
 Open access Journal Article DOI:10.1017/S0962492900002737

Lanczos-type Solvers for Nonsymmetric Linear Systems of Equations
— Source link

Martin H. Gutknecht

Institutions: ETH Zurich

Published on: 01 Jan 1997 - Acta Numerica (Cambridge University Press)

Topics: Lanczos resampling, Iterative method and Linear system

Related papers:

 BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems

 Iterative Methods for Sparse Linear Systems

 Conjugate gradient methods for indefinite systems

 CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems

 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems

Share this paper:

View more about this paper here: https://typeset.io/papers/lanczos-type-solvers-for-nonsymmetric-linear-systems-of-
2d7c1ndf9v

https://typeset.io/
https://www.doi.org/10.1017/S0962492900002737
https://typeset.io/papers/lanczos-type-solvers-for-nonsymmetric-linear-systems-of-2d7c1ndf9v
https://typeset.io/authors/martin-h-gutknecht-43h9h576ns
https://typeset.io/institutions/eth-zurich-2cbshymp
https://typeset.io/journals/acta-numerica-2sq7cad4
https://typeset.io/topics/lanczos-resampling-25iogfn6
https://typeset.io/topics/iterative-method-u2i3yazt
https://typeset.io/topics/linear-system-1mylbk53
https://typeset.io/papers/bi-cgstab-a-fast-and-smoothly-converging-variant-of-bi-cg-3klmqx7evd
https://typeset.io/papers/iterative-methods-for-sparse-linear-systems-34ozhpwq89
https://typeset.io/papers/conjugate-gradient-methods-for-indefinite-systems-2xhkkquhq5
https://typeset.io/papers/cgs-a-fast-lanczos-type-solver-for-nonsymmetric-linear-28hcnu878x
https://typeset.io/papers/gmres-a-generalized-minimal-residual-algorithm-for-solving-4xovqxzqlw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/lanczos-type-solvers-for-nonsymmetric-linear-systems-of-2d7c1ndf9v
https://twitter.com/intent/tweet?text=Lanczos-type%20Solvers%20for%20Nonsymmetric%20Linear%20Systems%20of%20Equations&url=https://typeset.io/papers/lanczos-type-solvers-for-nonsymmetric-linear-systems-of-2d7c1ndf9v
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/lanczos-type-solvers-for-nonsymmetric-linear-systems-of-2d7c1ndf9v
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/lanczos-type-solvers-for-nonsymmetric-linear-systems-of-2d7c1ndf9v
https://typeset.io/papers/lanczos-type-solvers-for-nonsymmetric-linear-systems-of-2d7c1ndf9v

ETH Library

Lanczos-type solvers for
nonsymmetric linear systems of
equations

Journal Article

Author(s):
Gutknecht, Martin H.

Publication date:
1997

Permanent link:
https://doi.org/10.3929/ethz-b-000422462

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Acta Numerica 6, https://doi.org/10.1017/S0962492900002737

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000422462
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1017/S0962492900002737
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Acta Numerica (1997), pp. 271-397 © Cambridge University Press, 1997

Lanczos-type solvers for nonsymmetric
linear systems of equations

Martin H. Gutknecht
Swiss Center for Scientific Computing

ETH-Zentrum, CH-8092 Zurich, Switzerland

E-mail: mhg@scsc.ethz.ch

Among the iterative methods for solving large linear systems with a sparse
(or, possibly, structured) nonsymmetric matrix, those that are based on the
Lanczos process feature short recurrences for the generation of the Krylov
space. This means low cost and low memory requirement. This review article
introduces the reader not only to the basic forms of the Lanczos process and
some of the related theory, but also describes in detail a number of solvers that
are based on it, including those that are considered to be the most efficient
ones. Possible breakdowns of the algorithms and ways to cure them by look-
ahead are also discussed.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

272 M. H. GUTKNECHT

CONTENTS

1 Introduction 272
2 The unsymmetric Lanczos or BlO algorithm 280
3 Termination, breakdowns and convergence 288
4 The BlORES form of the BlCG method 292
5 The QMR solution of a linear system 301
6 Variations of the Lanczos BlO algorithm 309
7 Coupled recurrences: the BlOC algorithm 314
8 The BlOMlN form of the BlCG method 319
9 The BlODm form of the BlCG method;

comparison 323
10 Alternative ways to apply the QMR approach

to BlCG 328
11 Preconditioning 330
12 Lanczos and direction polynomials 332
13 The Lanczos process for polynomials:

the Stieltjes procedure 340
14 The biconjugate gradient squared method 342
15 The transpose-free QMR algorithm 349
16 Lanczos-type product methods 352
17 Smoothing processes 365
18 Accuracy considerations 370
19 Look-ahead Lanczos algorithms 375
20 Outlook 388
References 389

