performed for two-dimensional disturbances. This is based on the Squire’s theorem which
states that it is sufficient to study 2-D linear disturbances. Proof for the applicability of the
Squire’s theorem to non-Newtonian fluids is possible for an Oldroyd-B fluid (Maulik 1989) but
not for the Chilcott-Rallison model, so care should be taken. Since the UCM model is a special
case of the Oldroyd-B fluid, calculations for 2-D disturbances give the correct picture of the
linear stability behavior.

Porteous & Denn (1972b) continued their work on linear stability to weakly non-linear

disturbances. Also for nonlinear disturbances, elasticity was found to destabilize the flow when
compared to Newtonian fluids as shown in figure 3.7 where the critical Reynolds number is
plotted as a function of the disturbance amplitude for various elasticity numbers. However,
when the results shown in this figure for E=0 and E=10"* are extrapolated to larger disturbance
amplitudes, the visco-elastic fluid may be more stable than Newtonian fluids.
Sureshkumar & Beris (1995a) have applied a three-dimensional numerical code to perform
direct numerical simulations for visco-elastic fluids. Unfortunately, their calculations become
numerically unstable for high Weissenberg values. By introducing a rather large artificial stress
diffusivity, they can suppress numerical instabilities.

Another three-dimensional calculation for the Oldroyd-B fluid is reported by Maulik (1989).
This computations also suffered from numerical instabilities for high Weissenberg numbers.
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Figure 3.7: Critical Reynolds number as a function of disturbance amplitude for a second order fluid. From
Porteous & Denn (1972b).

For a modest value of the elasticity parameter, Maulik simulated a K-type transition (see
section 2.2.3) and no qualitative difference from the Newtonian behavior is found.

With respect to cylindrical pipe flows, we may refer to Hansen (1973) who performed a
stability analysis of axisymmetric disturbances. To simplify the analysis, he considers only dis-
turbances with high phase velocities for the Oldroyd-B model (which also includes the Maxwell
model). Hansen is able to obtain an analytical expression which is valid for all wave numbers,
pipe diameters, and fluid parameters. All axisymmetric disturbances decay, but when the elas-
ticity number is small enough, the decay rate of the disturbance is larger than that for the
Newtonian fluid, i.e. elasticity has a stabilizing effect. However, when the elasticity number
is increased above a certain value (depending on the wave number), the decay rate is smaller
than for disturbances in a Newtonian fluid and elasticity becomes destabilizing.

So far, all models that have been studied are visco-elastic. However, also studies have been
done for other types of fluids. For instance linear stability analysis.for a Bingham fluid, i.e.
a non-elastic fluid with a yield stress, suggests a very large stabilizing effect (Frigaard et al.
1994). However, the Reynolds number in this case is based on the limiting viscosity (viscosity
at very high shear rates). When a more appropriate viscosity is used, the effect of the yield
stress is much less, but still stabilizing.

3.3.3 Dilute Fiber Suspension
The experiments for polymer solutions, have demonstrated that the conformation of the poly-
mers has a large effect on the flow behavior. Therefore, it seems appropriate to analyze the
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effects of rigid rod-like particles on the flow stability. A stretched polymer can be regarded as
a rod-like particle. However, it should be born in mind that a polymer can be deformed and
compressed whereas a rod maintains its shape. Thus, the comparison does not hold completely.

Landahl (1973) has studied the effect of fibers on the stability of a flow with an inflectional
velocity profile and showed that the fibers have a stabilizing influence. A linear stability analysis
for a dilute suspension of slender fibers in plane Poiseuille flow has been performed by Bark
& Tinoco (1978). They used the constitutive equation derived by Batchelor to model the
rheological properties of the suspension. In this model, the direction of the suspended fibers
is described by a vector field (7, t), where & is the position vector and ¢ is the time. The
extra-stress tensor 7y, in Cartesian coordinates is given in terms of the vector p(7,?) field and
the velocity field @(Z,t) by:

pdr?
Tt = 24py + ——=——3 Pk PiPmPrlmn (3.4)
In2r — 3
where di; = (ukz + ug) is the rate-of-deformation tensor, u the viscosity of the Newtonian

solvent, ® the volume fraction of the suspended fibers and r their aspect ratio. Note that
the contribution of the fibers to the stress has the form of a purely viscous stress term, i.e.
no relaxation time is present. The results can be represented with the use of a dimensionless
parameter B, which appears in equation 3.4 for the stress tensor and is defined as

Or?

= 5
1n2¢—% (35)

In a plane Poiseuille flow the fibers will be completely aligned in the flow direction and have no
dynamical effect at all. Therefore, the velocity profile for this case remains parabolic. Linear
disturbance theory shows that the only perturbation stress caused by the fibers is a normal
stress in the flow direction. As for the Newtonian case, the most unstable mode is found to
be a symmetric mode in the normal velocity component. In figure 3.8 the neutral stability
curves in terms of wave number versus Reynolds number are shown for various values of the
parameter B. The aspect ration r can be very large for some fibers, e.g. asbestos fibers values
as large as 10* have been reported (see also Vaseleski & Metzner 1974). For this aspect ratio,
a B-value of 200 can be obtained with a volume fraction of only ® = 17-107¢. For fibers with
densities close to that of the solvent, this results in concentrations of approxunately 20 ppm.
Such concentrations are often encountered in drag-reduction and transition-delay experiments
using polymers. This shows that large effects on the flow behavior can be expected for fibers
with large aspect ratios. In this respect, polymers can be regarded as the ultimate fibers given
their extremely large aspect ratio when they are fully extended.

3.4 Discussion

Summarizing the results of this chapter, it will be clear that the transition to turbulence in a
non-Newtonian fluid can differ from that of Newtonian fluids. A delay in transition as well as
early transition can occur, but (in most cases) no change in transition is reported (e.g. Virk
et al. 1967). A possible explanation for the latter could be that many of the experiments
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Figure 3.8: Neutral linear stability curves for plane Poiseuille flow of slender fibers that are suspended in a
Newtonian fluid. From Bark & Tinoco (1978).

are performed in pipes with diameters larger than a few millimeters, in which the results on
delay in transition are commonly found. An explanation for this influence of pipe diameter
on experimental data may be that the elasticity number E for a given fluid depends on pipe
diameter as D~2. Thus, the elasticity number in pipes with a very small diameter is much larger
than in pipes with a large diameter and consequently, the influence of elasticity is stronger in
small diameter pipes. However, the stability calculations show a destabilization with an increase
in E. This difference in the effect of elasticity found in experiments and stability calculations
may be explained when in such flows the polymers are stretched. This can result in a stabilizing
effect, as is shown by the experiments (Virk & Wagger 1990) and in linear stability calculations
for fibers (Bark & Tinoco 1978). The possibility of polymer stretching has been shown by
Massah et al. (1993) who performed numerical simulations. They also show that the polymers
stretch in shear flows only when the shear rate at the wall is larger than the relaxation time of
the polymer. When we keep the Reynolds number constant, the shear rate at the wall varies
with the pipe diameter as D2, viz. for small pipe diameters both the elasticity number and
the shear rate at the wall are strongly increased. This indicates that the hypothesis that the
delay in transition which is found in pipes with small diameters can be due to the stretching of
the polymer. This effect will not occur in large pipes and as a result no effect on the transition
can be observed.

Recently, den Toonder (1995) showed that the key property for drag reduction is the purely
viscous anisotropic stresses that are introduced by stretched polymers. This indicates the type-
B drag reduction is the fundamental mechanism for drag reduction rather than type-A, as is
suggested by Virk & Wagger (1990). The onset-point of drag reduction of type-A is then related
to the conditions in which the turbulent flow can stretch the polymers. When stretching can
occur in a laminar flow, no onset of drag reduction exists and drag reduction should be present
as soon as the flow becomes turbulent. This type of behavior is indeed found in experiments.

We will test the hypothesis that stretched polymers are important for a delay in transition by
performing stability measurements in a 40 mm pipe and change the conformation of the PAMH
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polymers by varying the salt concentration. These results will be presented in chapter 7.

Another result which comes out of this review is adding elasticity results in a destabilization
for linear and weakly nonlinear disturbances in plane Poiseuille flow (Porteous & Denn 1972a,
1972b). However, they speculate that for larger nonlinear disturbances, visco-elastic fluids may
become more stable than Newtonian fluids. To check whether this is the case, we performed
2-D nonlinear stability calculations in plane Poiseuille flow for an Upper Convected Maxwell
model. The area in the wave number-Reynolds number plane where 2-D saturated disturbances
exist has been investigated for several values of the elasticity number. We will discuss these
results in chapter 4.



Chapter 4

Stability of plane Poiseuille flow

Abstract

In this chapter we will present results of numerical stability computations of plane Poiseuille
flow of Newtonian and non-Newtonian fluids. We have used the finite element method to solve
the complete equations of motion of the two-dimensional flow. The non-Newtonian fluid model
that is used in the computations is the Upper Convected Mazwell (UCM) model which is one of
the most simple models to incorporate visco-elastic behavior.

With help of higher-order elements, we can accurately capture the growth rates of linear distur-
bances for both the Newtonian as well as the UCM model flow as follows from comparison with
eristing data. Also, the results for the saturated nonlinear two-dimensional disturbances agree
very well unth literature results (Herbert 1976). Our simulations of the saturated two dimen-
sional disturbances show, that the critical Reynolds number decreases from Re.~2650 for the
Newtonian fluid to a minimum at Re.~1920 when the elasticity of the UCM model is increased
until the Weissenberg number approaches unity. When the elasticity is further increased, the
critical Reynolds number increases again and the disturbance amplitude is strongly decreased.

4.1 Introduction

Two-dimensional stability calculations for plane Poiseuille flow have been performed in various
previous studies. The first attempts for Newtonian fluids were asymptotic approximations of
the Orr-Sommerfeld equation. In 1953, Thomas solved the Orr-Sommerfeld equation using a
finite difference scheme. Subsequently, it was found that the accuracy can be strongly increased
by the use of spectral methods. Orszag (1971) for instance, presented an accurate solution of
the Orr-Sommerfeld equation for Re=10000. He also found the critical Reynolds number for
infinitesimal perturbation to be Re,=5772.22 with dimensionless wave number 0;=1.02056.
The linear stability problem can be extended to weakly nonlinear calculations (Chen &
Joseph 1973, Davey & Drazin 1969, Sen et al. 1985). Spectral methods have also been used
for solving the full 3-D Navier-Stokes equation for plane Poiseuille flow (Kleiser & Zang 1991).
Spectral methods are highly suited for stability and transition calculations because of their nu-
merical accuracy. This is because, transition problems require very accurate calculations since
they are (inherently) sensitive to small perturbations. Very few calculations have been per-
formed for non-Newtonian fluids, especially those solving the equations of motions rather than
solving the stability problem. Linear stability calculations show a reduction in critical Reynolds
number when the elasticity of the fluid is increased (Porteous & Denn 1972a, Sureshkumar &
Beris 1995b). However, weakly nonlinear calculations suggest, when the results are extrapo-
lated to disturbance amplitudes of several percent of the centerline velocity, that a visco-elastic
fluids might show higher critical Reynolds number values than the Newtonian fluid (Porteous
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& Denn 1972b). Some attempts have been made to perform three-dimensional calculations of
visco-elastic fluids but for large Weissenberg numbers numerical instability caused the compu-
tations to break down (Maulik 1989, Sureshkumar & Beris 1995a).

For our computations we have used the program DYNAFLOW that has been developed by
Hulsen (1996) and it can perform 2-D time dependent numerical computations of incompressible
flows of inviscid, viscous or visco-elastic fluids. This program is partly based on the SEPRAN
finite element package (by Ingenieursbureau SEPRA). It has been used to perform stability
computations of two-dimensional plane Poiseuille flow of Newtonian and visco-elastic fluids of
which the results will be presented in the following sections.

We will begin with a description of the type of flow, the fluid models and the governing
equations. Then, a brief discussion of the behavior of the visco-elastic fluid model that we
used, i.e. the Upper Convected Maxwell (UCM) model, in plane Poiseuille flow is given in
section 4.3. The numerical techniques employed are the subject of section 4.4. We have first
tested the program for the linear stability problem of plane Poiseuille flow of Newtonian and
UCM fluids, which is the subject of section 4.5, where it is found that the results agree very well
with those in the literature. This is also true for strongly nonlinear disturbances for Newtonian
fluids, as is shown in section 4.6. Accurate results for the saturated 2-D disturbances have been
presented by Herbert (1976) for flows with constant pressure gradient. We performed some
calculations for a constant pressure gradient to check the accuracy of our code for nonlinear
disturbances. Then we calculate the Reynolds number-wave number combinations for which
saturated 2-D disturbances exist in Newtonian flow. Here we concentrate on locating the
minimum Reynolds number for which these saturated disturbances can be sustained. We
performed these calculations for constant flow rate conditions, since it gives a much faster
convergence in time to the steady state disturbances.

These results are then compared with those for the UCM model fluids in section 4.7. From
this comparison we can check the suggestion by Porteous & Denn (1972b) that visco-elastic
fluids could be more stable than Newtonian fluids for large amplitude disturbances. In the
final section, we present a discussion and show how our results may be linked to the delay in
transition found experimentally in small diameter pipes.

4.2 Problem definition

4.2.1 Introduction

In this section we will describe the flow problem that we studied in relation to the stability of
the flow between parallel plates, i.e. plane Poiseuille flow. The geometry that we studied, the
governing equations and the boundary conditions are discussed in the next sections. Also, the
dimensionless quantities and the dimensionless numbers that arise will be explained.

4.2.2 Flow geometry

We studied two-dimensional flow between parallel plates, which is also known as 2-D plane
Poiseuille flow. The coordinate system is chosen such that the z-axis is aligned with the mean
flow direction and the y-coordinate represents the wall normal direction, with its origin at the
centerline, as is shown in figure 4.1. The distance between the plates is 2k and the length of
the computational domain is L.
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Figure 4.1: The flow geometry that we used for the stability calculations of plane Poiseuille flow together with
the coordinate system.

4.2.3 Governing equations
We study the flow of incompressible fluids, thus V - =0, where v is the velocity vector. For
incompressible fluids the equations of motion are:

D
Vp—-V-7=0 4.1
Here, p is the fluid density, D/Dt=0/0t + (v - V) denotes the material derivative. p is the
pressure and 7 is the extra-stress tensor. The extra-stress tensor is related to the Cauchy stress
tensor ¢ in the following way:

g=-pl+1 (4.2)

The extra-stress tensor 7 vanishes at equilibrium. To solve the equations of motion, we have
to provide additional equations for 7. These additional equations describe the behavior of the
fluid and are called constitutive equations.

4.2.4 Constitutive equations
One of the simplest constitutive equations is that of the Newtonian fluid in which the extra-
stress varies linearly with the rate of deformation. Only one fluid parameter is needed to describe
such behavior; the viscosity 7. For an incompressible Newtonian fluid, the constitutive equation
describing the relationship between the extra-stress tensor 7 and the rate-of-deformation tensor
¥ is given by

T=ny where §=Vy+(Vo) (4.3)

in which (Vu)! is the transpose of the tensor Vv and 7 is the viscosity. Substitution of
equation 4.3 in equation 4.1 results in the well known Navier-Stokes equation which governs
Newtonian fluid flow.

One of the simplest non-Newtonian fluids is the generalized Newtonian fluid, in which the
viscosity is no longer constant but a function of the rate of deformation. For an overview of
the proposed generalized Newtonian fluid models see chapter 4 of Bird (1987a). Generalized
Newtonian fluid models are frequently used in practical applications of laminar flows.
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The generalized Newtonian fluids are still purely viscous fluid models, and no elasticity is
present. For visco-elastic fluids the constitutive equation is a differential or integral equation
in time. Many visco-elastic fluid models have been proposed of varying in complexity. We have
used one of the simplest models that incorporates visco-elastic behavior; the Upper Convected
Maxwell (UCM) model. The choice for the UCM model is based on several considerations. The
UCM model is widely used and we can compare our results to those presented in the literature.
Also, the UCM model exaggerates the effects of elasticity so that deviations in behavior from
Newtonian fluids is emphasized. However, the UCM does not describe the material functions
commonly found for non-Newtonian fluids. Most non-Newtonian fluids show material functions,
for example the viscosity function, that are shear-rate-dependent whereas for the UCM model
these are constant. Although the results for the UCM model are therefore unlikely to describe
actual non-Newtonian fluid behavior, this also has a major advantage. The constant viscosity
results in parabolic velocity profiles in Poiseuille flows which facilitates the comparison with
Newtonian flows. The UCM model is an one-parameter extention to the Newtonian fluid.
So the effect of visco-elasticity can be studied by varying only one parameter. Despite the
simplicity of the model, however, it is one of the most difficult ones to solve numerically.

Mechanically, one can interpret the UCM model as an elastic spring and dash-pot connected
in series. For slow motions, the behavior is governed by the dash-pot and the model simplifies
to the Newtonian model. For sudden changes in the stress, the elastic spring dominates the
behavior, and the fluid behaves as an elastic solid. The constitutive equation for such an UCM
fluid model, which gives the relation between the extra-stress 7 and the rate-of-deformation
tensor + reads (Bird et al. 1987a, p. 345):

T+ M = 7Y (4.4)

Here, A is a time constant and is often referred to as relaxation time, and 7 is the viscosity,

which is constant. The time derivative (v) is a special time derivative (Bird et al. 1987a, p.
342):

- (Vo) -1 Vy (4.5)

called the upper-convected derivative. The upper-convected time derivative is frame indifferent,
thus making the constitutive equation frame indifferent. For a comprehensive overview see Bird
et al. (1987a). The behavior of the UCM model in plane Poiseuille flow will be analyzed in
section 4.3.

4.2.5 Boundary Conditions
For the velocity the following boundary conditions are used:

e Normal velocity v equals zero at both plates: v(y==+h)=0,

e No-slip condition u(y==2h)=0 for the velocity in flow direction is applied through the
vorticity-equation.

In stability theory it is common practice to use Fourier modes in the stream-wise direction.
In finite element codes this is not possible. When we want to study the dependence of the
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stability on the wave number, we have to use the length of our computational domain, i.e. L, to
introduce a wave number in our calculations. When we consider a wave with wave number a:
Re (e“"‘”“’”), we adjust L so that exactly one wave length fits in our computational domain.
This gives L:%’r. By using periodical boundary conditions in the stream-wise direction we can
study the behavior of Fourier modes with wave number «, i.e. the base function, and its higher
harmonics. We use periodical boundary conditions at the inflow and outflow boundaries for the
velocities, stresses, and the pressure disturbances. Note that the total pressure is not periodic
due to the pressure gradient.

4.3 The Upper Convected Maxwell fluid model

In this section, we will review the dimensionless groups that describe the flow behavior of the
Upper Convected Maxwell (UCM) model and the steady shear flow of the UCM fluid between
two parallel plates (plane Poiseuille! flow) is analyzed.

4.3.1 Dimensionless groups for the UCM fluid

With the introduction of the relaxation time ) to describe the elastic behavior of the visco-elastic
fluid, the Reynolds number alone is no longer sufficient to characterize the flow. Therefore, the
Weissenberg number, (We), or the elasticity number, (E), are commonly used to introduce an
additional dimensionless group. For the plane Poiseuille flow of an UCM fluid these groups can
be defined based on the centerline velocity of the undisturbed parabolic profile (U), and half
the distance between the plates () (Joseph 1990, pp. 171-174):

Re = 240 (4.6)

Ui

UA
We = — (4.7

“h

_n
E = B2 (4.8)

The relationship amongst these groups is:

We=FE-Re (4.9)

The Weissenberg number can be regarded as a ratio of time scales?:

A relaxation time
W = 4.1
¢ h/U  flow time scale (4.10)

Note that the Weissenberg number can also be defined using the shear rate at the wall to define
a flow time scale. Then, the Weissenberg number can be defined as We=\%,, where Y 1 the
shear rate at the wall. In plane Poiseuille flow of an UCM model this Weissenberg number is
twice that defined in equation 4.7.

! Although the name Poiseuille refers to fully developed two-dimensional laminar flow for a Newtonian fluid,
we will also use this designation for non-Newtonian fluids.
2This ratio of time scales is also known as the Deborah number, see e.g. Bird et al. 1987a, pp. 92-94.
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The elasticity number depends only on the geometry of the flow and the fluid parameters.
Thus, for a given flow geometry, a line E=constant can be interpreted as a line for a specific
polymer solution, viz. changing the concentration of the polymer or the polymer type would
change the elasticity number. Therefore, the elasticity number is the most natural parameter
next to the Reynolds number when comparing the flow behavior of several non-Newtonian
fluids. FE can also be interpreted as the ratio of the diffusion velocity to the elastic wave
velocity:

~ ﬂ\_ ~ (n/p)2h~2 _ (n/ph 2 3 diffusion velocity 2 (411)
- oh? - n/(pX) - Ce “ \ elastic shear wave speed '

Here, c.=, /;’7; is the elastic shear wave speed.

We will present the results of our numerical computations using the Reynolds number
and the elasticity number, analogous to Porteous & Denn (1972a). All quantities are non-
dimensionalized using the centerline velocity of the undisturbed flow (U) and the half-distance
between the plates, i.e. h. The dimensionless wave number can then be defined as a*=ch.

4.3.2 The UCM model in steady shear flow

Let us consider plane Poiseuille flow for an UCM model, based on equation 4.4. The orienta-
tion of the coordinate system is such that the z—axis is aligned in the flow direction, the y—axis
is aligned in the direction normal to the wall, and the z—axis denotes the spanwise direction.
For plane Poiseuille flow, the velocity vector reduces to y=u(y)e;, which results in D / Dt=0.
For the other terms in the convected derivative, we need an expression for 7- Vu. When we
write the several tensors in algebraic form, using the symmetry of 7, 8/0z=0, 3/92=0, and the
two-dimensionality of the flow, we obtain:

0 00 Tz Tyz O
Vo= % 00 T=|Tp Ty O (4.12)
0 00 0 0 0

Multiplication of these two tensors and substitution in equation 4.5 gives the expression for the
upper-convected derivative of 7:

. 2ys Tyy O
T==F{ 7 O 0 (4.13)
0 0 0

where, ¥=0u/8y denotes the shear rate. Substitution in equation 4.4 results in the following
set of equations for the stress in a steady shear flow of an UCM fluid:

Tex Tyz 0 2Ty;v Tyy 0 010
Tye Ty O] =M | 7w 0 O0)=n{l 0 0)7% (4.14)
0 0 0 0 0 0 000
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Equation 4.14 points to some important characteristics of the UCM model. For 7, immediately
follows 7,,=0. The equation for 7,, yields 7,,=77%, i.e. the Newtonian relationship between the
shear stress and the shear rate and this results in the same parabolic velocity profile that we find
for the Newtonian fluid. For the normal stress in z-direction, equation 4.14 yields 7,,=2nA¥%.
With 7, =0, this gives for the first normal stress coefficient:

Uy = 2T gpy (4.15)

52

Thus, like the shear viscosity, also the first normal stress coefficient is constant whereas for

(concentrated) polymer solutions and melts both normally decrease with increasing shear rate.
The program DYNAFLOW uses in its computation a tensor b, the so-called conformation

tensor®, which is defined as:

A
b=22 47 (4.16)
2= s
where [ is the unit tensor. Using the result for 7 found above gives us:
227 1 0 1+2(0)% M 0
r=my| 1 00 and b= Ay 10 (4.17)
0 00 0 0 1

The tensor p can be regarded as a measure of the elastic deformation. If the rate of deformation
is much smaller than the relaxation time A, i.e. Ay<1, then b reduces to the unit tensor. We
will use the tensor 7 when we discuss the results of the nonlinear stability calculations.

