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Abstract

Motivation: Read length is continuously increasing with the development of novel high-

throughput sequencing technologies, which has enormous potentials on cutting-edge genomic

studies. However, longer reads could more frequently span the breakpoints of structural variants

(SVs) than that of shorter reads. This may greatly influence read alignment, since most state-of-

the-art aligners are designed for handling relatively small variants in a co-linear alignment frame-

work. Meanwhile, long read alignment is still not as efficient as that of short reads, which could be

also a bottleneck for the upcoming wide application.

Results: We propose long approximate matches-based split aligner (LAMSA), a novel split read

alignment approach. It takes the advantage of the rareness of SVs to implement a specifically de-

signed two-step strategy. That is, LAMSA initially splits the read into relatively long fragments and

co-linearly align them to solve the small variations or sequencing errors, and mitigate the effect of

repeats. The alignments of the fragments are then used for implementing a sparse dynamic

programming-based split alignment approach to handle the large or non-co-linear variants. We

benchmarked LAMSA with simulated and real datasets having various read lengths and sequenc-

ing error rates, the results demonstrate that it is substantially faster than the state-of-the-art long

read aligners; meanwhile, it also has good ability to handle various categories of SVs.

Availability and Implementation: LAMSA is available at https://github.com/hitbc/LAMSA

Contact: Ydwang@hit.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Developing novel high-throughput sequencing (HTS) technologies,

such as Illumina Moleculo (http://www.illumina.com/technology/next-

generation-sequencing/long-read-sequencing-technology.html), PacBio

Single Molecular Real-time (SMRT) Sequencing (Eid et al., 2009) and

Oxford Nanopore Technologies (Eisenstein, 2012; Schneider and

Dekker, 2012; Ip et al., 2015), have increased read length to over thou-

sands of base-pairs (bps). These innovative technologies are promoting

cutting-edge genomic studies (Chaisson and Tesler, 2012; Koren et al.,

2012; Huddleston et al., 2014; Sudmant et al., 2015), while they also

influence various kinds of HTS data analysis. One of the most seriously

affected analyses is read alignment, i.e. aligning HTS reads to reference

genome to determine the likely positions of the reads.

Read alignment is fundamental to the variant calling of rese-

quenced genomes (Li et al., 2008; McKenna et al., 2010; DePristo

et al., 2011; Jiang et al., 2012), and it is one of the most compute-

intensive steps in HTS data analysis (Langmead et al., 2012). Due to

its widely application, many efforts have been made (Fonseca et al.,

2012); however, most state-of-the-art aligners, such as BWA (Li and

Durbin, 2009), Bowtie (Langmead et al., 2009), Bowtie2

(Langmead et al., 2012), GEM (Marco-Sola et al., 2012), SOAP3

(Liu et al., 2012), STAR (Dobin et al., 2012), SeqAlto (Mu et al.,
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2012), are designed for the reads which are several tens to several

hundreds of bps long (i.e. reads produced by popular platforms such

as Illumina HiSeq, Roche 454, Ion Torrent, etc.). These aligners

mainly aim at implementing the co-linear alignments between reads

and reference genome. They have demonstrated their efficiency as

well as ability of handling the co-linear and relatively small events

within short reads, such as SNPs, indels and sequencing errors.

However, they may be not well-suited to reads over thousands of bp

long, since longer reads more frequently span the breakpoints of

non-co-linear structural variations (SVs), such as inversions, trans-

locations and duplications (Feuk et al., 2006), which cannot be ef-

fectively handled by co-linear approach. There are also methods

designed for the alignment of long genomic sequences, such as

BLAT (Kent, 2002), SSAHA2 (Ning et al., 2001) and LAST

(Kiełbasa et al., 2011). However, they more emphasize on the align-

ment of even longer genomic fragments but not HTS reads. Such

approaches are sensitive but could be lack of efficiency for coping

with large volume of HTS data.

State-of-the-art long read aligners are BWA-SW (Li and Durbin,

2010), BWA-MEM (Li, 2013), BLASR (Chaisson and Tesler, 2012)

and YAHA (Faust and Hall, 2012). BWA-SW, BWA-MEM and

BLASR are on the basis of seed-and-extension approach, i.e. they

match partial reads (‘seeds’) to reference genome to find candidate

positions (‘hits’), and align the reads with the local sequences sur-

rounding the hits (‘extension’) to compose whole read alignment.

Their major difference is the way of seeding. BWA-SW uses the ap-

proximate matches between the read and reference genome as hits to

find candidate local regions for extension. The bottleneck of this ap-

proach is that it is quite expensive to traverse the suffix-trie of

reference genome to query the approximate matches. Both of BWA-

MEM and BLASR find the exact matches of short tokens as hits, and

further cluster the hits to determine the candidate local regions. The

bottleneck faced by this approach is how to handle repetitive genomic

regions. For example, more than half of the human genome is com-

prised of repeats (De Koning et al., 2011; Treangen and Salzberg,

2012). In this context, a short token may have many matches (hits),

and it could be expensive to sort, prioritize and evaluate the numerous

hits. Besides the details of implementation, the three aligners are still

based on the co-linear model. In consideration of the potential break-

points within reads, they focus on producing high-quality local align-

ments for the reads, other than end-to-end alignments.

YAHA is also a seed-and-extension-based approach; however,

it is designed for implementing non-co-linear alignment. Briefly, it

uses the hits of short seeds to build a non-co-linear skeleton of align-

ment to represent the potential structural variation events. It then

composes the whole read alignment by filling the gaps of the skel-

eton with anchored local alignment. This approach is more favor-

able to handle the non-co-linear events. However, it is also not

efficient, likely due to two issues. Firstly, the seeds used by YAHA

could be very repetitive due to its short length (typically 8–15 bp);

and secondly, the cost of building the skeleton is even higher due to

the many hits of the seeds.

Herein, we propose long approximate matches-based split

aligner (LAMSA), a novel split read alignment approach which is

suited to various error sequencing rates with faster speed as well as

good ability of handling non-co-linear events. LAMSA adopts a

two-step split read alignment strategy, which separately handles the

co-linear and non-co-linear events within the reads. In this strategy,

LAMSA splits a read into relatively long fragments and utilizes the

co-linear alignments of the fragments (i.e. approximate matches) for

building one or more alignment skeletons. Previous study (Lim

et al., 2015) indicated that, it is more feasible to recover the true

locations of the read by using the alignments of relatively long frag-

ments instead of low-distance short seeds, especially when there are

a number of mismatches and/or indels in the read. LAMSA utilizes

the alignments of the fragments to build high quality of alignment

skeletons. In the context of the skeletons, LAMSA classifies the un-

aligned parts of the read into several categories of non-co-linear

events and handles each of them with a specific split alignment

method according to its category.