1. Introduction

The task of solving huge sparse systems of linear equations comes up in
many if not most large-scale problems of scientific computing. In fact, if
tasks were judged according to hours spent on them on high-performance
computers, the one of solving linear systems might be by far the most im-
portant one. There are two types of approach: direct methods, which are
basically ingenious variations of Gaussian elimination, and iterative ones,
which come in many flavours. The latter are the clear winners when we
have to solve equations arising from the discretization of three-dimensional
partial differential equations, while for two-dimensional problems none of
the two approaches can claim to be superior in general.

Among the many existing iterative methods, those based on the Lanczos
process - and we consider the conjugate gradient (CG) method to be in-
cluded in this class - are definitely among the most effective ones. For
symmetric positive definite systems, CG is normally the best choice, and

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 273

arguments among users are restricted to which preconditioning technique to
use and whether it is worthwhile, or even necessary, to combine the method
with other techniques such as domain decomposition or multigrid.

For nonsymmetric (or, more correctly, non-Hermitian) systems it would
be hard to make a generally accepted recommendation. There are dozens
of algorithms that are generalizations of CG or are at least related to it.
They fall basically into two classes: (i) methods based on orthogonalization,
many of which feature a minimality property of the residuals with respect
to some norm, but have to make use of long recurrences involving all pre-
viously found iterates and residuals (or direction vectors), unless truncated
or restarted, in which case the optimality is lost; and (ii) methods based
on biorthogonalization (or, duality) that feature short recurrences and a
competitive speed of convergence. It is the latter class that is the topic of
this article. The gain in memory requirement and computational effort that
comes from short recurrences is often crucial for making a problem solv-
able. While computers get faster and memory cheaper, users turn to bigger
problems, so that efficient methods become more rather than less important.

The application of recursive biorthogonalization to the numerical solu-
tion of eigenvalue problems and linear systems goes back to Lanczos (1950,
1952) and is therefore referred to as the Lanczos process. In its basic form,
the process generates a pair of biorthogonal (or, dual) bases for a pair of
Krylov spaces, one generated by the coefficient matrix A and the other by
its Hermitian transpose or adjoint A*. This process features a three-term
recurrence and is here called Lanczos biorthogonalization or BlO algorithm
(see Section 2). A variation of it, described in the second Lanczos paper,
applies instead a pair of coupled two-term recurrences and is here referred
to as BlOC algorithm, because it produces additionally a second pair of
biconjugate bases (see Section 7). Both these algorithms can be applied for
solving a linear system Ax = b or for finding a part of the spectrum of
A. For the eigenvalue problem it has so far been standard to use the BlO
algorithm, but there are indications that this may change in the future (see
the comments in Section 7).

The emphasis here is neither on eigenvalue problems nor on symmetric
linear systems, but on solving nonsymmetric systems. Although the determ-
ination of eigenvalues is based on the same process, its application to this
problem has a different flavour and is well known for additional numerical
difficulties. Moreover, for the eigenvalue problem, the spectrum of a tridiag-
onal matrix has to be determined in a postprocessing step. For generality,
our formulations include complex systems, although the methods are mainly
applied to real data.

For symmetric positive definite systems, the Lanczos process is equival-
ent to the conjugate gradient (CG) method of Hestenes and Stiefel (1952),
which has been well understood for a long time and is widely treated in the

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

274 M. H. GUTKNECHT

literature. Related algorithms for indefinite symmetric systems are also well
known. Therefore, we can concentrate on the nonsymmetric case.

For an annotated bibliography of the early work on the CG and the
Lanczos methods we refer to Golub and O'Leary (1989). The two Lanczos
papers are briefly reviewed in Stewart (1994).

There are several ways of solving linear systems iteratively with the Lan-
czos process. Like any other Krylov space method, the Lanczos process
generates a nested sequence of Krylov subspaces1 Kn: at each step, the
so far created basis {yo,. . . , y n _i} is augmented by a new (right) Lanczos
vector yn that is a linear combination of Ay n_i and the old basis. The
starting vector yo is the residual of some initial approximation xo, that is,
yo := b —Axo. The nth approximation x n (the nth 'iterate') is then chosen
to have a representation

n

xn = x0 + Yl yjKo s o t n a t xn - x0 G K.n. (1.1)
3=0

This is what characterizes a Krylov space solver. Note, however, that the
algorithms to be discussed will not make use of this representation since it
would require us to store the whole Krylov space basis. It is a feature of
all competitive Lanczos-type solvers that the iterates can be obtained with
short recurrences.

