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Institut Élie Cartan,
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1. Introduction

Local asymptotic normality (LAN) property is a fundamental concept in asymp-
totic statistics. Originated by Wald (1943) and developed by Le Cam (1960), it
relies on the idea of approximating a sequence of statistical models by a family of
Gaussian distributions. Its consequence is that the initial model is approximately
normal and thus inherits, in an asymptotic sense, the simple structure of normal
models. Among the many applications in mathematical statistics, local asymptotic
normality is essential in asymptotic optimality theory and also explains the asymp-
totic normality of certain estimators such as the maximum likelihood estimator for
instance. We refer for instance to Pollard (1984) or in van der Vaart (1998) for ap-
plications of LAN property. When dealing with inference on the parameter, LAN
property will enable to assess optimality of any estimation procedure for this pa-
rameter which governs the behavior of the random process. Hence LAN property is
a powerful framework to understand probabilistic properties of a stochastic model.

Many works have been done to prove LAN property for a large number of obser-
vation models such as i.i.d sequences of random variables parametrized by a param-
eter or Gaussian processes in van der Vaart (1998) or more complicated random
processes such as multifractal processes in Loubes and Paindaveine (2011); Gam-
boa and Loubes (2007), AR or ARMA based models in Garel and Hallin (1995);
Lai et al. (2002) or extreme models in Falk (2011) for instance. We focus in this
paper on statistical inference for empirical estimation of the parameters of spectral
density of a certain class of Gaussian processes. We consider a stationary cen-
tered Gaussian process Xn whose spectral density is indexed by a parameter θ and
satisfies the condition

fθ(x) ∼x→0 |x|−α(θ)Lθ(x)

with Lθ a slowly varying function and α(θ) ∈ (−∞, 1). More precisely, we aim
at proving Local Asymptotic Normality (LAN) for the model where we observe a
sample of n observations Xn = (X1, . . . , Xn) by studying an asymptotic expansion
of the log likelihood. For this, a precise control over the asymptotic behavior of
some Toeplitz matrices linked with fθ will be required. It relies on the results in
Lieberman et al. (2011).

In particular, our assumptions (see section 2) are fulfilled by fractional Gaussian
noises, which are defined as increments of fractional Brownian motions (see Kol-
mogoroff (1940); Mandelbrot and Van Ness (1968)). From the LAN property ful-
filled by fractional Gaussian noises, we deduce the LAN property when the observa-
tion model is a time-discretized fractional Brownian motion, which is not any more
a stationary model. Moreover observation models of autoregressive fractionally
integrated moving average processes (ARFIMA(p,d,q)), defined as a fractionally
differenced ARMA processes in Granger and Joyeux (1980); Hosking (1981), sat-
isfy also our assumptions and are covered by our results. Note that, when d ≤ −1,
ARFIMA(p,d,q) are non-invertible processes (see Bondon and Palma (2007)).

The paper falls into the following parts. Section 2 states the general LAN prop-
erty for the considered processes. Then Section 3 is devoted to recall some basic
properties of Toepliz matrices which are useful to prove our main result. Section 4 is
devoted to two examples that undergo the required assumptions (fractional Brow-
nian noises and ARFIMA processes) and the LAN property for the non stationary
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model provided by the fractional Brownian motion. Most of the proofs are post-
poned to Section A.

2. LAN property for a certain class of random processes

Let Xn, n ∈ N be a centered Gaussian stationary process with law Pθ param-
etrized by θ = (θ1, . . . , θm)

′ ∈ Θ an open subset of Rm and associated with the
2π-periodic even spectral density fθ. Then, under Pθ,

E(XnXn+k) =
1

2π

∫ π

−π

exp(ikx)fθ(x)dx = ck(fθ).

As usual, for θ 6= η, the set {x ∈ [−π, π], fθ(x) 6= fη(x)} is assumed to have positive
Lebesgue measure. This assumption is not needed to obtain the LAN property but
is a standard background assumption in statistics. Actually, if this condition is not
fulfilled, the model is not identifiable, preventing any estimation issues.

In practice, we observe the vector Xn = (X1, . . . , Xn), with n ∈ N\{0}, whose
law is denoted by Pn

θ . Under Pn
θ , the covariance matrix of Xn is then the symmetric

Toeplitz matrix

Γ
Xn

=
1

2π
T (fθ)

where T (f) denotes the real Toeplitz matrix

Tn(f) =

(
∫ π

−π

exp (i(k − j)x)f(x)dx

)

1≤k,j≤n

. (2.1)

for any integrable symmetric function f : [−π, π] → R. Note also that the Fisher
information of the model is the matrix

I(θ) =
1

4π

(
∫ π

−π

∂ log fθ(x)

∂θk

∂ log fθ(x)

∂θj
dx

)

1≤k,j≤m

.

The LAN property of the model is proved under the following assumption.

Assumption 2.1.