Before we discuss the results we will first briefly review the numerical techniques that we
used to perform the stability calculations.

4.4 Numerical Techniques

4.4.1 Introduction

The calculations have been performed with the program DYNAFLOW (Hulsen 1996). In the
next sections, we will briefly review some details on the numerical method which is used, the
boundary conditions, and the mesh. Also, the shape of the initial disturbance is discussed.

4.4.2 Numerical Method

To implement visco-elastic models in the finite element program, special elements had to be
defined. These are needed to accommodate the additional stresses due to the visco-elastic
behavior of the fluids. A brief summary of the numerical schemes used in the program are
given below. For more details see Hulsen (1996).

The problem is treated using the following elements:

o Velocity—pressure discretization: Raviart—-Thomas mixed triangular elements with poly-
nomials of order k where k& can be varied between 1 and 3,

3p reduces to the Finger tensor, a finite strain tensor (see e.g. Bird et al. 1987a, p. 427), when the deformation
is fast enough such that no relaxation occurs.
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e Viscous terms: discrete mixed vorticity/velocity with vorticity piece wise continuous of
k + 1 order,

o Visco-elastic stresses: piece—wise discontinuous of order k,
e Hyperbolic 1°¢ order terms: discontinuous Galerkin,
o Time-dependent equations: explicit Runge-Kutta of order & + 1.

The incompressibility is handled with a penalty method. Details of the numerical schemes
are outside the scope of this thesis.

4.4.3 Mesh

The linearly most unstable modes have a maximum in ' close to the wall. To be able to model
these modes correctly, the mesh should be finer close to the wall and coarser in the center. Our
code has an option to define the ratio of largest to the smallest grid cell. In the center of the
flow, an equidistant mesh was used to prevent excessively large size differences between the
mesh around the centerline and close to the wall. A typical mesh used for the calculations is
shown in figure 4.2. The mesh is symmetrical around y = 0.
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Figure 4.2: Mesh used for most calculations: Mesh size: 6 x 18.

4.4.4 The initial disturbance

From the literature, we know that the first eigenmode which becomes linearly unstable above
a certain Reynolds number has a wave number close to unity (non-dimensionalized in terms
of k). It is a symmetric mode in disturbance stream function and the y-component of the
disturbance velocity. From the continuity equation, it then follows that the disturbance in
the flow direction, v, is anti-symmetric in the normal coordinate y. The flow is periodic in
the flow direction with period L=2n/a and the plates (i.e. walls) are located at y==+h. To
study the linear stability of disturbances with wave number «, we adjusted the length of our
computational domain to the corresponding wave length: L=2w/c. As an initial condition we
used a disturbance which roughly resembles the linearly most unstable mode. In stream-wise
direction it varies as a sine-function with wave number o and in y-direction a polynomial form
was chosen. After a short transient, the flow quickly transforms the initial disturbance into the
most unstable eigenmode which starts to grow exponentially.
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The initial disturbance that we used in stream-wise direction, i.e. u’, has the following form:

YAl [1 _ (%)2"] sin (27) (4.18)

Here U is the centerline velocity. This form ensures the anti-symmetric properties as well as
the periodicity. The power 2n in the equation determines the location of the maximum value
for the u' disturbance. For 2n = 30 the disturbance has roughly the shape of the eigenfunctions
described in literature. From 4.18 an expression for v can be derived with help of the continuity
equation:

v 2rh {1 ry\2? 1 Y\ 2nt2 n 2rx

o= 4T {Q(h) 2n+2(h) 2n+2]cos( I ) (4.19)
Only disturbances in the velocities were introduced and not in the stresses. This disturbance
field does not represent an unstable mode exactly, but this is not a problem because, due to
the growth of the instability mode, the flow quickly adjusts itself and approaches quickly the
most unstable mode as will be shown in the next section.

Disturbances described by equations 4.18 & 4.19 with the dimensionless disturbance ampli-
tude A of order 10~ are used for linear stability calculations. For the nonlinear calculations,
the initial disturbance was also chosen of the form (4.18) & (4.19) but with A of the order 1071
and also up to nine higher harmonics were added having an amplitude of 10% of the base
functions (4.18) & (4.19).

All results for Newtonian and UCM fluids are presented in terms of dimensionless variables
based on centerline velocity U and channel half-width 4; e.g. dimensionless time ¢* = tU/h. In
the next section, we compare our calculations for the linear stability with results presented in
the literature. Typical dimensionless time-steps in the numerical computations are 0.01-0.05.

4.5 Linear Stability

4.5.1 Introduction

Our ultimate aim is to check whether the UCM model is or is not more stable than a Newtonian
fluid when the disturbance amplitude is increased. This is illustrated in figure 4.3, where we
sketch roughly the results obtained by Porteous & Denn (1972b)* together with extrapolated
lines that suggest that the UCM model with E=10"* may be more stable than a Newtonian fluid
for A>0.01. Before we can perform any numerical simulations to study the stability behavior
of visco-elastic fluids, we first have to establish the suitability of our program for stability
calculations. This is not obvious, since stability calculations require very accurate codes in
order to give precise predictions of e.g. disturbance growth rates. Therefore, we perform first
some linear stability calculations for Newtonian and UCM fluids.

For plane Poiseuille flow, the linear stability problem for a Newtonian fluid is well known.
Therefore, we have tested our code against literature results for some of the standard Reynolds
number—wave number combinations.

4Porteous & Denn (1972b) actually performed weakly non-linear calculations for a second-order fluid. In
their linear stability study they showed that a second-order fluid and a Upper Convected Maxwell model behave
identically up to E=5-10~%. To facilitate the discussion, we will refer to their results as if they were obtained
for an UCM model.
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Re Newtons, E=0

elasticity
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UCM, E=10* oo
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Figure 4.3: A sketch of the weakly nonlinear results obtained by Porteous & Denn (1972b) (solid lines) together
with the extrapolations (dotted lines) that suggest a possible stabilizing effect of the UCM model for larger
disturbance amplitudes A.

The first linear stability calculations were performed using elements with linear base func-
tions, i.e. k=1, which at that time were the only elements available in the code. The growth
rates calculated with these low-order elements were accurate till 2 significant digits. To achieve
this, very large (fine) meshes and long calculation times were necessary. Performing such cal-
culations on our HP-735 workstation was not practical. Memory limits and calculation times
in the order of days limited the obtainable accuracy, viz. growth rates for a 20 x 60 grid still
deviated by -2%. Through Richardson extrapolation based on calculations at several mesh
sizes, a more accurate estimate could be obtained of maximal 0.5% difference. However, details
in the flow were not resolved accurately enough. Therefore, we concluded that the first-order
elements were not accurate enough for our purpose. For transition calculations, it is generally
believed that 3 to 5 significant digits in the linear growth rate of Tollmien—Schlichting waves
should be achieved in order to obtain a good representation of the instability mode.

The results of these plane Poiseuille flow stability calculations and other flows lead to the
implementation of higher order elements in our code. All results in the remaining part of this
chapter have been obtained with higher order elements with third-order polynomials (k=3).
For the time integration a 4™ order Runge-Kutta scheme is used. The results for the linear
stability calculations using these elements for Newtonian and UCM fluids are shown in the next
sections.

4.5.2 Newtonian linear stability

The three “benchmark” cases for linear stability calculations of Newtonian plane Poiseuille flow
are Reynolds numbers 7 500 and 10 000, both for dimensionless wave number a*=1, and the so
called critical Reynolds number. Orszag (1971) was the first to obtain very accurate growth
rates by using spectral methods to solve the Orr-Sommerfeld equation for Re=10,000 and
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o*=1. The growth rate of this disturbance is found to be 0.00373967. For a Reynolds number
of 7500, linear disturbances with a*=1 are unstable and grow at a rate of 0.00223497 (see e.g.
Canuto et al. 1988 and Liu et al. 1991). Also, the critical Reynolds number that Orszag found
was Re.=5772.22 and the corresponding wave number o}=1.02056.

When small disturbances are introduced in the flow with Re>Re,, with an dimensionless
amplitude of order 107, the linearly instable Tollmien-Schlichting (TS) wave starts growing.
Some transient behavior is present for times smaller than t*=30, as shown in figure 4.4. Aums
is the root-mean-square amplitude of the disturbance averaged over the entire computational
domain. This is probably caused by the difference in shape of the initial disturbance and the
TS-wave.
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Figure 4.4: v’ and Apms of the disturbance versus time for Re=7 500 and a*=1, mesh size 6 x 18.

Table 4.1: Growth rates for linear disturbances for various meshes with k=3. Re= 7500 and ¢*=1. The value
obtained with spectral methods is also listed.

mesh size growth rate:
spectral: 0.00223497
2%x6 -0.004614
4x12 0.0022093
6x 18 0.00223456
10 x 30 0.00223503

The growth rates are determined by fitting an exponential function to the A;nms time-trace after
the transient behavior has died out, typically after ¢*=50. The linear growth rates obtained
in this way for Re=7 500 with several meshes are given in table 4.1. The mesh 4 x 12 gives a
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growth rate comparable to the one with mesh 20 x 60 for k=1. The number of points for k£ = 1
per element side is 2 whereas for k=3 this is 4. This means that for a 4 x 12 mesh with k=3
the number of points amounts to 16 x 48 whereas a 20 x 60 mesh with k=1 results in 40 x 120
points. This clearly demonstrates the advantage of using higher order elements. For mesh sizes
6 x 18 or finer, 3 to 4 significant digits in growth rate are obtained directly; no Richardson
extrapolation is necessary. Using the values in table 4.1, the order of the present numerical
scheme can be estimated to be 4.8, which is not bad and is larger that the typical & + 1=4 that
would be expected in finite elements. However, the growth rate for the mesh 10 x 30 exceeds
the exact value whereas the others all under estimate it. A possible reason for this can be that
the penalty method limits the number of possible significant digits.

Using a 8 x 24 grid for Re=10000 and a*=1, a growth rate of 0.0037403 is obtained. This
is 0.017% different from the result obtained by Orszag (1971) (0.00373967).

The growth rate calculations can also be used to determine the critical Reynolds number.
From the results in literature we know that this critical Reynolds number (Re,=5772.22) occurs
for a wave number o}=1.021. By calculating growth rates for linear disturbances at several
Reynolds numbers for this wave number, and by interpolating the results, we find the critical
Reynolds number at which the growth is zero. The results of these calculations on a 6 x 18 mesh
are shown in figure 4.5.
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Figure 4.5: Growth rates at several Reynolds numbers for the critical wave number o=1.021. Mesh size 6 x 18.

For computations on a 6 x 18 mesh, a critical Reynolds number of Re.=5770.7 is found and
for a 8 x 24 mesh Re,=5772.6 which deviate -0.026% and 0.0065% respectively from the much
more accurate values found in spectral calculations. In our opinion, these linear instability
calculations for Newtonian fluids show that our code is able to accurately calculate linear
disturbances of order 1075 to 10~ on top of a parabolic base profile and also give growth rates
within a few hundreds of a percent of the exact values. With the higher-order elements, these
calculations on a 6 x 18 mesh are expected to be accurate enough for the nonlinear calculations,
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Table 4.2: Comparison between our linear stability calculations and literature results for an UCM fluid.

critical Re growth rate growth rate
We=1 & o*=1.15 Re=7500 & o*=1 Re=7500 & o*=1
E=2.7-107* E=10"5 E=10"*
reference Lee & Finlayson 1986 Porteous 1971 Renardy 1993
literature 3650 0.00262 0.005010778
mesh 6 x 18 3657 0.0025322 0.0050165
mesh 10 x 30 0.005010835

given the number of significant digits in the linear stability problem, that follow. These can be
carried out within a reasonable time frame allowing for a wide parameter range to be studied.

4.5.3 Upper Convected Maxwell Fluids

We have also performed stability calculations for Upper Convected Maxwell fluids. Since much
of the attention in rheology is focused on polymer melts, many of the stability calculations
reported in literature are performed only for Reynolds numbers of the order 1 and smaller.
Let us first review some of the earlier results obtained for Reynolds number much larger than
1. Some of the earliest weakly nonlinear calculations for visco-elastic fluids were performed by
Porteous & Denn (1972b). In appendix C of his Ph.D. thesis, Porteous (1971) included the
tables with data of his calculations on linear and nonlinear disturbances. For wave number
o*=1 and Re=7 500, Porteous obtained a growth rate of 0.00262 for E=10"° and 0.00508 for
E=10"*. These growth rates still changed approximately 4-0.0001 in the last iteration step
given in his table. Lee & Finlayson (1986) presented mostly results of low Reynolds numbers,
but they also give a critical Reynolds number for o*=1.15 and We=1 of Re,=3650. Y. Renardy
(1993) has developed a code using spectral methods for a multilayer UCM flow. Using this code
for 2 identical fluids and 45 Chebyshev polynomials for each fluid, she could reproduce Lee &
Finlayson’s critical Reynolds number. For Re=7500 and o*=1 she found a growth rate of
0.005010778.

All these test cases were also investigated in this study. The calculations were performed
for the same meshes as the Newtonian calculations. As initial conditions either equations 4.18
and 4.19 were used or calculations were restarted from a computed Newtonian flow field. The
program has a built-in numerical stability criterion. For Newtonian fluids this works fine. For
the UCM model, we found that only a slightly smaller time-step has to be used to prevent
numerical stability problems. The smallest fraction that we used was 80% of the stability
criterion. The results for the linear stability calculations can be found in table 4.2.

We find that the results for a 6 x 18 mesh are accurate to 0.1% whereas the result for a 10 x 30
mesh is accurate till 0.001%. The results obtained by Porteous agree with our results well within
the accuracy of his calculations. The accuracy of the growth rate for Re=7500 and E=10"*
obtained with the finest mesh is comparable to the result for Newtonian fluids. The results
for the mesh 6 x 18 are approximately a factor 4 less accurate than the Newtonian results (see
table 4.1). Nevertheless, these results give us confidence that the code can accurately represent
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linear disturbances of an UCM fluid on top of the base profile and in our opinion, the accuracy
is sufficient to proceed to nonlinear calculations. By the way, note that the growth rate of the
disturbances is higher than the one for Newtonian fluids. At Re=7500 and E=1075 it is 13%
higher and for E=10"* it is already more than a factor of two in the (exponential) growth rate.
Also critical Reynolds numbers are lower for higher elasticity numbers. This is in agreement
with the results obtained by Porteous & Denn (1972a).

4.5.4 Linear disturbance field

To get an an impression of the form of the linear disturbance mode, we plot the disturbance
velocity in z and y-direction as a function of the y-coordiante in figures 4.6 and 4.7 respectively
for Re=7500 and «*=1 for a Newtonian fluid. These disturbance velocity profiles closely re-
semble those in the literature (e.g. Liu et al. 1991). For the Upper Convected Maxwell model
the instability modes are very similar to those found for Newtonian fluids as long as E<0.0025
(Sureshkumar & Beris 1995b).
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Figure 4.6: v/ (z=x/2), Re=7500, o*=1, E=0. Figure 4.7: v'(z=0), Re=7500, o*=1, E=0.

In figures 4.8 and 4.9 we plot the disturbance stream function and velocity vector field respec-
tively. Clearly, the instability mode consists of two counter rotating cells.

4.6 Nonlinear stability for Newtonian fluids

4.6.1 Introduction

Now that we have established the accuracy of the code with respect to linear stability prob-
lems, we can proceed to perform nonlinear calculations. These calculations can be done in two
essentially different ways. First, weakly nonlinear calculations for small finite amplitude distur-
bances for which the linear stability problem is the starting point. Porteous & Denn (1972b)
performed such type of calculations for Newtonian and UCM fluids. The second possibility is to
solve the complete equations of motion which allows for strongly nonlinear disturbances. Zahn
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Figure 4.9: Disturbance velocity field. Re
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et. al (1974) and Herbert (1976) performed such calculations for Newtonian fluids. Jiménez
(1990) extended these calculations to higher Reynolds numbers and showed the existence of
solutions which vary either periodically or chaotically in time.

Zahn and Herbert performed calculations for constant pressure gradient conditions. We
have checked our code against their results and this is presented in section 4.6.2. However,
convergence to a steady state value is very slow and for the parameter study, the constant flow
rate driven flow is to be preferred. This is particularly the case for instability and transition
studies, as will be explained in section 4.6.3. In this section, also the Reynolds number-
wave number combinations for which the 2-D saturated-amplitude disturbances exist will be
determined. These also serve as a reference for the nonlinear calculations for the UCM model.

4.6.2 Constant Pressure Gradient

Following the good agreement for the linear stability calculations, we continue by investigating
the accuracy of our code for nonlinear stabilities. This is done by trying to reproduce the
results obtained by Herbert (1976). Herbert calculated the curve for Re=4000 at which the
disturbance amplitudes are neutrally stable. He obtained different curves when he varied the
number of higher harmonics used to describe the disturbance. These neutral curves are egg-
shaped, as is sketched® in figure 4.10. The top part is called the upper branch (UB) and the
bottom part the lower branch (LB). Solutions on the lower branch are neutral, however not
attracting, i.e. disturbances having a smaller amplitude will decay whereas an amplitude above
the lower branch will cause the disturbance to grow and saturate at the upper-branch value.
Therefore, in a time dependent code, the lower-branch solutions are not stable and cannot be
reproduced. The upper-branch solutions are attracting and can thus be reproduced with our
code.

o
Figure 4.10: A sketch of the curve at which the nonlinear disturbance amplitudes are neutrally stable, and it

consists of an upper branch and a lower branch. The disturbance energy E' is plotted as a function of the wave
number « of the base mode. The arrows indicate the directions in which the disturbances will grow.

For our calculations we use the initial conditions given by equations 4.18 and 4.19 using an

5The result obtained by Herbert (1976) will be shown in figure 4.13 together with the result of our calculations.
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amplitude of 10% of the centerline velocity and we added as much as nine higher harmonics of
the same form having an amplitude that is 10% of the base function. Although this disturbance
is far from the final solution, the higher harmonics are just added to put energy into the higher
wave numbers in order to speed up the energy transfer to these wave numbers.

As it turns out, the calculations are very tedious and time consuming. This is due to the
fact that a constant pressure gradient is applied. An increase in disturbance amplitude results
normally in an increase of the pressure gradient. Under constant-pressure-gradient conditions,
the flow rate will then decrease. But at a lower flow rate, the flow can sustain only smaller
disturbances since the Reynolds number is lower. Therefore the disturbance has to decrease
again. This process results in a very slow convergence to a final time-independent amplitude
disturbance. To give an example, these calculations took in the order of several weeks on a
workstation HP-735. The same time estimate applies to the Convex at Delft University of
Technology. As the finite element code allows almost no vectorization, the Convex, which is
like the Cray a vector machine, cannot handle these problems efficiently.

For Re,=4000, we performed two calculations where the wave numbers of the base functions
are o*=1.15 and o*=1.45. Herbert presents his results in terms of the total energy of the
saturated disturbance averaged over the computational domain. In this energy, the disturbance
with zero frequency, i.e. the distortion of the average velocity profile, is not included. From
figures 4.11 and 4.12, where we show the rms disturbance amplitude as a function of time, it
seems that excluding the base flow distortion component has a large influence on the disturbance
amplitude. However, the base flow distortion also includes the decrease in flow rate which is
a result of the increase in drag due to the growth of the disturbance. After subtraction of
the base flow distortion, the relationship between the energy plotted by Herbert and the rms
amplitude of the disturbance (A.ms) provided by the finite element code DYNAFLOW is found
to be (for a derivation of equation 4.20 see appendix A):

15
EHerbert = EA?ms (420)

After the base flow distortion is subtracted, many crossing lines in figure 4.11 exist till £*a26 200.
This is caused by the procedure that is followed to subtract the average velocity profile. The
user has to supply the time period over which the velocities have to be averaged. If this period
is not equal to the actual one, oscillations in A, are formed and combined with the sampling
interval this gives rise to these intertwined lines. After adjusting the time period for averaging
at t*=~6 200, the oscillations in A, disappear.

In figure 4.11 and even more pronounced in figure 4.12, we can see the extremely slow
oscillation of Ay A typical period for this oscillation is 2000 dimensionless time-scales. This
is related to the decrease in flow rate for these pressure gradient driven flows. Under constant
flow rate conditions, the period of these oscillations is roughly ten times smaller (as will be
shown in the next section).

The asymptotic values of the rms disturbance amplitudes can be estimated from the graphs,
and for the two cases we find 0.08295 and 0.1026 for *=1.15 and o*=1.45 respectively. From
equation 4.20 the disturbance energy values according to Herbert become 0.0129 and 0.0197
respectively. These values lie right on top of Herbert’s curve for 4 Fourier modes (3 higher
harmonics), as we show in figure 4.13.
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Figure 4.13: The neutral curves for the disturbance amplitude as presented by Herbert (1976) for Re=4000.
Herbert varied the number of Fourier modes (N) to describe the nonlinear disturbance. The two circles indicate
the energy that we found in our calculations for a*=1.15 and o*=1.45.
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Since the calculations are performed under constant pressure gradient, the flow rate decreases
significantly relative to the undisturbed flow. The dimensionless flow rate for the undisturbed
flow (parabolic velocity profile) is Q*=4/3 whereas for a*=1.15 it stabilizes at Q*=1.1384 (85%)
and for o*=1.45 at Q*=0.9845 (73%). Thus, when we define the Reynolds number based on flow
rate, Reg, instead of the pressure gradient, then the Reynolds numbers for these cases would be
Req=3415 and Reg=2 954 respectively. For the undisturbed flow, the Reynolds number is still
Reg=4000. The good agreement between Herbert’s results and our results gives us confidence
that the program can handle nonlinear saturated disturbances.

The stream-wise averaged velocity profiles have been determined for the two cases discussed
here. A parabolic velocity profile with the same flow rate is subtracted, thus giving the dis-
tortion of the parabolic velocity profiles and these are plotted in figure 4.14. We see that the
average velocity is increased close to the wall and in the center with a decrease in between.
Similar effects were found by Jiménez (1990). This distortion of the average velocity profile is
about 2% of the centerline velocity. Close to the wall, this means a large increase in the velocity
gradient and under constant pressure gradient conditions, this results in a strong decrease in
flow rate.
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Figure 4.14: Distortion of the parabolic profile caused by saturated nonlinear two-dimensional disturbances at
Re=4000 for two wave numbers under constant pressure gradient conditions.

4.6.3 Constant Flow Rate

In the previous section, we have seen that under constant pressure gradient conditions, very
slow oscillations in the disturbance amplitude are found and that convergence in time to the
asymptotic values is slow. This is unacceptable for a wide range parameter study. Another
disadvantage of a constant pressure gradient condition is the fact that the flow rate decreases
during the growth of the disturbance. This means that a calculation from linear to nonlinear
disturbances will not take place at a constant Reynolds number. This makes the interpreta-
tion of the results more complicated and as a result comparison with experimental transition
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experiments carried out under constant Reynolds number becomes difficult.

For these reasons, all calculations that will be presented in the next sections have been
performed using a constant flow rate. This ensures a much faster convergence to a steady sat-
urated solution. We varied the wave number and the Reynolds number we determine whether
or not the nonlinear disturbance decays, i.e. the flow becomes laminar. In case the 2-D dis-
turbance is sustained, it will grow towards the upper branch and the amplitude will saturate.
We are particularly interested in the minimum Reynolds number for which such saturated 2-D
disturbance exists.