The Lanczos process is special in that it generates two nested sequences of
Krylov spaces, one, {/Cn}, from A and some yo, the other, {Kn} from A* and
some yo- The iterates of the classical Lanczos-type solver, the biconjugate
gradient (BlCG) method, are then characterized by K.n _L rn, where rn :=
b — Axn is the nth residual.

In the 'symmetric case', when A is Hermitian and yo = yo> s o that Kn =
Kn (for all n), this orthogonality condition is a Galerkin condition, and the
method reduces to the conjugate gradient (CG) method, which is known to
minimize the error in the A-norm when the matrix is positive definite. Of
course, the minimization is subject to the condition (1.1). By replacing in
the symmetric case the orthogonality by A-orthogonality, that is, imposing
Kn _L Arn, we obtain the conjugate residual (CR) or minimum residual
method - a particular algorithm due to Paige and Saunders (1975) is called
MINRES, see Section 5 - with the property that the residual is minimized.
As a consequence, the norm of the residuals decreases monotonically.

For non-Hermitian matrices A the two Krylov spaces are different, and
K,n J_ rn becomes a Petrov-Galerkin condition. In the BlCG method the
short recurrences of CG and CR survive, but, unfortunately, the error and
residual minimization properties are lost. In fact, in practice the norm of

1 Throughout the paper we refer for simplicity mostly to Krylov spaces, not subspaces,
as do many other authors.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 275

the residuals sometimes increases suddenly by orders of magnitude, but also
reduces soon after to the previous level. This is referred to as a peak in
the residual norm plot, and when this happens several times in an example,
BiCG is said to have an erratic convergence behaviour.

There are two good ways to achieve a smoother residual norm plot of
BiCG. First, one can pipe the iterates xn and the residuals rn of BiCG
through a simple smoothing process that determines smoothed iterates xn

and rn according to

xn := xn_i(l - 0n) + xn9n, rn := rn_i(l - 0n) + rn0n,

where 9n is chosen such that the 2-norm of rn is as small as possible. This
simple recursive weighting process is very effective. It was proposed by
Schonauer (1987) and further investigated by Weiss (1990). Now it is re-
ferred to as minimal residual (MR) smoothing; we will discuss it in Sec-
tion 17.

An alternative is the quasi-minimal residual (QMR) method of Freund
and Nachtigal (1991), which does not use the BiCG iterates directly, but
only the basis {yj} of JCn that is generated by the Lanczos process. The
basic idea is to determine iterates xn so that the coordinate vector of their
residual with respect to the Lanczos basis has minimum length. This turns
out to be a least squares problem with an (n + 1) x n tridiagonal matrix,
the same problem as in MINRES; see Section 5.

QMR can also be understood as a harmonic mean smoothing process
for the residual norm plot, and therefore, theoretically, neither QMR nor
MR smoothing can really speed up the convergence considerably. In prac-
tice, however, it often happens that straightforward implementations of the
BiCG method converge more slowly than a carefully implemented QMR
algorithm (or not at all).

At this point we should add that there are various ways to realize the
BiCG method (see Sections 4, 8 9), and that they all allow us to com-
bine it with a smoothing process. In theory, the various algorithms are
mathematically nearly equivalent, but with respect to round-off they differ.
And round-off is indeed a serious problem for all Lanczos process based al-
gorithms with short recurrences: when building up the dual bases we only
enforce the orthogonality to the two previous vectors; the orthogonality to
the earlier vectors is inherited and, with time, is more and more lost due to
round-off. We will discuss this and other issues of finite precision arithmetic
briefly in Section 18.

In contrast to smoothing, an idea due to Sonneveld (1989) really increases
the speed of convergence. At once, it eliminates the following two disad-
vantages of the nonsymmetric Lanczos process: first, in addition to the
subroutine for the product Ax that is required by all Krylov space solv-
ers, BiCG also needs one for A*x; second, each step of BiCG increases

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

276 M. H. GUTKNECHT

the dimension of both K,n and Kn by one and, naturally, needs two matrix-
vector multiplications to do so, but only one of them helps to reduce the
approximation error by increasing the dimension of the approximation space.
To explain Sonneveld's idea we note that every vector in the Krylov space
Kn+i has a representation of the form pn(A)yo with a polynomial of degree
at most n. In the standard version of the BlCG method, the basis vectors
generated are linked by this polynomial:

yn = Pn(A)y0, yn = pn(A*)y0.