(A.1) For any x ∈ [−π, π]\{0}, the function θ 7→ fθ(x) is three times continuously
differentiable on Θ. In addition, for any 0 ≤ ℓ ≤ 3 and 1 ≤ k1, . . . , kℓ ≤ m,
the partial derivative

(θ, x) → ∂ℓ

∂θk1
. . . ∂θkℓ

fθ(x)

is continuous on Θ × [−π, π]\{0}, continuously differentiable with respect to
x on [−π, π]\{0} and its partial derivative

(θ, x) → ∂ℓ+1

∂x∂θk1
. . . ∂θkℓ

fθ(x)

is continuous on Θ × [−π, π]\{0}.
(A.2) There exists a continuous function α : Θ → (−∞, 1) such that for any

δ > 0 and any compact set Θ∗ ⊂ Θ, the following conditions hold for every
(θ, x) ∈ Θ∗ × [−π, π]\{0}.
(a) c

1,δ,Θ∗
|x|−α(θ)+δ ≤ fθ(x) ≤ c

2,δ,Θ∗
|x|−α(θ)−δ

(b)

∣

∣

∣

∣

∂

∂x
fθ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ
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(c) for any ℓ ∈ {1, 2, 3}, and any k ∈ {1, . . . ,m}ℓ
,

∣

∣

∣

∣

∂ℓ

∂θk1
. . . ∂θkℓ

fθ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−δ.

with c
i,δ,Θ∗

some finite positive constants which only depend on δ and Θ∗.

This assumption implies that 1/fθ is well-defined on [−π, π]\{0} and corresponds
to Assumptions (A1), (A2) and (A4) in Lieberman et al. (2012), except that we
impose some smoothness property on the derivative of order three. This assump-
tion, as noted in Lieberman et al. (2012), is an extension and a reformulation of
Dahlhaus’s ones in Dahlhaus (1989, 2006).

If for the true value θ0 of the parameter, α(θ0) ∈ (−1, 1), the LAN property (see
Theorem 2.4) holds. Nevertheless, if α(θ0) ≤ −1, the LAN property is established
under the following additional assumption (which allows to apply Theorem 3.5).

Assumption 2.2. Let Θ∗ = B(θ0, r) ⊂ Θ, where B(u, r) is the Euclidean closed
ball of Rm centered at u with radius r > 0. For any δ > 0, for any ℓ ∈ {1, 2, 3}, for

any θ ∈ Θ∗, and k ∈ {1, . . . ,m}ℓ
,

∣

∣

∣

∣

∂ℓ+1

∂x∂θk1
. . . ∂θkℓ

fθ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ

with α and c
2,δ,Θ∗

given in Assumption 2.1.

Under Assumption 2.1, for each θ, the Toeplitz matrix Tn(fθ) is positive and
then invertible since the non-negative function fθ is positive on a non neglectible
set. In particular, the covariance matrix ΓXn

= 1
2πTn(fθ) of the model is invertible

for each θ. Then we compare the distribution of the model under Pθ and Pη using
the following proposition.

Proposition 2.3. For any symmetric positive definite matrix Γ on Rn (n ∈ N\{0}),
PΓ denotes the distribution of a centered Gaussian vector with covariance Γ. Then,
for any covariance matrices Γ1 and Γ2,

2 log
dPΓ1

dPΓ2

(x) = 〈x, (Γ−1
2 − Γ−1

1 )x〉 + log det(Γ−1
1 Γ2),

where 〈 · 〉 denotes the usual Hermitian product in C
n.

We will denote by ‖y‖ the Hermitian norm of y ∈ Cn and A∗ denotes the
conjugate transpose of the matrix A with complex coefficients.

The following theorem states LAN property for the observation model.

Theorem 2.4 (LAN property). Let θ0 ∈ Θ. Assume that Assumption 2.1 is
fulfilled. If α(θ0) ≤ −1, assume also that Assumption 2.2 is fulfilled. Then under
Pn

θ0
, for t ∈ Rm, we get

log
dPn

θ0+t/
√

n

dPn
θ0

= 〈t, Zn〉 −
1

2
t∗I(θ0)t+ ψθ0

(t, n)

where Zn does not depend on t and converges in distribution, under Pn
θ0

, to a
centered Gaussian vector with covariance matrix I(θ0), while ψθ0

(·, n) converges
uniformly on each compact to 0 Pn

θ0
-almost surely when n→ +∞.
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Proof : Let K ⊂ Rm be a compact set and consider r > 0 such that

Θ∗ = B(θ0, r) ⊂ Θ.

Then, we can choose n0, such that for any integer n ≥ n0 and any t ∈ K, θ0+t/
√
n ∈

Θ∗.
Let us now consider n ≥ n0 and observe that for any t ∈ K, Pn

θ0
and Pn

θ0+t/
√

n

are well-defined. Moreover, using Proposition 2.3, for any t ∈ K, we get

log
dPn

θ0+t/
√

n

dPn
θ0

(xn) = Fn

(

θ0 +
t√
n

)

where xn = (x1, . . . , xn) ∈ Rn and for θ ∈ B(θ0, r) = Θ∗,

Fn(θ) = π < xn, [Tn(fθ0
)
−1 − Tn(fθ)

−1
]xn > +

1

2
log det[Tn(fθ)

−1Tn(fθ0
)].