To speed up the convergence in time, we used rescaling of the disturbance amplitude. If
we find that in a calculation the disturbance energy keeps growing in time, this magnitude of
disturbance velocity field is increased. After some short time oscillating behavior, the distur-
bance energy will either continue to increase or decrease with time and another rescaling can
take place, as is illustrated in figures 4.15 and 4.16. Figure 4.15 shows the beginning of the
calculation where the level of the disturbance is still far removed from the saturated value.
When getting closer to this situation, smaller steps are used and thus the oscillations in the
solution almost disappear as is shown in figure 4.16. Note that the two figures show calculations
for different Reynolds numbers.

T — — — v T — —T T -
0.13 - 4
024 -

. ,_f-’-’-—— —
022 b - P ]
\/\,\[ 0.125 -~ .

0.2 <
v\/\/\/\/\/\,\/ 0 12 i q
0.18 | .
\Nw_

s | v - -/

0.115 |- 4
1 ] 1 2 1 1 | I 1 il "
1200 1300 1400 1500 1600 1700 2600 2700 2800 2900 3000 3100
t t

Figure 4.15: Rescaling of disturbance using large Figure 4.16: Rescaling of disturbance using
steps. Re=5500 and o*=1.15. smaller steps at the end. Re=3000 and o*=1.30.

Using the technique described above, a large parameter study was performed to locate the min-
imum critical Reynolds number, i.e. the smallest Reynolds number for which the 2-D saturated
disturbances exist. The Reynolds number-wave number combinations for which saturated 2-
D nonlinear disturbances in plane Poiseuille flow exist, are marked with a (o) in figure 4.17.
A (e) indicates the combinations where the disturbance decays and the flow returns to the
parabolic velocity profile. The area where the saturated disturbances exist, has the familiar
cigar-shape also found by Zahn (1974), Herbert (1976), and Jiménez (1990). Jiménez found
a minimum Reynolds number for these saturated 2-D disturbances between 2500 and 2800
based on flow rate, which agrees well with the results of figure 4.17. Herbert found a minimum
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critical Reynolds number of Re=2935 for a*=1.32. However, this Reynolds number is based
on the pressure gradient, viz. based on flow rate it would have been lower. He finds an average
dimensionless centerline velocity of 0.917 which includes the increase as a result of the dis-
tortion of the average velocity profile. Thus, the flow rate may have decreased approximately
10% giving a minimum Reynolds number of 2640. The latter is very close to minimum criti-
cal Reynolds number estimated from the data presented in figure 4.17; Re.~2 650 and o*~1.35.
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Figure 4.17: Nonlinear 2-D saturated disturbances exist (o) or the flow decays to a laminar parabolic flow
profile () for a Newtonian fluid.

To summarize, in our opinion it is now established that our code can accurately repro-
duce linear stability calculations for Newtonian and UCM fluids as well as the saturated 2-D
nonlinear disturbances in Newtonian flow. Therefore, we feel confident to study the nonlinear
stability behavior of plane Poiseuille flow for an UCM fluid, which we will discuss in the next
section.

4.7 Nonlinear stability for UCM fluids

To start our nonlinear stability study of an UCM fluid, we first check the suggestion by Porteous
& Denn (1972b), who speculate the UCM model with E=10"* may become more stable than
a Newtonian fluid for disturbance velocities larger than approximately 1%. They performed
weakly nonlinear stability calculations, i.e. study lower-branch solutions. Since these are not
attracting, we take our calculations one step further, and check the suggestion by Porteous
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& Denn for the largest 2-D disturbances that can be sustained in plane Poiseuille flow, i.e.
we study upper-branch (saturated) solutions. Then, the UCM fluid would be less stable than
a Newtonian fluid when the minimum critical Reynolds number for which these saturated
disturbances exist is smaller for the UCM fluid than for the Newtonian fluid and vice versa.

All calculations are performed using a constant flow rate condition, and rescaling of the
disturbance is used to speed up convergence, as is explained in the previous section. The re-
sults for E=10"* are shown in figure 4.18, where the existence of the saturated disturbances
is depicted using open markers and decay to a laminar parabolic flow is indicated by solid
markers. To facilitate comparison with the Newtonian results, we have included the estimated
critical line for E=0, i.e. the Newtonian fluid from figure 4.17.
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Figure 4.18: Nonlinear 2-D saturated disturbances exist (open markers) or decay to a laminar parabolic flow
profile (solid markers) for an UCM model with E=10"*. The results for the Newtonian calculations are
incorporated in the form of the estimated critical line also drawn in figure 4.17.

Comparing the results for Newtonian and UCM fluids for E=10""*, we may note several differ-
ences. For the UCM fluid saturated 2-D disturbances exist for a wider span of wave numbers
at each Reynolds number than for the Newtonian case. Also, the lowest Reynolds number
which still sustains a 2-D saturated disturbance at a certain wave number value is smaller for
the UCM fluid than for the Newtonian fluid. In short, the lowest Reynolds number for which
saturated disturbances exist is smaller for an UCM fluid than for a Newtonian fluid. Further-
more, the critical condition seems to occur at a slightly larger wave number for UCM fluids
than for Newtonian fluids. Estimating the critical Reynolds number from the data presented
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here gives: Re, = 2350 and a}~1.40 for UCM fluids compared with Re,~2650 and a}=1.35
for Newtonian fluids. Consequently, the UCM model is found to destabilize the channel flow
for E=10"%.

Porteous & Denn (1972b) suggested, on the basis of their weakly nonlinear calculations
that for larger disturbance amplitudes, the UCM model might become more stable than the
Newtonian fluid (see figure 3.7 on page 39). They suggested this on the basis of extrapolating
the curve of the critical Reynolds number versus disturbance amplitude for E=10"*. Our
calculations show that this is not the case, at least not anywhere near the tip of the stability
curve for E=10"%. Since the overall critical Reynolds number is considered when discussing
stabilizing or destabilizing behavior of certain rheological models, the conclusion has to be that
for two-dimensional flow, adding elasticity to the fluid has a destabilizing effect.

We have repeated the calculations shown in figure 4.18 for large values of E. Our calculations
for the finite amplitude disturbances for UCM fluids do not show numerical instability for the
range of Weissenberg numbers studied. Our maximum Weissenberg number calculations has
been 2.5, i.e. Re=2500 and E=10"3. We continued our calculations for several thousend
dimensionless time units without any numerical instabilities. No artificial stress diffusivity as
proposed by Sureshkumar & Beris (1995a) is needed.

Let us look at the results in terms of Re.. When we further increase the elasticity number,
we find a decrease in minimum critical Reynolds number for E=3 - 10~ till Re,~2000 at
o*~1.40. The minimum critical Reynolds number for E=6 - 10~* is slightly lower, Re.~1925
with a corresponding critical wave number of af=1.34. Further increasing the elasticity number
to E=10"3, increases the minimum critical Reynolds number to Re.~2 150 with a critical wave
number of a’=1.30. In table 4.3 we give the critical parameters for the various elasticity
numbers. With equation 4.9 we can also calculate We at the critical points and these are
also included in the table and in figure 4.19 we show the corresponding instability regions. In
figure 4.20 we plot the minimum critical Reynolds number as a function of the Weissenberg
number. Clearly, elasticity shows a stabilizing tendency for We>1.0 but it should be noted that
the minimum critical Reynolds number for E=1072 is still smaller than that for the Newtonian
fluid, viz. the flow is more unstable than for a Newtonian fluid. The minimum of the spline-
curve connecting the points is located at We=1.04 for which the minimum critical Reynolds
number is 1920. This change in behavior for We>1 is unlikely to be caused by the coarseness
of the mesh. We also performed some calculations on a 8 x 24 mesh for E=10"% and found
that the amplitude values for the saturated disturbances deviated by less than 2% and also the
location in the Re—o* plane was accurately reproduced.

It is striking, that the stabilization occurs almost exactly at We=1, for which the relaxation
time of the fluid equals the time scale of the flow. For We larger than unity the elastic effects
come into play and cause a stabilizing effect.

When we plot Ay (with the mean flow distortion included) as a function of the Weissenberg
number, figure 4.21, we see that A, decreases when We is increased. The wave number at
the critical condition seems to reach a maximum for We=0.35, as is depicted in figure 4.22.
For linear disturbances, such a maximum generally is located near the value of We for which
the minimum in critical Reynolds number is found (Sureshkumar & Beris 1995b). In our case,
it seems to be located at a somewhat smaller We value, but the inaccuracy in critical wave
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Figure 4.19: Nonlinear 2-D saturated disturbances exist (open markers) or decay to a laminar parabolic flow
profile (solid markers) for an UCM model at various elasticity numbers; E=3-10~%, E=6-10"*, and F=1073.
The results for the Newtonian calculations and those for the UCM model with E=10"* are incorporated in the
form of the estimated critical lines also drawn in figure 4.18.
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Figure 4.20: The minimum critical Reynolds number for the Upper Convected Maxwell model as a function of
the elasticity number, E, and the Weissenberg number We.
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Table 4.3: Critical parameters for the Upper Convected Maxwell fluid. We included the maximum value of b1
in the parabolic flow which is located at the wall. From its definition, it can be deduced that the following
relationship applies: b11, max base low=1 + 8We2.

E Rec We a: bll, max baseflow bll, max
0 2650 O 1.35 0 0
0.0001 2350 0.235 1.40 1.4 5.0
0.0003 2000 0.600 1.40 3.9 17.3
0.0006 1925 1.155 1.38 12.5 44.7
0.0010 2150 2.150 1.30 37.9 57.3

number is relatively large, so this observation should be treated with caution.
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Figure 4.21: A,ps, including the mean flow distor- Figure 4.22: o at the minimum critical Reynolds
tion, at the minimum critical Reynolds number as number as a function of the Weissenberg number.

a function of the Weissenberg number, We.

Comparing the disturbance stream functions at the minimum critical Reynolds numbers for
various elasticity numbers, figure 4.23, shows that the shape of the disturbances does not
change significantly with an increase in elasticity, and is very similar to the Newtonian saturated
disturbances.

A different picture arises when we plot in figure 4.24 the (1,1)-component of the conforma-
tion tensor b, i.e. by;. To interpret these contour plots, the solution for the parabolic Poiseuille
flow is useful. Equation 4.17 gives b;;=14 2 (A\%)” for the parabolic base flow. Since the largest
shear rate is found at the wall, the maximum value for b;; occurs at the wall. Substition of
the shear rate at the wall in equation 4.17 gives b;;=1 4+ 8 We?. These values together with
the maxima found at the minimum critical Reynolds numbers are listed in table 4.3. When
we compare the values of by; for the base flow with that for the critical flow, we see that the
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disturbances roughly cause an increase in b1, viz. in elastic deformation in flow direction, by
a factor of 4 and is highly localized. For E=10"2 this increase is only 50%, which is mainly
caused by the drastic reduction in disturbance amplitude, and is much more spread out in the
flow. Since b;; shows a quadratic dependence on the Weissenberg number, the maximum in
by1 increases rapidly for We>1. Thus, large elastic deformation in the flow directions is found
close to the wall for high We. This can be interpreted as stretching of the polymers close to
the wall. These results suggest that randomly coiled polymers cause a destabilization of the
flow. When the polymers are stretched at high Weissenberg numbers, a stabilizing influence is
found for polymer solutions.

4.8 Summary and discussion

In this chapter, we have shown that our program can accurately predict linear stability for
both Newtonian as well as UCM fluids in plane Poiseuille flow, as follows from a comparison
with results previous published by (Orszag 1971), (Liu et al. 1991), (Porteous 1971}, and (Lee
& Finlayson 1986). To obtain this accuracy, we found that higher order finite elements are
required. Next we extended the computations to 2-D finite amplitude disturbances disturbances
in plane Poiseuille flow for a Newtonian fluid. The results for the upper-branch solutions,
which have an amplitude that is saturated, are in excellent agreement with results published
by Herbert (1976).

Based on these good results, we were confident that our computation could be extended
the calculation of nonlinear disturbances of an UCM fluid. Subsequently, a large parameter
study has been performed to investigate the existence of saturated 2-D disturbances both in
Newtonian and non-Newtonian fluids. This has yielded several interesting results:

e The minimum Reynolds number for which saturated 2-D disturbances exist in a New-
tonian medium is Re.~2650 for dimensionless wave number of=~1.35. This result is in
good agreement with calculations by Jiménez (1990) and Herbert (1976). From Jiménez’
results, it can be estimated that in his case 2 500<Re.<2 800 where Re, is based on flow
rate. Herbert found Re.=2935 for o*=1.32 based on the pressure gradient. If we try
to correct this to the corresponding flow rate, it can be estimated that Re.=2640. The
latter is very close to our result.

o Similar behavior has been reported for linear calculations by Sureshkumar & Beris (1995b),
but for the linear case the minimum critical Reynolds number is Res:1 672 at Wex4.18.
Thus, for the nonlinear saturated disturbances, stabilization occurs at a smaller Weis-
senberg number and at a higher Reynolds number than for linear disturbances. The lin-
ear critical Reynolds number reported by Sureshkumar & Beris for £=10"2% is Re,=2 310,
which is larger than the Re=2 150 for the saturated 2-D disturbances, i.e. the flow is still
more unstable to nonlinear disturbances than to linear disturbances. However, if Re. con-
tinues to increase with the elasticity number above 1072, the critical Reynolds number in
the linear case would become smaller than that for saturated 2-D nonlinear disturbances
studied here. This could suggest that above a certain elasticity number, the subcritical
transition (finite amplitude disturbance exist below the linearly critical Reynolds num-
ber) for small £ changes into a supercritical transition, i.e. finite amplitude disturbances
exist only above the critical Reynolds number for linear disturbances. But this is very
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Figure 4.23: Disturbance stream functions at the minimum critical Reynolds numbers for £ =107%, 3- 1074,

6-107%, and 10~3 from top to bottom respectively.
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10~2 from top to bottom respectively.
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speculative, since the disturbances considered in our investigation are strongly nonlinear
whereas the sub/supercritical transition is determined governed by the behavior of weakly
nonlinear disturbances.

e The speculation by Porteous & Denn (1972b), based on their weakly nonlinear stability
calculations for second-order fluids, that for larger amplitudes elasticity might be stabiliz-
ing rather than destabilizing cannot be confirmed by our computations of the saturated
2-D finite amplitude disturbances for the Upper Convected Maxwell model.

o The position of the ‘cigar’-like area where the 2-D saturated disturbances exist for the
UCM model depends on the value of the Weissenberg number. For We<1.04, we find
that the introduction of elasticity destabilizes the flow and Re. decreases when the We
is increased. The minimum in the critical Reynolds number is Rex~1 920 and occurs for
We=1.04. For We>1.0, elasticity has a stabilizing effect so that Re, increases again.
The conformation tensor b, which is a measure of the elastic deformation of a visco-
elastic fluid, reveals that stretching in the flow direction is strongly increased at these
high Weissenberg numbers. Translated to the polymer conformation, this could suggest
that for stabilization, the polymers have to be stretched in order to show a stabilizing
effect.

In the light of the present results of our stability calculations, it is interesting to look at
some of the experiments with coiled polymers. The majority of the non-Newtonian transition
literature, where mostly dilute solutions of flexible, linear, high-molecular weight polymers
like Polyox (Polyethyleneoxide) or Separan (Polyacrylamide) are used, reports no change in
transition behavior. These polymers are forced to have, on the average, a coiled conformation.
However, many experiments in pipe diameters of several millimeters to one centimeter show
a delay in transition (e.g. Castro & Squire 1967, White & McEligot 1970, Chung & Graebel
1972, Wéjs 1993). Also, when experiments are performed for several pipe diameters, the delay
in transition is larger for the smaller pipe diameters.

This behavior might be explained when we consider the definition of the elasticity number:

nA

= (4.21)

For a given fluid, i.e. n and A are constant, a reduction in channel half-width (or pipe diameter)
increases the elasticity number quadratically. The Weissenberg number is related to the elas-
ticity number as We=Re - E. Therefore, when for a given Reynolds number the pipe diameter
is decreased, this will strongly increase £ and with it We. .

From our strongly nonlinear stability calculations, we see that stabilization begins at We=1.
As a result, stabilization can occur in small pipe diameters leading to a delay in transition,
whereas in large diameter pipes for the same Reynolds number We is too low and no sta-
bilization can occur. Our non-linear stability calculations show that for We>1, the elastic
deformation in flow direction increases rapidly with We. Under such conditions, polymers can
be stretched. Thus, the delay in transition which is found in small diameter pipes for randomly
coiled polymers may be seen as ‘circumstantial evidence’ for the view that the polymers need
to be stretched in order to delay the transition to turbulence to higher Reynolds numbers.
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That shear flows can indeed stretch polymers is illustrated in calculations on the behavior
of a FENE-bead spring polymer model in a turbulent flow by Massah et al. (1993). They
show that the polymers stretch both in the viscous sublayer as well as in the buffer layer if
the time constant of the polymer is large enough compared to the rate of shear at the wall®.
In the viscous sublayer, the stretching is constant and the polymer is almost aligned in the
flow direction, resulting in large additional normal stresses in the flow direction, which is very
similar to what we find in our simulations. In this respect, it is also interesting to look at the
results obtained by den Toonder (1995) for turbulent flow in pipes. He used Direct Numerical
Simulation techniques and used some simple fluid models to investigate the effect of elasticity
and stretched polymers on drag reduction. He shows that the key property for drag reduction
is the purely viscous anisotropic stress which is introduced by the extended polymers, and
elasticity has an adverse effect on drag reduction.

Based on these findings, we conjecture that stretching of the polymers is vital to achieve a
delay in laminar-turbulent transition to higher Reynolds numbers. In order to pursue this line
of research, we designed and constructed a pipe facility to study the transition behavior of fully
developed pipe flow of polymer solutions. The design of the experimental setup is discussed in
detail in the next chapter. The stability measurements of Newtonian and non-Newtonian fluids
are presented in chapters 6 and 7 respectively.

8For plane Poiseuille flow of an UCM model, the dimensionless shear rate at the wall is 2 whereas the flow
time-scale used in the definition of the Weissenberg number is 1. Thus, when the shear rate at the wall is used
in the definition of We, the minimum critical Reynolds number in our nonlinear stability calculation would be
located at We=2.



Chapter 5

Experimental setup

Abstract

In this chapter, we will focus on the design and construction of a pipe-flow facility, specially
designed for the study of transitional and turbulent pipe flows, both for the Newtonian fluid
water and for polymer solutions. The pipe length to diameter ratio is very long (L/D=800)
and the laminar flow is fully developed for ReS14300. It has been designed as a recirculatory
facility which is very unusual for transition flow facilities. Nevertheless, its natural transition
Reynolds number (based on bulk velocity and diameter) of more than 60 000.

We found that the flow is very sensitive to small differences in temperature between the water
and the ambient air which may cause secondary buoyancy drive secondary circulations. Also,
we found that the influence of the earth’s rotation on the laminar pipe flow is not negligible for
Re>5000 which leads to strongly asymmetric azial velocity profiles.

As we are able to maintain laminar flow up to very high Reynolds numbers, we can study the
stability of the flow to artificially added disturbances. We constructed a disturbance mechanism
that generates a non-azxisymmetric disturbance of which the magnitude and the frequency of the
disturbance can be changed continuously over a wide range. To detect transition to turbulence,
we used pressure drop measurements and Laser Doppler Velocimetry techniques.

5.1 Introduction

Transition to turbulence is caused by disturbances that grow until they are large enough to
trigger transition. Some flows are linearly unstable, which means that very small disturbances
will grow above a certain Reynolds number (examples are plane Poiseuille and boundary layer
flow). Other flows, like cylindrical Poiseuille flow are believed to be stable to all linear distur-
bances. However, in practical applications, pipe flows are likely to be turbulent above Re22 300.
This means that transition must be caused by large disturbances which show nonlinear growth.
Such disturbances may be introduced into the flow by bends, pumps, sudden contractions or
expansions, or other irregularities in the pipe geometry.

So, the common view is that in the absence of linear instability, transition is caused by
large nonlinear disturbances directly, i.e. transition does not originate from linear disturbances
that first must grow to become large and nonlinear. This transition mechanism is also known
as by-pass transition, and is still poorly understood. Most nonlinear theories which describe
transition, depart from linear instability. The fact that linear instability does not exist in this
case, makes the theoretical approach much more difficult and as yet no theory has been able to
resolve the problem. This leaves only two routes open to be followed; i.e. numerical simulation
and experiments.

73
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Numerical simulation techniques applied to transition problems have shown very nice results
in the past, and it promises to solve many present mysteries of the transition process in the
future. Particularly, in boundary-layer and plane Poiseuille flows, numerical simulations of
transition have been very successful (for a review see e.g. Kleiser & Zang 1991). Both the
temporal as well as spatial development of disturbances have been studied. Direct numerical
simulations in pipe flows are somewhat more complicated due to the cylindrical geometry.
However, in the past few years progress has been made on the direct numerical simulation
(DNS) of fully developed pipe flow (Eggels et al. 1994). It is to be expected that numerical
simulations of pipe-flow transition will soon be able to study disturbed pipe flows at high enough
Reynolds numbers so that the actual transition to turbulence can be captured. Also, numerical
simulations of non-Newtonian turbulent pipe flows emerge (e.g. Toonder 1995). This requires
even more computer power than for Newtonian flow simulations, so that numerical simulation
of non-Newtonian transition will take a few years more to become established. Nevertheless,
we expect it to be available in the next millennium.

Research in transition, and particularly transition in pipe flow, started with the publication
of Reynolds (1883). Ever since, many investigators have tackled the transition problem in pipes.
Although, progress has been made, the problem is still far from being solved. Recent advances
in numerical simulations and nonlinear dynamical systems theory as well as the discovery of
so-called algebraic or transient growth of disturbances, has renewed the interest in transition
research. All these developments call for detailed experiments on flow stability in Newtonian
fluids and should preferably be also extended to non-Newtonian fluids.

Laminar-turbulent transition in e.g. industrial applications normally occurs at the minimum
critical Reynolds number because large flow disturbances are present. Given the fact that the
details of these disturbances are generally not know, it seems preferable to study pipe-flow
transition under more controlled circumstances. This is possible when the flow is maintained
laminar up to high Reynolds numbers (e.g. Wygnanski & Champagne 1973 and Pfenniger 1961
and the transition to turbulence is triggered by adding a well controlled disturbance. In this
manner, we know the characteristics of the disturbance that actually triggers transition and are
also in a position to easily change parameters like frequency and magnitude of the disturbance
so that we can study the development of transition as a function of the disturbance.

Our first step has been to review existing experimental pipe-flow facilities that have been
used in the past to perform such studies, which is the subject of section 5.2. Against this
background we have designed a new experimental pipe-flow facility which is especially suited
for the study of laminar-turbulent transition, in particular also at Reynolds numbers much
larger than the minimum transition Reynolds number and that can be used for Newtonian and
non-Newtonian fluids. The specifications, the design and construction of this new facility is the
main subject of this chapter. The following sections are dedicated to a detailed discussion of
the various vital components in the setup, e.g. the settling chamber, the pipe sections and the
LDV-measurement sections, the pump and polymer mixing facilities. The characteristics of the
measurement equipment are reviewed in section 5.11. The overall flow characteristics of our
pipe-flow facility will be discussed in section 5.12 to illustrate the quality of the experimental
setup. its quality. Finally, the mechanism used to generate the disturbances that trigger the
transition is described in section 5.13.
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This chapter contains many details which are directed to fellow experimenters and thus a
warning to those not falling in this category is in place before reading is continued: Those
who find the material presented in this chapter boring, are strongly advised to refrain from
any actions even vaguely resembling experiments. In particular any activities involving pipe
geometries and definitely, those concerning water and polymers are to be avoided at all costs.

Nevertheless, non-experimentalists may find it eye-opening to completely read this chapter,
just to get some taste of what a painstaking process the construction of a new experimental
facility is.