Although other extant aligners (e.g. YAHA and STAR) have im-

plemented various approaches to use the matches of partial reads as

anchors to handle large or non-co-linear events within the reads,

LAMSA’s two-step strategy has its own advantages. Other than that

of short seeds, there would be less false positive matches to affect

the alignment as long fragments are less repetitive. Moreover, due to

that relatively few fragments are used, their matches can be more

comprehensively considered without loss of efficiency. This is im-

portant since it could be also expensive to comprehensively analyze

the matches of repetitive short seeds with complicated approach

(e.g. the short seed-based alignment skeleton used by YAHA). Other

simplified strategies are also proposed to speed up the processing of

short seeds (e.g. the seed-and-stich strategy of STAR). However,

LAMSA uses a sparse dynamic programming (SDP) process to effi-

ciently build a relatively comprehensive set of candidate alignment

skeletons, to fully consider the potential co-linear and non-co-linear

events described by the alignments of long fragments.

We benchmarked LAMSA by simulated reads with various

lengths and sequencing error rates, as well as real long reads pro-

duced by Illumina Moleculo, PacBio SMRT and Oxford Nanopore

platforms. The results demonstrated that LAMSA can substantially

improve the speed of the long read alignment; meanwhile, it also

has good ability to handle the breakpoints of the reads and produce

sensitive and accurate alignments.

2 Methods

2.1 Overview
LAMSA initially extracts a series of seeding fragments from the

read, which are longer than the seeds commonly used by state-

of-the-art methods. With these fragments, LAMSA implements the

alignment of the read in two steps. In the first step, considering that

SVs do not occur as frequently as that of small co-linear variants

such as SNPs and small indels (Mills et al., 2011), LAMSA assumes

all fragments as SV-free at first, and employs extant short read

aligner to query the approximate matches of the fragments on refer-

ence genome. The matches of the fragments are then processed by a

SDP-based algorithm to compose a series of skeletons which consist

of various sets of anchored matches and gaps. Each of the skeletons

corresponds to a specific part of the read. In the second step,

LAMSA separately fills the gaps within the skeletons. For each of

the gaps, LAMSA classifies it into one of four categories (see Section

2.3.1). And then, for each of the categories, LAMSA implements a

specific split-alignment strategy to fill the corresponding gaps. The

whole read alignment is accomplished by integrating the skeletons

and the alignments of the gaps. A schematic illustration of the

LAMSA method is in Supplementary Figure S1.

2.2 Querying long approximate matches
LAMSA extracts a series of substrings from the read as ‘seeding frag-

ments’ to build the skeleton of alignment. More precisely, LAMSA

extracts the fragments starting at every FI bp of the read, each of the

fragments is FL bp long (FI and FL are user-defined parameters).
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For each of the fragments, all its approximate matches on the refer-

ence genome are queried to compose a comprehensive analysis in

later steps. Theoretically, the query is an end-to-end alignment of

the fragment against the reference genome which can be imple-

mented by any state-of-the-art short read aligner. In consideration

of efficiency, GEM mapper (with its fast mode) (Marco-Sola et al.,

2012) is employed.

2.3 Building the skeleton of alignment
Each of the matches of the fragments can be denoted as a tuple,

Mi MR
i ;M

G
i ;M

aln
i

� �
, i ¼ 1; . . . ;NM, where MR

i and MG
i are respect-

ively the starting positions of the match on the read and the reference

genome; Maln
i is the detail of the alignment, e.g. its Compact

Idiosyncratic Gapped Alignment Report (CIGAR) string, and NM is

the total number of the matches of the fragments. In addition, we use

Maln
i

�� �� to denote the length of the match (alignment) on the reference

genome. The length is determined by taking account all the matches,

insertions and deletions which are depicted by the alignment, Maln
i .

With these matches, LAMSA builds a direct acyclic graph (DAG) and

performs a specifically designed SDP method to generate not only the

optimal, but a set of possible alignment skeletons. Each of the skel-

etons consists of a series of co-linear events (such as insertions and de-

letions) and/or non-co-linear events (such as duplications and

inversions), which are represented by a path of the DAG, and all the

skeletons are organized by a spanning tree. Further, LAMSA prunes

the spanning tree to prioritize the skeletons.

2.3.1 Generating skeletons of alignment with SDP

LAMSA builds the approximate matches-based DAG at first. The

vertices of the graph consist of all the approximate matches, plus an

auxiliary vertex, Mstart �FL; �; �ð Þ representing the start of the align-

ment. In the DAG, each of the edges, Mi !Mj, connecting a pair

of solid vertices (i.e. two matches) meets one of the following four

conditions (Fig. 1), which corresponds to a specific co-linear or

non-co-linear event.

a. Match (co-linear): DMG � DMR
�� �� � e.

b. Duplication (non-co-linear): �s < DMG � DMR � �h.

c. Deletion (co-linear): e < DMG � DMR < s.

d. Insertion (co-linear): �DMR < DMG � DMR < �e.

Here, Mi and Mj are two vertices other than Mstart,

DMG ¼MG
j � MG

i þ Maln
i

�� ��� �
, DMR ¼MR

j � MR
i þ FL

� �
, and e, s

and h (default: FI � 4%, 10 000 and 50) are three user-defined par-

ameters categorizing the edges. Here, e is used to account for the

small indels within the approximate match, and s and h are used to

model specific categories of SVs. A schematic illustration of the four

categories of edges is in Figure 1.

Each of the categorized edges is further assigned a score accord-

ing to its category. The scores are also user-defined parameters,

and their default values are respectively match edges:þ1 (if

DMR � 10FI) or�1 (if DMR > 10FI), duplication edges: �3, dele-

tion/insertion edges: �3. In addition, for each of the solid vertices,

Mi, there is also an auxiliary edge Mstart !Mj with 0 score, which

represents the start of some local alignment of the read.