By Assumption 2.1, Fn is three times continuously differentiable onB(θ0, r). Hence,
for any t ∈ K, since Fn(θ0) = 0,

∣

∣

∣

∣

Fn

(

θ0 +
t√
n

)

− 〈t,∇Fn(θ0)〉√
n

− t∗∇2Fn(θ0)t

2n

∣

∣

∣

∣

≤

M3
K

6n3/2
max

1≤j,k,l≤m
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl
(θ)

∣

∣

∣

∣

Let us now introduce the spectral norm

‖A‖2,n = sup
x∈Cn

(

x∗A∗Ax

x∗x

)1/2

(2.2)

of a n× n matrix A and recall that for any x ∈ Cn,

x∗Ax ≤ x∗x‖A‖2,n = ‖A‖2,n‖x‖
2, (2.3)

see Graybill (1983) for example.
Hence, setting Zn = ∇Fn(θ0)/

√
n (which does not depend on t ∈ K), and

applying Equation (2.3) with A = ∇2Fn(θ0)/n+ I(θ0), we get

∀t ∈ K, Fn

(

θ0 +
t√
n

)

= 〈t, Zn〉 −
1

2
t∗I(θ0)t+ ψθ0

(t, n)

with

sup
s∈K

|ψθ0
(t, n)| ≤M

2
K

2

∥

∥

∥

∥

∇2Fn(θ0)

n
+ I(θ0)

∥

∥

∥

∥

2,m

+
M3

K

6n3/2
max

1≤j,k,l≤m
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl
(θ)

∣

∣

∣

∣

.

The conclusion follows from the three following lemmas, whose proofs are post-
poned to the Appendix for sake of clearness. The first lemma deals with the be-
havior of Zn.

Lemma 2.5. Under Pn
θ0

, Zn converges in distribution, as n→ +∞, to a centered
Gaussian random vector whose covariance matrix is the Fisher information I(θ0).

Let us now state the asymptotic of ∇2Fn(θ0).
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Lemma 2.6. Under Pn
θ0

, ∇2Fn(θ0)/n converges almost surely to −I(θ0), as n →
+∞. Hence,

∥

∥

∥

∥

∇2Fn(θ0)

n
+ I(θ0)

∥

∥

∥

∥

2,m

converges almost surely to 0 as n→ +∞.

The next lemma deals with the behavior of the partial derivative of Fn of order
three.

Lemma 2.7. For r small enough, for any 1 ≤ j, k, l ≤ m, under Pn
θ0

1

n3/2
sup

B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl

∣

∣

∣

∣

converges almost surely to 0.

Conbining Lemmas 2.6 and 2.7, we get

lim
n→+∞

sup
s∈K

|ψθ0
(s, n)| = 0 Pn

θ0
-almost surely,

which concludes the proof. �

The proofs of Lemmas 2.5, 2.6 and 2.7 rely on the behavior of the spectral norm
and of the trace of some products of Toeplitz matrices. These behaviors are recalled
in the next section.

3. Technical results on Toeplitz matrices

Before stating some results on Toeplitz matrices, let us recall that if the n × n
matrix A is nonnegative and Hermitian, hence the matrix A1/2 defined as a solution
of A = (A1/2)2, exists and is a nonnegative Hermitian matrix.

Under some assumptions on functions f and g, we can then consider products
of the form

Tn(f)
−1/2

Tn(g)
1/2
,

where Tn(h) is defined by (2.1). To prove Lemmas 2.5, 2.6 and 2.7, one of the main
tools we use is the following lemma, which gives a bound for the spectral norm
of theses products. This lemma, given in Lieberman et al. (2011) (full version of
Lieberman et al. (2012)) , generalizes Lemma 5.3 in Dahlhaus (1989).

Lemma 3.1. Let f and g be nonnegative symmetric functions defined on [−π, π].
Assume that there exist some constants c1, c2 ∈ (0,+∞) and β1, β2 ∈ (−∞, 1) such
that for any x ∈ [−π, π]\{0},

f(x) ≥ c1|x|−β1 and g(x) ≤ c2|x|−β2 . (3.1)

Then, there exists a constant K which only depends on (c1, c2, β1, β2) such that for
any integer n ≥ 1,

∥

∥

∥
Tn(f)

−1/2
Tn(g)

1/2
∥

∥

∥

2,n
=
∥

∥

∥
Tn(g)

1/2
Tn(f)

−1/2
∥

∥

∥

2,n
≤ Knmax ((β2−β1)/2,0),

with ‖·‖2,n the spectral norm given by (2.2).

Remark 3.2. In the previous lemma, observe that the assumption on f ensures

that Tn(f)
−1/2

exists. Moreover, one can choose the constant K independently of
(β1, β2) and such that the conclusion holds for any β1, β2 ∈ [a, b].
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In our framework, f depends on an unknown parameter θ and is the spectral
density of a centered Gaussian stationary sequence (Xn)n. This spectral density
will be denoted fθ and is assumed to be such that

fθ(x) ∼x→0 |x|−α(θ)
Lθ(x)

with Lθ a slowly varying function and α(θ) ∈ (−∞, 1). Then next theorem deals
with the uniform behavior in θ as n→ +∞ of

tr

[

p
∏

ℓ=1

(Tn(fθ))
−1
Tn(gθ,ℓ)

]

,

where gθ,ℓ denotes a spectral density or one of its derivatives which undergoes some
technical assumptions. If the true value θ0 of the parameter is such that α(θ0) ∈
(−1, 1), this theorem is one of the main tools we use to obtain the LAN property.
It allows us to consider a process (Xn)n which admits antipersistence (α(θ0) < 0),
short memory (α(θ0) = 0) or long memory (α(θ0) ∈ (0, 1)). This theorem is stated
as Theorem 5 in Lieberman et al. (2011) (full version of Lieberman et al. (2012)).
It generalizes Theorem 2 in Lieberman et al. (2003), which is already a uniform
version of Theorem 1.a Fox and Taqqu (1987) and Theorem 5.1 in Dahlhaus (1989).