5.2 Existing pipe-flow facilities

We will give a brief overview of some of the experimental facilities that have been used in
the past to study pipe-flow transition. All of the facilities mentioned here used a carefully
designed entrance, e.g. in the form of a settling chamber or a trumpet entrance. In this way,
a low turbulence entry flow is generated which then could develop to a laminar flow above
the minimum transition Reynolds number. The most important geometrical characteristics of
these facilities are listed in table 5.1 together with the maximum Reynolds for which laminar
flow was achieved, i.e. Renay: Also, the maximum Reynolds number is listed for which the
flow can be considered as fully developed at the outlet of the pipe, i.e. Reggy,. We use the
common definition for fully developed flow that the centerline velocity has reached 99% of the
corresponding theoretical value of the parabolic profile. The length which is necessary for the
flow to develop from a flat entry profile to this stage is called the entrylength. It depends
linearly on the pipe diameter D and the Reynolds number Re (based on bulk velocity and D)
according to Christiansen & Lemmon (1965):

ng% =0.056 Re- D (51)

When Lggy in equation 5.1 is replaced with the length of the pipe, Reggs, is obtained and is
listed in table 5.1. Both Reshotko (1958) and Pfenniger (1961) used a vacuum pump to suck air
through the pipe. An adjustable sonic throat was used to regulate the flow rate and to avoid
any upstream influence of pressure fluctuations or acoustical disturbances originating from the
punmp. Also, care was taken to insulate the pipe from mechanical vibrations. Reshotko used
an aluminum pipe which consisted of 7 sections of which the inner surface was honed smooth.
Connecting section ends have internal diameters which are equal to within 5 um. In the settling
chamber five screens were placed to break-up large scale flow disturbances. The tests were
conducted in a completely enclosed, windowless room. The temperature ranged between 20.6
and 25°C with no more than 1.5°C variation during any one day. Careful alignment of the pipe
sections was found to be extremely important. Reshotko claims that “changes of as little as
0.0101in. (0.25 mm) in the lateral position of the pipe can cause asymmetries in the flow of the
order of 5%”, which were attributed to centrifugal effects. He suspected that elongation of the
pipe due to thermal expansion resulted in such lateral deflection. This could lead to centrifugal
affects. This hypothesis is in agreement with his findings that the deviations from the parabola
increase with Reynolds number. Reshotko also found secondary circulations due to buoyancy
for very-low-speed flows, leading to an asymmetric axial velocity profile.
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Table 5.1: Main characteristics of pipe-flow facilities used to study transition to turbulence. The contraction
ratio CR is defined as the ratio of the cross sectional area of the settling chamber to that of the pipe. For
comparison, the features of the old short facility and the newly constructed pipe-flow facility are already listed.

Researcher D L L/D CR Rey.x  Regey, medium
mm m

Reynolds 1883 26 14 55  tr¢ 13000 1000 water
Ekman 1909° 26 1.4 55 tr° 45500 1000  water
Reshotko® 1958 51.3 41 800 36 23000% 14300 air
Leite 1959 32 22 700 64 20000% 12500 air
Pfenniger 1961 50.8 22.8 450 16 100000 8000 air
Fox et al. 1968 13 3.3 250  tr¢ 5000 4500 water

Wygnanski & C. 1973 33 165 500 340 45000 8900 air
Barker & Gile 1981 102 6.1 60 36 250000 1100  water
Darbyshire & M. 1995 20 3.8 190 tr€ 17000 3400 water

Draad 1996 40 32 800 9 63400 14300 water

“Laminar flow existed at the maximum obtainable Reynolds numbers.
bInformation on Ekman was taken from Pfenniger (1961).
Ekman performed his experiments in Reynolds’ original setup.
Instead of a settling chamber a trumpet entrance was used.
¢A tandem of a trumpet entrance and a settling chamber was used with a total CR=340.
¢The equipment was designed and the experiments directed by John Laufer.
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Further evidence for asymmetric velocity profiles is given by Leite (1959), who found asym-
metry in the vertical direction due to thermal convection. The symmetry was restored by the
placement of a heating element in the top half of the pipe.

The experimental facility of Pfenniger (1961) used twelve damping screens in the settling
chamber. The pipe is made of extruded aluminum alloy tubes of which the inner diameter did
not vary more than 0.02mm. “In order to maintain an uniform temperature distribution at
the inlet, the test setup was mounted in a bomb shelter. During the afternoon the temperature
gradient was generally slightly stable, thus minimizing the possibility of convection currents in
the contraction cone downstream of the screens.” Fox et al. used a water storage tank and a
glass pipe with a trumpet entrance with a contraction ratio of 75:1.

A particularly interesting and widely quoted experiment has been performed by Wygnanski
& Champagne (1973). They used a seamless aluminum pipe consisting of five sections. These
were chosen out of approximately 100 similar sections in order to minimize and match their
eccentricity. After the pipe was fixed and aligned, the entire pipe was honed. Tolerance
on the alignment was better than £1mm over the entire length of the pipe. Wygnanski &
Champagne thermally insulated the entire pipe assembly and did not take measurements when
the temperature deviated more than 0.5°C of the prescribed value. They stress the necessity
of maintaining a constant temperature along the entire pipe: “Room air-conditioner vents
discharging 8 ft away from the bare pipe or a 100 W bulb placed 60 cm away from the uninsulated
plenum chamber could distort the parabolic profile beyond recognition.” They used one screen
and a honeycomb in their second stage of the settling chamber.

The experiment of Barker & Gile (1981) was aimed at the study of the heat-stabilization of
the boundary layer in a laminar pipe flow. They used a ‘blow-down’ type facility, i.e. the water
is not recirculated, for two reasons. First, as heat must be added continuously, a heat exchanger
would be needed to maintain a constant temperature. Second, they want the entrance free-
stream turbulence level to be less than 0.05% which they found difficult to achieve in a closed
water facility. Therefore, they used water from a reservoir which was run through their pipe
facility and discharged into a lake below the laboratory. The settling chamber that contained
several screens, honeycombs and porous foam and has been operated with two contractions.
In the conventional contraction, a suction section right in front of the contraction was used to
completely remove the turbulent boundary layer that existed in the settling chamber at high
velocities. Barker & Gile found a wave like dependence of the boundary layer velocity in the
azimuthal direction. They suggested that this was a result of the generation of Gértler vortices
in the concave part of the contraction. However, replacement of the conventional contraction
with a bell-mouth shaped inlet did not remove these wave like variation of the velocities. Thus,
Gortler vortices did not cause these variations after all.

Finally, Darbyshire & Mullin (1995) perform a pipe-flow transition experiment with a Per-
spex pipe consisting of sections with a length of 158 mm. These section were individually
machined and assembled to a total pipe length of 3.8 m. This machining was done to ensure a
uniform cross section over the entire pipe. The fluid was sucked through the pipe by a cylindrical
piston, driven at a constant speed, so a constant mass flux rate system was achieved.

When we compare the maximum Reynolds number for which laminar flow could be main-
tained, i.e. Reémax, t0 the highest Reynolds number for which the flow is considered to be fully
developed, i.e. for Regey , big differences can be seen. The most extreme values are found
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for Barker & Gile (1981). They achieved laminar flow for a magnificent Re=250000 but the
flow is only fully developed up to Re=1100. However, fully developed flow at their maximum
Reynolds number would require a pipe length of over 1400 m! In their experiments this was no
problem as they wanted to study only boundary layer flow at the wall. Also, Reynolds 1883,
Ekman, Fox et al. 1968, and Darbyshire & Mullin 1995 used relatively short pipes leaving them
little or no variation in Reynolds number to study triggered transition to turbulence in fully
developed pipe flow.

Reshotko, Leite, and Darbyshire & Mullin all achieved laminar flow up to the maximum
flow rate capacity of their system. Given the care with which their facility was manufactured,
it is likely that the quality of the pipe was sufficient to sustain laminar flow at much higher
Reynolds numbers.

5.3 Requirements

In this section we will discuss the requirements which can be formulated for our experimen-
tal setup. The goal is to successfully measure laminar-turbulent transition in pipe flow for
Newtonian and non-Newtonian fluids.

Let us discuss the most important considerations for several of the main features of the
pipe-flow facility.

1. Pipe diameter and length: These two parameters cannot be considered separately. For
the study of triggered transition in pipe flow, it is preferred to have a fully developed flow,
since this facilitates comparison with theory and numerical simulations. From equation 5.1
it is then clear that research on triggered transition at high Reynolds numbers for fully
developed flow requires a large length/diameter ratio. Since transition can be triggered
only for Re>1800 (Darbyshire & Mullin 1995), Regy>10000 is desirable to have a
reasonable range of Reynolds number to perform experiments on fully developed flow.
Equation 5.1 then implies L/D>560 which can be realized with a short pipe for a small
diameter or with a long pipe for a large diameter. When details of the flow have to be
measured, a large pipe diameter is preferable. Also, scaling rules for polymer solution
fows are still not well understood and pipe diameters of several centimeters or larger
would give results that are closer to application conditions than much smaller tubes. Our
requirements lead to a large pipe diameter and a long pipe length.

2. Re-range: For measurements on triggered transition to turbulence, a Reynolds num-
ber range of 2000 to 10000 would be a minimum requirement. An extension to larger
Reynolds numbers would be desirable, especially when we want to study scaling rules of
e.g. minimum disturbance amplitude needed for transition with Reynolds number.

3. Measurement time: Accurate measurements of statistics of fluctuating quantities , such
as occurring during transition and turbulent flow of water and polymer solutions, implies
a long measurement duration. For turbulence measurements, the required measurement
time increases rapidly when increasing the order of the statistics, and measuring times
may have to become as long as several hours.

For triggered transition measurements, measuring times can even become longer. This
is mainly caused by the many parameters that can be varied, i.e. Reynolds number,



5.4. Pumping polymers 79

disturbance magnitude, and disturbance frequency. This results in a large number e.g.
Reynolds number—disturbance amplitude combinations for which the frequency at which
transition to turbulence occurs has to be determined. These measurements typically take
several days.

The combination of a large pipe diameter and the Reynolds numbers mentioned in item 2.
leads to fairly large fluid quantities that have to be pumped through the pipe. With this
large fluid volume, pre-mixing the amount of polymer solutions required, makes a ‘blow-
down’ type facility practically impossible. Thus, a recirculatory flow facility is needed.
However, recirculation may lead to polymer degradation. Therefore, we must optimize
our experimental set-up in order to minimize degradation of the polymer solution such
that the properties of the polymer solutions are fairly constant during a measurement.

4. Constant flow rate vs. constant pressure gradient: For a constant-pressure-gradient driven
flow system, oscillation in flow rate can occur when the flow is near the transition. If
transition to turbulence occurs, this leads to a decrease in flow rate when the constant
pressure drop remains constant. At this lower flow rate, relaminarization may occur,
accompanied by a low pressure drop. Thus the flow rate increases again which in turn
results in transition. Such behavior is highly undesirable. Also, the Reynolds number
decreases during a transition to turbulence. For these reasons, we prefer to use a constant
flow rate.

5. Cleaning: Polymer solutions can be used only for a limited amount of time. Thus, the
solutions have to be changed regularly. In order to clean the experimental setup and to
remove old polymer solutions, the flow facility should be designed such that the polymer
solutions can be easily discharged. The amount of solution that stays behind should be
minimized and filling the facility with a fresh polymer solutions should be easy.

These are the most important requirements for the new experimental setup. Many of the
other requirements and choices will be discussed while we discuss the details of our setup. Before
starting this discussion, we should begin with some background on the polymer solutions and
in relation to this a discussion on the pump. This will be the subject of the next section which
also includes some of the degradation tests that we performed within the framework of the
design process.

5.4 Pumping polymers

The reason for discussing the polymers in combination with the pump is the fact that polymer
solution degrades by mechanical action both by the flow and the pump. Let us first define
mechanical degradation as the process of breaking of the polymers by mechanical actions.
Highly turbulent flows and pumps (in particular several types of pumps) can cause mechanical
degradation, and the result is a reduction of the molecular weight of the polymer. This in return
has a strong effect on e.g. its non-Newtonian properties. Since we plan to use a recirculatory
facility, special attention should be paid to mechanical degradation. This will in principle
determine the maximum measuring time, because severe mechanical degradation would lead to
unacceptable changes in the measurement conditions.
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To select a suitable combination of polymer and pump, we performed several degradation
tests to find out which combination of polymer and pump would minimize mechanical degra-
dation. For experiments with dilute polymer solutions, polyethylene-oxide (PEO) and poly-
acrylamide (PAM) are probably the polymers that are most often used, in particular Polyox
WSR-301 (Union Carbide) and Separan AP-273 (Dow Chemical Company; presently delivered
by Floerger (France), under the name Flocculant AP-273). In addition to these two polymers,
we studied also Superfloc A-110 (Cytec Industries, formerly American Cyanamid Company)
which is a partially hydrolyzed polyacrylamide (PAMH). Superfloc A-110 was mainly included
in the tests because it changes its conformation depending on the salt concentration which
results in spectacular changes in flow behavior and possibly in transition behavior as well (Virk
& Wagger 1990 and also section 7.2 on page 157).

All three polymers mentioned above are commercially available bulk products mainly used as
flocculants in water treatment facilities. PEO is a linear, flexible molecule which is commercially
available in a range of molecular weights (MW). Polyox WSR-301 has a MW of 4 - 10° g/mol.
Separan AP-273 (PAM) has a molecular weight of 4 — 6 - 10° g/mol. PAM differs from PEO in
that it has a side chain. Superfloc A-110 is partially hydrolyzed polyacrylamide (PAMH) having
a molecular weight of 6 — 8- 10® g/mol, where hydrolysis is a chemical process of decomposition
involving splitting of a bond and addition of the elements of water. As a result, PAMH has two
possible side chains. The chemical structures of the three polymers are shown in figure 5.1.

polyethelene-oxide (PEQ) polyacrylamide (PAM)
—CH, CH,—O+ +CH2—CI)H—)n—
C=0
partially hydrolized polyacrylamide (PAMH) l
NH
—eCHz—cI:H-ax——eCHz—cl:Hﬁ; ?
c=0 c=0
OH NH,

Figure 5.1: Chemical structures of the polymers used in the preliminary investigation on mechanical degradation.

Polymers can be subject to oxidative degradation by e.g. chlorine and peroxides. Furthermore,
metal ions such as copper, iron and nickel enhance oxidative degradation. Polyacrylamide
solutions are noncorrosive to most common construction materials, but galvanized (zinc) or
aluminum equipments should be avoided for corrosion reasons. It is therefore advisable to
minimize the use of metals in the facility in components which have direct contact with the
solution.

The type of pump is clearly very important with respect to mechanical degradation. Pump
types which are known to be ‘polymer friendly’ are positive displacement pumps, i.e. gear
and Moyno pumps (progressive cavity pump). However, these pumps give a pulsating flow.
Moreover they are very expensive, especially when no metal interior parts are allowed. On
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the other end of the spectrum stands the centrifugal pump which is notorious for its high
mechanical degradation of polymers. An alternative pump type is the disc pump (Discflo
Corporation, California USA). A disc pump is essentially a centrifugal pump with discs instead
of fans. The fluid enters the pump through the central orifices in the discs (see figure 5.2).
Since the blades of a centrifugal pump are absent, the flow through a disc pump is much less
vigorous. This pump type is used in industry where damaging of solids in the fluid needs to be
avoided, e.g. pumping corn or strawberries.

outlet

Figure 5.2: Sketch of the disc pump.

We studied the mechanical degradation of the centrifugal and the disc pump in combination
with the three polymers mentioned earlier. To estimate degradation, we measured the drag
reduction capability of the polymer solution as a function of time in a turbulent pipe flow,
because drag reduction is directly dependent on the quality of the polymers. Before discussing
the results we need an indicator for the amount of mechanical degradation that has occurred.
For this we use the amount of drag reduction capability of the polymers. We use the following
definition for the amount of drag reduction:

DR = (f%:ﬂ&) x 100% at constant Re (5.2)
M,s

where fi, is the friction factor for the additive solution and fass is the friction factor for the
solvent alone. The Moody friction factor fus is defined as

D
Iy o
2

dp

fu= |5

Where |dp/dz| denotes the pressure gradient, p the density of the solution, and W the bulk
velocity. If the viscosity is not increased by the addition of polymers, keeping Re constant is
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equivalent to a constant flow rate Q. For coiled polymers, assuming that the viscosity does not
change is a reasonable approximation!'. Then, equation 5.2 is equivalent to

Aps — Ap,

DR = ( Ap,

) x 100%  at constant Q (5.4)
where Ap is the pressure drop measured between two pressure measuring holes.

Detailed information on the degradation experiments can be found in Toonder et al. (1995).
Here, we present only some of the most important results. Comparing the measurements for
a 20 ppm Separan AP-273 solution with the centrifugal and the disc pump, clearly affirms the
severe mechanical degradation caused by the centrifugal pump. A disc pump is clearly to be
preferred over a centrifugal pump as follows from figure 5.3.
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Figure 5.3: Degradation of 20 ppm solution of Separan AP-273 in tap water for different pump types. Re=19500
and Q=151/min. The volume of the closed flow loop is 131.

Thus, the pump type strongly influences the amount of mechanical degradation, but also the
polymers themselves display a large difference in resistance to mechanical degradation, which we
illustrate in figure 5.4. The Polyox solution shows a fast degradation; i.e. within 20 minutes, the
drag reduction was reduced to a few percent. Clearly, Polyox is not suited for use in recirculatory
facilities. The Separan solution is much more stable. After 21.5 hours of recirculation still 9%
drag reduction remained and thus degradation was relatively slow. The Superfloc solution is
clearly the most stable solution. After about 20 hours of recirculation, a platean? of about 18%
drag reduction seems to be retained.

Also, the amount of drag reduction shown in figure 5.4 shows a reasonable correlation with

1Even at these concentrations of 20 ppm a small increase in viscosity can be observed. For stretched polymers
such an assumption is certainly no longer valid. For a more detailed discussion and measurements see chapter 7

and appendix E.
2Such a plateau was not found in the newly built experimental setup (Toonder 1995).
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Figure 5.4: Degradation of different 20 ppm polymer solutions in tap water. Re=19500 and @=151/min. The
volume of the closed flow loop is 131.

the number of passes through the system. This indicates that a large system volume reduces
the rate of mechanical degradation, and thus results in fairly constant conditions during the
measurements of e.g. a velocity profile.

Summarizing, we have seen that the combination of the partially hydrolyzed polyacrylamide,
Superfloc A-110, and a disc pump leads to the smallest mechanical degradation. Furthermore,
the use of metals in the facility should be minimized and a large system volume slows down the
decrease in drag reduction capability. In the next section, a general overview of the new setup
will be given. In-the sections thereafter, a detailed description of some of the most important
components in the facility is given together with the main design criteria and considerations.

5.5 Overview of new facility

Next, we will give an overview of the experimental pipe-flow facility, which has been designed
for the study of the effects of polymer addition on transition to turbulence.

The considerations on the pipe diameter and L/D as presented in section 5.3, lead to a
length/diameter ratio of L/D>560 and a diameter of at least several centimeters. Given the
available space, the pipe diameter of 40 mm was chosen with options to accommodate 20 mm and
80mm in future. For the length of the facility a maximum of 36 m was available. The settling
chamber, discharge chamber, and the flow meter are also to be placed on the same support,
thus leaving a net length of approximately 32m for the pipe. This results in L/D=800, viz.
the facility places itself among the longest transition facilities (see table 5.1).

A schematic overview of the pipe-flow facility is given in figure 5.5. The facility has two
storage vessels, each having a capacity of 0.59m® A disc flow pump (Discflo corporation,
California USA) is used circulate the solution through the settling chamber into the pipe. The
settling chamber is used to eliminate swirl and suppress disturbances such that a laminar flow
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can be maintained up to high Reynolds numbers. In the pipe, test sections can be placed at
any location to study the flow using e.g. Laser Doppler Velocimetry (LDV) or Digital Particle
Image Velocimetry (DPIV). At the downstream end of the pipe, a magnetic inductive flow
meter (Krohne-Altometer) is used to monitor the flow rate. Finally the flow enters the discharge
chamber, which is relatively big, again to increase the volume of the system. A 150 mm return
pipe takes the flow back to the storage vessels.

. 850 D=34m
reservoir
discharge
flow chamber
injection meter
—1 D flange —
1, n

setiling chamber

—

test section L_J

disturbance
mecharnism

return pipe

Figure 5.5: Sketch of the new pipe-flow facility for research on the effects of polymer addition on drag reduction
and transition. The inner diameter of the pipe is 40 mm.

The disc pump was delivered by Begemann Pompen (presently EnviroTech pumpsystems).
They manufactured disc pumps under license of Discflo Corp., California USA. The entire
pump housing and the discs are made of epoxy resin in order to avoid any metal contact with
the polymer solution. The six discs have an outer diameter of 210 mm and a spacing of 2mm.
The fluid enters the pump through a central orifice in the discs of 80 mm and leaves the discs
at the perimeter as a result of the centrifugal force (see figure 5.2). The disc pump is driven by
a 2.2kW electric motor (ABB Motors MT100LB04). The motor is controlled by a frequency
regulator (ABB Drives, SAMI-GS-ACS-501004/3) which allows various control options. The
motor can be operated at a constant rotational speed. Alternatively, the measured flow rate or
pressure drop can be used as an input control signal for the frequency regulator, hence keeping
either the flow rate or the pressure gradient constant during an experiment.

To meet the various operational demands, we equipped the facility with an extensive network

of pipes. This gives us maximum operating flexibility. The components with the network of
pipes and valves is shown in figure 5.6.
To minimize mechanical degradation, the pipes connected to the suction side of the pump, i.e.
the pipes connected with valves #1 to #3, and the pipe connecting the return pipe with the
reservoir all have an inner diameter of 80 mm. Because of limitations in available space, the
pressure side of the pump consists of 40 mm piping and valves,

Before discussing the various operating configurations, we first give the fluid capacities of
the various components in table 5.2.

Let us now take a look at some of flow loops that can be realized with network shown in
figure 5.6.

¢ Under normal operating conditions, all valves would be closed except for #1, #5, and #9.
In this case the fluid is pumped from the reservoir to the settling chamber, through the
measurement pipe, the discharge chamber, and via the return pipe back to the reservoir.
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Figure 5.6: Pipe network lay-out with the main components and the location of the valves for the new pipe-flow
facility. The two storage vessels are denoted ‘reservoir’ and ‘mixing vessel’ after their most common use. #1 to
#12 are spherical valves, #13 (how appropriate) is a pressure-relief valve, and #14 is a one-way valve.

Table 5.2: Capacity of the various components in the flow facility in m®. The total system volume with the
mixing vessel excluded (normal operating condition) is 1.51m®. Including the mixing vessel maximizes the
system volume to nearly 2m®. Raising the levels in the vessels may even result in an extra 0.1 m?® per vessel.

Component Capacity
(m?)

