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Abstract 

Laminar-turbulent transition can affect the aerodynamic performance of low Reynolds number flyers, such as 

micro air vehicles (MAVs) which operate at the Reynolds number of 104-105.  In order to gain better 

understanding of the fluid physics and associated aerodynamics characteristics, we have coupled (i) a Navier-

Stokes solver, (ii) the eN method transition model, and (iii) a Reynolds-averaged two-equation closure to study 

the low Reynolds number flow characterized with laminar separation and transition. A new intermittency 

distribution function suitable for low Reynolds number transitional flow is proposed and tested.  To support 

the MAV applications, we investigate both rigid and flexible airfoils, which has a portion of the upper surface 

mounted with a flexible membrane, using SD7003 as the configuration. Good agreement is obtained between 

the prediction and experimental measurements regarding the transition location as well as overall flow 

structures. In the current transitional flow regime, though the Reynolds number affects the size of the laminar 

separation bubble, it does not place consistent impact on lift or drag. The gust exerts a major influence on the 

transition position, resulting in the lift and drag coefficients hysterisis. It is also observed that thrust instead of 

drag can be generated under certain gust condition. At α=4o, for a flexible wing, self-excited vibration affects 

the separation and transition positions; however, the time-averaged lift and drag coefficients are close to those 

of the rigid airfoil. 

 

Nomenclature 

c  Chord length 

N  Critical factor in the transition model 

H  Shape factor, δ*/θ 

Ti  Turbulence intensity 

U  Freestream velocity 

CL  Lift coefficient 

CD  Drag coefficient 

CDf  Friction drag coefficient 

δ  Boundary layer thickness 

δ*  Boundary layer displacement thickness 

θ  Momentum thickness 

uτ   Friction velocity 

µ  Molecular viscosity 

νt  Kinematic eddy viscosity 
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k  Turbulent kinetic energy 

ω  Specific dissipation rate, gust frequency 

τ  nondimensionalized time =tc/U 

 

Introduction 

Micro air vehicles (MAVs), which refer to flight vehicle with a maximum dimension of 15 cm or less and an 

operating speed around 10 m/s, have attracted attention because of their expected broad applications and the 

challenging research topics involved. Three types of configurations have been explored in the MAV design, 

namely, fix wing design,[ , ]1 2  flapping wing design,[ , ]3 4  and rotary wing design. For MAVs with a linear 

dimension in the range of 10cm to 15cm, fixed wings are commonly adopted because fixed wings are simple 

in concept and easy to be implemented. However, fixed wing, as a miniature of large airplane wing, its 

performance is severally deteriorated as its operating Reynolds number drops to the range of 104 to 105. Under 

such low Reynolds number conditions, the boundary layer at the onset of the pressure rise may still be 

laminar, and thus is unable to sustain substantial adverse pressure gradients. For small angles of attack, the 

pressure gradient is modest, and the flow can remain laminar and attached; as the angle of attack increases, 

the adverse pressure gradients grows, and the flow experience separation on the upper surface. Depending on 

the specific situation, the separated flow may experience laminar-turbulent transition and reattach to form a 

laminar separation bubble. The laminar separation and the phenomena followed largely determine the MAV’s 

aerodynamic performance. For this reason, fixed wing research focuses on the low Reynolds number 

aerodynamics, including the leading-edge separation bubble (LSB) and the thereafter incurred laminar to 

turbulence transition. 

Ever since its first observation by Jones,[ ]5  LSBs have been investigated by numerous researchers, as reviewed 

by Young and Horton.[ ]6  Over a low Reynolds number airfoil, if the freestream turbulence intensity is low, 

flow starts as laminar; before transition the laminar boundary layer separates due to the adverse pressure 

gradient aft of the velocity peak. The separated flow quickly undergoes transition to become turbulent. 

Depending on the parameters such as the local Reynolds number, pressure gradient, surface roughness, and 

freestream turbulence intensity, the turbulent free shear layer may entrain enough high momentum fluid to 

reattach as a turbulent boundary layer behind a laminar separation bubble. Based on its effect on pressure and 

velocity distributions, LSB can form either a short bubble or a long bubble.[ ]7  A short bubble covers a small 

portion of the airfoil surface and plays an insignificant rule in modifying the velocity and pressure 

distributions over an airfoil while a long bubble covers a considerable portion of the surface and modifies the 

inviscous pressure distribution and velocity peak. The presence of a bubble, especially a long one leads to 

substantial change in the effective airfoil shape, causing a decrease of lift and increase of drag, and 

consequently poor power efficiency.[ ] 8

Aimed at improving the fixed-wing MAVs performance, numerous techniques have been proposed. A 

promising technique is to use flexible material as the lifting surface. This flexible wing concept was discussed 

by Shyy et al. [ ]8  and Lian et al.[ ]9 , and has been practiced in the MAV design shown in Figure 1. It is observed 

from the wind tunnel experiment and flight test that a flexible wing can improve MAVs performance.[ ]2  One 

advantage for the flexible wing is that it can facilitate passive shape adaptation, which results in delayed stall. 

It has been experimentally shown that under modest angles of attack, both rigid and membrane wings 

demonstrate similar lift characteristics with the stiffer wings having marginally higher lift coefficient.[ ]10  

However, the membrane wings stall at substantially higher angles of attack than rigid wings. This feature is a 

key element in enhancing the stability and agility of MAVs. For example, typical rigid wings have stall angles 

between 12 and 15 degrees, while flexible wings, which reduce their effective angle of attack due to the 

surface deformation,[ ]11  have stall angles between 30 and 45 degrees. 
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Figure 1. MAV designs with fixed wing at the University of Florida (Ifju et al.
 [ ]2 ) 

Because the onset of transition is affected by a wide spectrum of disturbance, such as pressure gradient, wall 

roughness, freestream turbulance, acoustic noise, wall heating or cooling, wall suction or blowing, etc., a 

comprehensive transition model considering all these factors is not yet available. Even if we limit our focus 

on freestream turbulence, it is still a challenge to give an accurate mathematical description. In the general 

area of transition study, approaches of transition prediction range from simple empirical methods through 

those based on parallel and linear stability theories, such as the eN methods,[ , ]12 13  to linear or nonlinear 

parabolized stability equations (PSE), to more comprehensive methods such as the Navier-Stokes models. To 

date, each of the proposed methods deals with only one or two of those factors affecting the transition. 