With the scored edges, LAMSA performs a SDP (Supplementary

Fig. S2) on the matches by the following recursion equation to gen-

erate the alignment skeletons:

PV Mj

� �
¼ max PV Mið Þ þ PE Mi !Mj

� �� �
;Mi !Mj 2 E;

where PV Mið Þ is the score assigned to Mi and PE Mi !Mj

� �
is the

score of the edge Mi !Mj. With this equation, each vertex can find a

precursor maximizing its score, and each path starting from Mstart

and ending at a solid vertex without successor formulates a skeleton.

It is also worth noting that SDP process does not explicitly consider

the non-co-linear inversions, but models them implicitly. For an inver-

sion, there would be two approximate matches flanking it, and their dis-

tances on the read and reference genome should be similar, as inversion

is a kind of balanced SV (Supplementary Fig. S3). In this situation, the

two approximate matches would form a ‘match’ edge. Furthermore, in

most cases, as FI and FL parameters are much smaller than the size of

the inversion, the corresponding read part can fully cover one or more

seeding fragments. These fragment(s) will be matched to the strand of

the reference genome inverse to that of the flanking approximate

matches, and constitute a standalone skeleton. Thus, in later steps, with

the help of the skeleton, the read part flanking and involved in the inver-

sion event would be correctly aligned to reference genome.

2.3.2 Prioritizing candidate skeletons

As each of the vertices of the DAG has only one precursor after the SDP,

LAMSA organizes all the skeletons with the spanning tree of the DAG.

The head node of the tree is Mstart, and for each of the approximate

matches (solid vertices), its parent node is its precursor determined by

the SDP (Supplementary Fig. S4a). Thus, each path from the head node

to a leaf node represents a skeleton. Moreover, each path of the tree can

be scored by summing up the scores of the edges involved in the path.

LAMSA prioritizes the skeletons by pruning the spanning tree.

Before the pruning, each of the non-branched paths of the tree is col-

lapsed as a single node (Supplementary Fig. S4b). The pruning is

iteratively performed. In each iteration, a leaf node with highest

score is selected, and if it does not directly connect to the head node,

LAMSA connects all its sibling nodes to the head node, and merges

it to its parent node. Each of the pruned sibling nodes is rescored by

the edges involved in the affiliated path of the node. This operation

is iteratively performed until all the nodes other than the head node

become leaf nodes (Supplementary Fig. S4c, d). After the pruning,

each of the leaf nodes depicts a specific skeleton. Moreover, it is

Fig. 1. A schematic illustration of the four categories of edges. (a) Match, (b) du-

plication, (c) deletion and (d) insertion. In the figure, the black, yellow and blue

bars respectively indicate the reference genome, the read and the anchored

approximate matches. The positions of the matches on the reference genome

and the read are marked by dashed lines, which also illustrate the classification

conditions (Color version of this figure is available at Bioinformatics online.)
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worth noting that, the global best result of the SDP, i.e. the path of

the DAG with the highest score will be kept as a unpruned skeleton,

since in each iteration of the pruning, the leaf node corresponding to

this skeleton has a higher score than its siblings.

Further, LAMSA uses a greedy strategy to cluster the recorded

skeletons. That is, LAMSA sorts all the skeletons by their ending

positions on the read, and initially selects the skeleton whose ending

position is closest to the right end of the read as the ‘seeding skel-

eton’ to generate a new cluster. Given a cluster, LAMSA investigates

each of the skeletons not in the cluster if over SF% (default: 70%) of

the fragments covered by the skeleton are also covered by the clus-

ter. If so, LAMSA adds the skeleton into the cluster, and updates the

fragment set of the cluster. If there is no skeleton can be added into

the cluster, LAMSA set the cluster aside, and picks out the remain-

ing skeleton which is closest to the right end of the read as the seed-

ing skeleton to build a new cluster and continue the processing, until

no skeleton remains.

LAMSA prioritizes the skeletons by their scores. For each of the

clusters, only its first Ns skeletons are recorded and other skeletons

are set aside. The parameter Ns is empirically selected as 10 in prac-

tice. After the clustering, each cluster covers a specific read part, and

the skeletons of the cluster would be further processed to generate

the primary and alternative alignments for the read part.

2.4 Filling the gap of skeleton
LAMSA then fills the gaps within the skeletons to solve the break-

points of SVs and generate valid alignments for the whole read.

Each of the gaps is filled by one of the following strategies according

to its category.

2.4.1 Filling a match gap

For a ‘match’ edge, if the two anchoring matches correspond to two

neighboring seeding fragments of the read, LAMSA directly per-

forms an end-to-end alignment between the gapped part of the read

and the anchored reference sequence to fill the gap (Supplementary

Fig. S5a).

If the two anchoring matches are not corresponding to two

neighboring seeding fragments on the read, LAMSA separately ex-

tend the upstream and downstream matches with Smith–Waterman

(SW) algorithm at first (Supplementary Fig. S5b). If the extended

alignment from either the upstream or the downstream match can

cover over half of the gapped part, LAMSA end-to-end realigns the

gapped part against the anchored local reference sequence.

Otherwise, LAMSA separately keeps the upstream and downstream

extended alignments as a result, and records the read part still un-

aligned for further processing.

2.4.2 Filling a duplication gap

For a ‘duplication’ edge, LAMSA separately handles the upstream

and downstream vertices. That is, LAMSA extracts the local refer-

ence sequences surrounding the matches of the upstream and down-

stream fragments at first (Supplementary Fig. S6). For each of the

two fragments, LAMSA extends its match by aligning the gapped

part of the read against the corresponding local reference sequence,

i.e. the upstream match is extended downstream and the down-

stream match is extended upstream. With this strategy, the two ver-

tices of the edge are treated as two copies of the same local reference

sequence, and each of them is handled by a specific local alignment.

Some duplication events may involve more than two copies of

the same local reference sequence. In this situation, there will be not

only one, but a series of duplication edges. LAMSA will separately

process each of those edges with this strategy.

2.4.3 Filling a deletion gap

For a ‘deletion’ edge, LAMSA builds a hash table on-the-fly for the

all the l-mers of the junction sequence of reference genome, and

matches all the l-mers of the gapped read part to the junction

(Supplementary Fig. S7). A SDP based on the l-mer matches is imple-

mented to build a local skeleton of the alignment which can maxi-

mize the total number of matched read bases. This l-mer-based

skeleton is beneficial for handling multiple breakpoints within the

junction. For example, if there are more than one deletions within

the junction, the skeleton can effectively recognize them.