Reservoir 0.48*

Mixing vessel 0.48%

Settling chamber 0.05
Measurement pipe 0.04
Discharge chamber 0.25
Return pipe 0.64
Piping network 0.05

®This is the value for the standard level in the vessel.
Filled till 2cm of the edge, the capacity becomes 0.59 m3.
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This results in a system volume of 1.5m?®. Closing valve #1 and opening valves #2 and
#8 includes the mixing vessel in the flow loop increasing the system volume to 2.0 m3.

e In order to minimize the system volume, the flow facility can be operated without the
use of the two vessels. In this case, all valves would be closed except for #3, #5, and
#9. In the case that the entire discharge chamber and the return pipe is filled, which is
not necessary, the system volume amounts to 1.0m3. Operating with an empty discharge
chamber and only partly filling the return pipe, one could further reduce the system
volume to something like 0.4 m3.

e When filling the pipe with a polymer solution, the typical procedure would be the fol-
lowing. First operate the facility with water. This is necessary to get rid of dissolved
air in the water which likes to accumulate at low velocity places. The place where the
problems are encountered is in the settling chamber, where small air bubbles stick to the
contraction wall and also block the fine screens. Normally, circulation for one or two days
is needed to eliminate these bubbles. Then, after closing all valves and opening valves
#3, and #6 or #7, the water can be pumped back into the storage vessels. This is the
configuration where the one-way valve #14 is needed to prevent air from entering the
suction side of the pump. Then, after closing #3, depending on the position of valves
F1, #2, #6, #7, and #8, the fluid can be circulated in each vessel separately or between
the two storage vessels. In this situation, concentrated polymer solution can be added to
the water to produce the dilute polymer solution. The impeller mixer can alsc be placed
in a vessel to enhance the mixing process.

After the mixing of the dilute solution is finished, all valves are closed and #2 is opened
to release the content of the mixing vessel into the return pipe. Then, closing valve #2
and opening valves #1, #5, and #9 in this order will start the flow of the dilute polymer
solution while the water in the settling chamber and the measurement pipe, is mixed
in. In this way, the polymer solution does not have to circulate for one or two days to
eliminate the air bubbles that would have been present if fresh water was used to make
the dilute polymer solution.

o When all valves at the pressure side of the pump are closed, a dangerous situation can

emerge. Particularly dangerous is the situation where the pump is regulated to give a
constant flow rate and suddenly the last open valve on the pressure side of the pump is
closed. This would cause the pump to accelerate to its maximum rotational speed (which
can be programmed in the pump control unit). Then, the pressure-relief valve #13 opens
and discharges into the reservoir to prevent any damage to the facility.

o The outlet of the settling chamber is connected to the suction side of the pump by means
of valve #4. By opening this valve, we can use the disc pump to (partly) empty the
settling chamber into one of the storage vessels.

o Valve #9 is added to be able to isolate the measurement pipe from the rest of the facility,
e.g. when making the dilute polymer solution. It can also be used as a throttle valve.
This can stabilize the control of the pump at very low flow rates by introducing extra
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resistance. Such a throttle valve has to be located before the discharge chamber in order
to prevent exposure to large pressures which could overload the chamber.

e Valves #10 through #12 are drain valves used to discharge the fluid into the sewer system.
The polymers we used are non-toxic and at the quantities that we use they do not disturb
the waste-water purification process.

o To prevent any large dirt particles to enter the pump and the settling chamber, we placed
a filter element in the pipe at the suction side of the pump. The screen size that we used
in this filter element is 0.5 mm.

e A large amount of three-part threaded couplings have been used for easy assembly and
access of the various piping sections. Also, all spherical valves have threaded ends. In this
way, the valves do not have to be glued to the piping and can be reused when changing
the piping layout.

Now that we have presented an overview of the new facility, we will further discuss the most
important components in the system separately. The mechanical construction that constitutes
the backbone of the pipe-flow facility is discussed in section 5.6. The central part of the
facility is of course the pipe itself. This, the test sections, and the flow meter are reviewed
in section 5.7. In order to obtain laminar flow at high Reynolds numbers, a high-quality
pipe is needed together with a carefully designed settling chamber. The design of the latter
is presented in section 5.8. In the section thereafter, the features of the discharge chamber
and the return pipe are explained. The dispersing vessel, i.e. the smaller vessel in which the
concentrated master polymer solution is prepared, is discussed together with the two storage
vessels in section 5.10. In section 5.11, we will discuss some of the measurement equipment
that we used, like the pressure drop transducer, the flow meter, LDV and DPIV equipment,
and thermometers. Then we will present some of the results to give an indication of the quality
of the pipe and some of its peculiarities. Finally, the design of the disturbance mechanism that
we used to trigger the transition to turbulence is considered.

5.6 Mechanical backbone

The mechanical support for the measurement pipe constitutes the backbone of the facility and
is 36 m long. It consists of 6 H-beams (HE-A 200, 200 mm wide and 190 mm in height, each
6m long), that are placed on supporting beams, mounted on 0.7m high concrete fence posts
(Heras Hekwerk) as shown in figure 5.7. A total of 20 fence posts is used, placed every 2m,
three for each H-beam and an additional one at each end of the facility, where the settling
and the discharge chamber are placed. The settling chamber and the discharge chamber are
mounted on the H-beams as well. For this, two 1 m long H-beams are placed next to the central
H-beam on the support beams at each end of the 36 m long support structure. As the discharge
chamber is placed directly on the three H-beams (the central one plus two 1 m H-beams at each
side), we constructed a leveled the top surface using epoxy resin.

To insulate the facility from mechanical vibrations® , we placed the concrete fence posts on 6

3 As support for this, we quote that modern traffic in the streets of Manchester made the critical Reynolds
number in Reynolds’ original apparatus lower than the value of 13000 found by Reynolds (Dyke 1982, p. 61).
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Figure 5.7: The mechanical support structure of the pipe-flow facility which in essence functions as the backbone
on which all components are mounted, except for the disc pump and the storage vessels. Here, the pipe is drawn
without the insulation material which is used to suppress convection. The brackets for the return pipe are not

drawn.

sponge-rubber pads (diameter=100 mm and height=15mm). These rubber pads also compen-
sate for irregularities in the concrete of the posts and the basement floor. Four threaded bushes
(M20) are casted in the concrete fence posts. The threaded ends are used to adjust and fix
the supporting beams. The H-beams were not entirely straight and the two flanges not exactly
parallel. Therefore, the H-beams are placed such that on average a reasonably straight and
horizontal top surface is obtained on which the holders for the measurement pipe can be placed.
The 6 m H-beams are connected to each other with three steel plates, one is bolted to the top
flange and the other two are placed at each side of the vertical core of the H-beam. In this way,
we obtained a very stiff construction that is mechanically insulated from the environment and
which provides a good platform on which all the components of the flow loop can be mounted.
The pump and the two vessels (mixing vessel and reservoir) have a separate support structure.
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A rubber bellow is placed at the suction side of the pump. The pressure side of the pump is
connected to the settling chamber through a rubber hose. Similarly, a rubber hose is used to
connect the return pipe to the pipe section in which the one-way valve is placed. The bellow
and the rubber hoses are used to mechanically insulate the measurement pipe from the rest of
the piping system.

We used casted aluminum holders for the support of the measurement pipe. All together,
the measurement pipe is mounted at approximately 1.1 m above the ground, which provides
a convenient working height. We placed these holders at every 0.5m, viz. a 2m pipe section
is supported by four holders. In this way bending or distortion of the pipe can be minimized.
Using four M12 adjustment bolts, allows for an accurate adjustment of the pipe in the holder,
see figure 5.7. The bolts have plastic caps made of Multilene MRG, a hard ultrahigh molecular-
weight polythene, which prohibits scratching and provides a low friction coefficient. The latter
is needed to accommodate thermal expansion of the measurement pipe. For the alignment of
the pipe, a HeNe-laser was used to give a horizontal laser beam over the entire length of the
facility. We used a level tube for the horizontal adjustment of the laser beam, with an estimated
maximum error of 0.2mm over 36 m. By placing a disk having a circular grid in the end of the
pipe sections, we can align each pipe section within 0.2 mm of the laser beam position.

The support beams carry the H-beams, but they are also used for mounting the return
pipe, the cable duct, and the traversing system support structure as is shown in figure 5.7. The
return pipe is supported by strong brackets to carry the large weight when it is totally filled
with water. The return pipe has a gradient of 1 in 100 to facilitate emptying of the facility. The
traversing system support for the LDV- and DPIV-equipment consists of a horizontal stainless
steel shaft mounted on an I-beam (HE-B 160, width=80 mm, height=160 mm) having a length
of a little over 4m. These I-beams are thus carried by three support beams and can be moved
along the entire facility. Ball bushings are used to facilitate the movement of the traversing
system of the LDV- and DPIV-equipment. For the alignment of the two shafts at each side of
the facility, a stiff U-shaped arch could be placed over the pipe. The ends of the U-bend arch
were machined in one fixture such to obtain perfectly parallel surfaces and the holes in the ends
coincide with those of the LDV-traversing system.

5.7 Measurement pipe and components

5.7.1 Introduction

In this section, we will discuss the most important features of the measurement pipe. In
particular, the connection of pipe sections is given much attention. In the measurement pipe,
also a special LDV-section is used to eliminate refractive index effects. We have made two
designs for this test section. Furthermore, special attention is paid to the connections of the
flow meter and its support.

5.7.2 Measurement pipe

As we have discussed in section 5.2, most of the long pipe-flow facilities used for transition
at high Reynolds numbers, consist of aluminum pipe sections, often honed to obtain a high
precision of the inner diameter. However, as discussed in section 5.4 on the polymers, metals
in general and zinc and aluminum in particular, should be avoided in the flow facility, due to
degradation of the polymers. This basically leaves us with glass and plastic as construction
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materials for the measurement pipe. The biggest problem with using plastic is the extremely
large dimensional tolerances. Variations of 5 to 10% on wall thickness are standard and in
general the measurement is specified on the outer diameter.

Glass can be manufactured with a much higher precision. Precision glass tubes manufac-
tured by Schott Ruhrglas have a tolerance for a 40 mm internal diameter pipe of 0.01 mm with
a maximum length of 1m. These tubes can also be ground at the ends to have flanges for
accurate concentric assembly. Unfortunately, these ground tubes can be supplied only having
beveled edges of at least 0.2 mm, leading to V-shaped discontinuities in the inner diameter and
would probably cause small air bubbles to gather in these grooves. This is quite unacceptable
for a low disturbance pipe. Furthermore, glass is rather fragile and difficult to machine. Also,
any machining can be done only in a specialized workshop, so no minor changes can be made
by the experimenter.

All these disadvantages of glass as a construction material have forced us to use plastic.
We have chosen Plexiglas since it is a transparent and widely used material. Transparency
is needed for dye visualization experiments and convenient to check for any air bubbles (a
horizontal one-phase flow makes one allergic to a two-phase system, particularly in extremely
sensitive laminar flow facilities). The use of plastic implies that we have to take counter
measures to compensate for the larger dimensional tolerances mentioned above. Instead of
using standard extruded pipes, we used centrifugally moulded Plexiglas pipes, that were all
manufactured in one batch. This ensures minimum dimensional variation between the pipe
sections. Furthermore, centrifugal moulding reduces the ovalness of the pipe.

Nevertheless, small steps in diameter cannot be completely avoided. This is why we paid
special attention to the connections of the pipe sections. In order to make the connections flush
and the pipe sections interchangeable, the ends of the pipes are made slightly conical having
a top angle between 2 and 3 degrees. It is vital that the centering of the pipe be done on the
inner diameter. To ensure this, the pipe is fixed in a lathe and the end of the pipe is centered
around a cone. In this way, the pipe is automatically centered on the inner diameter. The outer
diameter of the pipe is then cut from the original 50 mm to 48 mm over a length of 60 mm. This
surface is exactly centered with the inner diameter. Over this outer surface, a flange is shifted
and and glued to the pipe. The flange has an O-ring seal. Fixing the pipe at the flange centers
the pipe at the inner diameter and permits the shaping of the end. The facing surfaces of the
pipe sections are squared, and the slight cone is cut such that all pipe sections have the same
diameter at their facing ends. This procedure resulted a pipe diameter at the facing ends of the
pipe of 40.5540.02 mm. The inner diameter of the pipe outside the conical ends is 40.0 mm. A
centering ring seals and centers two adjacent pipe ends and the two rings bolted together with
threaded ends secure the connection as is shown in the top half of figure 5.8. For the O-ring
we used a silicon rubber ring which is relatively soft and permits displacement of the centering
ring by hand under most conditions. If, movement by hand is impossible, a split flange can be
placed in front of the pipe flange and the centering ring can be positioned with the help of the
threaded ends, as is shown in the bottom half of figure 5.8.

A big advantage of the connection design, is that in order to (re)place pipe section, no extra
space is needed. In a previous pipe-flow facility, the pipes had threaded ends. This resulted in
several undesirable effects. For instance, when a pipe section had to be replaced, all downstream
sections not only need to be shifted, but in order to unscrew the connections, all these pipe
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Figure 5.8: The design of the pipe connection which centers the two pipe ends at the inner diameter of the pipe
and assures a flush connection and a good watertight sealing. The top half of the figure shows the connection
under mounted conditions. In the bottom half the split flange is shown which allows movement of the centering
ring with the use of the threaded ends.
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sections had to be turned as well. This is a very tedious job which becomes much more difficult
in a very long facility. Also, accurate alignment is impossible and the pipe surfaces easily
scratch. All these disadvantages can be avoided by the design shown in figure 5.8.

5.7.3 Test sections

To measure the flow inside the pipe by means of LDV or DPIV, the curvature of the pipe poses
problems for detailed measurements of the flow. Optical access is distorted or even impossible
very close to the wall as a result of the differences in refractive index between air (n=1.00),
water (n=1.33), and Plexiglas (n=1.49). To minimize this problem, we designed special test
sections. These consist of a rectangular Plexiglas box, referred to as optical box, which is placed
around the pipe. This box contains the same fluid (water) as in the pipe. This allows us to
replace the pipe wall at several locations inside this optical box with a thin sheet of Teflon
FEP (fluorized ethylene propylene) having a thickness of 190 yum, and which has been kindly
provided by Du Pont de Nemours. This material has a refractive index of n=1.344 & 0.003,
which is quite close to that of water. The combination of the optical box and the cylindrical thin
sheet minimizes the refraction of the laser beams. This allows us to perform measurements till
0.2mm from the wall, as shown by Tahitu (1994). The suppression of refractive index effects is
particularly useful for two-component LDV measurements in turbulent flows, since coincidence
of the four laser beams is then guaranteed till very close to the wall. This is necessary for an
accurate measurement of e.g. Reynolds stresses.

We have designed and constructed two versions of the test section, which have both been
used during the stability measurements. Our first design was tailored to another short pipe-flow
facility and has some interesting features that were not necessary in the new flow facility and
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which are therefore not incorporated in the second design. Nevertheless, as the features may
be interesting for other facilities, we discuss here both designs.

Test section 1

In the first test section was manufactured mainly to test the support of the thin sheet that
replaces the pipe wall inside the optical box. This support is referred to as a sheet holder. This
sheet holder simply consists of an Plexiglas cylinder with threaded ends. Its inner diameter is
such that the sheet can be mounted flush with the inner pipe diameter, as shown in the top
part of figure 5.9. The sheet has a rectangular shape with a width of 100.0mm and a length of
~127.5mm. The length is equal to the circumference of the circularly bent sheet. The exact
measure for the length is determined by trial and error until the thin sheet ends tightly fit to
each other. To gain optical access, we milled a gap with a width of 60 mm, over approximately
5/6 of the circumference. The resulting shape of the sheet holder is drawn as a 3-D object in
figure 5.9. Thus, the thin sheet is supported over the entire circumference for 20 mm at each
side and the seam is supported over the entire length. The tight fit of the seem secures the
sheet and it can even sustain a reasonble excess pressure from the inside. For this reason, we
allways fill the measurement pipe first and then the optical box. The sheet holder performed
very well and the same principle is used in the second test section, inside which the pipe wall
is replaced with a thin sheet at three locations.

Therefore, the reason for describing the first test section is not the sheet holder but the way
the sealing between the optical box and the pipe is achieved. The outside diameter of the sheet
holder is 59.5 mm whereas that of the pipe is 50 mm. In order to be able to place the sheet
holder inside the optical box, the opening in the side wall of the optical box is 60 mm which is
larger than the pipe wall. This leaves a large gap which needs to be sealed. The method that
we used can also be applied to cases where the optical box needs to be positioned over pipe
connections with glued flanges.

To correctly position the optical box with respect to the pipe, we use the semicircular rings
labeled ‘A’ in figure 5.9. Then the closed cell rubber ring is placed in the cavity. The use of
closed cell rubber is imported to prevent kreep of the rubber and to increase the compressibility
of the rubber as compared with solid rubber. This rubber ring is compressed and thus seals
the opening. For the compression we use the big hollow bolt labeled ‘C’. This bolt also consists
of two halves which are connected with two dowel pins. When manufacturing this bolt, the
cutting in half and the placement of the dowel pins has to be done before the thread is cut in
order to ensure a smooth thread. To decrease the torsion applied to the rubber ring by the
bolt, the thin half rings labeled ‘B’ are inserted.

This construction functions quite well. However, if high pressures exist inside the mea-
surement tube, this pressure must also be present inside the optical box since the thin sheet
does not provide a watertight seal. As a result, above several meters of water pressure, this
construction with the rubber ring is no longer completely watertight.

Test section 2

The second test section is specially designed for the long pipe-flow facility used for the tran-
sition study. As the sheet holder design used in the first test section performed well, we have
concentrated only on improvement of the design of the optical box. First, easy access to the
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to seal the large gap between the pipe and the optical box, and the bottom part shows the sheet holder. Rings
A and B and the hollow bolt labeled C all consist of two halves. The closed cell rubber ring may have one
slanting cut if its elasticity is not large enough to pass large flanges that may be present. The cross section of
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seam is drawn only for reasons of clarity, and in practice the two ends fit securely.
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Figure 5.10: The second test section contains three sheet holders. Only half of the test section is drawn as it is
completely symmetric. The top half is drawn as a cross section and the bottom half is an elevated view. The
cross section of the optical box is located at the symmetry line, looking to the left. Note that the gap at the
location of the seam is drawn only for reasons of clarity, and in practice the two ends touch.

inside of the optical box is required for cleaning purposes. Algae tend cause a deposit of dirt
on the walls of the optical box. Second, a large part of the test section should be available for
measurements, which is required for detailed studies of e.g. the spacial evolution of disturbances.

We realized these requirements by using a rectangular optical box which is fixed in between
two side walls with the help of threaded ends. Inside the optical box, we placed three sheet
holders which are kept in place by rectangular plates, called sheet holder positioner, that fit
just inside the optical box, as is shown in figure 5.10. These plates are connected with rods to
provide a stiff frame for the sheet holders. After the optical box is assembled, the flanges are
fixed to the side wall using four bolts. The side walls also accommodate holes for filling the
optical box and bleeding of air.

Disassembly of the pipe/test section connection becomes difficult, since it is hard to apply
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Figure 5.11: Close-up of the second test section. The black area to the left represents the LDV-probe. The four
laser beams are clearly visible and the four bright spots which are close together represent the locations where
the laser beams cross the thin sheet. In the center of the picture, we see the sheet-holder positioner. At the
right-hand side of the picture, the backbone of the sheet holder which supports seam can be discerned. For an
overview picture we refer to figure 6.2.

force to the centering ring. For this, a stainless steel plate is added containing 8 holes; four large
holes and four threaded holes in alternating order. The large holes accomodate the threaded
ends for the connection with the measurement pipe. For the disassembly, these threaded ends
are screwed in the threaded holes of the stainless steel plate until they touch the four bolts in
the flange. Now turning the threaded ends results in pushing the steel plate away from the
flange and taking the centering ring of the connection with it.

The test section including the flanges is 0.5 m long. The measurement pipe sections have a
length of 2.0m. To be able to place the test section at any location in the pipe, we also need
to have measurement pipe sections of lengths 0.5m, 1.0m, and 1.5 m.

Flow meter construction
A magnetic inductive flow meter (Krohne-Altometer, type M950/6 and control unit SC-100
AS) is mounted in the measurement pipe just in front of the discharge chamber. The two
sensor elements are lens-shaped and protrude approximately 3mm into the flow. As most of
these flow meters are used in process industry applications, the indication DN-40 (suggesting
an inner diameter of 40 mm) actually stands for 1.5 inch=38.1mm. To avoid any metal contact,
the flowmeter has a Teflon lining which has a rounded at the flanges. This radius may trap
bubbles and disturbe the flow. Also, this type of flow meter required grounding rings at each
side of the flow meter.

The cavity in the stainless steel grounding rings was filled with epoxy resin which also filled
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the gap caused by the radius of the lining. In this way, a smooth inner surfaces could be
obtained. Plexiglas adaptor flanges were mounted at each side of the flow meter to provide a
smooth expansion from the 38.1 mm inner diameter of the flow meter to the inner diameter
of the measurement pipe. The total length of the flow meter including the adaptor flanges
becomes 0.5 m.

The flow meter is quite heavy and its weight cannot be supported by the measurement
pipe. On the other hand, due to the large difference in thermal expansion of the Plexiglas
measurement pipe and the steel H-beam support structure, the flow meter cannot be fixed
directly to the H-beam. The linear coeflicient of thermal expansion for Plexiglas and steel are
+85 - 1076 /°C and 12 - 1079 /°C respectively. For a temperature change of 10°C, which can
be easily achieved between summer and winter. The coeflicients of thermal expansion lead
to a difference of 25 mm in expansion between the Plexiglas measurements pipe and the steel
H-beams over the total length of the pipe (34m). As we fixed the settling chamber to the
H-beam, the entire expansion has to be accommodated for at the discharge chamber side of the
pipe. The connection of the pipe to the discharge chamber is such, that the measurement pipe
can slide. Also, we constructed a support in which the flow meter can slide. The flow meter
connection flanges resulted in a laminar flow up to Rex20000 after the flow passed the flow
meter as opposed to Re>60000 in the measurement pipe before the flow meter. This has been
checked using dye injected in the settling chamber.

5.8 Settling Chamber

5.8.1 Introduction

In most wind and water tunnels a settling chamber is present to generate a smooth, low tur-
bulence and uniform inflow. Honeycombs are used to eliminate possible swirl and screens are
used to break down turbulence to scales where the turbulent energy is quickly dissipated. A
contraction is a very powerful tool to reduce flow non-uniformities. This can be shown using
Bernoulli’s theorem for an inviscid fluid (Ward-Smith 1980, p. 358), where index (1) stands
for the flow inside the settling chamber and (2) for the flow after the settling chamber, i.e.
downstream of the contraction:

1 1
Pt 3p (v +v))° = po + 77 (vg + v3)? (5.5)

Here 2; is the mean flow velocity and the prime indicates a mean flow velocity disturbance.
Subtracting the equation for the mean flow, i.e. p; + 2pvf = py + Fpv3 gives and keeping only
first-order terms in v gives:

VIV = VUaUh (5.6)

With this we can obtain the following expression for v4/v;:

v _vly _ D'y (5.7)

(%) U22 (a1 D14 V1

From equation 5.7 we can see that the mean flow non-uniformity suppression efficiency of a con-
traction depends to the fourth power on the diameter ratio. For turbulent velocity fluctuations,
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arguments based on vorticity filaments give the same reduction for axial velocity fluctuations
(Ward-Smith 1980, p. 358, Hussain & Ramjee 1976).

Maintaining laminar flow in pipes at high Reynolds numbers can be realized only by sup-
pressing disturbances at the inlet of a smooth pipe. A large contraction is beneficially in achiev-
ing this. Thus a large Plexiglas tube is used as the settling chamber with an inside diameter
of 250 mm. With the 40 mm diameter pipe, the contraction ratio becomes: CR=D?/D}=39.
Equation 5.7 then shows that the axial velocity fluctuations in the settling chamber are reduced
by a factor of more than 1500. As the diameter ratio of the contraction is quite large and only
a limited space is available for the length of the contraction, it is important to find a suitable
form for the contraction.