In the study of LSB, there are some empirical methods to predict transition. Most of them are devised based 

on collective experimental measurements. For example, Roberts,[ ]14  Davis et al.,[ ]15  and Volino and Bohl[ ]16  

proposed models which estimate the transition length typically based on the turbulence level at boundary 

layer edge at the separation; Mayle[ ]17 , Praisner and Clark,[ ]18  and Roberts and Yaras[ ]19  put forth models which 

predict the transition length using the local Reynolds number based on the momentum thickness. These 

models tend to oversimplify the downstream factors such as pressure gradient, surface geometry, and surface 

roughness.  For the attached flow Wazzen et al.[ ]20  proposed a model based on the shape factor H. His model 

gives a unified correlation between the transition point and Reynolds number for a variety of problem. For 

separated flow, however, there is no similar model. It is probably due to the limited availability of accurate 

shape factor measurement, which, in order to account for flow separation, need to consider the flow reversal, 

which is challenging. 

There are other approaches of predicting transition based on stability theory and boundary layer theory. 

Among them the eN method has been adopted by multiple researchers.[ , , , ]12 13 21 22  The eN method is based on the 

linear stability analysis and boundary layer theory. It solves the Orr-Sommerfeld equation to evaluate the 

local growth rate of unstable waves based on the velocity and temperature profiles over the body. Transition 

occurs when the amplification of most unstable Tollmien-Schlichting (TS) wave reaches certain value. Its 

application can be found in the coupled inviscid-boundary model such as that employed in XFOIL.[ ]23  XFOIL 

employs the steady Euler equations in integral form to represent the inviscid flows, a two-equation integral 

formulation based on dissipation closure to represent boundary layers and wakes, and eN methods to tackle 

transition. 
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More sophisticate approaches have also been proposed. For example, Holloway et al. used unsteady 

Reynolds-averaged Navier-Stokes (RANS) model to study the flow separation over a blunt body for the 

Reynolds number range of 104 to 107.[ ]24   For the flat plate case, as illustrated by Dick and Steelant.[ ]25 , the 

transition points seem to be predicted earlier than indicated by the experiment. Edwards et al.[ ]26  developed a 

unified one-equation model by blending an eddy-viscosity-transport equation[ ]27  with the standard Spalart-

Allmaras one-equation turbulence model.[ ]28  To improve the predictive capability, Wilcox devised a low-

Reynolds number k-ω turbulence model to predict transition.[ ]29  Steelant and Dick,[ ]30  Suzen and Huang, [ ]31  

and Suzen et al. [ ]32  incorporated the concept of intermittency factor to model the transitional flows. This can 

be achieved either by using conditioned Navier-Stokes equations or by multiplying the eddy viscosity by the 

intermittency factor. In all cases the intermittency factor is solved from a transport equation, which is based 

on empirical correlations. More importantly, the onset of transition is determined by empirical correlations. 

Zheng et al.[ ]33  presented another approach by coupling the Wilcox’s low Reynolds number k-ω model with a 

sensor technique. In their study the introduced sensor, which is a function of streamline curvature, is 

introduced to detect separation and trigger transition. The rationale is to increase the eddy viscosity in the 

circulation zone. Therefore, the result is sensitive to the topology of the separation bubble. As to be presented, 

based on the SD7003 airfoil,[ ]34  we have found that this method works well for short separation bubble but 

under-predicts the length of long bubble. 

The concept of coupling RANS solver and eN method to predict transition has been practiced by Radespiel et 

al.[ ]35  and Stock and Haase.[ ]36   More recent application can be found in the work of Yuan et al.[ ]37  Successful 

application of this coupled approach needs the following assumptions: 1) the velocity profiles are two 

dimensional and steady; 2) the initial disturbance is infinitesimally small; 3) the boundary layer is thin. Even 

though in practice the eN method has been extended to study the three-dimensional flow,[ ]38  the physical 

meaning of the envelope method is not clear. Furthermore, even in two-dimensional flow, as will be 

presented, not all these assumptions can be satisfied.[ ]33

The large eddy simulation (LES)[ ]39  and direct numerical simulation (DNS) are being employed to study 

laminar-turbulent transition. For example, Yang and Voke[ ]40  investigated boundary layer separation and 

transition employing LES. Yuan et al.[ ]37  studied transition over a low-Reynolds number airfoil using LES. 

However, given the complexity of the transition physics and the need for accounting for complex geometry in 

practice, the eN method is expected to remain a practical approach for engineering applications. 

In the present work we simulate the transitional flow by coupling an incompressible RANS solver with the eN 

method. The building block of this approach compromises a fluid solver, the eN method, and a turbulence 

model. The eN method is based on the work by Drela and Giles.[ ]23  Upstream of the transition point, the 

laminar form of the Navier-Stokes equations are solved along with the transition detection scheme. 

Downstream of the transition point, Wilcox’s k-ω turbulence model is used as the turbulence closure.[ ]  29 Both 

rigid and flexible wings are investigated in order to aid MAV design. This paper is structured as follows: first, 

we present geometric description of the chosen airfoil and the recent experimental work with this airfoil; 

second, we introduce the major modeling and numerical approaches employed in this work; third, we present 

the numerical results and discuss the outcome. We will first validate our transitional model against available 

experimental data, and examine the effects of angle of attack, freestream turbulence intensity, Reynolds 

number, and gust on the transition behavior and the airfoil performance. Then, we investigate the issues by 

considering the transitional flow over a flexible airfoil.  

Experimental Study of SD7003 Airfoil 

We adopt the SD7003 airfoil[ ]34  in the present work to study LSB and transition. The airfoil has a maximum 

thickness of 8.5% and a maximum camber of 1.48%. The geometry is shown in Figure 2. This airfoil has 

received substantial experimental investigations. It exhibits a long, stable LSB over a broad range of angle of 

attack at Reynolds numbers below 105.[ ]41  Recently three groups, namely  Hanff at the Institute for Aerospace 

Research (IAR),[ ]42  Nerger et al. at the Technical University of Braunschweig (TU-BS),[ ]43  and Ol et al. at Air 

Force Research Lab (AFRL),[ ]41  have used SD7003 airfoil to experimentally study LSB and transition. A 
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detailed comparison of instruments and experimental results can be found in the work of Ol et al.[ ]41  Here we 

briefly summarize their facilities and major observations. Table 1 compares the tunnel types and particle 

image velocimetry (PIV) resolutions. Among the three, the work by Nerger et al. [ ]43  has the highest 

resolution. 