Given the l-mer-based skeleton, LAMSA categorizes each of the

gaps with the conditions similar to the four conditions applied to ap-

proximate matches-based skeletons. For a gap recognized as match,

deletion or insertion, the gapped read part is end-to-end aligned to

local reference sequence anchored by the corresponding l-mer

matches; while for a duplication gap, LAMSA fills it with the strat-

egy similar to that of the duplication gaps within approximate

matches-based skeletons.

2.4.4 Filling an insertion gap

For an ‘insertion’ edge, the operation is opposite to that of ‘deletion’

edges. That is, LAMSA treats the gapped part of the read as the

junction sequence to build the l-mer-based skeleton, and the an-

chored reference sequence is aligned to the gapped part of the read.

2.4.5 Extending the boundaries of the skeletons

All the operations mentioned above fill the inner gaps of the skel-

eton, which are anchored by two approximate matches. In addition,

LAMSA also extends the outer boundaries, i.e. the matches at the

ends of the skeletons, which can be also seen as gaps with only one

anchor. For each of the boundaries, LAMSA assumes that the neigh-

boring genomic region is SV-free, and directly extends the match by

SW algorithm.

2.5 Additional processing
LAMSA collects the generated split alignments, i.e. the approximate

matches of the seeding fragments and the alignments of the gapped

parts of the read. The alignments adjacent on both the read and the

reference genome are chained to build more consecutive alignments.

When chaining the alignment of a gapped read part with a neighbor-

ing approximate match, LAMSA checks if there is one or more

indels around the boundary between the gapped read part and the

seeding fragment. If this is the case, LAMSA would realign the read

part around the boundary to reduce some false positives

(Supplementary Fig. S8).

For a very small proportion of reads, there may be still some un-

aligned parts left after all the processing mentioned above. These un-

aligned parts are further handled with two additional steps. Firstly,

for each of these unaligned parts, LAMSA investigates if it can be

covered by the skeletons initially filtered out. If so, LAMSA fills the

gaps within the corresponding skeleton(s) by the same methods

mentioned above to generate the alignment(s) of the read part.

Secondly, for each of the remaining unaligned parts, if it is short

(no longer than 300 bp), LAMSA extracts all the k-mers of the part

(default: k¼19) and queries all the exact matches of the k-mers

with a FM-index (Ferragina and Manzini, 2000; Li and Durbin,

2009) of the reference genome. These matches are clustered by their
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genomic positions, and LAMSA performs local alignments around

the clusters to align the unaligned read parts.

3 Results

We benchmarked LAMSA with a series of simulated and real data-

sets. The speed, sensitivity and accuracy of the alignment were as-

sessed and compared with four state-of-the-art long read aligners,

BWA-SW, BWA-MEM, YAHA and BLASR, and a short read

aligner, STAR, which is also applicable to long reads. All the bench-

marks were implemented on a server with an Intel Xeon E4820 CPU

at 2.00 GHz and 1 Terabytes RAM, running Linux Ubuntu 14.04.

The command lines and versions of the aligners are available in

Supplementary Notes.

3.1 Simulation study
In the simulation study, we generated a donor genome with 4002

SVs by RSVSim (Bartenhagen and Dugas, 2013). The ratio and the

size of the integrated SVs are configured by referring to the DGV

database (MacDonald et al., 2014). Using the simulated donor gen-

ome, we generated 21 simulated datasets. Fifteen of them are simu-

lated by Wgsim (Li et al., 2009) with low-sequencing error rates

(1, 2 and 4%) and five kinds of read lengths (from 5000 to

100 000 bp), which mimics high quality sequences, such as Illumina

Moleculo reads, error corrected PacBio SMRT reads or assembled

contigs. Six of them were simulated by PBSim (version 1.0.3) (Ono

et al., 2013) with high-sequencing error rates (10, 15, 20 and 30%)

and three kinds of mean read lengths (2000, 3000 and 10 000 bp),

which mimics the noisy long reads produced by PacBio SMRT

and Oxford Nanopore platforms. More detailed information is in

Supplementary Notes and Supplementary Tables S1 and S2.

3.1.1 Assessment on the speed

The speeds of the aligners indicate that, LAMSA overall has a sub-

stantial improvement on the speed (Fig. 2, Supplementary Tables S3

and S4, Supplementary Figs. S9 and S10). On the datasets with low-

error rates (i.e. 1, 2 and 4%), LAMSA is overall about 7–12-folds

faster than BWA-MEM and BWA-SW, and many 10-folds faster

than YAHA, STAR and BLASR. Moreover, as YAHA does not sup-

port reads longer than 32 000 bp, we did not run it on the 50 000 bp

and 100 000 bp datasets; and STAR showed a very low sensitivity

(see later) on the 10 000 bp datasets, indicating that it may be not

suited to very long reads. Meanwhile, it unaligned all the reads lon-

ger than 10 000 bp, thus only its results on the 5000 bp and

10 000 bp reads are shown. On the high-error rate datasets, LAMSA

also outperforms BLASR and BWA-MEM by several folds (other

aligners are not applicable to such high-error rates).

LAMSA gains the speed by that the long fragments are less re-

petitive than commonly-used short seeds, and the employed short

read aligner can efficiently query the approximate matches. Thus,

the problem can be quickly reduced, i.e. in most cases, only a few

skeletons are left after the first step. In the second step, LAMSA can

further handle the skeletons with efficiency, as the major cost of this

step only originates from the alignments between a batch of gapped

read parts and anchored local reference sequences, which are not

expensive.

We also investigated the memory footprint of LAMSA. As both

of the GEM mapper and the main part of the LAMSA method

use FM-index to index the reference genome, it does not need

large RAM space. On all the simulated datasets, the peak memory

footprint is about 6.5 Gigabytes, which can be easily met by a

modern PC.