Theorem 3.3. Let Θ∗ ⊂ Rm be a compact set and p ∈ N\{0}. For any 1 ≤ ℓ ≤ p,
consider fℓ : Θ∗ × [−π, π] → [0,∞] and gℓ : Θ∗ × [−π, π] → R two symmetric
functions with respect to their second variable. In the following,

fθ,ℓ = fℓ(θ, ·) and gθ,ℓ = gℓ(θ, ·).
Assume that the following conditions hold.

(1) For any 1 ≤ ℓ ≤ p, for any θ ∈ Θ∗, fθ,ℓ and gθ,ℓ are differentiable on

[−π, π]\{0}. Moreover, for any 1 ≤ ℓ ≤ p, fℓ,
∂
∂xfℓ, gℓ and ∂

∂xgℓ are
continuous on Θ∗ × [−π, π]\{0}.

(2) There exist two continuous functions α : Θ∗ → (−1, 1) and β : Θ∗ →
(−∞, 1) such that for any δ > 0, for every (θ, x) ∈ Θ∗ × [−π, π]\{0} and
any 1 ≤ ℓ ≤ p

(a) c
1,δ,Θ∗

|x|−α(θ)+δ ≤ fℓ(θ, x) ≤ c
2,δ,Θ∗

|x|−α(θ)−δ

(b)
∣

∣

∂
∂xfℓ(θ, x)

∣

∣ ≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ

(c) and |gℓ(θ, x)| ≤ c
2,δ,Θ∗

|x|−β(θ)−δ
,

with c
i,δ,Θ∗

, i ∈ {1, 2} some finite positive constants which only depend on
δ and Θ∗.

(3) For any θ ∈ Θ∗, p(β(θ) − α(θ)) < 1.

Then,

lim
n→+∞

sup
θ∈Θ∗

∣

∣

∣

∣

∣

∣

1

n
tr

[

p
∏

ℓ=1

(Tn(fθ,ℓ))
−1
Tn(gθ,ℓ)

]

− 1

2π

∫ π

−π

p
∏

j=1

(fθ,ℓ(x))
−1
gθ,ℓ(x)dx

∣

∣

∣

∣

∣

∣

= 0.

Remark 3.4. Observe that under Conditions 1. and 2., f−1
ℓ = 1/fℓ is continuous

on Θ∗ × [−π, π]\{0}, as assumed in Theorem 5 of Lieberman et al. (2011).

If the true value θ0 of the parameter is such that α(θ0) ≤ −1, the previous
theorem can not be applied. However, the following theorem, which is a simple
consequence of Lemma 8 in Lieberman et al. (2011), provides a sufficient property
to establish the LAN property. In particular, it allows us to study the LAN property
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for ARFIMA models whose order of differentiability are lower than 1/2, which
includes some non invertible models.

Theorem 3.5. Let Θ∗ = B(θ0, r) ⊂ R
m be the closed Euclidean ball centered at

θ0 with radius r and let p ∈ N\{0}. Consider f : Θ∗ × [−π, π] → [0,∞] and for
1 ≤ ℓ ≤ p, gℓ : Θ∗×[−π, π] → R some symmetric functions in their second variable.
In the following,

fθ = f(θ, ·) and gθ,ℓ = gℓ(θ, ·).
Assume that the following conditions hold.

(1) The functions f and gℓ satisfy assumption 1 of Theorem 3.3.
(2) There exists a continuous function α : Θ∗ → (−∞, 1/2) such that for any

δ > 0, for every (θ, x) ∈ Θ∗ × [−π, π]\{0} and any 1 ≤ ℓ ≤ p, assertion
3(a), 3(b) of Theorem 3.3 are fulfilled (with fℓ = f), assertion 3(c) of
Theorem 3.3 holds with β = α and

∣

∣

∣

∣

∂

∂x
gθ,ℓ(x)

∣

∣

∣

∣

≤ c
2,δ,Θ∗

|x|−α(θ)−1−δ
.

Then, for r small enough,

lim
n→+∞

sup
θ∈Θ∗

∣

∣

∣

∣

∣

∣

1

n
tr

[

p
∏

ℓ=1

(Tn(fθ))
−1
Tn(gθ,ℓ)

]

− 1

2π

∫ π

−π

f−p
θ (x)

p
∏

j=1

gθ,ℓ(x)dx

∣

∣

∣

∣

∣

∣

= 0.

4. Application to Fractional Gaussian noises and ARFIMA processes

Here we consider two particular cases where the LAN property can be proved.

Fractional Gaussian noises:

Let (BH(t))t≥0 be a fractional Brownian motion (see Kolmogoroff (1940); Mandel-

brot and Van Ness (1968)) with Hurst index H ∈ (0, 1). In other words, BH is a
centered Gaussian random process whose covariance function is given by

E(BH(t)BH(s)) =
σ2

2

[

|t|2H − 2|t− s|2H + |s|2H
]

. (4.1)

The parameter σ2 corresponds to the variance of BH(1). Let us now consider
the centered stationary Gaussian sequence (Xn)n≥1, called the fractional Gaussian
noise of index H , defined by

for n ≥ 1, Xn = BH(n) −BH(n− 1).

The law of (Xn)n≥1 is parametrized by θ =
(

σ2, H
)

∈ (0,+∞) × (0, 1). According

to Samorodnitsky and Taqqu (1994), its spectral density fσ2,H is given by

fσ2,H(x) =
σ2|eix − 1|2
C2

2 (H)

∑

k∈Z

1

|x+ 2kπ|2H+1
, x ∈ [−π, π]\{0}, (4.2)

where
C2

2 (α) =
π

αΓ(2α) sin(απ)
.