 

 

 

 

 

 

 

Figure 2. SD7003 airfoil with 8.5% thickness and 1.4% camber. 

For the work of Hanff[ ]42  and Nerger et al., [ ]43  measurements were taken for Reynolds number of 60,000 and 

angle of attack of 4o; Ol et al. [ ]41   took one more step and extended their measurement to other angles of 

attack. The locations of separation, transition onset, time-averaged reattachment, and maximum bubble height 

at the angle of attack of 4 degree are listed in Table 2, along with the estimated facility turbulence intensity. 

Table 1. Comparison of PIV resolution for the three data sets[41]

Group Tunnel type Window Width [pix] 

(%chord) 

Vector Spacing [pix] 

(%chord) 

Hanff[ ]42 Tow Tank 16 (0.46%) 4 (0.12%) 

Nerger et al. [ ]43 Wind Tunnel 16 (0.16%) 8 (0.085%) 

Nerger et al. [ ]43 Water Tunnel 32 (0.32%) 8 (0.085%) 

Ol et al. [ ]41 Water Tunnel 32 (0.44%) 16 (0.22%) 

 

Table 2 Measured and computed SD7003 LSB properties at Re=60,000 and 4o angle of attack. Here c is the 

airfoil chord length. 

Group Freestream 

turbulence level 

Ti[%] 

Separation  

positon 

xs/c 

Transition 

position  

xt/c 

Reattachment 

position xr/c 

Max Bubble 

Height, hb/c 

Hanff[ ]42 0.0 0.33 0.57 0.63 0.027 

Nerger et al. [ ]43 0.1 0.30 0.53 0.62 0.028 

Ol et al. [ ]41 ~0.1 0.18 0.47 0.58 0.029 

Regardless of the differences in the freestream turbulence, the maximum bubble heights measured in different 

experiments agree well with each other. The data on the LSB separation, transition, and reattachment points 

agree well between the measurement of Hanff[ ] 42 and Nerger et al. [ ]43  while Ol et al. [ ]41  predicts that the flow 

separates and reattaches further upstream. The reason, as explained by Ol et al. [ ]41  is that in his experiment the 

true angle of attack may be slightly larger than the correct value. Nevertheless, the data by Ol et al. [ ]41  closely 

match the XFOIL prediction. 
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The measured lift coefficient by Ol et al. [ ]41  is in line with the measurement by Selig et al.[ ]34  and XFOIL data 

at modest angles of attack. While XFOIL works well at modest angles of attack, it doesn’t follow the fluid 

physics when the flow separates massively. 

Numerical Methods 

Reynolds-Averaged Navier-Stokes Solver 

We simulate the transitional flow by solving the incompressible Navier-Stokes equations coupled with a 

transition model. The equations are written in three-dimensional curvilinear coordinates and are solved with a 

pressure-based algorithm, generalizing from the original Semi-Implicit Method for Presure-Linked Equations 

(SIMPLE).[ , ]44 45  We discretize the convection terms with the second-order upwind scheme and discretize the 

diffusion terms with second-order central difference scheme. The time integration is performed with an 

implicit three-point backward scheme for better handling of accuracy and strict time step constraint imposed 

by the extremely fine grid resolution. We use Wilcox’s k-ω turbulence model[ ]46  as the turbulence closure. For 

clarity, the turbulence model is written in Cartesian coordinates as follows: 
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For the preceding equations, the value of turbulence kinetic energy k at the freestream is set based on the 

experimental data. Because there is no direct measurement for the dissipation rate, we assign a value of ω so 

that the resulting turbulence kinetic eddy viscosity νt=k/ω is much smaller than the laminar kinetic viscosity. 

On the wall surface, the kinetic energy is set to zero, and the dissipation rate follows: 

2 /Ru Sτω ν= ,  (6) 

where uτ is the friction velocity, and we set SR to 500 to simulate the smooth wall. 

Transition Model 

The transition prediction method employed here is based on the Orr-Sommerfeld equation, which is the 

essence of the eN method.[ , ]12 13  Specifically, the eN method is based on linear stability analysis and it states that 

transition occurs when the most unstable TS wave in the boundary layer has been amplified by a factor eN: 

0

max ( ; )           ( ; ) ( )
x

t i
x

N n x n xω ω ω α= = ∫ dxω−   (7) 

where ω is the frequency, 0 ( )x ω  is the onset location of instability, iα−  the spatial growth rate of the TS 

wave, and n(x;…) describes the amplitude growth of the disturbance along the chord of the airfoil. Given a 
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velocity profile, the local disturbance growth rate can be determined by solving the Orr-Sommerfeld 

eigenvalue equation. And then the amplification factor is calculated by integrating the growth rate, usually the 

spatial growth rate, starting from the point of neutral stability. Gleyzes et al.[ ]47  found that the integrated 

growth rate can be approximated by straight lines as follows: 

0
( )[Re Re ( )]

Re
k

dn
n H H

d
θ θ

θ

= −
k

.  (8) 

With this approach, we can approximate the amplification factor with a relatively good accuracy without 

solving the eignevalue equations. And this approach is adopted by Drela and Giles.[ ]23  For similar Blasius 

flow, the amplification factor  is determined by the following empirical formula: n

20.01{[2.4 3.7 2.5 tanh(1.5 4.65)] 0.25}
Re

k k

dn
H H

d θ

= − + − + 1/ 2  (9) 

For nonsimilar flow, based on the properties of the Falkner-Skan profile family, the amplification factor with 

respect to the spatial coordinate ξ is expressed as: 

2
1

( 1)
Re 2

e e e

e e

du udn dn

d d u d uθ

ρ θξ 1

ξ ξ ξ θ
= + ,  (10) 