3.1.2 Assessment on the base-wise accuracy

We assessed the base-wise accuracy to investigate the overall quality

of the alignments. We assess the accuracy by Accbase ¼ Nmat
aln =N

mat
truth,

where Nmat
truth is the number of matched bases of the ground truth

alignments of the reads; and Nmat
aln is the number of matched bases

Fig. 2. Benchmarking on the low- and high-error-rate 10 000 bp datasets. (a) The

relative speed of the aligners, which is defined as TLAMSA=Taln, where TLAMSA

and Taln are respectively the alignment times of LAMSA and an compared

aligner. (b) The base-wise accuracy. The base-wise accuracy is defined as the

proportion of bases which are mapped to a position within 5 bp of its ground

truth position. (c) The proportion of recovered ground truth breakpoints, which is

calculated by NR
BP=N

T
BP, where NR

BP and NT
BP are respectively the numbers of the

ground truth breakpoints recovered by the alignments of the reads and all the

ground truth breakpoints. (d) The proportion of correctly predicted breakpoints,

which is calculated by NC
BP=N

P
BP, where NC

BP and NT
BP are respectively the num-

bers of correctly predicted breakpoints and all the predicted breakpoints. (e) The

proportion of the SV-spanning reads which are fully recovered by the aligner.

Here, a SV-spanning read being ‘fully recovered’ indicates that all its breakpoints

are recovered by the alignments. On some measures, some aligners have very

low values, and they are shown by the precise numbers with dashed lines. More

detailed results are in Supplementary Tables S3–S6 and Supplementary Figures

S9 and S10 (Color version of this figure is available at Bioinformatics online.)
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which are aligned within Tmat
diff bp of the corresponding ground truth

positions. We set Tmat
diff ¼ 5 for all the datasets at first, while stricter

thresholds (Tmat
diff ¼ 1 and Tmat

diff ¼ 3) were also used for the low-error

rate datasets.

On the low-error rate datasets (Supplementary Table S3),

LAMSA has overall the highest number of correctly aligned bases,

while other aligners except STAR also achieved similar results. The

results of STAR are poor, mainly due to that it has many unaligned

bases. As STAR is mainly designed for short reads, the results are

likely due to its inherent design and implementation that may be not

suited to very long reads.

On the high-error rate datasets (Supplementary Table S4), the

base-wise accuracies of LAMSA, BWA-MEM and BLASR are quite

close, only except for the 30% dataset, where BLASR’s accuracy

dropped a little (i.e. 90.24%), but the accuracies of LAMSA and

BWA-MEM do not change much (i.e. 96.47 and 96.82%,

respectively).

The base-wise measures indicate that, overall, LAMSA can pro-

duce high-quality alignment for both of low- and high- error rate

reads. However, it is also worth noting that, the base-wise accura-

cies of the aligners partially depend on the parameters used for the

alignment at local genomic region. Moreover, local realignment is

also usually performed in downstream SV analysis to further im-

prove the accuracy of alignment. Under this circumstance, the differ-

ence on the accuracies of LAMSA and other aligners as well as the

effect of this difference could be even smaller. However, considering

relatively high accuracy achieved by LAMSA, it could be also benefi-

cial to use the alignment of LAMSA as an input in downstream steps

of SV analysis, such as realignment.

3.1.3 Assessment on the ability of handling SV

For assessing the ability of handling SVs, we compared the break-

points of the reads predicted by the alignments with the ground

truth. The predicted breakpoints are described by the� TSV
indel

bp indels, and� TSV
clip bp clippings within the primary alignments

of the reads. This is except for BLASR that the breakpoints

described by all the alignments of BLASR are considered. This is

due to that, for a given read, BLASR chooses only one alignment

from all the alignments of all the split read parts as the primary

alignment. But other aligners, such as LAMSA and BWA-MEM,

differentiate primary and secondary alignments for each of the

split read parts. Thus, we take account all the alignments of all

the split read parts to avoid underestimation on the sensitivity of

BLASR.

Each of the predicted breakpoints can be denoted as a tuple,

BPi PosRead; PosRef;DBPð Þ; i ¼ 1; . . . ;NP
BP, where PosRead and PosRef

are respectively the coordinates of the breakpoints on the read and

reference genome, DBP is the mark indicating the corresponding SV

event happens upstream or downstream PosRef, and NP
BP is the total

number of predicted breakpoints within the corresponding read.

Similarly, each of the breakpoints described by the ground truth can

be denoted as a tuple, BPT
i PosT

Read; PosT
Ref;D

T
BP

� �
; i ¼ 1; . . . ;NT

BP,

where PosT
Read, PosT

Ref and DT
BP are the elements corresponding to

that of a predicted breakpoint but given by the ground truth, while

NT
BP is the total number of ground truth breakpoints within the

read.

We assessed the number of predicted breakpoints, the number

of ground truth breakpoints being recovered, and the number of cor-

rectly predicted breakpoints of the aligners. For a certain read,

a ground truth breakpoint, BPT
i PosT

Read; PosT
Ref ;D

T
BP

� �
is con-

sidered as being recovered, only if there is at least one predicted

breakpoint, BPi PosRead;PosRef;DBPð Þ, meeting the condition:

PosRead � PosT
Read

�� �� < TSV
diff , PosRef � PosT

Ref

�� �� < TSV
diff , and

DBP ¼ DT
BP; and a predicted breakpoint, BPi PosRead; PosRefð Þ is con-

sidered as correct, only if there is at least one ground truth break-

point, BPT
i PosT

Read; PosT
Ref;D

T
BP

� �
, meeting the above condition.

Considering that error prone reads are more likely to be clipped

and more difficult to correctly align, we used different thresholds for

the datasets. For low-error rate datasets, the thresholds are stricter,

i.e. TSV
indel ¼ 50, TSV

clip ¼ 10, TSV
diff ¼1 and 10; while for high-error rate

datasets, TSV
indel ¼ 50, TSV

clip ¼ 50, TSV
diff ¼1, 50 and 100 are used.

On the low-error rate datasets, the results demonstrate that

LAMSA and YAHA recovered similar numbers of breakpoints

(Fig. 2c and Supplementary Table S5), slightly more than those of

BWA-MEM and BWA-SW, suggesting that they have better sensitiv-

ity for handling SVs. Moreover, YAHA has lower accuracy than

that of LAMSA, especially for 4% error rate datasets (Fig. 2d and

Supplementary Table S5). This is mainly due to that it aligns some

of the SV-free parts of the reads by split alignments, thus more false

positive breakpoints are produced.