Hussain & Ramjee (1976) compared several contraction shapes with respect to turbulence
suppression and other characteristics. Compared to bell-mouth shaped contractions and a
contraction where the inflection point is shifted towards the large diameter side, a contrac-
tion of which the contour is described by a third-order polynomial gives the most turbulence
suppression. However, to avoid discontinuities in the pressure gradient, we used a fifth order
polynomial, which is the lowest order to satisfy these conditions. In combination with the
honeycombs and the screens in the settling chamber, the flow was found to be stable up to
Reynolds numbers of over 30 000. On one occasion, a natural transition Reynolds number of
Re = 40000 was reached. In this case, the experiments were conducted in November 1993 with
fresh water. Although no temperatures were measured, the water had probably a temperature
of 11 to 12°C whereas the ambient air temperature was most likely to be around 18°C. At that
time the Plexiglas pipe was not yet insulated so effectively the wall was heated. As experiments
by Barker and Gile (1981) show, wall heating stabilizes water boundary layers and therefore
may delay transition. For this reason, a transition Reynolds number of around 32000 is prob-
ably the correct value for the natural transition Reynolds number of our pipe flow. which is
more than sufficient for our purpose.

Due to convection problems, we had to reduce the diameter of the settling chamber, which is
explained in the next section.

5.8.2 Convection

The pipe-flow setup is a recirculatory system. Thus, if we neglect heat input from the pump
and viscous dissipation, the temperature of the water will approach the temperature of the
surrounding air. However, during the night the central heating in the lab shuts down and the
air temperature drops by several degrees, and consequently the water cools. This is particularly
the case during the winter months. Given the large heat capacity of water and the rapid increase
of the air temperature in the morning, the water temperature is below that of the air. ‘Typical
temperature differences are 1.5 to 2.5°C and these temperature difference will influence the flow.
Some of the measured velocity profiles which are influenced by convection flows are presented
in Aanen (1995). Whenever temperature differences influence the flow, the Rayleigh number is
the nondimensional parameter characterizing this convection flow:

_gaATD?Pr
=T =

Ra and Pr= % (5.8)
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Where g: gravitational acceleration, a: thermal cubical expansion coefficient, AT': temperature
difference, Pr: Prandtl number, &: thermal diffusivity, and »: kinematic viscosity. For water
Pr=7.03& o =0.21-10"%K"! and for air Pr =0.713 & o = 1/T = 3-10~*K~'. Note that
for the same geometry, Ra is much larger for water than for air, which is mainly due to the
kinematic viscosity v that is 15 times larger for air than for water. Substitution of the values
in for water equation 5.8 then gives:

Rapipe =9.3-10°AT
(5.9)
Ra’settling chamber = 2.3 IOSAT

Note that the Rayleigh number is much larger on the settling chamber, which is caused by
the larger diameter, which increases the Rayleigh number according to D3. Generally, above
Rayleigh numbers of the order 10 convection cells begin to form. Therefore, in order to avoid
generation of convection cells in the pipe, the temperature difference between the water and the
inner surface of the pipe should not exceed AT=10"2°C. Heat-transfer calculations show that
“the temperature difference between inner surface of the pipe and the water is approximately
10% of the temperature difference between the water and the air. Thus, the temperature
difference between the water and the ambient air should not exceed 1072°C. Measurements
of such small temperature differences are barely possible, let alone controlling the air and
water temperatures this accurately. So, insulation of both the pipe and the settling chamber
is inevitable. Minimizing the temperature difference between the air and the water is vitally
important. Increasing the viscosity decreases the Rayleigh number but we have not used this
in our experiments. In water this could be done with glycerine-water mixtures or by adding
most glucose syrup. A decrease in size is most effective, as this effects Ra to the third power.
Since these improvement separately cannot reduce Ra to small enough values, we combined
them which resulted in the following actions:

e We placed an array of three domestic aquarium heaters, 300 W each, in the reservoir. Thus
we can increase the temperature of the 1.5 m® of water with approximately 1°C per hour.
A temperature sensor is included in a control circuit and a target temperature could be
set using a 1000-step potentio-meter. After calibration of this circuit, the temperature of
the water could be controlled within 0.1°C of the target temperature. As the temperature
in the basement is relatively constant during the day-time and changes only slowly with
the weather conditions, the temperature of the water can be maintained within 0.5°C of
the day-time ambient air, and usually this temperature difference is smaller than 0.2°C.
To prevent cooling during the night, we circulated the water 24 hours a day during
measurement periods.

e The pipe is insulated with 30 mm thick insulation material (Climaflex by NMC-Kenmore).
Also the pipe connection are completely enclosed by a 30 mm thick layer of the insulation
material. In addition, a large wooden box was constructed, covered at the inside with
insulation material, which encloses the settling chamber. As the insulation material as
rather soft, we placed 2mm thick cylindrical PVC plates around the insulation material
at the places where the measurement pipe is supported to maintain a good alignment of
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the pipe. Due to the 110 mm outer diameter of the insulation material, the Multilene
plastic caps placed over the adjustment bolts (shown in figure 5.7) had to be removed
because of space limitations.

e We placed a smaller diameter settling chamber inside the housing of the large settling
chamber. The inside diameter of the small settling chamber is 121 mm thus resulting in
a contraction ratio of CR=9, i.e. velocity fluctuations are suppressed by a factor of 81.
This should still be sufficient provided that a reasonably smooth flow can be generated
before the contraction. The space between the small settling chamber and the original
large housing can be used to further reduce the heat flux by circulating water having the
same temperature as the water in the pipe around the small settling chamber. A further
advantage of the smaller settling chamber is the shorter residence time of the fluid and
thus convection flow has less time to develop in the settling chamber.

Heat-transfer calculations show, that insulation reduces the temperature difference between
the water and the inside wall of the pipe by a factor of five, i.e. the temperature difference
between the water and the inner surface of the pipe is reduced till 2% of the temperature
difference between the water and the ambient air. Assuming that the latter is 4+0.2°C as a
result of the heating elements, we now find Ra-values of:

Rapipe = 37 . 103
(5.10)
Rasettling chamber = 1.0 105

Although this means a significant improvement over the values in equation 5.9, this still does
not entirely suppress the generation of convection cells especially in the settling chamber. As
a result, some distortion of the velocity profiles is to be expected. The settling chamber has
probably improved more than indicated by the change in Ra-values, since the velocity in the
settling chamber increased by a factor of 4.3 and due to the circulation of the water around the
small settling chamber, the temperature difference is probably much smaller.

To estimate the resulting vertical velocities in the convection cells, we simply use the analyti-
cal solution for the laminar free-convection flow between two vertical plates, with a temperature
difference AT at a distance 2k, given by (Bird et al. 1960, p. 300):

=gah2AT <y3 y)

v(y) (5.11)
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The maximum value of the third order polynomial is 0.385 for y/h=0.58. Substitution of the
values for water and replacing h=D/2 gives for the maximum convection velocity:

VUconvection, max = 0.069 AT (512)

When we estimate the maximum convection velocity, we use the temperature difference between
the water and the inner surface of the pipe, as discussed in relation to equations 5.9 and 5.10.
For a 1°C temperature difference between the water and the ambient air, the maximum con-
vection velocity for the non-insulated pipe would become 0.007 m/s. This is in fair agreement
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with LDV-measurements, which showed vertical velocities of 0.003 m/s. For the insulated pipe
with temperature difference between the water and the ambient air of 0.2°C, the maximum
convection velocity would become 0.0003 m/s, which we can no longer measure. This is a sig-
nificant improvement, but even these small velocities may still distort the axial velocity profile.
However, another problem becomes apparent, namely now that we have strongly reduced the
convection flow, the Coriolis force due to the rotation of the earth. It turns out that this force
is able to strongly distort the axial velocity profile. This will be shown in section 5.12 and
discussed in detail in appendix C.

Given the sensitivity of the laminar pipe flow to temperature differences, a climate controlled
room would be an optimal situation. Certainly, the placement in the basement of the building
is a blessing, as temperatures stay here much more constant than on the main floor.

The reduction of the diameter of the settling chamber, reduces the suppression of velocity
inhomogeneities by the contraction. Thus, even more attention should be paid to the design of
the settling chamber. As the length—diameter ratio of the contraction is also more favorable, a
better contraction can be designed. This will be discussed in the next section. The lay-out of
the settling chamber is the subject of the section thereafter.

5.8.3 Contraction design

The construction of a smaller contraction permits a redesign. Since the same length is available
for a smaller contraction ratio, a better optimization is permitted with respect to adverse
pressure gradients and the growth of Gortler vortices. The latter are centrifugal instabilities
that can occur in boundary layers along a concave wall (Drazin & Reid 1981, p. 116). To
characterize these instabilities Saric (1994) defines the Gortler number as:

G = (W“‘sr) (5—) T owith 6=,/ (5.13)

14 R Woo

Here, R is the radius of curvature of the wall, s is the streamwise position from the beginning
of the boundary layer, Drazin & Reid (1981, p. 118) use the momentum thickness instead
of length scale 4,. According to figure 3 of Saric (1994), Gértler vortices grow for G 2 0.5
although experiments give a higher limit of G ~ 2.

For a rough estimate, the free stream velocity W, in our case can be calculated from the
continuity equation by assuming a constant velocity at each z—position (axial position) in the
contraction. The measure for the boundary layer thickness §, is used although the boundary
layer thickness will be smaller due to the favorable pressure gradient in the contraction. Based
on all these assumptions, the Gortler number can be calculated for fifth order contractions for
the original and the small settling chamber (see figure 5.12). The large contraction has a length
of 200mm. Due to a different connection, the length of the small contraction could be extended
to 237 mm.

Equation 5.13 can be reformulated to clarify the dependence of the Gortler number on its
various components:

G = W, /434 R-1/2-1/4 (5.14)

Although the small contraction is longer which increases s and has a much larger W, the
Gortler number is still smaller than for the large contraction due to much larger radius of
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curvature. However, in both the large and the small contraction, the Gortler number exceeds
the theoretical as well as the experimental threshold for growth. So, during a finite time the
Gortler vortices will grow and they may possibly disturb the entrance flow.
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Figure 5.12: Contraction shapes (thick lines) and Gértler number (thin lines) for the fifth order polynomial
contractions.

By changing the form of the contraction, the Goértler number can be reduced further. Fur-
thermore, care has to be taken to an avoid adverse pressure gradients at the in and outflow
of the contraction which can cause separation. At high Reynolds numbers, with exception of
the region in the immediate vicinity of the wall, the flow field in a contraction can be analyzed
using inviscid potential calculations (Ward-Smith 1980, p. 363). Here, the method proposed
by (Cohen & Ritchie 1962) is followed and extended. They use a stream function ¥ to de-
scribe an axisymmetric flow of an ideal fluid. Potential-flow theory for this case leads to the
Stokes—Beltrami equation in U:

0% 2T 19¥
822 Or:  ror 0 (5.15)

With z the axial and r the radial position. Writing ¥ as a series solution

U= fulz)r™m (5.16)

they derive a recurrence relationship between higher order terms and the higher order derivatives
of the lowest order term f; (see also appendix B). The velocity distribution at the axis of the
contraction turns out to be w(r = 0) = 2f;(z) and Cohen & Ritchie (1962) selected the following
function:

W= = A+ B - tanh (g) +D-¢  with k<0 (5.17)

Values 4 and B are determined from the uniform velocities at z=+00. C determines the
slenderness of the contraction. The term D - e’ is added to shift the point of inflection
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upstream to avoid adverse pressure gradients at the outlet of the contraction. This term can
also be used to reduce the length of the concave section of the contraction, or to decrease the
Gértler number. Each value for ¥ gives a streamline which might be used as a wall profile for
the contraction (neglecting the displacement of the wall boundary layer).

For practical applications, a contraction of infinite length as assumed in equation 5.17 is
not realistic. To overcome this problem, the calculated contraction was curtailed at both ends.
Curtailing is also favorable with respect to adverse pressure gradients as the same space is now
available for the contraction itself rather than the in- and outlet where the diameter hardly
changes. (Kachhara et al. 1974) showed that curtailing of the contraction using a wall slope at
D; of 3.5° and 2° at D, did not impair its performance. They also found that adverse pressure
gradients in the small diameter section of the contraction as high as

1 dp

—_— ——— = 0.38
ToW3 d(z/Ds)

do not cause separation. This adverse pressure gradient is comparable to a diffuser having a
top-angle of 4.6° which would show no stall for diffuser lengths smaller than 20D. In their
contraction, the inflection point is rather close to the small diameter end of the contraction
resulting in a relatively large adverse pressure gradient. This can be improved by choosing
appropriate parameter combinations in equation 5.17 as will be shown later.

In the small contraction, a wall slope of 3° at D; was used and at D, a wall slope of 1° was
chosen. The calculated pressure gradients shown in figures 5.13-5.16 are made dimensionless
using the local velocity at the wall in the contraction diameter at that location.

The numerical procedure followed in the contraction calculations consists of several iteration
steps:

1. Choose values for C, D, k, and the contraction ratio D;/D, as well as the length L
available for the contraction.

2. The values for A and B follow from:

W(r=0,z=-00)=A-B=1 or B=A-1 (5.18)
DZ

W(r=0,z=+oo)EA+B=512- (5.19)
2

3. Select a starting value for ¥ and determine the values for r from equation 5.16 with
m =1...5for =10 < z < 10. This involves derivatives up to order eight of f; (listed
in appendix B). The negative z-position where the wall slope equals 3° gives the begin
location of the contraction and similarly, the positive z-position where the wall slope
equals 1° locates the end of the contraction.

4. Rescaling of the radius at the 1° wall slope position to Do /2 gives the inlet diameter D,
and the contraction length L.

5. If the length L is larger than the available length, the value for ¥ has to be increased and
vice versa. This iteration process is continued until the correct length has been found.
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6. Due to the curtailing of the contraction, the contraction ratio does no longer match the
values at infinity as was assumed in the choice for A and B. If the contraction ratio of the
curtailed contraction is too large, then the value of A needs to be lowered or vice versa.
The relationship B = A — 1 is still used. Steps 3 through 6 are repeated until the correct
values for A and B are found.

7. The velocities are scaled such that the Reynolds number in the pipe equals 15000. With
the velocities at the wall and using Bernoulli’s theorem, the value of the pressure gradient
at the wall can be calculated. Using the velocity at the wall streamline as a free-stream
velocity estimate W, and calculating the distance along the contraction wall gives us the
information needed to calculate the Gértler number. The origin of the boundary layer is
located at the beginning of the contraction as in our case a fine screen is placed right in
front of the contraction.

Using this procedure, a large range of parameter values for C, D, and k were studied. Due to
the large number of parameters, more than one combination (C, D, k) resulted in contractions
showing no adverse pressure gradients and comparable values for the maximum Gértler number
of approximately 3.3. This is smaller than that for a fifth order polynomial; Gp.e = 4.1.
Curtailing a fifth order polynomial in the same way as the contractions described above, reduces
the maximum Gortler number to 2.9. In figure 5.13 the results are shown for a short contraction
of L = 140mm. As a result of this short contraction, the adverse pressure gradient near the
contraction entrance reaches a value as high as 0.57 which is much larger than 0.38 which
was found to be the maximum above which separation can occur (Kachhara et al. 1974).
Also, due to the large curvature, i.e. small radius of curvature, the Gértler number has a
maximum of G = 8.0 at 29% of the contraction length. This is four times larger than the
experimentally found threshold for growth of Gortler vortices. Therefore, the connection of the
pipe to the settling chamber of the small contraction was constructed in such a way that the
length available for the contraction was increased to L=237 mm. As a result, adverse pressure
gradients disappear and the maximum Gortler number is almost reduced by a factor of 2. By
optimizing the design with respect to a small Gértler number in the absence of adverse pressure
gradients, the maximum Gortler number can be reduced to 3.4 at 25% of the contraction length
(see figure 5.14). In this figure, a second ‘hump’ in the Gértler number appears downstream
of the contraction. Here, the curvature of the wall (streamline) is slightly negative reaching
—2.6-10"°mm™!. Due to the much larger boundary layer length at this location, the Gértler
number reaches values above 0.5. The boundary-layer thickness measure §, is overestimated in
this region as the strongly favorable pressure gradient in the contraction will have a suppressing
effect on the boundary layer thickness. The Gortler number can be further reduced to 2.8 at
27% of the contraction length as is shown in figure 5.15. However, small adverse pressure
gradients are now present at both ends of the contraction. The inner diameter even shows a
minimum at z = 263mm, resulting in a wall curvature as high as —7-107mm™!. Although the
boundary layer thickness may be overestimated, and with it the Gértler number, a contraction
with these characteristics is highly undesirable. Also, the Gortler number exceeds the threshold
for growth over a much longer length thus permitting Gortler vortices to grow during a longer
period of time.

This problem can be somewhat alleviated by simply shifting the bell curve in the upstream
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direction:

Wr—y = A+ B -tanh (%) + D ko) (5.20)

The main effect is that the concave part of the contraction is shortened (see figure 5.16). Al-
though the maximum in Gértler number remains 2.8, the length over which the experimental
threshold value of 2 is exceeded in shortened considerably. In addition, the minimum in inter-
nal diameter just downstream of the contraction vanishes as well as the downstream adverse
pressure gradient. The one near the contraction entrance is larger but it is with a value of 0.08
still much smaller than the critical value of 0.38. The contraction in figure 5.16 is the one which
has been selected and manufactured. It sustains laminar flow up to Reynolds numbers as high
as 63000 which is also an indication of the quality of the contraction.

5.8.4 Settling chamber setup

To improve the flow condition even further, an array of honeycombs and screens is placed in
the settling chamber. It is very important to use screens that have a porosity, i.e. ratio of open
to total screen area, that exceeds a value of 0.57 to prevent coalescence of two adjacent ‘jets’
(Laws & Livesey 1978). We used stainless steel screens with a mesh size of 0.5 mm, denoted as
‘fine’ screens, and PVC screens having a mesh size of 2mm, denoted as ‘coarse’ screens.

Let us follow the fluid on its voyage from the pump until the moment it enters the pipe, for
this we refer also to figure 5.17. After the pump, three 90°-bends guide the fluid in a rubber hose
which makes a large U-bend. The rubber U-bend is used to mechanically insulate the settling
chamber from the pump. Then another 90°-bend directs the fluid to the settling chamber.
Curvature induces secondary flows and also swirling flows when curvature is not confined to a
plane. These flow disturbances have to be eliminated before entering the measurement pipe.
To redistribute the skewed velocity profile generated by the bends, we placed two static mixer
elements (Sulzer SMV-8, diameter=50mm) between the settling chamber and the last 90°-
bend. The second mixing element is rotated 90° compared to the first one. Then, before
entering the diffusor, we used a honeycomb, mesh size 5mm and 50 mm long, to suppress
the swirl. The diffusor has a top angle of 25°. We placed a perforated place (16 mm holes
and 20 mm center-to-center distance) at end of the diffusor. This introduces extra resistance,
which suppresses separation and enhances mixing of the flow. Then a tandem of again a
5mm honeycomb and 20 mm long packet of drinking straws (poor man’s honeycomb) is used
to suppress any remaining swirl. Next, a fine screen was placed to filter any dirt. After this,
another honeycomb is used with directly behind it a coarse screen. This is a combination which
strongly suppresses turbulence (Loehrke & Nagib 1976). Finally, two other coarse screens and a
fine screen just in front of the contraction complete the settling chamber. The distance between
the last coarse screen and the fine screen is 40 mm, i.e. 20 times the mesh size. This is the
minimum separation distance between two consecutive screens and coincides with the region of
rapid decay of turbulence intensity (Groth & Johansson 1988).

A large problem is formed by air bubbles that stay trapped in the settling chamber, particularly
near the contraction and inside the drinking straws. The housing of the large settling chamber
contains an opening which gives access. Right under this opening, we have access to the small
settling chamber to remove any air bubbles in the drinking straws. For this, we constructed a
semi-cylindrically shaped part of the wall of the small settling chamber that can be removed.
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Figure 5.13: Gértler number a) & b), non-dimensionalized pressure gradient a), and curvature b) for a contrac-
tion length L = 140mm. Parameter values: C = /2, D =0, k = 0, s, = 0. The contraction contour is depicted
in the thicker solid line. The thin dotted lines indicate the rest of the computational domain. The contraction
shape in a) is compressed in the axial direction. In b) the contraction shape is scaled using the same factor in
both directions and only the contraction itself is shown. Note the difference in scaling for the Gértler number
and the curvature when compared to figures 5.14 to 5.16.

T T L 0.6 S | T T ~—rT 0.006
4 a) -—-— pres. grad. 4 -b) Gbrtler
Gortler —=-— Curvature
0.004
2 <] —
5 2 5 0002 £
£ B S £
g |4 g ~
= o =] o)
=0 ] = 0 5
[ = I =1
2 2 2 ]
=t @ i~ 2
= o 2 0002 3
O o a O ) (&}
| / A
‘ : 4 -04 ~- 4 -0.004
| —
-4 H | -4
JL ll i 0.6 1 P | 1 [ -0.006
-200 (] 200 400 0 50 100 150 200
axial position (mm) axial position (mm)

Figure 5.14: Gortler number a) & b), non-dimensionalized pressure gradient a), and curvature b) for a contrac-
tion length L = 237mm. Parameter values: C = 1.30, D = 1.0, k = —0.3, s, = 0. The contraction contour
is depicted in the thicker solid line. The thin dotted line indicate the rest of the computational domain. The
contraction shape in a) is compressed in the axial direction. In b) the contraction shape is scaled using the
same factor in both directions and only the contraction itself is shown.
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Figure 5.15: Gértler number a) & b), non-dimensionalized pressure gradient a}, and curvature b} for a contrac-
tion length L = 237mm. Parameter values: C = 1.3, D = 1.4, k = —0.27, s, = 0. The contraction contour
is depicted in the thicker solid line. The thin dotted line indicate the rest of the computational domain. The
contraction shape in a) is compressed in the axial direction. In b) the contraction shape is scaled using the
same factor in both directions and only the contraction itself is shown.
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Figure 5.16: Gértler number a) & b), non-dimensionalized pressure gradient a), and curvature b) for a contrac-
tion length L = 237mm. Parameter values: C = 1.30, D = 1.0, k = ~0.3, s, = 0.75. The contraction contour
is depicted in the thicker solid line. The thin dotted line indicate the rest of the computational domain. The
contraction shape in a) is compressed in the axial direction. In b} the contraction shape is scaled using the
same factor in both directions and only the contraction itself is shown.
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Figure 5.17: The composition of the various screens and honeycombs in the small settling chamber. The air
bleed holes are connected to the outside of the large settling chamber. This allows removal of air bubbles during
circulation.

This part is located between the drinking straws and the fine screen and is kept in position
by two O-rings. To remove air bubbles, fluid is sucked through the drinking straws by a small
centrifugal pump (Iwaki MD30R, maximum flow rate 321/min) and this fluid is discharged in
the space surrounding the small settling chamber. In this way, all the air can be removed from
the drinking straws and the honeycomb downstream. Also dirt can be removed from the fine
screen. To remove air bubbles in between the screens, we made air bleed holes in the top of
the small settling chamber. These are connected with the cover of the housing of the large
settling chamber through small hoses (not drawn in figure 5.17). Any remaining air bubbles
have a relatively small effect on the operating quality of the settling chamber. Moreover, after
circulating the water for several these, these bubbles will dissolve in the water. The bubbles in
the drinking straws do not dissolve as they block the flow through the straw.

The space between the small and the large settling chamber is employed as a kind of heat
exchanger. A small centrifugal pump circulates the water in this space through a long hose
which has a large number of loops that are placed in the reservoir. In this way, a closed
circulation loop is created in which the water adopts a temperature very close to that of the
water in the reservoir, i.e. the water in the measurement pipe. This helps to suppress convection.
Creating an open loop, i.e. pumping water from the reservoir through the space between the
large and the small settling chamber and back into the reservoir, results in high pressures
inside the small settling chamber. This would result in lifting of the semi-cylindrical part and
disturbing the flow in the settling chamber. By maintaining a closed system, this is impossible.