An explicit expression for the integrated amplification factor then becomes 

0

( )
dn

n
d

ξ

ξ
dξ ξ

ξ
= ∫ ,  (11) 

where ξ0 is the point where 
0

Re Reθ θ= , and the critical Reynolds number are expressed by the following 

empirical formulas: 

010

1.415 20 3.295
log Re ( 0.489) tanh( 12.9) 0.44

1 1 1H H H
θ = − − + +

− − −
, (12) 

As already mentioned, the eN method requires that the following assumptions be satisfied: 

1. The initial disturbance is infinitesimally small.  

2. The laminar boundary layer is thin and gradually grows in the streamwise direction. 

While the second assumption seems stringent to the LSB study, the DNS simulation shows that the 

assumption of parallel flow needed for the linear stability computations is largely satisfied for a broad range 

of LSBs.[ , ]35 37   

The freestream intensity effect can be incorporated into the eN method by the following correlation proposed 

by Mack[ ]48

8.43 2.4 ln( ),          0.0007 0.0298i iN T T= − − ≤ ≤   (13) 

van Ingen [ ]49  also proposed similar formula. Due caution should be taken when we use those correlations. The 

freestream turbulence level itself is not sufficient to describe the disturbance. Information about the 

distribution across the frequency spectrum should also be considered. The so-called “receptivity”, i.e., how 

the initial disturbances within the boundary layer are related to the outside disturbances, is a critically 

important issue. Actually, we can only determine the N factor if we know the “effective Ti”, which can only 

be defined through a comparison of measured transition position with calculated amplification ratios.[ ]49  

Mack’s correlation is used throughout our work. 

Before the transition point, the RANS equations together with the k-ω turbulence model are solved without 

the turbulent production terms; after transition, the production term is switched on. In the literature a variety 

of intermittency distribution functions are proposed.[ ]50  For example, Cebeci[ ]51  improved the intermittency 
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distribution function of Chen and Thyson[ ]52  to compass a low Reynolds number range from 2.4×105 to 2×106 

with laminar separation bubble. However, no model is available when the Reynolds number is less than 105. 

We gather that for separation caused transition at such low Reynolds number conditions, the intermittency 

distribution is largely determined by the length from the separation point to the transition point, the shorter the 

length, the quicker flow becomes turbulence. Also, previous work suggests that the flow property at the 

transition point will also be important. Based on the available experimental data and our simulation, we 

suggest the following model: 
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0                                                                                               ( )
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x x
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x x
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⎪

<⎩

T  (14) 

where xT is the transition onset position, xS is the separation position, HT is the shape factor at the transition 

onset, and ReθT is the Reynolds number based the momentum thickness at the onset point of transition. It will 

show later that the numerical results based on the proposed function have an agreement with the experiment 

measurement. 

The Structural Model 

In the design shown in Figure 1 the top surface of the wing is covered by latex membrane. To simulate the 

flow over such a flexible surface, we need a structural solver to model the transient behavior of the structure. 

A dynamic membrane model proposed by Lian et al.[ ]53  is adopted here. In the model the membrane material 

is assume to obey the hyperelastic Moody-Rivlin model. For an initially isotropic membrane, Green and 

Adkins [ ]54  show that there exits a strain energy function W which can be expressed as the following form 

 1 2 3( , , )W W I I I=  (15) 

where 1 2 3,  ,  and I I I  are the first, second, and third invariants of the Green deformation tensor. If the 

material is incompressible, namely, 3 1I = , then the strain energy is a function of I1 and I2 only. The 

following linear form has been found valuable in the study of such a membrane 

 1 1 2 2( 3) ( 3W c I c I )= − + −  (16) 

where  and  are the two material parameters. Moody-Rivlin model is one of the most frequently 1c 2c

employed hyperelastic models because of its mathematical simplicity and relatively good accuracy for 

reasonably large strains (less than 150 percent).[ ] 55

The finite element procedure is based on the principle of virtual work. A triangular element is employed. The 

system of governing equations for membrane responses under external load can be formulated as follows: 

  int ext( )t + =MD F F (17) 

where M is a positive definite mass matrix, which remains constant, D(t) represents the nodal displacement 

vector in global coordinates,  is the nodal acceleration vector, F( )tD int
 is the internal force, and Fext is the 

external load. To integrate the system of equations (17) we adopt the widely used implicit Newmark’s family 

of methods.[ ]56   

Moving Grid Technique 

In our study we need to dynamically update the computational grid to accommodate the geometrical change 

of the flexible structure. The moving grid technique adopted here is based on the spring analogue methods 

and master-slave concept. This approach maintains a point-matched grid block interface while preserving grid 

quality and preventing potential grid cross-over.[ ]57  Since the grid speed is typically not prescribed 

analytically, numerical estimation is necessary. Furthermore, one should employ formulas consistent between 

the time stepping treatment of the primary variables, the grid speed, and the geometric quantities. Both first- 
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and second-order schemes have been employed. For example, Visbal and Gaitonde[ ]58  have adopted the 

following 3-level, second-order scheme 

 
1 13 4

2

n n nx x x
x

t

+ −− +
=

Δ
, (18) 

where the superscripts n+1, n, and n-1 refer to the current time instant, and the past two consecutive time 

instants, respectively. The Jacobian matrix needs to be updated by enforcing the geometric conservation 

law.[ ] 59

Results and Discussion 

Our numerical simulations follow the set up of Ol et al.[ ]41  The geometry is the SD7003 airfoil, which 

exemplifies LSB at low Reynolds number conditions. The fluid has density ρ of 1,000 [kg/m3] and laminar 

viscosity μ of 0.001 [kg/m*s]. The freestream velocity U0 is 0.3 [m/s]. Based on freestream velocity and 

airfoil chord length of 20 cm the Reynolds number is 60,000. In the experiment the freestream turbulence 

intensity Ti is set to around 0.1%. In our computations, we initialize the turbulence kinetic energy based on 

formula k=3/2(TiU
0
)

2
. Because the dissipation rate information is not available from the experiment, we 

employ a crude way to set the dissipation rate so that at the freestream the turbulent viscosity µt is much less 

than the laminar viscosity. 