In addition, we also separately assessed the numbers of recovered

breakpoints by various categories of SVs (i.e. insertion, duplication,

deletion and inversion) (Supplementary Table S5). The results indicate

that all the aligners recovered most of the breakpoints of the inser-

tions/duplications and deletions; however, BWA-MEM and BWA-SW

recovered less breakpoints of the inversion events than that of

LAMSA, especially on longer datasets. This is likely due to their de-

sign, i.e. co-linear local alignment, which could be hard to handle

non-co-linear events. An example of the difference between the align-

ers on the handling of inversions is in Supplementary Figure S11.

We further assessed the ability of the aligners to fully recover the

SV-spanning reads. Here, a SV-spanning read being ‘fully recovered’

indicates that all its breakpoints can be recovered by the alignments.

This measure is important to haplotyping, a major application of

long reads. The results (Fig. 2e and Supplementary Table S5) suggest

that LAMSA and YAHA fully recovered similar numbers of

SV-spanning reads, outperforming BWA-MEM and BWA-SW by a

couple of percentages.

On the high-error rate datasets, overall LAMSA outperforms

BWA-MEM and BLASR on sensitivity. On the 10, 15 and 20%

datasets, LAMSA also achieves highest accuracy, and its accuracy

on the 30% dataset is also close to that of the best one (BWA-

MEM). Moreover, LAMSA fully recovers highest number of SV-

spanning reads. These results suggest the good ability of LAMSA

to handle the SVs within noisy long reads. Meanwhile, it is worth

noting that, on both of low- and high- error rate datasets, BLASR re-

ported many breakpoints (Supplementary Tables S5 and S6), which

makes low accuracies.

Moreover, it is also observed that all the three aligners have two

problems to handle the high error rate SV-spanning reads as follows.

Firstly, some of the breakpoints are hard to recover. This is

mainly due to that, with the serious noise, some read parts are un-

aligned due to lack of anchors. This usually happens when the read

parts are short and flanked with two breakpoints. In this situation,

the anchors of other read parts also cannot help much, because the

extensions from those anchors cannot span the breakpoints to align

the no-anchor parts.

Secondly, there are much more false positive predicted break-

points. This is mainly due to that with more error-tolerant

parameters, some of the read parts could be aligned to many gen-

omic positions by equal scores (although all these scores are low).

These read parts usually have serious sequencing errors, and it is

non-trivial to confidently align them.
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It is also worth noting that, with stricter threshold, i.e. TSV
diff ¼1,

all the aligners achieved lower sensitivities and accuracies. This is

largely caused by the implementations of local alignment of the

read, e.g. the relatively simple scoring systems (such as user-defined

local alignment scoring parameters), could not be able to well han-

dle all sorts of SV events, thus some of the predicted breakpoints

could be a little distant to the corresponding ground truth break-

points. In this situation, local realignment may be necessary to fur-

ther improve the quality of the alignment around the breakpoints to

better support downstream SV analysis.

3.2 Real study
We used three datasets (Supplementary Table S1) respectively from

Illumina Moleculo, PacBio SMRT and Oxford Nanopore platforms to

benchmark the aligners on real datasets. The Illumina Moleculo data-

set is a 40X coverage sequencing of the CEU HapMap individual

NA12878; the PacBio SMRT dataset is a 10X coverage sequencing of

the CHM1 cell line; the Oxford Nanopore dataset is a target sequenc-

ing of the CYP2D6, HLA-A, HLA-B genes of NA12878. The avail-

ability of the datasets is in Supplementary Notes, and the read length

distributions are in Supplementary Figure S12 (assessed by FastQC

software: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

3.2.1 Assessment on the speed

On all the three datasets, LAMSA has the fastest speed (Table 1).

On the low-error rate Illumina Moleculo dataset, LAMSA is at least

4.6 times faster than the best runner-up (i.e. BWA-MEM), and

about 8.6–123.3 times faster than the other aligners. On the noisy

PacBio SMRT and Oxford Nanopore reads, LAMSA is about 2–4

times faster.

3.2.2 Assessment on the base-wise sensitivity and accuracy

Due to the lack of ground truth, we only assessed the base-wise sen-

sitivity of the aligners on the Illumina Moleculo and PacBio SMRT

datasets by the number of aligned bases. The results (Table 1) sug-

gest that LAMSA and BWA-MEM aligned almost all the bases of

the Illumina Moleculo reads, outperforming other aligners. And

LAMSA aligned more bases of the PacBio SMRT reads than BWA-

MEM and BLASR.

As the Oxford Nanopore dataset is a target sequencing dataset,

the accuracy of the alignment can be partially assessed by the

bases aligned to the regions of CYP2D6, HLA-A, HLA-B genes.

When aligning the nanopore reads, we configured LAMSA with

two sets of SW parameters which are respectively the same to that

of BWA-MEM (i.e. match ¼ 1, mismatch ¼ �1, gap-open ¼ �1

and gap-extension ¼ �1) and BLASR (i.e. match ¼ 5, mismatch ¼
�6, gap-open ¼ 0 and gap-extension ¼ �5). The result (Table 1)

indicates that with the BLASR-like parameters, LAMSA

aligned more bases to the correct regions than the other two

aligners.

3.2.3 Assessment on the ability of handling SV

On the high coverage Illumina Moleculo and PacBio SMRT data-

sets, we assessed the aligners’ ability of SV-handling. Since it is lack

of the ground truth for the alignment, for the Illumina Moleculo

dataset, we compared the predicted breakpoints with the break-

points reported in the 1000 Genomes Project Phase 3 release

(Sudmant et al., 2015) (short as ‘1KG’ breakpoints, totally 6576

derived from 3260 SVs); and for the PacBio SMRT dataset, we com-

pared the predicted breakpoints with the breakpoints reported by a

previous study on CHM1 cell line (Chaisson et al., 2015) (short as

‘CHM1’ breakpoints, totally 37 150 derived from 18 542>50 bp

SVs). The availability of the 1KG and CHM1 breakpoints is in

Supplementary Notes.

The numbers of recovered 1KG/CHM1 breakpoints were as-

sessed at first. More precisely, a 1KG/CHM1 breakpoint is termed

as BPG PosG
Ref ;D

G
BP

� �
, since it only has the genomic position; and it is

considered as being recovered only if there is at least one predicated

breakpoint BP PosRead; PosRef ; DBPð Þ within all the primary align-

ments of the reads, which meets the following condition:

PosRef � PosG
Ref

�� �� < Tdis and DBP ¼ DG
BP, where Tdis is the threshold

of the distance.