Then, the model satisfies Assumption 2.1 with α(θ) = 2H − 1. Since the range of
α is (−1, 1), the Assumption 2.2 is not needed in this example.

Next proposition establishes the LAN property when the observation are modeled
by

Bn = {BH(1), . . . , BH(n)}
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with BH the fractional Brownian motion whose covariance function is given by
(4.1). This model is not a stationary one but its log-likelihood can be linked to
those of the fractional Gaussian noise

Xn = {BH(1), BH(2) −BH(1), . . . , BH(n) −BH(n− 1)},
which fulfills Assumption 2.1. The law of Bn is parametrized by
(

σ2, H
)

∈ (0,+∞) × (0, 1) = Θ and denoted by Qn
σ2,H .

Proposition 4.1. Let I be the Fisher information of the fractional Gaussian noise
Xn, that is the Fisher information associated with the spectral density fσ2,H defined
by (4.2). Then, under Qn

σ2

0
,H0

, for t ∈ R2 and n large enough

log
dQn

(σ2

0
,H0)+t/

√
n

dQn
(σ2

0
,H0)

= 〈t, Zn〉 −
1

2
t∗I(σ2

0 , H0)t+ ψσ2

0
,H0

(t, n)

where Zn does not depend on t and converges in distribution, under Qn
(σ2

0
,H0)

, to

a centered Gaussian vector with covariance matrix I(σ2
0 , H0), while ψσ2

0
,H0

(·, n)
converges uniformly on each compact to 0 Qn

(σ2

0
,H0)

-almost surely when n→ +∞.

Proof : Let θ0 =
(

σ2
0 , H0

)

. As previously, Pn
θ denotes the law of Xn. Observe that

log
dQn

θ0+t/
√

n

dQn
θ0

(bn) = log
dPn

θ0+t/
√

n

dPn
θ0

(xn)

where bn = (b1, . . . , bn)
′

and xn = (b1, b2− b1, . . . , bn− bn−1)
′

. Since under Qn
σ2

0
,H0

,

the law of xn is Pn
θ0

, the conclusion follows from Theorem 2.4. �

ARFIMA processes:

ARFIMA processes have been introduced in Granger and Joyeux (1980); Hosking
(1981). We also refer to Beran (1994) for general properties of ARFIMA(p, d, q).

Let p, q ∈ N. Then, a stationary ARFIMA process (Xn)n is parametrized by θ =
(

σ2, d,Φ1, . . . ,Φp,Ψ1, . . . ,Ψq

)

where d ∈ (−∞, 1) is the order of differentiability
and the polynoms

Φ(X) = 1 +

p
∑

j=1

ΦjX
j and Ψ(X) = 1 +

q
∑

j=1

ΨjX
j

have no zeros in the unit circle and no zeros in common. Then, its spectral density
is given by

fθ(x) = σ2
∣

∣eix − 1
∣

∣

−2d

∣

∣

∣

∣

∣

Ψ
(

eix
)

Φ(eix)

∣

∣

∣

∣

∣

2

.

Then Assumptions 2.1 and 2.2 are fulfilled with α(θ) = 2d. Theorem 2.4 also
implies LAN property for this model.

Appendix A.

A.1. Proof of Lemma 2.5. In this appendix, for ℓ ∈ {1, 2, 3} and k ∈ {1, . . . ,m}ℓ,
∂ℓ

kfθ denotes the partial derivative of (θ, x) 7→ fθ(x) with respect to (θk1
, . . . , θkℓ

),
that is

∂ℓ
kfθ(x) =

∂ℓfθ

∂θk1
· · ·∂θkℓ

(x). (A.1)
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By definition of Fn, for any θ ∈ B(θ0, r), and any integer 1 ≤ k ≤ m,

∂Fn

∂θk
(θ) = π〈xn, Tn(fθ)

−1Tn(∂kfθ)Tn(fθ)
−1xn〉 −

1

2
tr
(

Tn(∂kfθ)Tn(fθ)
−1
)

.(A.2)

Let us fix u ∈ Rm and study the asymptotic behavior, under Pn
θ0

, of 〈u,∇Fn(θ0)〉,
that is by (A.2) of

〈u,∇Fn(θ0)〉 = π〈xn, Tn(fθ0
)−1Tn(gu

θ0
)Tn(fθ0

)−1xn〉 −
1

2
tr
(

Tn(gu
θ0

)Tn(fθ0
)−1
)

with

gu
θ =

m
∑

k=1

uk ∂kfθ.

To achieve this goal we use the following result on Gaussian random vectors.

Lemma A.1. Assume that Y = (Y1, . . . , Yn)′ is a centered Gaussian random vector
with covariance matrix Γ and consider A a real symmetric matrix of order n. Then,

〈Y,AY 〉 (d)
=

n
∑

j=1

λj,nχj,n

where
(d)
= stands for equality in distribution, (λj,n)1≤j≤n are the eigenvalues of the

real symmetric matrix Γ1/2AΓ1/2 and (χj,n)j,n are i.i.d. random variables with

distribution χ2(1). Moreover,

E(〈Y,AY 〉) = tr(AΓ) = tr(ΓA) and Var(〈Y,AY 〉) = 2

n
∑

j=1

λ2
j,n = 2tr

(

(AΓ)
2
)

.