Grid Sensitivity Analysis 

To minimize the boundary condition effects, we set the outer boundary 25 chords away from the airfoil. Close 

to the wall we strive to ensure that there are at least 30 grid points within the boundary layer before separation 

and at the turbulent region y+ of the first grid point is less than 0.2. During the sensitivity analysis we find that 

at lower angles of attack, the aerodynamic coefficients have modest variations with respect to the change of 

the computational grid. At higher angles of attack, when the separation point moves toward the leading edge 

and the transition abruptly occurs within a short distance, the grid distribution exhibits a significant impact on 

the computed solution. Grid sensitivity analysis at α=4o is shown in Table 3. The lift coefficient, except for 

case 1, which has a grid size of 220×136, varies less than 2%. The drag coefficient shows convergence with 

grid refinement. The friction drag coefficient is around 0.011 for all the cases. Both the separation position 

and transition position show convergence pattern too. The same conclusion is also drawn for sensitivity 

analysis at higher angles of attack. Based on these we surmise that the grid of 220×190 is sufficient. 

Therefore, we use this grid for all computations reported below. 

Effect of Angle of Attack 

The lift and drag coefficients at different angles of attack are plotted in Figure 3. Our computed results have a 

good agreement with the experimental ones at lower angles of attack. Both our simulation and the 

measurement by Ol et al. [ ]41  predict that the maximum lift coefficient happens at 11o. Close to stall, our 

simulations over-predict the lift coefficients. We speculate that at lower angles of attack, when the boundary 

layer remains thin, the requirements to using eN are met and the simulation accurately models the physics, 

while at higher angles of attack, these requirements are no longer met. In general, the numerical results have a 

good agreement with experimental measurements by Ol et al. [ ]41  and by Selig et al.[ ]34 . 

At zero angle of attack, laminar separation occurs on the upper surface at about 77% chord position. Because 

the adverse pressure gradient is modest, the separated flow is able to reattach to the surface at 93% chord 

position and forms a thin laminar separation bubble (less than 1% of chord length). However, the flow 

remains laminar in the entire domain. As the angle of attack increases, as illustrated in Figure 4 the adverse 

pressure gradient downstream of the point of suction peak becomes stronger and the separation point moves 

toward the leading edge. The stronger pressure gradient amplifies the disturbance in the separation zone and 

prompts transition. As the turbulence develops, the increased entrainment causes reattachment.[ ]60  At angle of 

attack of two degree, the separation position is at around 37% chord position and transition occurs at 75% of 

chord position. A long laminar separation bubble forms. The plateau of the pressure distribution shown in 
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Figure 4(a) is characteristic of laminar separation bubble. It is also noticed from Figure 4(b) that the bubble 

length decreases with the increase of angle of attack.  

 

Table 3. Grid Sensitivity Analysis for α=4
o
 and N=8 

Case Grid Size CL CD CDf Separation 

position xs/c 

Transition 

position xT/c 

1 220×136 0.55 0.024 0.010 0.20 0.47 

2 330×136 0.62 0.024 0.010 0.20 0.47 

3 640×136 0.61 0.023 0.011 0.21 0.48 

4 220×190 0.60 0.023 0.011 0.21 0.51 

5 330×190 0.61 0.023 0.011 0.21 0.48 

6 640×190 0.61 0.024 0.011 0.21 0.48 

 

 

 

 

 

 

 

 

 

Figure 3. Lift and drag coefficients vs. angle of attack for SD7003 airfoil at Re=6×10
4
. 

 

 

 

 

 

 

 

 

 

 

(a)       (b) 

Figure 4. (a) Pressure coefficients vs. angle of attack; (b) Separation and transition position vs angle of 

attack for SD7003 airfoil at Re=6×10
4
. 
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The turbulent shear stress, which causes transport of momentum across the boundary layer, is responsible for 

the closure of the laminar separation bubble. Therefore, it will be helpful and worthwhile to investigate its 

distribution within the transition region. Radespiel et al. measured the shear stress in the low turbulence wind 

tunnel (LNB) and the water tunnel (WUB) of the Technical University at Braunschweig.[ ]35  The measurement 

at α=4o is performed at LNB. Figure 5 compares the experiment measurement, numerical simulation by 

Radespiel et al. [ ]35 , and our simulation. Radespiel et al. pointed out the due to the low freestream intensity in 

the experiment, a rather large critical N-factor is suitable for the case of α=4o.[ ]35  A critical factor of 10 is 

adopted in their work and Menter’s baseline turbulence model[ ]62  is used. In our simulation, the critical N-

factor is determined by the correlation previously shown in Eq.(13). Based on the measured turbulence 

intensity of 0.1%, the critical N-factor is set to 8. Our results show that flow experiences transition at 50% of 

the chord position while the experiment shows transition occurs at 55% of the chord. It should be noted that in 

the experiment, the transition location is defined as the location where the normalized Reynolds shear stress 

reaches 0.1% and demonstrates a clearly visible rise. The transition point in our simulation is defined as the 

point where the most unstable TS wave has amplified over a factor of eN. If using the normalized shear stress 

threshold 0.1% as the transition position, the simulated transition point is at 56% of the chord. Overall, as 

shown in Figure 5, our simulation shows good agreement with the experimental results in terms of transition 

position, reattachment position, and vortex core position. However, our simulations have noticeably lower 

shear stress magnitude than the experiment. In all the computations reported here, we have simply followed 

Eq. (13) to define the transition point, while Radespiel et al.[ ]35  have adjusted the values, making it difficult to 

predict the aerodynamic performance without experimental validation. 

 

 

 

 

 

 

 

 

Exp: Radespiel et al.[35]

 

 

 

 

CFD: Radespiel et al.[35]

 

 

 

 

CFD: Lian and Shyy 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 5.Streamlines and turbulent shear stress for α=4
o
. From top to bottom: top-Experimental 

measurement by Radespiel et al.
[ ]35 ; middle-Numerical simulation by Radespiel et al.