On the Illumina Moleculo dataset, we used a series of Tdis

thresholds (i.e. 0, 10, 50 and 100 bp) to evaluate the alignments

(Table 2). We found that all the aligners recovered similar number

of breakpoints, while LAMSA recovered most breakpoints at 0 dis-

tance (Tdis ¼ 0). For more relaxed but still strict thresholds, such as

Tdis ¼ 10, the numbers of the breakpoints recovered by LAMSA are

also highest. This indicates that LAMSA can recover the breakpoints

sensitively and precisely.

Meanwhile, we also assessed the numbers of predicted break-

points which can be validated by the 1KG/CHM1 breakpoints, to

investigate the accuracy of the aligners on handling SVs. Here, a

predicted breakpoint, BP PosRead; PosRef ; DBPð Þ, is considered

as validated, only if there is at least one 1KG/CHM1 break-

point BPG PosG
Ref;D

G
BP

� �
which also meets the condition mentioned

above.

On the Illumina Moleculo datasets, we observed that at very

strict thresholds, e.g. Tdis ¼ 0, the aligners have various numbers of

validated breakpoints. This is likely due to the various scoring sys-

tems of the aligners. Considering that SV calling usually not only de-

pends on read alignment, but also many downstream analysis steps,

such as realignment and local assembly, it is also important to pay

attention to the number of validated breakpoints at more relaxed

but still strict threshold, such as Tdis � 10, because the downstream

Table 1. The speed and base-wise sensitivity/accuracy on real

datasets

Aligner Aligned bases Running time

(seconds)
# %

Illumina Moleculo dataset, 22 721 139 reads/91 476 572 938 bases

LAMSA 90 838 105 363 99.30 106362.5

BWA-MEM 90 959 839 527 99.44 490067.6

BWA-SW 83 057 280 108 90.80 922687.3

YAHA 86 519 067 187 94.58 13120906.9

STAR 87 336 478 637 95.47 1214121.7

BLASR 90 173 742 575 98.58 4628608.8

PacBio SMRT dataset, 4 395 201 reads/32 525 651 939 bases

LAMSA 31 156 436 703 95.79 457338.4

BWA-MEM 30 338 584 767 93.28 1050769.6

BLASR 29 475 310 169 90.62 1900594.2

Oxford Nanopore dataset, 7540 reads/26 279 177 bases

LAMSA-BLASR 18 685 475 71.10 327.5

LAMSA-BWA 16 558 323 63.01 313.3

BWA-MEM 17 615 965 67.03 796.6

BLASR 13 643 127 51.92 1259.4

For the Oxford Nanopore dataset, the ‘aligned bases’ indicates the bases

which are aligned to the regions of CYP2D6, HLA-A, HLA-B genes.

‘LAMSA-BLASR’ and ‘LAMSA-BWA’ respectively indicates LAMSA running

with the SW parameters of BLASR and BWA-MEM.
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steps usually consider all the alignments around the breakpoints.

At Tdis ¼ 10, LAMSA, BWA-SW and STAR have similar numbers

of validated breakpoints, suggesting that they have similar ability

of SV handling. For YAHA, it has even more breakpoints being vali-

dated. However, it has about 4-folds more predicted breakpoints

than that of LAMSA and BWA-MEM, indicating that the specificity

of the alignment of YAHA could be lower.

We also simulated 10 sets of random breakpoints by RSVSim to

test if the validated breakpoints predicted by the aligners are by

chance. Each set has the same number of (i.e. 6576) breakpoints to

that of the 1KG breakpoints. For each set, we assessed the numbers

of predicted breakpoints matched by the random breakpoints in

various Tdis thresholds, and calculated the average numbers across

various sets. It can be observed from the results (Supplementary

Table S7) that, even if the threshold is very large (Tdis ¼ 1000), only

a very small proportion (e.g.<0.001% for LAMSA) of predicted

breakpoints can be accidentally matched by the random break-

points. This suggests that most of validated breakpoints are not ob-

tained by chance, but reasonable alignments.

To assess the overall ability of the SV handling, the F-scores

of the aligners at a moderate strict threshold (Tdis ¼ 10) were

further calculated by FBP ¼ 2SenBP � AccBP= AccBP þ SenBP
� �

,

SenBP ¼ NBP
re =N

BP
G , AccBP ¼ NBP

val=N
BP
pre, where NBP

re , NBP
G , NBP

val and

NBP
pre are respectively the numbers of the recovered, ground truth

(1KG), validated and predicted breakpoints. The results (Table 3)

indicate that STAR achieved a relatively higher F-score. Meanwhile,

the F-scores of LAMSA and BWA-MEM are similar, which is higher

than that of YAHA. Moreover, it is also very worth noting that, for

all the aligners, the F-scores are quite low. This is mainly due to that

there are many potentially false positive breakpoints, i.e. the pre-

dicted breakpoints which cannot be validated.

A major cause for this issue is the repetitive reads. It is

observed that, a small proportion (0.36% for LAMSA,

Supplementary Tables S8 and S9) of reads have many (> 10)

predicted breakpoints. The total number of these breakpoints is

large and most of them are false positive. Most of such reads have

some parts which can be split aligned to a number of positions,

and this is hard for the aligners to make confident choice. Aligners

like LAMSA, BWA-MEM and BWA-SW aligned these repetitive

parts to many positions with similar scores. This lowered down

the AccBP values as well as the F-scores. STAR usually aligned

such read parts to one or a few positions, while it also unaligned

some of them. With this strategy, STAR achieved slightly higher

AccBP, but lower base-wise sensitivity. The strategy of YAHA is

similar to that of LAMSA and BWA-MEM, but it also ‘over-split

aligned’ some of the reads which are consecutively aligned by

other aligners, i.e. YAHA splits them into many small pieces,

and maps them to a number of positions (an example is in

Supplementary Fig. S13).

In the reads with less (� 10) predicted breakpoints, there are

also breakpoints cannot be validated (Supplementary Tables S8 and

S9). We investigated the details of the alignments, and found that

this could be due to two issues. Firstly, for some of the reads, the

aligners split them into parts and aligned each of the parts to a

unique position with small edit distance. These alignments could be

also reasonable, especially considering that multiple aligners inde-

pendently generated similar alignments. These breakpoints could be

of unknown SVs, as the ground truth SV list could be still not com-

plete. Secondly, for some of the reads, the aligners also split aligned

them, but some parts were aligned with very low scores. These

poorly aligned parts could be of very complicated SVs that cannot

be well-handled by the aligners, or the sequences which are not suit-

able to align to the reference, such as novel insertions. Moreover, it

could be also possible that some of these read parts have exceptional

low sequencing quality, although the overall sequencing quality of

the whole dataset is high.