Observe that under Pn
θ0

, xn is a centered Gaussian random variable with covari-

ance Γn = 1
2πTn(fθ0

). Then, since Tn(fθ0
)−1Tn(gu

θ0
)Tn(fθ0

)−1 is a real symmetric
matrix, under Pn

θ0
,

〈u,∇Fn(θ0)〉
(d)
=

n
∑

j=1

λu
j,n(χj,n − 1),

where (λu
j,n)j=1,...,n are the eigenvalues of

Bu
θ0

=
1

2
Tn(fθ0

)−1/2Tn

(

gu
θ0

)

Tn(fθ0
)−1/2.

Therefore, under Pn
θ0

〈u, Zn〉
(d)
=

n
∑

j=1

√
2λu

j,n√
n

ξj,n

where ξj,n = (χj,n − 1)/
√

2 (1 ≤ j ≤ n, n ≥ 1) are i.i.d. centered random variables
having unitary variance. To obtain the convergence of Zn, we use the following
Lemma, which is an obvious corollary of Lindenberg theorem (see Billingsley (1995)
for instance).

Lemma A.2. Let (ξj,n)n≥1,1≤j≤n be a sequence of i.i.d centered random variables
having unitary variance and let (vj,n)n≥1,1≤j≤n be a triangular array of real num-
bers. Assume further that

(1) limn→+∞ sup1≤j≤n |vj,n| = 0,

(2) limn→+∞
∑n

j=1 v
2
j,n = τ2 > 0.
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Then, as n→ +∞,
∑n

j=1 vj,nξj,n converges in distribution to a centered Gauss-

ian distribution with variance τ2.

We first check Condition 1 for the sequence vj,n =
√

2n−1/2λu
j,n. Since Bu

θ0
is an

Hermitian matrix whose eigenvalues are
(

λu
j,n

)

1≤j≤n
, its spectral radius

ρn(u) := sup
1≤j≤n

|λu
j,n|

is given by

ρn(u) = sup
x∈Cn\{0}

∣

∣x∗Bu
θ0
x
∣

∣

x∗x
=

1

2
sup

x∈Cn\{0}

∣

∣x∗Tn(fθ0
)−1/2Tn(gu

θ0
)Tn(fθ0

)−1/2x
∣

∣

x∗x
.

Observe that for any y ∈ Cn, and any integrable symmetric function h,

y∗Tn(h)y =

∫ π

−π

∣

∣

∣

∣

∣

n
∑

k=1

eikxyk

∣

∣

∣

∣

∣

2

h(x)dx

and therefore that

|y∗Tn(h)y| ≤ y∗Tn(|h|)y. (A.3)

Then, we get

ρn(u) ≤ 1

2
sup

x∈Cn\{0}

x∗Tn(fθ0
)−1/2Tn(

∣

∣gu
θ0

∣

∣)Tn(fθ0
)−1/2x

x∗x
,

which can be written as

ρn(u) ≤ 1

2

∥

∥

∥
Tn

(∣

∣gu
θ0

∣

∣

)1/2
Tn(fθ0

)−1/2
∥

∥

∥

2

2,n
,

since
∣

∣gu
θ0

∣

∣ is a nonnegative symmetric function on [−π, π].

By Assumption 2.1, the functions f = fθ0
and g =

∣

∣gu
θ0

∣

∣ satisfy Equation (3.1)
with β1 = α(θ0) − δ and β2 = α(θ0) + δ (for any δ > 0). Then, applying Lemma
3.1, for any δ > 0, we get

ρn(u) < Kδn
2δ

where the finite positive constant Kδ does not depend on n. This implies that

lim
n→+∞

sup
1≤j≤n

|vj,n| = lim
n→+∞

√
2ρn(u)√
n

= 0.

This proves that Condition 1 of Lemma A.2 is fulfilled. Let us now study the
asymptotic of

n
∑

j=1

v2
j,n =

2

n

n
∑

j=1

(

λu
j,n

)2
.

By definition of the λu
j,n, we get

n
∑

j=1

v2
j,n = 1

2n tr
(

[

Tn(fθ0
)−1/2Tn(gu

θ0
)Tn(fθ0

)−1/2
]2
)

= 1
2n tr

(

[

Tn(fθ0
)−1Tn(gu

θ0
)
]2
)

.

Observe that if α(θ0) > −1, fθ,1 = fθ,2 = fθ and gθ,1 = gθ,2 = gu
θ satisfy the

assumptions of Theorem 3.3 with β = α on Θ∗ = B(θ0, r) for r chosen small enough.
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Otherwise, for r small enough, fθ and gθ,1 = gθ,2 = gu
θ satisfy the assumptions of

Theorem 3.5 on Θ∗ = B(θ0, r). Hence, applying one of these theorems, we get

lim
n→+∞

n
∑

j=1

v2
j,n =

1

4π

∫ π

−π

gu
θ0

(x)2

fθ0
(x)2

dx.

that is by definition of gu
θ0

and I(θ0),

lim
n→+∞

n
∑

j=1

v2
j,n = u∗I(θ0)u.

Hence, by Lemma A.2, under Pn
θ0

, 〈u, Zn〉 converges in distribution, to a centered
Gaussian random variable whose variance is u∗I(θ0)u. In other words, under Pn

θ0
,

〈u, Zn〉 converges in distribution to 〈u,G〉 with G a centered Gaussian random
vector whose covariance matrix is I(θ0). Since this holds for any u ∈ Rm, under
Pn

θ0
, Zn converges in distribution to G. The proof of Lemma 2.5 is then complete.