[ ]35  with N=10 (plot 

included with permission from the authors); bottom-present numerical simulation with N=8, which is 

consistent with the model proposed by Mack.
[ ] 48
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As the angle of attack increases, both the separation and transition positions move upstream, and the bubble 

size decreases. At α=8o the flow separates at 5% of the chord and go though transition at 16%, which is close 

to the experiment measurement of 14%. The bubble covers approximately 10% of the airfoil chord and it falls 

into the short bubble category. The computational and experimental results for the α=8o are shown in Figure 

6. The agreement with the experiment one is relatively good. Again, the critical N-factor is based on Eq. (13). 

With critical factor of 8 and Menter’s baseline turbulence model,[ ]62  Radespiel et al. predicted that transition 

took place at 16.5% of chord. The airfoil is close to stall at α=11o, making the case challenging for both 

experiment and simulation. The separated flow requires a greater pressure recovery in the laminar bubble for 

reattachment. Otherwise, the bubble becomes long, causing sudden deterioration in airfoil performance. Our 

simulation predicts flow separates at 5% of the chord, and the separated flow quickly reattaches after it 

experiences transition at 8.5% chord position, which is close to the measurement of 8.3%. This quick 

reattachment generally represents the transition-forcing mechanism.[ ]60  Comparison shows that the computed 

Reynolds shear stress matches the experiment measurement well (Figure 7). With two-layer turbulence model 

of Menter[ ]62  and a critical factor of 7, Radespiel et al. predicted that transition happened at 8.1% of the chord. 

[ ]35   

 

 

 

 

 

 

 

  

 

 

 

 

Exp: Radespiel et al.[35]  

 

 

 

 

CFD: Radespiel et al.[35]

 

 

 

 

CFD: Lian and Shyy 

 

 

 

 

 

 

 

 

 

 

Figure 6.Streamlines and turbulent shear stress for α=8
o
. From top to bottom: top-Experimental 

measurement by Radespiel et al.
[ ]35 ; middle-Numerical simulation by Radespiel et al.

[ ]35  with N=8 (plot 

included with permission from the authors); bottom-present numerical simulation with N=8, which is 

consistent with the model proposed by Mack.
[ ] 48
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Exp: Radespiel et al.[35]

 

 

 

 

CFD: Radespiel et al.[35]

 

 

 

 

 

 

 

CFD: Lian and Shyy 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.Streamlines and turbulent shear stress for α=11
o
. From top to bottom: top-Experimental 

measurement by Radespiel et al.
[ ]35 ; middle-Numerical simulation by Radespiel et al.

[ ]35  with N=7 (plot 

included with permission from the authors); bottom-present numerical simulation with N=8, which is 

consistent with the model proposed by Mack.
[ ] 48

Effect of freestream turbulence intensity 

When both the angle of attack and chord Reynolds number are fixed, generally speaking, as the freestream 

turbulence level increases, flow experiences earlier transition. Five turbulence levels are chosen in our test. 

The critical N-factor will be adjusted accordingly based on Eq. (13). The lift and drag coefficients are shown 

in Figure 8. At α=4o, there is no noticeable difference in the lift and drag coefficients among the five tested 

turbulence levels. This seemingly contradicts the pressure coefficient plot in Figure 9 because the integrated 

area between cp=0 and the pressure coefficient plot of Ti=0.85% is smaller than that between cp=0 and the 

pressure coefficient plot of Ti=0.07%. However, the integrated area is not linearly proportional to the lift 

because of the airfoil curvatures.  

 

 

 

 

 

 

 

 

 

Figure 8. Lift and drag coefficients vs angle of attack at different turbulence levels. 
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At α=8o, there is a drastic decrease in the lift coefficient and increase in the drag coefficient when Ti 

decreases to 0.07%. Analyzing the flow structure shows that at such a low turbulence level, the flow fails to 

reattach after the initial separation. This burst separation bubble causes the lift coefficient to drop by 10% and 

the drag coefficient to increases by more than 150%. Similar conclusion is also made for the case of α=11o. 

 

 

 

 

 

 

 

 

 

 

Figure 9. Pressure coefficient on the suction surface at α=4
o
 at different turbulence levels. 

In general with the increase of the freestream turbulence level the LSB becomes thinner and shorter. This is 

clearly shown in Figure 10. From the same figure we can also see that the shear stress decreases with the 

turbulence level.  

 
 

 

Ti=0.07% 

 

 

 

 

Ti=0.1% 

 

 

 

 

Ti=0.16% 

 

 

 

 

Ti=0.25% 

 

 

 

 

Ti=0.85% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Streamlines and normalized shear stress contours at α=4
o
 for different turbulence levels. 
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Because of the viscous effect, the boundary layer and the LSB change the effective shape of the airfoil, which 

can be approximated by superimposing the viscous displacement thickness on the airfoil. As shown in Figure 

11, the flow “feels” a thicker airfoil. The flow with higher turbulence level feels a relatively thinner airfoil 

than the flow with lower turbulence level. 

 

 

 

 

 

 

 

 

 

Figure 11. Effective airfoil shape at different turbulence levels. 

In their experimental work with a NACA 663-018 airfoil, O’Meara and Mueller reported that higher 

turbulence intensity led to shorter and thinner separation bubble and a higher suction peak.[ ]63  In their study 

the bubble length is around 7% of chord. For the long bubble reported here, we observe that as the turbulence 

intensity increase, the bubble decreases in length and thickness. However, we do not find the clear evidence 

that it can increase the suction peak (Figure 9).  

 

Effect of Reynolds number 

For low Reynolds number airfoil, the chord Reynolds number plays a predominated role in the overall 

performance. As the Reynolds number of the airfoil increases, the Reynolds number based on the momentum 

thickness increases accordingly. Between the separation position and the transition position, as shown in 

Figure 12(a), both the shape factor H and the Reynolds number based on the momentum thickness increase 

with the Reynolds number. Based on Eq. (9) we conclude that the growth rate of the amplification factor 

before separation increases with the Reynolds number, contributing to earlier transition at higher Reynolds 

number. Meanwhile, the viscosity changes the effective shape of the airfoil, which is the superimposition of 

the airfoil and the boundary-layer displacement. Among the studied four cases, as shown in Figure 12(b) the 

effective airfoil at Re=4×104 has the largest camber. This partially explains why the largest lift coefficient is 

obtained at Re=4×104 (Figure 12(c)). The camber decreases significantly when the Reynolds number 

increases from 4×104 to 6×104 but does not show considerable change when the Reynolds number increases 

further. Therefore, we do not observe distinct increase in the lift coefficient even though the LSB length is 

shorter at higher Reynolds number. We can conclude from Figure 12(d) that the enhancement of lift-to-drag 

ratio is mainly due to the reduction of friction drag at high Reynolds number. The form drag due to the 

pressure does not vary as much as the friction drag as the Reynolds number increases. In the application of 

MAVs, the enhanced lift-to-drag ratio will favor the power efficiency,[ ]8  which is a function of lift-to-drag 

ratio and increase with the ratio. 