On the PacBio SMRT dataset, we used the same Tdis thresholds

for the evaluation (Table 2). However, it is observed that at very strict

Table 2. The numbers of recovered breakpoints

Aligner # of recovered

breakpoints

# of the recovered breakpoints

within various distance

thresholds (bp)

0 �10 �50 �100

Illumina Moleculo dataset (6576 1KG breakpoints in total)

LAMSA 5687 3684 4674 5612 5687

BWA-MEM 5560 2811 3882 5443 5560

BWA-SW 5511 2458 3700 5370 5511

YAHA 5579 2463 3722 5426 5579

STAR 5547 3181 4296 5448 5547

BLASR 5340 2138 4411 5467 5603

PacBio SMRT dataset (37 150 CHM1 breakpoints in total)

LAMSA 32 525 2977 18 903 29 889 33 357

BWA-MEM 21 949 1682 11 080 18 379 21 949

BLASR 33 700 2733 21 315 31 238 33 700

Table 3. The numbers of predicted and validated breakpoints

Aligner # of predicted breakpoints # of the validated breakpoints within various distance thresholds (bp) F-score at Tdis¼10

0 �10 �50 �100

Illumina Moleculo dataset (6576 1KG breakpoints in total)

LAMSA 5 154 402 39 191 75 091 100 982 105 050 0.0286

BWA-MEM 5 114 765 49 860 70 358 97 368 106 140 0.0269

BWA-SW 3 920 507 38 155 60 307 86 717 90 650 0.0299

YAHA 22 471 827 54 499 81 029 114 409 126 854 0.0072

STAR 1 770 061 56 412 78 393 95 438 97 007 0.0830

BLASR 31 524 631 20 445 63 491 91 443 97 855 0.0040

PacBio SMRT dataset (37 150 CHM1 breakpoints in total)

LAMSA 25 502 239 4387 69 489 203 601 338 603 0.0054

BWA-MEM 5 171 459 2664 40 131 89 816 139 240 0.0153

BLASR 33 980 974 4474 82 280 27 4720 43 0665 0.0048
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thresholds, such as Tdis ¼ 0, all the three aligners recovered low num-

bers of CHM1 breakpoints. This is likely due to that the serious

sequencing errors affect the alignment. For example, with the scoring

systems of the aligners, the read parts around the breakpoints are

much easier to be largely clipped, so that the predicted breakpoints

are more distant to the ground truth breakpoints. However, on more

relaxed thresholds, the numbers of recovered CHM1 breakpoints ob-

viously increase, indicating that only the bases very close to the break-

points are hard for the aligners to handle, while most bases can still

be appropriately aligned. Overall, LAMSA and BLASR recovered

comparable numbers of CHM1 breakpoints, suggesting that their sen-

sitivities are close, but the sensitivity of BWA-MEM is lower, i.e. it re-

covered fewer CHM1 breakpoints.

LAMSA and BLASR have more validated as well as predicted

breakpoints than that of BWA-MEM. This is mainly due to that

some of the read parts are repetitive and highly error-prone. In this

situation, the read parts can be aligned to many positions with

equally high scores, so that LAMSA and BLASR have more pre-

dicted breakpoints. But BWA-MEM clipped (unaligned) a portion

of the error-prone read parts. This indicates a different design to

LAMSA in the consideration of the balance between sensitivity and

specificity, as LAMSA usually tries to align the bases as many as

possible to produce sensitive alignments.

4 Discussion

With the development of HTS technologies, it is expectable that

both the read length and the throughput will continuously increase

in the future. In the consideration of its enormous potentials, it is

important to develop novel long read alignment tool with fast speed

as well as good ability to handle SVs, as read alignment is the most

compute-intensive step in resequencing studies, and long reads will

more frequently span the breakpoints of SVs.

We developed LAMSA to improve long read alignment. LAMSA

has a substantial improvement on speed, and it is applicable to the long

reads produced by the state-of-the-art platforms with various sequenc-

ing error rates. Meanwhile, it also has higher or equal base-wise sensi-

tivity and accuracy, comparing to the state-of-the-art aligners.

On both of low- and high-error rate datasets, the numbers of the

breakpoints recovered by LAMSA are higher or similar to that of

the state-of-the-art aligners. Moreover, with the specifically de-

signed non-co-linear skeleton and gap filling, LAMSA is good at

coping with non-co-linear SV events, such as inversions. Overall,

LAMSA is sensitive to handle the SV breakpoints of the reads.

It is also worth noting that other advanced short read alignment

approaches could further improve LAMSA. For example, we tried

to use the fastest mode of GEM mapper to generate the approximate

matches of the fragments. With this configuration, the speed of

LAMSA can be overall about 2-folds faster on the 3 low error rate

and the 4 high error rate 10 000 bp simulated datasets, than that of

the setting of LAMSA used in the Results Section, while it can also

achieve comparable sensitivity and accuracy (Supplementary Fig.

S14 and Supplementary Tables S10 and S11). This indicates us that

it is also important to integrate novel sequence alignment

approaches into LAMSA in the future to further improve the tool, as

more advanced approaches are also developing.

It is still a little unfavorable that, some read parts cannot be

confidently aligned. For example, for some reads, LAMSA aligned

a portion of their bases to many genomic positions with equally

high scores. This usually happens when some short read parts are

from the repetitive regions of the genome, and they have two

flanking SV breakpoints. In this situation, even the large read

length cannot help much, since the SV breakpoints flanked read

part can be seen as a standalone short sequence which must be

handled independently. Considering its repetitiveness and/or ser-

ious sequencing errors, this is a hard and open problem. A possible

solution could be to implement realignment based on the align-

ments of the multiple reads within the same local regions to filter

the alignments of LAMSA. This may improve the specificity while

retain the high sensitivity. However, as the post-processing also

highly depends on the objective of downstream analysis, the

method still needs to be specifically designed. It is an important fu-

ture work for us to solve this problem to further improve the qual-

ity of the alignment.
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