A.2. Proof of Lemma 2.6. Let us consider two integers 1 ≤ j, k ≤ m. We recall
that ∂ℓ

kfθ is defined by (A.1) and set

An,θ(g) = Tn(fθ)
−1Tn(g). (A.4)

Then, since ∂Fn

∂θk
is given by (A.2), for any θ ∈ B(θ0, r),

∂2Fn

∂θj∂θk
(θ) = Gn,1(θ) +Gn,2(θ) +Gn,3(θ)

where

Gn,1(θ) = π〈xn, An,θ(∂
2
j,kfθ)Tn(fθ)

−1xn〉 −
1

2
tr
(

An,θ(∂
2
j,kfθ)

)

,

Gn,2(θ) = −π〈xn, [An,θ(∂jfθ)An,θ(∂kfθ) +An,θ(∂kfθ)An,θ(∂jfθ)]Tn(fθ)
−1xn〉,

and

Gn,3(θ) =
1

2
tr
(

Tn(∂kfθ)Tn(fθ)
−1Tn(∂jfθ)Tn(fθ)

−1
)

.

By Lemma A.1, under Pn
θ0

, Gn,1(θ0) is a centered square integrable random variable
and

EP n
θ0

(

G2
n,1(θ0)

)

= VarP n
θ0

Gn,1(θ0) =
1

2
tr
(

An,θ0

(

∂2
j,kfθ0

)2
)

.

By Assumption 2.1, if α(θ0) > −1, fθ,1 = fθ,2 = fθ and gθ,1 = gθ,2 = ∂2
j,kfθ satisfy

the assumptions of Theorem 3.3 (up to a proper choice of a smaller r) with β = α.
Moreover if α(θ0) ≤ −1, by Assumptions 2.1 and 2.2, fθ and gθ,1 = gθ,2 = ∂2

j,kfθ

satisfy the assumptions of Theorem 3.5. Hence, by definition of An,θ0
,

lim
n→+∞

1

n2
EP n

θ0

(

G2
n,1(θ0)

)

= 0,

which implies that Gn,1(θ0)/n converges Pn
θ0

-almost surely to 0.
Moreover, again by Lemma A.1, under Pn

θ0
, Gn,2(θ0)/n is a square integrable

random variable with mean

mn = 1
nEP n

θ0

(Gn,2(θ0))

= − 1
2n tr(An,θ0

(∂jfθ0
)An,θ0

(∂kfθ0
) +An,θ0

(∂kfθ0
)An,θ0

(∂jfθ0
))

= − 1
n tr(An,θ0

(∂jfθ0
)An,θ0

(∂kfθ0
))
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and variance

σ2
n =

1

n2
tr
(

[An,θ0
(∂jfθ0

)An,θ0
(∂kfθ0

)]2
)

+
1

n2
tr
(

An,θ0
(∂jfθ0

)2An,θ0
(∂kfθ0

)2
)

.

As previously, if α(θ0) > −1 (respectively α(θ0) ≤ −1), we can apply Theorem 3.3
(respectively Theorem 3.5). These theorems prove that

lim
n→+∞

mn = − 1

2π

∫ π

−π

∂kfθ0
(x)∂jfθ0

(x)

fθ0
(x)2

dx = −2I(θ0)kj and lim
n→+∞

σ2
n = 0.

This implies that Gn,2(θ0)/n converges Pn
θ0

-almost surely to −2I(θ0)kj . Since
Gn,3(θ0)/n = −mn/2,

lim
n→0

1

n

∂2Fn

∂θk∂θj
(θ0) = −I(θ0)kj .

Since this holds for any 1 ≤ j, k ≤ m, ∇2Fn(θ0)/n converges Pn
θ0

-almost surely to
−I(θ0), which concludes the proof of Lemma 2.6.

A.3. Proof of Lemma 2.7. Let us focus on ∂3Fn

∂θ3

k

, where 1 ≤ k ≤ m. We recall that

An,θ is defined in (A.4) and set for the sake of simplicity,

∂2
kfθ = ∂2

k,kfθ and ∂3
kfθ = ∂2

k,k,kfθ

where ∂ℓ
(k1,k2,k3)

fθ is given by (A.1). Then, for any θ ∈ B(θ0, r), we get

∂3Fn

∂θ3k
(θ) = Hn,1(θ) +Hn,2(θ) +Hn,3(θ) +Hn,4(θ)

where

Hn,1(θ) = π〈xn, An,θ(∂
3
kfθ)Tn(fθ)

−1xn〉,
Hn,2(θ) = −3π〈xn,

[

An,θ(∂
2
kfθ)An,θ(∂kfθ) +An,θ(∂kfθ)An,θ(∂

2
kfθ)

]

Tn(fθ)
−1xn〉,

Hn,3(θ) = 6π〈xn, An,θ(∂kfθ)
3Tn(fθ)

−1xn〉
and

Hn,4(θ) = −tr
(

An,θ(∂kfθ)
3
)

+
3

2
tr
(

An,θ(∂kfθ)An,θ

(

∂2
kfθ

))

− 1

2
tr
(

An,θ

(

∂3
kfθ

))

Control of Hn,1

Observe that since Tn(fθ0
) is an Hermitian matrix,

Hn,1(θ) = π〈Tn(fθ0
)−1/2xn, Tn(fθ0

)1/2An,θ(∂
3
kfθ)Tn(fθ)