The small settling chamber performed very well as we will show in section 5.12. At first we
found the same natural transition Reynolds number as for the large settling chamber. However,
after some slight changes, the natural transition Reynolds number increased from approximately
30000 to more than 60000. One of these changes was cleaning the fine mesh which is located
just in front of the contraction. A few of the openings close to the wall were blocked by
dirt. The only other change in the settling chamber has been replacement of the honeycomb
placed directly behind the static mixers and before the diffusor of the settling chamber (see
figure 5.17). The old honeycomb was erroneously pushed into the conical adapter between the
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static mixers having a diameter of 50mm and the 80 mm entrance of the settling chamber.
This resulted in deformation of the honeycomb which may have resulted in transitional stall
in the diffuser. These small changes may have affected the transition Reynolds number. The
transitional Reynolds number of more than 60000 is found ever since after each of the various
(dis)assemblies of the small settling chamber that we performed, and this can be considered a
property of our pipe setup and not a single best achievement.

In the next section, we will discuss the discharge chamber and the return pipe.

5.9 Discharge chamber and return pipe

As already mentioned in section 5.7.3, we made a sliding connection between the measurement
pipe and the discharge chamber to accommodate the difference in thermal expansion. This
connection is mounted in a larger flange, which functions as an arms-hole for cleaning purposes.
A second hole is provided in the walls at the other side. In this wall, we also have constructed
a small opening in line with the measurement pipe axis. Through this opening, we can align
the laser beam for alignment of the pipe sections or pull the wire of the device used to clean
the measurement pipe (see below). The discharge chamber is in essence a box with measures:
length=0.90 m, width=0.55mm, and height=0.50 mm which results in a capacity of 0.25 m?.
To facilitate emptying of the discharge chamber, we inclined its bottom as is indicated by the
dotted line in figure 5.5. To let any air escape that enters the discharge chamber, we also
inclined the roof of the discharge chamber so that the air can leave through a small riser pipe.
The riser pipe has a length of 0.5m and also functions as a pressure limiter for the discharge
chamber. A 0.5m water column applies a force of 2.4 kN. Much larger pressures and pressure
pulses may lead to rupture of the discharge chamber. The riser pipe also smoothes any sudden
increases in pressure.

The return pipe has an inner diameter of 150 mm and consists of six 6 mm sections which
are bolted together because gluing would make the pipe extremely difficult to handle. With its
length of 36 m it has a significant contribution to the system volume (its volume is larger than
the capacity of one storage vessel), which leads to a reduction of mechanical degradation of the
polymers because the circulation time of the fluid through the facility depends on the volume.
We have seen in section 5.4 that degrading can be expressed in the number of passes of the
fluid through the facility. Also, the larger diameter reduces the Reynolds number such that
mechanical degradation caused by the turbulence is much less than in the measurement pipe.
We placed the return pipe under a gradient of 1 in 100 with the lowest end directed toward the
pump.

As algae or other material may cause the system to become dirty, we have incorporated a
system to clean the pipe without needing to completely dismantle the facility. For this, the
ends of the return pipe are provided with a T-piece having a screw cover. To these covers we
fixed a plastic wire which is permanently present in the return pipe. With this wire, we can pull
a cleaning device through the return pipe. The cleaning device consists of a circular shaped
piece of foam rubber. A similar but smaller cleaning device is used for the measurement pipe.
The thin sheets in the test sections can withstand any extra pressure exerted by the cleaning
device so no special precaution is needed. As no wire can be present in the measurement pipe
during normal operating conditions, we first place a small wire through the pipe which is pulled
by the flow resistance of a plastic 35 mm-film-can. This small wire is then used to pull a larger
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wire which is attached to the cleaning device.

Growth of algae can be suppressed by the addition of sodium hypochlorite. However, this
method cannot be used in combination with polymer solutions as the hypochlorite chemically
degrades the polymers. Covering most transparent parts of the flow facility with black agricul-
tural plastic also suppresses the growth of algae as these need ultraviolet light (emitted by e.g.
strip light) to grow. However, covering alone was found to be insufficient because temperatures
may rise to 25°C in the basement during a hot “greenhouse-effect” summer and this provides
an ideal environment for growth of algae.

5.10 Dispersing and storage vessels

Two large storage vessels are used and are indicated as reservoir (normally included in the flow
loop) and as mixing vessel (mostly used to mix the dilute polymer solution). See figure 5.18 for
a sketch of the setup. Both storage vessels have a semi-spherical bottom. This ensures that no
fluid stays behind when the system is emptied. The vessels are made of glass-fiber reinforced
polyester. The color is black, which in combination with the covers blocks all the light, which
is useful for suppressing growth of algae. The manufacturer stated that, although difficult, the
PVC-sockets for the piping systems could be bonded to the polyester. After delivery, the bonds
were found to be not watertight but repair was possible with the use of a special elastic cement.
The one-way valve in the pipe which connects the return pipe with the reservoir, as is shown in
figure 5.18, prevents air from entering the pump when the solution in the return pipe is being
pumped in one of the vessels. The level at which the pipe enters the reservoir, is approximately
5cm higher than the roof of the discharge chamber. Thus, during circulation with the reservoir
included (normal operating condition), the discharge chamber is allways completely filled.
The dispersing vessel, which is used to prepare the concentrated (master) polymer solution,
is placed next to the two storage vessels on top of the catwalk frame. To be able to study
the mixing (dissolving) of the polymers, we used Plexiglas for the dispersing vessel. Four
baffles block solid body rotation of the fluid and enhance mixing. We used a mixer (Lightnin
LP25VH) with a continuously variable rotational speed between 36 and 185 rpm. We increase
the rotational speed at the beginning of the dispersion phase. After a few minutes, the rotational
speed is reduced to approximately 100 rpm, and the solution is gently stirred for another two
hours. We used a three-bladed stainless steel impeller (Lightnin A-310, which at the time was
not yet coated) with a diameter of 300 mm. The dispersing vessel is not coupled to the flow
loop and the concentrated solution has to be poured by hand (using buckets) into the vessels
(both the mixing vessel and the reservoir are now filled) to make a dilute polymer solution.
To enhance mixing in these storage vessels, the fluid can be circulated in each of the vessels
separately or between the two by means of the piping system discussed in relation to figure 5.6.
Also, the mixer can be easily moved between the dispersing vessel and the two storage vessels
and is used to speed up the mixing process.

The weight of the mixer is approximately 30 kg, which is quite heavy to handle. Therefore,
a hoist was used for the lifting of the mixer. The hoist can move along a rail which is attached
to the ceiling, as is shown in figure 5.18.
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Figure 5.18: The two storage vessels and the dispersing vessel are located such that the impeller mixer can
be easily changed between the vessels. With the help of the hoist, such an operation can be handled by one
person within a few minutes. The pipe which includes the one-way valve is the only one drawn for simplification
reasons.
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5.11 Measurement equipment

5.11.1 Introduction

In this section, we will discuss the measurement equipment that we used in our experiments,
together with some of the problems involved. We will start with a discussion on the pressure
drop measurements, the flow meter, temperature recording, and LDV-equipment. At the end
of the section, we will give a short discussion of Digital Particle Image Velocimetry (DPIV),
which is a very promising technique to study transition. From the preliminary results, we feel
that a discussion of this technique is justified, if only to highlight its potential.

5.11.2 Pressure drop transducer

In a 40mm diameter pipe, the pressure drop over a 2m pipe section in laminar flow is only
0.1mm H,O per Re/1000, i.e. for Re=2 000 a pressure drop of 0.2 mm H,0O has to be measured
accurately. This is impossible to do this with standard water manometer. A micro manometer
is capable of measuring with an accuracy of 0.02mmH,0O, but unfortunately, this type of
manometer is suited only for gas pressure differences. Furthermore, it has to be read with
the help of a magnification lens making it less suitable for data acquisition systems using
PC’s. Therefore, we have adopted another measuring method, which is a membrane differential
pressure transducer (Validyne Engineering Corp., type DP15-20). This instrument measures
the deflection of a thin stainless steel membrane, due to the pressure difference at both sides of
the membrane, inductively. A membrane suited for 88 mm H,O full scale was found to give a
linear response with only a slight hysteresis, and able to indicate pressure differences as small as
0.03 mm H,O. The differential pressure transducer is connected through small hoses to 1.0 mm
pressure holes at the bottom of the pipe. We use a micro-manometer (Betz) to calibrate the
membrane differential pressure transducer with air as fluidum.

The signal from the pressure transducer is very noisy but averaging over several seconds
gives a very accurate value. As a result, we use during the stability measurements an average of
all signals over 30s. Also, a problem with this transducer is that the membrane for 88 mm H,0
full scale is rather thin. After measurement periods of many months, some corrosion of the
stainless steel membrane can occur. Sometimes, also small holes are formed which make the
membrane useless. Such behavior is easily noticed by erroneous signals and a slow response.
Therefore, regularly cleaning and checking of the membrane is advisable. Another problem is
zero drifting. Several times a day, the zero value should be checked. For this and to prevent
overloading of the membrane, we connected the two hoses, that connect the two sides of the
membrane to the pressure holes in the pipe, with a third hose containing a valve. All hoses are
completely filled with water and any air bubbles distort the pressure measurement. Opening
this valves, reduces the pressure over the membrane to almost zero. However, as the flow in
the pipe causes a pressure difference between the pressure holes, a small flow will be generated
through the pressure hoses. Thus, for an accurate measurement of the pressure transducer
zero, these hoses should be blocked. We found that the flow through these hoses can trigger
transition to turbulence in the pipe above Reynolds numbers of Re~20000.

5.11.3 Flow meter

For an accurate recording of the flow rate, we employed a magnetic inductive flow meter
(Krohne-Altometer, type M950/6 and control unit SC 100 AS). We tried to calibrate the flow
meter by measuring the volume of the flow passed through the flow meter during a certain
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time. The agreement between the volume-per-time method and the flow rate as indicated by
the flow meter is very good. However, this method gives an accuracy approximately of only one
percent, which is much larger than the assumed accuracy of the flow meter. The calibration
certificate indicates standard error limits of 0.4% of the actual flow with a minimum of 0.1% of
a bulk velocity of 1 m/s. The display gives a flow indication in discrete steps of 31/hr, i.e. steps
of 7+-10~*m/s in the bulk velocity. Summarizing, our method of calibration is not accurate
enough to test the accuracy claimed by the manufacturer but we have no reason to doubt this
alleged accuracy.

Fortunately, the flow meter also functioned in demineralized water, but due to the low con-
ductivity, some problems were encountered. For a laminar flow, the signal is stable. However,
for turbulent flow large fluctuations in the flow meter signal occurred. Averaged over half a
minute, the signal still gives an accurate measurement which we could check by measuring a
flow characteristic (Moody diagram) for demineralized water.

5.11.4 Thermometer

A mercury thermometer with a 0.1°C scale is used to measure the air temperature and calibrate
the thermocouple elements (copper-constantan). The thermocouple elements are used to record
the temperatures in the reservoir and in the pipe exit into the discharge chamber. For all mea-
surements, the temperature in the discharge chamber is used to determine the density and the
viscosity of the fluid. The thermocouples are connected to a temperature transducer (Mono-
gram Omega) and the signal is directly fed to the measurement PC. As the copper-constantan
wires function as an antenna for all signals present in the lab, the signal-to-noise ratio is rather
small. Again averaging the signal gives reproducible recordings and calibration against the mer-
cury thermometer ensured accurate readings. A large source for electro-magnetic interference is
the frequency control unit for the pump. To improve signal-to-noise ratios of all measurement
signals, an adequate electro-magnetic shielding for this frequency control unit is advisable but
has not been used in our experiments.

5.11.5 Laser Doppler Velocimetry

Although Laser Doppler Velocimetry (LDV) is a well-established technique for flow measure-
ment, a lot of problems are still encountered when using the equipment in an experiment,
in particular in pipe-flow geometries. This is especially the case with the fiber-optics system
that we used. The LDV equipment that we employed in our experiments, consists of a two-
component full-backscatter system. Laser light from an argon-ion laser (Spectra Physics, type
2020) is split into green and blue light of 514.5 nm and 488 nm respectively. Each color is in its
turn split into a frequency-shifted and unshifted laser beam. The pre-shifting of the laser beam
is to avoid directional ambiguity of the measured velocity signal. The laser light is transmitted
to the measuring probe (Dantec) by optical fibers. The focal length of the front lens of the
measuring probe, used to focus the four beams on a measuring volume but also to receive the
back-scattered light, is 80 mm. The backscattered light is transmitted by one optical fiber to a
color separator and fed into two photo-multipliers which amplify the signal. The amplified sig-
nal is then transformed into a 2-D velocity signal by two Burst Spectrum Analyzers? (Dantec,

4The Flow Velocity Analyzer (FVA, Dantec) that we used previously, has been replaced by these BSA’s since
the 8-bit output of the FVA turned out to be insufficient to do accurate turbulence measurements.
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type Enhanced 57N20 and Enhanced slave 57N35).

As mentioned above, several problems were encountered. For instance, the alignment of the
laser beams entering the optical fibers turned out to be extremely critical. Slight misalignment
will result in burning of the fiber, thus strongly reducing the transmitting efficiency of the fiber
as well as the quality of the LDV signal. Alignment of the laser beams depends on the location
of the laser beam exiting the laser. As this changes with the temperature of the laser plasma
tube, a warming up period is needed and this takes 1.5 hours (0.5 hour at low power, 1 hour
at measurement power). The laser output is dependent on the alignment of the mirrors, and
the best alignment of the mirrors of the laser is obtained after more than 6 hours. To obtain a
good LDV signal, not only the optical coupling of the light into the fibers is important, but also
very accurate (and tedious) alignment of the laser beams exiting the measuring probe is vital.
For this, all four laser beams have to cross in one point which is also located at the optical
axis of the measuring probe. This can be achieved by adjusting all laser beams such that they
coincide at the same position. This can be done with the help of a 20 um pinhole, which is
placed in the focal point of the measuring probe front lens. After adjustment, the dimension
of the measurement volume is estimated to be 20 x 20 x 100 um?® in the stream-wise, normal
and span-wise directions respectively.

The alignment procedure takes place in air, which gives no guarantee that the four laser
beams will form one measurement volume inside the pipe. For instance, light refraction effects
can cause problems, particularly close to the pipe wall. To minimize these problems, we con-
structed a LDV test section which consists of a rectangular optical box filled with water that is
placed around the pipe and in which the pipe wall is locally replaced by a thin sheet having a
refractive index close to that of water. For a detailed discussion we refer back to section 5.7.3.

The measuring probe is mounted on a traversing mechanism (Dantec - Isel). The BSA’s and
the traversing mechanism are controlled by a PC, thus making fully automated measurements
possible. For this first the origin, i.e. the center of the pipe has to be determined. This is done
by locating the position of the wall (thin sheet) in a vertical and horizontal traverse. When
the measurement volume hits the wall, a strong increase in noise level of the Doppler signal
is observed. The accuracy of the wall determination using this procedure and thus also of the
pipe center, is estimated to be 0.1 mm.

5.11.6 Digital Particle Image Velocimetry

Digital Particle Image Velocimetry (DPIV) is a relatively new technique which yields instan-
taneous two-dimensional velocity fields in a planar cross section of the flow. The principle is
estimating the displacement of small particles in the flow. The motion of these particles is
recorded in a multiple exposed image using a 1000 x 1016 pixel CCD.camera. In this multiple
exposed picture, each particle appears several times, shifted by the flow. By measuring this
distance, the velocity can be reconstructed. This is done by dividing the image into small
sub-images, and for each sub-image we compute the auto-correlation. All particle-images that
correspond to the motion of a single tracer particle contribute to an off-center peak in the
correlation of the particle position. The displacement of the particle images is obtained from
measuring the distance of this peak from the center peak. Given the image magnification and
time delay between the exposures, we obtain the in-plane velocity. The cameras were operated
at a frame rate of 10 Hz, thus giving a time series of velocity fields.
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We used DPIV to study its possibilities in exploring transition to turbulence. These mea-
surements were performed exactly one year before the stability measurements which are pre-
sented in chapter 6 and 7 (when experimental facilities are fully operational, August is a very
good month for an intense measurement program). As we used a different disturbance mecha-
nism at the time (injection through a 1 mm hole), we cannot compare the results of the DPIV
measurements with the stability diagrams presented in this thesis. This, and the fact that only
a fraction of the large data set is analyzed as of this writing, have caused us to decide not to
incorporate the DPIV measurements. Nevertheless, since we believe that DPIV is a very pow-
erful tool for studying laminar-turbulent transition, we will briefly discuss the main problems
that we encountered and give an indication of the fascinating results that can be obtained using
DPIV. For a more detailed discussion on the DPIV equipment and the preliminary results see
Westerweel et al. (1994), Draad et al. (1995), and Draad & Westerweel (1996).

The three largest problems that we encountered when performing DPIV measurements in
a transitional pipe flow are related to the seeding particles, reflections of the laser light into
the camera, and aliasing due to the multiple exposed images. These will be briefly discussed
below.

The flow was seeded with small tracer particles (Optimage) which have a density which is
slightly larger than that of water. However, given the length of the pipe and the long residence
time, particularly close to the wall, these particles tend to slowly settle. This results in low
particle concentrations in the top part of the pipe, leading to a poor image quality in this
region. This problem can be solved by triggering turbulent flow at the beginning of the pipe
shortly before a 13s time series is recorded. Turbulence mixes the particles and redistributes
them over the entire cross section. After relaminarization of the flow, images can be recorded
with a sufficient particle density throughout the cross section.

We used a sheet of lager light to illuminate the seeding particles. To reduce distortion of
the image related to differences in index of refraction between the air, water and the Plexiglas,
we used the test section that we have also used for the LDV measurements. However, strong
reflections of laser light gave rise to bright horizontal lines in the recorded images and these
lines totally destroyed a large part of the image for DPIV analysis. We found that these lines
are the result of the laser light which is reflected from the location where the sheet of laser
light crosses the walls of the optical box. Next, this light is reflected into the camera via the
thin plastic sheet replacing the pipe wall. These reflections can easily be blocked when plastic
plates are placed just above and below the pipe containing thin slits which let the sheet of laser
light pass (see figure 1 in Draad et al. 1995).

We also found, that the velocity profiles measured with DPIV show large humps which
were not found when using the LDV equipment. We found that these humps, further called
shoulders, occur as a result of aliasing. As mentioned before, we determined the displacement
of the particles in small interrogation areas of 32 x 32 pixels using auto-correlation techniques
involving Fast Fourier Transforms (FFT). In a laminar flow, the multiple exposed images of
the particles are aligned. When the displacement of a particle approaches an integer fraction of
the size of the interrogation area, i.e. 32/2, 32/3, 32/4, 32/5, and so on, aliasing occurs and a
strong bias to these values is found. The aliasing can be suppressed by applying zero-padding
to the data, as is shown in figure 5.19. A detailed discussion on this subject can be found in
Aanen (1995).
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Figure 5.19: Comparison between the velocity profiles obtained by numerical calculations and the measured
velocity profile using Digital Particle Image Velocimetry. Note that the measured velocity profile is symmetric
and seems to have a gap near the center. This is caused by the horizontal averaging of the measured velocity
profile to obtain a symmetric profile that can be compared with the simulations. From Aanen (1995).
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To give an indication of the detailed flow structures in a transitional flow that can be captured,
we show in figure 5.20 a disturbance velocity field which has been obtained by subtracting the
average laminar velocity profile from the measured velocity field. We see a series of vortices
close to the wall, at the side where the fluid is injected which disturbs the laminar flow, shortly
before the flow became turbulent over the entire cross section. The preliminary results show
that DPIV can be used to elucidate phenomena governing transition to turbulence that previ-
ously could not be studied quantitatively. Furthermore, the velocity fields that can be obtained
using DPIV give a much more detailed view of the flow and are more easily interpreted than
(time averaged) contourplots of disturbance velocities, which are commonly used. Therefore,
further use of DPIV techniques in transition research is strongly recommended, which has also
been pointed out recently by Darbyshire & Mullin (1995).
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Figure 5.20: Instant relative velocity plot from one frame for Re=>5860, showing the eddies close to the wall
shortly before transition to turbulence occurs over the entire cross section of the pipe. From (Draad et al. 1995).
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5.12 Flow quality

In this section, we will illustrate some of the gross flow characteristics of our pipe-flow facility.
An appropriate method is the so-called Moody diagram. In a Moody diagram, the dimensionless
pressure pressure gradient, i.e. the Moody® friction factor fy, is plotted as a function of the
dimensionless flow rate in the form of the Reynolds number Re. Here, Re and fus are defined
as:

Re = —-””;D - —~V‘;D (5.21)
D Ap
fu = ——— 5.22

where p is the density, W is the bulk velocity, D the pipe diameter, eta the dynamic viscosity,
and v is the kinematic viscosity of the fluid.

For fully developed laminar pipe flow, i.e. Hagen—Poiseuille flow, the relationship between
the pressure drop and the flow rate can be rewritten into the Moody friction factor form, with
as result:

fu = 64/Re (5.23)

For turbulent flow, a different relationship is found. As the turbulent velocity profile can
be fairly well described by a %—power law in a Reynolds number range representative for our
experiments, this may be recasted in the friction factor form to give the so-called Blasius law
(Bird et al. 1960, p. 187):

fa =03184Re Y 2.1-10° < Re < 10° (5.24)

Transition to turbulence can now be easily detected since the measurement points ‘jump’ from
the laminar Hagen—Poiseuille line to the turbulent Blasius line. In figure 5.21 we show the
Moody diagram for our facility. It is clear that we can maintain laminar flow up to Reynolds
numbers past Re=60000. No measurements for turbulent flow are shown in this figure because
the corresponding turbulent pressure drop values for these high Reynolds number are beyond
the range of our pressure transducer. To be able to measure turbulent pressure drops up to high
Reynolds numbers (needed for triggered transition experiments), we measured the pressure drop
over a relative short pipe section which is only 2.5 m long. This results in very small laminar
pressure drop values and a small error in the zero value has a large influence on the obtained
pressure drop. To correct for a slight error in the zero value for the pressure drop, we linearly
extrapolate the pressure drop vs. flow rate data to find the reading corresponding to zero flow
rate. The pressure drop measurements are then corrected using this value. These correction
always fall within 0.05 mm H,O, which is well within the zero drift that has been observed.

In figure 5.21, we also see that the measurements deviate from the Hagen—Poiseuille curve, well
before Re=14300, i.e. the Reynolds number up to which fully developed flow should exist in
our facility. However, the measurements follow up to about this point, the markers labeled

5 Another commonly used definition of the friction factor is the so-called Fanning friction factor fr, which is
related to far: fu=4fr.
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Figure 5.21: The Moody diagram for water in our new pipe-flow facility. The points labeled ‘Coriolis force’
are results from numerical calculations accounting for the influence of the earth’s rotation on fully developed
laminar pipe flow.

‘Coriolis force’. These points labeled ‘Coriolis force’ are obtained from numerical simulations
of fully developed laminar pipe flow under influence of the Coriolis force caused by the earth’s
rotation. This is because, perhaps surprisingly, it turns out that the laminar flow in our pipe-
flow facility, is strongly influenced by the Coriolis force. Although the Moody diagram does not
suggest a drastic change in flow behavior, due to this effect the axial velocity profiles reveal a
quite different picture, as is illustrated figure 5.22. Here the measured axial velocity profiles are
compared to those obtained using numerical simulation, discussed in more detail in appendix C.
We see that the agreement between the observations and the computations is excellent, which
confirms that the distortion of the axial velocity profiles in our pipe-flow facility, are primarily
caused by the rotation of the earth.