Carmichael pointed out that roughly the distance from separation to reattachment can be expressed as a 

Reynolds number based on the bubble length of about 50,000.[ ]61  A critical Reynolds number of 70,000 is 

generally accepted based on observation.[ ]60  The evidences collected so far suggest that the transition, 

separation, and reattachment characteristics are highly dependent on the geometry and angles of attack.  
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(a)     (b) 

 

 

 

 

 

 

 

 

 

 

 

 

(c)     (d) 

Figure 12. Reynolds number effect on the LSB profile and aerodynamic performance α=4
o
: (a) Shape 

factor and momentum thickness based Reynolds number; (b) Effective airfoil shape; (c) lift-to-drag 

ratio; (d) drag coefficient. 

 

Effect of Gust 

The real operating condition for MAVs is quite different from the ideally quite wind/water tunnel setup. In 

real flight MAVs may have to operate in gusty environment. The effect of unsteady flow on transition was 

studied by Obremski and Fejer.[ ]64  They experimented with a flat-plate airflow whose freestream velocity 

varies sinusoidally with a mean: 

 0 (1 sin )AU U N tω= + , (19) 

where NA is the amplitude ratio and ω is the frequency. They found experimentally that the transition 

Reynolds number is affected by the freestream oscillation when the so called “non-steady Reynolds number”, 
2

0Re /ns AN U ων= , is above a critical point of about 26,000. Below the critical value of the Rens, the unsteady 

freestream exhibits little impact on the transition Reynolds number. Obremski and Morkovin[ ]65  observed that 

in both high and low Rens ranges, the initial turbulent bursts were preceded in space and time by a disturbance 

wave packet. By applying a quasi-steady stability model, they concluded that in the high Rens range the wave 

packet amplified rapidly and burst into turbulence, whereas in the low range the wave packet burst into 

turbulence at much higher Reynolds number. Guided by their study, we investigate the influence of 

freestream oscillations on the transition for separated flows. First, we set NA=0.33 and ω=0.3, resulting in a 

Strouhal number of 0.0318 and non-steady Reynolds number of 99,000. The frequency ω is kept well below 

the range of expected unstable TS wave frequency around 10 Hz. For an airfoil of 15 cm and flies in the air 
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with speed of 8.3 m/s, if we choose the Strouhal number of 0.0318, the corresponding gust frequency is 

around 1.75 Hz. 

Figure 13 shows the lift coefficient and lift-to-drag ratio during one selected cycle. Clearly, under gust 

situation, the aerodynamic parameters display the hysteresis. For example, when flow accelerates from 

Re=6×104 to Re=8×104, the lift coefficient does not immediately reach its corresponding steady state value. 

Instead, the steady state value is reached in the decelerating stage. Compared with steady incoming flow, the 

gust leads to a higher lift coefficient at the low velocity end and lower lift coefficient at high velocity end. 

The lift-to-drag ratio variation during one cycle is substantial. For example, at the Reynolds number of 6×104, 

the lift-to-drag ratio with a steady state freestream is around 26; for gust flow, the instantaneous lift-to-drag 

ratio reduces to 20 when the flow accelerates, but elevates to 38 when the flow decelerates. 

Along with the variations in lift and drag, the transition position is also affected by the gust. As shown in 

Figure 14, the transition position moves toward the leading edge when the flow is accelerating and moves 

toward the trailing edge when flow is decelerating. During the accelerating stage, the instantaneous Reynolds 

number is increasing. As the Reynolds number increases, flow experiences early transition. In our simulation, 

we link the transition point to the computational grid point and we do not differentiate any position in 

between, which makes the plot in Figure 14 discontinuous. And a refined grid will help smooth out the 

discontinuity. 

 

 

 

 

 

 

 

 

 

 

Figure 13. Aerodynamic coefficient in gusty environment during one cycle for Rens=99,000, showing 

hyterisis phenomenon. Left: Lift coefficient; Right: Lift-to-drag ratio. 

 

 

 

 

 

 

 

 

 

 

Figure 14. Transition position during one cycle. Left: Rens=99,000; Right: Rens=19,800. 
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We also perform test with a higher frequency of ω=1.5, five times higher than the previous case, resulting in a 

non-steady Reynolds number of 19,800, which is lower than the critical value. Our numerical result shows 

that the transition position varies with the instant Reynolds number (Figure 14). This seemingly contradicts 

the observation of Obremski and Morkovin.[ ]65  However, it should be noted that Obremski and Morkovin 

draw the conclusion based on experiment over a flat plate at high Reynolds number (106), in which flow is the 

Blasius flow and experiences natural transition. In our test, the separated flow amplifies the unstable TS wave 

in such a great rate that it results in faster transition to turbulence, typical of the bypass transition scenario.  

Comparison of the transition position at the two different non-steady Reynolds numbers reveals that flow 

experiences transition for the whole oscillation cycle at higher non-steady Reynolds number, while at the 

lower value the flow becomes laminar at the early accelerating state and remains such until the instant 

Reynolds number reaches around 7×104. We surmise during the decelerating stage, the transition position 

moves toward the trailing edge due to the lowered Reynolds number. At higher non-steady Reynolds number, 

i.e., lower frequency, the deceleration has less impact on the transition and the LSB can sustain itself; at lower 

non-steady Reynolds number, i.e., higher frequency, the deceleration has more impact on the transition and 

the LSB can not adjust itself with the high rate change to maintain the closed bubble and LSB bursts. A closed 

LSB forms only when the Reynolds number reaches 7×104. To better appreciate this phenomenon, we plot the 

phase and shape factor during one cycle in Figure 15.  