−1xn〉.
Therefore, by (2.3)

|Hn,1(θ)| ≤ π
∥

∥Tn(fθ0
)−1/2xn

∥

∥

2∥
∥Tn(fθ0

)1/2An,θ(∂
3
kfθ)Tn(fθ)

−1Tn(fθ0
)1/2

∥

∥

2,n

Since ‖·‖2,n is a multiplicative norm, that is since for any n× n matrices A,B,

‖AB‖2,n ≤ ‖A‖2,n‖B‖2,n, (A.5)

we get

|Hn,1(θ)| ≤

π
∥

∥

∥
Tn(fθ0

)−1/2xn

∥

∥

∥

2∥
∥

∥
Tn(fθ)

−1/2Tn(fθ0
)1/2

∥

∥

∥

2

2,n

∥

∥

∥
Tn(
∣

∣∂3
kfθ

∣

∣)1/2Tn(fθ)
−1/2

∥

∥

∥

2

2,n
.

(A.6)
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Let us now consider ε > 0. Then, by continuity of α, we can choose r sufficiently
small so that

α(θ0) − ε ≤ α(θ) ≤ α(θ0) + ε

for any θ ∈ B(θ0, r) = Θ∗ ⊂ Θ. Then, Assumption 2.1 implies that f = fθ satisfies
(3.1) with β1 = α(θ0)−2ε and a constant c1 which does not depend on θ ∈ B(θ0, r).
Note also that g = fθ0

satisfies (3.1) with β2 = α(θ0) + ε > β1. Then, by Lemma
3.1, we get

∀θ ∈ B(θ0, r),
∥

∥

∥
Tn(fθ)

−1/2Tn(fθ0
)1/2

∥

∥

∥

2

2,n
≤ Kn3ε

where the finite constant K = Kθ0,r,ε does not depend on n and θ.
Moreover, g =

∣

∣∂3
kfθ

∣

∣ is a nonnegative symmetric function which satisfies (3.1)
with β2 = α(θ0)+2ε > β1 and a constant c2 which does not depend on θ ∈ B(θ0, r).
Therefore by Lemma 3.1,

∀θ ∈ B(θ0, r), |Hn,1(θ)| ≤ K ′n7ε
∥

∥

∥
Tn(fθ0

)−1/2xn

∥

∥

∥

2

where the finite constant K ′ = K ′
θ0,r,ε does not depend on n and θ. Therefore,

1

n3/2
sup

θ∈B(θ0,r)

|Hn,1(θ)| ≤ K ′n7ε−1/2

∥

∥Tn(fθ0
)−1/2xn

∥

∥

2

n
.

Under Pn
θ0

, Tn(fθ0
)−1/2xn is a centered Gaussian random vector with 1

2π Idn as
covariance matrix. Then, by the strong law of large numbers,

∥

∥Tn(fθ0
)−1/2xn

∥

∥

2

n

P n
θ0

-a.s.
−−−−−→
n→+∞

1

π
.

Therefore, choosing ε and r small enough, we get

1

n3/2
sup

θ∈B(θ0,r)

|Hn,1(θ)|
P n

θ0
-a.s.

−−−−−→
n→+∞

0. (A.7)

Control of Hn,2 and Hn,3

Proceeding as for Hn,1, one check that for r small enough, for ℓ ∈ {2, 3},
1

n3/2
sup

θ∈B(θ0,r)

|Hn,ℓ(θ)|
P n

θ0
-a.s.

−−−−−→
n→+∞

0. (A.8)

Control of Hn,4

Assume first that α(θ0) > −1. For 1 ≤ ℓ ≤ 3, consider fθ,ℓ = fθ and gθ,ℓ = ∂3
kfθ.

Then, by Assumptions 2.1, these functions satisfy assumptions of Theorem 3.3 on
the compact set Θ∗ = B(θ0, r) (choosing r small enough) with β = α. Then,
applying this theorem, we get that

sup
n

sup
θ∈B(θ0,r)

1

n

∣

∣

∣

∣

∣

tr

(

3
∏

ℓ=1

Tn(fθ)
−1Tn

(

∂3
kfθ

)

)∣

∣

∣

∣

∣

< +∞,

that is

sup
n

sup
θ∈B(θ0,r)

1

n

∣

∣tr
(

An,θ

(

∂3
kfθ

))∣

∣ < +∞
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Assumption 2.1 also allows us to control the two other terms of Hn,4 by applying
Theorem 3.3. This leads to

sup
n

1

n
sup

θ∈B(θ0,r)

1

n
|Hn,4(θ)| < +∞. (A.9)

If α(θ0) ≤ −1, applying Theorem 3.5 instead of Theorem 3.3, we see that Equa-
tion (A.9) still holds.

Control of ∂3Fn

∂θ3

k

Equations (A.7), (A.8) and (A.9) leads to

1

n3/2
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θ3k

∣

∣

∣

∣

P n
θ0

-a.s
−−−−−→
n→+∞

0

for r small enough.

Computing ∂3Fn

∂θj∂θk∂θl
and then using the same arguments as for j = k = l, one

obtains that

1

n3/2
sup

θ∈B(θ0,r)

∣

∣

∣

∣

∂3Fn

∂θj∂θk∂θl

∣

∣

∣

∣

P n
θ0

-a.s
−−−−−→
n→+∞

0,

which concludes the proof.
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