On may wonder why the Coriolis force, being very small, is still able to strongly distort the axial
velocity profiles? To explain this, one should first realize that in a fully developed laminar pipe
flow, the terms representing the inertia forces all vanish. This leaves the balance of the pressure
gradient and the viscous force resulting in standard conditions in a parabolic velocity profile.
Since in water, the viscous force is extremely small, due to the small kinematic viscosity, an
extra force even when relatively small, may have a large influence. In our pipe, the magnitude
of the Coriolis force is 19% of that of the viscous force. So, compared to the viscous force,
which normally causes the parabolic velocity profile, the Coriolis force is large. However, as the
ratio of the Coriolis force to the viscous force, represented by the ratio of the Reynolds number
Re and the Rossby number Ro (see appendix C for a definition and a detailed discussion of
the influence of the Coriolis force on laminar pipe flow), is constant, one may ask why does the
distortion of the axial velocity profile become stronger with an increase in Reynolds number?
This is due to the difference in scaling for the cross sectional secondary velocities and the axial
disturbance velocity. According to linear theory, the cross sectional velocities of the secondary
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Figure 5.22: Comparison between calculated (lines) and measured (markers) axial disturbance velocity profiles
in a) horizontal and b) vertical direction for various Reynolds numbers.
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flow caused by the Coriolis force, scale according to Re/Ro and the axial disturbance velocity
scales according to Re?/Ro. The ratio Ro/Re is also known as the Ekman number (Drazin &
Reid 1981, p. 365):

Ro v

Bk ="—"= —— —
k Re 2QD?%sina

(5.25)

where Q2 is the rotational speed of the earth and « is the angle between the pipe axis and the
axis of rotation. For our case, Ek=>5.23 as already mentioned above. In order to reduce the
Coriolis force effects at a constant Reynolds number, we have to increase the Ekman number.
This can be done by increasing the viscosity of the fluid, by orienting the pipe parallel to the
axis of rotation, or by reducing the pipe diameter. Reduction of 2, although extremely difficult,
would also solve the problem of having too few hours in a single day.

That above Re=14300, the flow is no longer fully developed can also be observed in fig-
ure 5.23, where the axial velocity profiles are plotted for several Reynolds numbers. The axial
velocity is here normalized with the bulk velocity and for a parabolic profile this would results
in a maximum value of 2 at the centerline. Clearly, at the largest Reynolds number the velocity
profile becomes flatter in the central part of the flow.

5.13 Disturbance mechanism

5.13.1 Introduction

In many investigations on triggered transition, the triggering mechanism that is used is a single
jet (e.g. Klingmann 1992, Darbyshire & Mullin 1995, Wygnanski et al. 1975). This means for
instance, that the disturbance is not divergence free, which may cause pressure disturbances at
large distances from the injection point. In other words, the disturbance cannot be considered
as localized. Nevertheless, we have also used this method. We injected fluid through a 1 mm
hole in the pipe wall during 0.5 s and found that injection velocities up to 9 times the centerline
velocity are needed for causing a transition at Re=3 000 (Draad et ol. 1995). With an oscillating
jet the injection velocities necessary to trigger transition become much smaller (Aanen 1995).
However, rather than using a point disturbance with its disadvantages as mentioned above, we
wanted to use a disturbance that resembles more the functions used in non-linear theories by e.g.
Smith & Bodonyi (1982). These authors suggest that disturbances which are not axisymmetric
but having an azimuthal wave number of 1 or more may be the ones most likely to become
unstable and trigger turbulence.

A disturbance with azimuthal wave number 1 can be constructed using four sets of double
working syringes, each shifted 45° in phases as described by Aanen (1995). He showed, using
stream functions, that injection at 8 points in a thin slit results in a reasonably smooth sinusoidal
disturbance at the pipe wall. However, the construction of such a disturbance mechanism was
found to be too time consuming and expensive. Therefore we constructed a somewhat simpler
disturbance mechanism, with only 2 injection points connected to a single oscillating double
working syringe. To study the stability of the flow, the amplitude of the disturbance, i.e. the
displacement volume of the syringes, has to be adjustable, and also a continuously variable
frequency is required. After examination of some possibilities (Boere 1995) we decided to use
an eccentric mechanism to drive the syringes which is described in the next section.
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5.13.2 Eccentric disturbance mechanism

The eccentric disturbance mechanism operates two syringes that are mounted in opposite di-
rection, as is shown in figure 5.24. This means that when one syringe is injecting the other
extract fluid. The amplitude of the oscillation can be continuously adjusted between 0 and
20mm by sliding the eccentric point, which is fixed by four bolts. The eccentric mechanism
is driven by a strong electric motor of which the rotational speed can be continuously varied
between 0 and 40 Hz. The frequency is measured using a pulse counter which has a resolution
of 0.02Hz. The joints of the connecting rod are formed by ball bearing and ball bushings are
used for the guiding of the rod that drives the syringes.

o eccentric point

-
TRy ball bearings M
> ¢ ball bushings syringe
°° °°
°
: ' o O 1 }
° -]
Q ° L 4L
°° o° 7 7. 77777,
o on S -, ° o
syringe

LED light source pulse countsr

Figure 5.24: The eccentric disturbance mechanism which is used to trigger transition.

We used two sets of low cost commercially available syringes (BD Plastipak, 1 and 5 ml) having
an internal diameter of 4.7 and 12.0 mm respectively. These plastic syringes provide a smooth
transparent cylinder which can be replaced if wear occurs and which also allows for a visual
inspection to detect any trapped air bubbles. The latter is important, since a compressible air
bubble would destroy the relationship between the amplitude of the syringes and the injection
velocity. The soft rubber pistons that come with these syringes display to much elastic defor-
mation at high frequencies and no longer follow the displacement of the driving rod. Therefore,
we replaced them with plastic pistons which have a groove to accommodate the quadrings (a
special type of rubber ring with four-lobbed cross-section) which prevent leakage. Quadring
are much better suited for oscillating conditions and give less friction than e.g. O-rings. To
provide a stiff wall, the syringes are placed in Plexiglas holders which can be mounted to the
"injection piping. This allows us to quickly change the syringes. The piping which connects the
syringes with the forcing system, also called the injection flange, are made of transparent PVC.
This gives visual access to detect bubbles but also provides a stiff wall that prohibits damping
of the oscillating flow caused by the flexibility of the wall. The inner diameter was 13 mm to
minimize flow resistance which could lead to cavitation in the injection flange (Boere 1995).
The geometry of the injection flange is shown in figure 5.25. The fluid is injected/extracted
perpendicularly to the pipe wall through a thin slit. The construction is made so that the
disturbance is spread as evenly as possible over the entire circumference. In this way, the dis-
turbance is much more smooth compared to injection through holes in the pipe walls. Moreover,
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as equal amounts of fluid are injected and extracted, the disturbance is divergence free and large
pressure pulses are avoided which would disturb the pressure drop measurement. This effect is
also found when air bubbles are trapped in the injection piping.

to disturbance mechanism

blocking """"""" %%

of slit

4
\iniection channel/

to disturbance mechanism

Figure 5.25: THustration of the injection flange to excite the pipe flow with a non-axisymmetric disturbance in
order to trigger transition to turbulence. b,=0.55 mm, h;=15.0 mm, and hs;,=3 mm.

To characterize the disturbance, we use the disturbance velocity and the frequency. As
we do not know the precise azimuthal distribution of the velocity, we defined the disturbance
velocity as the average velocity through the injection slit in the pipe wall, i.e. over half the
injection opening, whereas over the other half suction is applied, at the moment where the
velocity of the syringes reaches its maximum, i.e. the maximum of the azimuthally averaged
injection velocity. The total injection+extraction area (Oying) measures:

Oring = (7D — 2+ hyo) b, (5.26)

Here, b, is the width of the slit and A, is the height of the areas blocking the slit (see figure 5.25).
The relationship between the maximum piston velocity vpmax and the disturbance velocity v;
is then governed by the ratio of the surface of the piston to that of the injection area (Oring/2):

T N2
ZDS

Vi = 7 Up,max
'Q‘Oring

(5.27)

where D; is the inner diameter of the syringe. Since, vp max=27f A, where is f is the frequency
and A is the amplitude of the oscillation of the piston, the disturbance velocity (in m/s) can
now be expressed as:

v; = 0.0001909 - Z— -D?.A. f=00001909- AV - f (5.28)
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Here, AV is the displacement volume in mm? (D, and A have to be substituted in mm’s).

Note that the disturbance velocity depends on both AV and f. The frequency can be
changed without stopping and modifying the disturbance mechanism to change the amplitude of
the oscillation. That is why we used several discrete values of AV in our stability measurements,
and varied f. The frequency f is recorded directly into the measurement computer together
with quantities like pressure drop and flow rate.

We found that the reproducibility of the experiments is quite good and we feel that our dis-
turbance mechanism operates satisfactorily. The results of the stability measurements obtained
with the disturbance mechanism described in this section, will be presented in chapters 6 and
7 for Newtonian and non-Newtonian fluid respectively.



Chapter 6

Newtonian stability measurements

Abstract

In this chapter we present the stability measurements for a Newtonian fluid, i.e. water. The
stability measurements can be divided into Re<2700 where transition is characterized by the
presence of puffs or Re>3000 where transition is characterized by turbulent slugs.

In the puff-Re-range, the largest number of puffs per time-trace of 15 min are generated at an
optimal frequency. This frequency is very close to the value at which turbulent slugs are gener-
ated around Re=3000. The percentage of puffs that show so-called incursions in their trailing
edge centerline velocity is much smaller that the 30% found by (Darbyshire & Mullin 1995).
In the slug-Re-range, the disturbance velocity that just triggers transition, i.e. the critical dis-
turbance velocity, varies weakly with the nondimensional wave number o*. Only for a*=~1,
does the flow seem extra sensitive, particularly for Re>30000. For o*<2, the ratio of critical
disturbance velocity to bulk welocity seems to vary according to Re2/3. For large a*, o*>5,
the critical disturbance wvelocity is practically independent of Re and thus the ratio of critical
disturbance velocity to bulk velocity seems to vary according to Re™!.

For Re>30000 and o*>2 multiple transition points are found. For such a case, increasing the
disturbance velocity for constant o, the flow regime may change from laminar to turbulent,
back to laminar and at even larger disturbance velocities the flow will become turbulent again.

6.1 Introduction

In this chapter, the pipe-flow stability of a Newtonian fluid will be discussed. This in itself
is an interesting topic as it is still one of the greatest unsolved fundamental problems in fluid
mechanics. Considering the amount of work which has already been done on this topic, the
main aim of this project cannot be to completely solve it. Apart from the small contribution we
hope to make to Newtonian transition research on pipe flow, these stability measurements will
also serve as a reference for the study of the effect of polymer addition on pipe-flow transition.
These non-Newtonian stability measurements are presented in the next chapter.

To study laminar-turbulent transition of both Newtonian and non-Newtonian fluids, we
constructed a experimental pipe-flow facility. Its design, construction and performance have
been described in detail in chapter 5. The natural transition Reynolds number in our facility is
Re>60000, whereas the lowest natural transition Reynolds number for pipe flow is Re~2 3001
This gives us a wide range of Re where the flow can be triggered to become turbulent. This
can be done using disturbances of which characteristics like amplitude and frequency can be

!Many values circulate for the minimum transition Reynolds number. Darbyshire & Mullin (1995) find that
below Re=1 760 no puffs can be sustained. However, Wygnanski et al. (1975), show that equilibrium puffs exist
around Rea2 200 — 2300. Based on this, we prefer to use Re=2 300.

125
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accurately adjusted. In this way, we can measure the disturbances that trigger transition and
study the influence of various disturbance parameters.

Based on the theoretical work of e.g. Smith & Bodonyi (1982), our idea was to disturb
the flow with disturbances which are not axisymmetric but have an azimuthal wave number
of 1 or more. Nonlinear theories, suggest that such disturbances may be the most likely to
become unstable and trigger turbulence. To generate such disturbance, we used the disturbance
mechanism described in more detail in section 5.13. The frequency and the amplitude of the
disturbance can be varied continuously between zero and a maximum value. We used this
to measure which combinations of disturbance amplitude and frequency trigger transition.
The Reynolds number for these measurements was in the range of 1800<Re<50000. The
disturbance that just triggers transition is referred to as critical.

The measurements can be grouped into those where a critical disturbance generates tur-
bulent slugs or so-called puffs of which the characteristic were discussed in section 2.3.5. This
corresponds to Reynolds numbers of Re>3000 and Re<2 700 respectively. Owing to their na-
ture, it is more difficult to detect puffs than turbulent slugs. The reason for this is explained
in the next section where we discuss measurement methods together with some definitions of
(non-)dimensional quantities that will be used to present the stability measurements. Then, in
section 6.3, we will discuss the stability measurements performed in the slug-Re-range. These
measurements are the basis for the choice of the parameter values for the stability measure-
ments in the puff-Re-range. That is why the stability measurements for the high Reynolds
numbers, i.e. slug—Re-range, are discussed before considering the puff~Re-range in section 6.4.
Finally, a transition model is proposed that may give an explanation for measured pressured
drops at high Reynolds numbers which sometimes become smaller than the laminar pressure
drop or even negative.

6.2 Measurement method

6.2.1 Introduction

In a basic study of the stability of the flow, one of the basic needs is to discriminate between
the various flow regimes. The laminar and the turbulent flow regime are separated not by a
sudden transition but by a finite transition region. The flow structures which can be observed
in this transition region, depend on the Reynolds number. This has an effect on the method
of transition detection which will be elucidated in the next section. With a clear detection
criterion for transition, we are able to study the variation of the disturbance magnitude and
frequency which are just able to trigger transition for a given Re. In order to be able to compare
our results with theory and other experimental observations, we need to normalize our results.
How this is will be explained in section 6.2.5.

6.2.2 Transition detection

Before we can study transition, we have first to be able to detect it. Such detection must
clearly depend on the flow characteristics in the transition region. The types of transitional
flow depend on the Reynolds number (e.g. Wygnanski & Champagne 1973). For Re<2700, so-
called puffs are observed. To give a short description of a puff (for more details see section 2.3.5)
we note that initially the velocity in the puff decreases slowly below the laminar value. At the
end of a puff, the velocity increases rapidly again to reach the laminar value. The stream-wise
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rms disturbance within a puff is observed to be strongest near the center of the pipe. The
length of a puff is approximately 10-40D. For larger Re, the puffs start merging and so-called
turbulent slugs are formed for Re>3 000. The flow characteristics in the interior of a turbulent
slug closely resemble turbulent pipe flow. Both leading and trailing edges of a slug are sharp so
that the velocity changes quickly between the laminar and turbulent values. Turbulent slugs
can have a length of the order of the pipe length. These two structures, i.e. puffs and slugs,
have been found in both natural as well as in triggered transitional flows.

The difference in structure between puffs and slugs also affects the transition detection. In
our case, two measurement techniques available to detect transition; Laser Doppler Velocimetry
(LDV) and differential pressure drop measurements. For both techniques, it turned out that
detection of transition in the puff-Re-range is more difficult than in the slug—Re-range.

Let us first look in somewhat more detail at the pressure drop measurement. As already
mentioned , the undisturbed flow in our facility is laminar for Re<60000. So the lowest
pressure drop we have to be able to measure accurately is for laminar flow at Re=2 000 and
the highest pressure drop is that for turbulent flow at Re=60000. This results in a range
of pressure drops we should be able to measure accurately of 0.25mmH,0 to 117 mm H,O
2. Although a pressure gauge for this total range was not available, we have been able to
obtain good results with a membrane differential pressure gauge which could be used up to
80 mm H,O which is equivalent to a pressure drop over 2.5m in turbulent flow at Re=50000.
With this device, we could also observe the laminar pressure drop for the puff-Re-range, i.e.
Re<2700., with sufficient accuracy. However, as the flow does not become fully turbulent, the
increase in pressure drop due to the presence of puffs is too small to be accurately captured.
Thus, the detection of transition with help of the pressure-drop measurement is restricted to
3000< Re<50000.

Next we consider the Laser Doppler Velocimetry (LDV). In fact we used two LDV’s; a
HeNe-laser system in combination with a frequency tracker, and an argon-ion laser together
with a two-component fiber-optic system by Dantec and a BSA to analyze the signal (for more
details see section 5.11.5). The various (dis)advantages of the two systems are:

e The HeNe-system requires no safety protection other than a prevention of not looking
directly into the laser beam. For the argon-system, safety precautions like wearing laser
glasses and screens to block the (reflected) laser radiation are necessary.

¢ The HeNe-system can be used immediately after it is switched on. Due to the extremely
accurate alignment which is required for the fiber optics, the argon-ion laser needs 1.5
hours of warm-up time before it is operational.

¢ The HeNe-LDV time-traces of the mean velocity and higher order moments are displayed
on a computer screen. This is very helpful in detecting the type of flow. Unfortunately,
the Burstware software by Dantec allows no such on-line time-trace information but gives
only on-line the mean and the rms-velocity values plus a histogram of the velocities.

e Unfortunately, a low velocity tracker for the HeNe-LDV system was not available and the
tracker that we used, could measure only the centerline velocity for Re>7500. As the

2Here we used that the pressure drop is measured over a 2.5m pipe section and the kinematic viscosity of
the fluid is ©#(24.4°C) =9-10~"m?/s.
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argon-LDV has no such problems, all measurements for Re<7 500 have been done using
this system.

e An advantage of the argon-LDV system is that it is equipped with a computer controlled
traversing mechanism. Thus all velocity profiles were measured using the argon-LDV.

Now, let us explain how we used the two LDV’s for the detection of transition. During
transition, the most pronounced changes in the velocity in both the puff-Re-range and the
slug~Re-range can be observed at the centerline (Wygnanski & Champagne 1973). Thus both
LDV’s measured the centerline velocity for the detection of transition.

In the slug—Re-range, i.e. Re>3000, transition could be detected easily by this method.
The on-line time-trace of the HeNe mean velocity (used above Re=7 500) clearly showed the
presence of slugs. Also, the argon-system gives in this case two peaks in the velocity histogram,
around the laminar and the turbulent centerline velocity. Furthermore, it gives in that case
also rms-velocity fluctuations exceeding 10% of the average velocity.

In the puff-Re—range, i.e. Re<2700, only the argon-LDV could be used and transition
detection becomes much more difficult. This is in particular the case for measurement around
Re=2000. The problems are caused by the very nature of the centerline-velocity signal of
a puff. This is because, the shape of a centerline-velocity time-trace of a puff resembles a
saw-tooth; a slow decrease in velocity near the leading edge of the puff and a sharp rise at
the trailing edge. As a result, no second peak will emerge in the velocity histogram but only
a slight asymmetry appears towards the turbulent velocity value. The degree of asymmetry
depends on the amount of puffs that are generated. Also, the average velocity decreases only
slightly by about several percent and the rms-velocity is increased only a little, typically to
2.5-3% of the average velocity. With respect to the latter, we may mention that this increase
of the rms is also hard to notice due to the rms-values of 1-2% caused by noise of the average
velocity for the laminar flow. To minimize these difficulties, we measured in this case velocity
time-traces during 15 minutes in which the puffs are easily notices. As such measurements are
rather time consuming, only a limited number of frequencies and amplitudes could be studied.
The choice for the values for the disturbance frequency was based on the frequency for which
transition was found at Re=3000. This is why the results in the slug-Re-range are discussed
before those in the puff-Re-range.

6.2.3 Measurement location
In the previous section, we discussed the method which we used to detect transition. However,
the location of the ‘detection system’ relative to that of the disturbance mechanism also plays a
role in the detection of the transition. The reason is that a disturbance needs time to grow before
it reaches a magnitude at which triggers transition. During this time the disturbance moves
downstream. So, suppose a disturbance is slightly above critical and will trigger turbulence at
a certain location downstream. Then, depending on whether the transition detector is placed
upstream or downstream of this location, it will detect a (disturbed) laminar or a turbulent
flow respectively.

In figure 6.1, the configuration of the pipe segments, the disturbance mechanism, and the
measurement locations are shown. The disturbance mechanism is located at 26.95 m (673.75 D)
downstream of the contraction. The locations of the two pressure holes over which we record
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Figure 6.1: Configuration of the pipe segments and the measurement sections during the stability measurements.
The squares inside the LDV-measurement sections having the size of the pipe diameter depict the location of
the thin sheets replacing the Plexiglas pipe wall. p; and p. indicate the location of the pressure holes. The
magnetic inductive flow meter is labeled “Q”.

Figure 6.2: An overview of the two LDV’s and the flow meter. The Argon-LDV together with the traversing
mechanism is shown at the left. At the bottom-center, the white elongated ‘box’ represents the HeNe-laser. To
the right, in the lower corner, we can see the flow meter with the sliding support. The black screens in the back
are used to block laser light since for the Argon laser light, even reflected beams can be harmful.

the pressure drop and of the LDV position are given in table 6.1 relative to the position of the
disturbance mechanism.

This configuration gives us four locations at which we can detect transition; the two LDV-
locations and both pressure hole locations. So, what happens if the disturbance velocity v; is
raised above the critical value? Even though the disturbance will trigger transition somewhere
downstream, v; could be so close to the critical value that transition occurs downstream of the
HeNe-LDV and the flow seems to remain laminar. When it is increased a little, the transition
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Table 6.1: Locations of the various components in the stability measurements. The axial positions are relative
to the position of the disturbance. Values are given in physical length as well as number of pipe diameters.

z(p1)  z(p2) z(Art) =z(HeNe)

1.00m 3.50m 4.60m 5.36m
25D 875D 115D 134D

location could move upstream and transition may occur in between both LDV-systems or even
upstream of the argon-LDV. Although the disturbance velocity can be adjusted very accurately,
in most cases the transition was located either upstream or downstream of both LDV’s and very
rarely in between. This is an indication that this far downstream of the disturbance mechanism,
the transition location is extremely sensitive to the value of v;. However, in most cases it s
possible to position the transition location in between the downstream pressure hole (po) and
the argon-LDV by carefully adjusting v;. As the distance between p; and the Argon-LDV
is comparable to that between the two LDV’s (27.5D and 19 D respectively), we feel that
for an accurate measurement of the critical disturbance velocity, the position of transition
detection should be located at least 100 D downstream of the disturbance mechanism. Based
on this result, we used thedisturbance frequency at which the LDV’s detected transition for
the determination of the critical disturbance velocity rather than the first observation of an
increase in pressure drop. However, it is found that the latter is only slightly larger than the
value given by the LDV and can still be considered as a reasonable estimate for the critical
value. Increasing the disturbance velocity further by only a few percent will move the transition
location close to the upstream pressure hole, so that both the LDV’s and the pressure detect
turbulent flow.

Thus, given the observed sensitivity of the transition location on the disturbance velocity,
particularly for distances more than 100 D downstream of the disturbance mechanism, the
critical disturbance velocity v; is will be at most overestimated by less than one percent.

6.2.4 Measurement procedure

Next we consider the procedure that we followed to located the transition at various Reynolds
numbers and disturbance frequencies. Since the procedure is directly related to the nature
of the disturbance mechanism, discussed in detail in chapter 5, let us briefly recall its main
features.

The disturbance is generated by two syringes which are mounted in opposite direction and
which are oscillated by an eccentric mechanism of which the amplitude and the frequency are
continuously variable between 0-20 mm and 0-40 Hz respectively. The flow from the syringes
are distributed over two slits opposite of each other in the pipe wall. As we do