 

 

 

 

 

 

 

 

 

 

Figure 15. Phase and shape factor during one cycle Rens=19,800. Left: Phase; Right: Shape factor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Drag coefficient in gusty environment during one cycle for Rens=19,800. 
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Another interesting observation at Rens=19,800 is the drag coefficient shown in Figure 16. During the 

decelerating stage the gusty flow produces thrust. Analysis shows that the thrust is due to the friction force. 

This phenomenon is similar to that observed in the plunging airfoil which can produce thrust at certain 

combination of frequency and amplitude.[ ]4   

 

Flexible Wing Simulation 

The upper surface of the airfoil is covered with the membrane, which extends from 33% to 52% of the chord 

(Figure 17). No pretension is applied to the membrane. The membrane has a uniform thickness of 0.2mm with 

a density of 1200kg/m3.  The two parameters governing the membrane property, as shown in Eq. (16), take 

the values of c1=5.0×105 pa and c2=0.785c1. We simulate the fluid and structure interaction by integrating the 

fluid and structural solvers previously discussed. Each solver functions independently with its own 

computational grid and time step, the coupling is accomplished by exchanging information through an 

interface. As already mentioned, the refernce scales of our computations are based on the freestream velocity, 

U0, of 0.3 m/s, and an airfoil chord length of 20 cm. With these parameters, the time step for the CFD solver 

here is set to 2×10-3 second and the time step of the structural solver is 1×10-5 second. The structural solver is 

very fast and the majority CPU time is for the CFD solver. The use of iteration between the CFD solver and 

structural solver during each time step allows for synchronization of the fluid and structure coupling. By 

doing this the errors introduced by a lagged fluid/structure coupling approach are regulated. 

 

The test is performed at α=4o and Re=6×104. It is observed that when flow passes the flexible surface, the 

surface experiences self-excited oscillation and the airfoil displays varied shape over time (Figure 17). 

Analysis shows that the transverse velocity magnitude can reach as much as 10% of the freestream speed. 

During the vibration, energy is transferred from the wall to the flow and the separated flow is energized. 

Compared with corresponding rigid airfoil simulation, the surface vibration causes both the separation and 

transition positions to exhibit a standard variation of six percent of the chord. Recall our preceding discussion 

on the impacts of turbulence intensity and Reynolds number, the change of transition position will change the 

overall aerodynamic performance. Figure 18 shows the time history of the lift coefficient. Even though the 

time-averaged lift coefficient (0.60) is equal to the lift coefficient of the corresponding rigid wing, the lift 

coefficient displays a time-dependent variation with maximum magnitude as much as 10% of its mean. The 

drag coefficient shows similar pattern but the time-averaged value closely matches the rigid wing. These 

observations are consistent with our previous efforts in 3-D MAV wing simulations, without transitional flow 

models.[ ]11
 Furthermore, the experimental evidence also supports that until the stall condition is reached, the 

membrane and rigid wings exhibit comparable aerodynamic performance. The flexible wing, on the other 

hand, can delay the stall margin substantially.[ ]10
 Using discrete Fourier transformation analysis we find there 

is a dominated vibration frequency (167 Hz) associated with the membrane wing (Figure 19). In their 

simulation with laminar flow over a six-inch membrane wing (i.e., the entire wing surface is flexible), Lian 

and Shyy also observe this self-vibration with a frequency around 120 Hz,[ ]11  which is comparable to the 

experimental measurement of 140 Hz. Given the airfoil chord (0.2 m) and freestream speed (0.3 m/s), this 

high vibration frequency is unlikely to affect the vehicle stability. A close investigation of Figure 18 reveals 

that besides the high frequency behavior there is low a frequency cycle in the lift coefficient history. This 

cycle, with a frequency of about 14 Hz, seems to be associated with the periodic vortex shedding (Figure 20).  
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Figure 17. Membrane airfoil shapes at different time instants. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Time history of lift coefficient for membrane wing: showing both a high and low frequency 

oscillation. τ is the non-dimensionlized time and is equal to tc/U. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Power spectrum of the Fourier transformation of the lift force. 
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Figure 20. Flow structure over the membrane wing and the associated vortex shedding at α=4
o
 and 

Re=60,000. (From top to bottom the time instant τ=1.5, 1.506, 1.512, 1.515, 1.521).  

 

Summary and Conclusion 

We coupled a Navier-Stokes equation solver with a transition model and a Reynolds-averaged two-equation 

closure to study the low Reynolds number flow characterized with laminar separation and transition. The 

transition model is based on the eN method, derived from the linear stability analysis and Orr-Sommerfeld 

equations. An intermittency distribution function suitable for low Reynolds number transitional flow is 

proposed and tested. With the developed capability we studied the impacts of different factor on transition 

process and on the airfoil performance. We observed the following: 

1) Good agreement between the prediction and experimental measurements regarding the transition location 

and overall flow structures is observed. 

2) As expected, both the separation position and transition position move upstream with increasing angle of 

attack. The stronger adverse pressure gradient amplifies the unstable TS wave and expedites the 

transition. Before stall, the laminar separation bubble becomes shorter and thinner with the increase of 

angle of attack. 

3) Increased freestream turbulence intensity prompts the transition, resulting in a shorter and thinner 

separation bubble. Increased turbulence intensity also leads to higher pressure and velocity peak.  
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4) Inspecting the flow characteristics between Re = 4x104 and 2x105, one can clearly observe that the actual 

value of the Reynolds number plays a significant role in the overall airfoil performance. It has similar 

impacts as the turbulence intensity. For the studied airfoil, though increasing the Reynolds number can 

shorten the laminar separation bubble, it does not necessarily increase the lift or decrease the drag. 

5) The transition position is affected by the gust. When flow accelerates/decelerates, the transition position 

moves upstream/downstream due to the increasing/decreasing Reynolds number. In the meantime, the lift 

coefficient demonstrates hysterisis correspond to the acceleration and deceleration process.  

6) For a flexible wing, self-excited vibration around 167 Hz is exhibited. During the vibration process, 

energy is transferred from the flexible surface to the fluid flow, causing the change of flow pattern. Both 

the separation and transition positions are affected by the vibration. However, at α=4o, the time-averaged 

lift and drag coefficients are close to those of the steady state flow around the rigid airfoil. Of course, the 

frequency of gust, the position of the flexible surface, and the membrane property are critical factors in 

the transition process. These aspects should be further investigated. 
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