Here, the bar denotes complex conjugation of the coefficients. Since yn

happens to be the residual rn of x n , pn is actually the residual polynomial.
Sonneveld found with his conjugate gradient squared (CGS) algorithm a
method where the nth residual is instead given by r n = p^(A)yo G K.2n-
Per step it increases the Krylov space by two dimensions. Moreover, the
transpose or adjoint matrix is no longer needed. In practice, the conver-
gence is indeed typically nearly twice as fast as for BlCG, and thus also in
terms of matrix-vector multiplications the method is nearly twice as effect-
ive. However, it turns out that the convergence is even more erratic. We
will refer to this method more appropriately as biconjugate gradient squared
(BlCGS) method and treat various forms of it in Section 14.

To get smoother convergence, van der Vorst (1992) modified the ap-
proach in his B I C G S T A B algorithm by choosing residuals of the form rn =
pn(A)tn(A)yo G K.2n, where the polynomials tn are built up in factored form,
with a new zero being added in each step in such a way that the residual
undergoes a one-dimensional minimization process. This method was soon
enhanced further and became the germ of a group of methods that one might
call the B I C G S T A B family. It includes B I C G S T A B 2 with two-dimensional
minimization every other step, and the more general B I C G S T A B (^) with £-
dimensional minimization after a compound step that costs 2£ matrix-vector
products and increases the dimension of the Krylov space by 2£. The B I C G -

STAB family is a subset of an even larger class, the Lanczos-type product
methods (LTPMs), which are characterized by residual polynomials that are
products of a Lanczos polynomial pn and another polynomial tn of the same
degree. All LTPMs are transpose-free and gain one dimension of the Krylov
space per matrix-vector multiplication. Basically an infinite number of such
methods exist, but it is not so easy to find one that can outperform, say,
B I C G S T A B 2 . One that seems to be slightly better is based on the same
idea as B I C G S T A B 2 and, in fact, requires only the modification of a single
condition in the code. We call it BiCGxMR2. It does a two-dimensional
minimization in each step. LTPMs in general and the examples mentioned
here are discussed in Section 16.

Another good idea is to apply the QMR approach suitably to BlCGS.
The resulting transpose-free QMR (TFQMR) algorithm of Freund (1993)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 277

can compete in efficiency with the best LTPMs; we treat it in Section 15. It
is also possible to apply the QMR approach to LTPMs; see the introduction
of Section 16 for references.

A disadvantage of Krylov space methods based on the Lanczos process
is that they can break down for several reasons (even in exact arithmetic).
Particularly troublesome are the 'serious' Lanczos breakdowns that occur
when

(yn,yn)=0, but y n ^ ° , y n ^ o .

Though true ('exact') breakdowns are extremely unlikely (except in con-
trived or specially structured examples), near-breakdowns can be (but need
not be) the cause for an interruption or a slow-down of the convergence.
These breakdowns were surely among the reasons why the BiCG method
was rarely used over decades. However, as problem sizes grew, it became
more and more important to have a method with short recurrences. Fortu-
nately, it turned out that there is a mathematically correct way to circum-
vent both exact and near-breakdowns. The first to come up with such a
procedure for the BiO algorithm for eigenvalue computations were Parlett,
Taylor and Liu (1985), who also coined the term 'look-ahead'. In their view,
this was a generalization of the two-sided Gram-Schmidt algorithm. In 1988
look-ahead was rediscovered by Gutknecht from a completely different per-
spective: for him, look-ahead was a translation of general recurrences in the
Pade table, and a realization of what Gragg (1974) had indicated in a few
lines long before. Although classical Pade and continued fraction theory
put no emphasis on singular cases, the recurrences for what corresponds
to an exact breakdown had been known for a long time. Moreover, it was
possible to generalize them in order to treat near-breakdowns. This theory
and the application to several versions of the BiCG method are compiled
in Gutknecht (1992, 1994a). The careful implementation and the numerical
tests of Freund, Gutknecht and Nachtigal (1993) ultimately proved, that all
this can be turned into robust and efficient algorithms. Many other authors
have also contributed to look-ahead Lanczos algorithms; see our references
in Section 19. Moreover, the basic idea can be adapted to many other related
recurrences in numerical analysis.

Here, we describe in Section 3 in detail the various ways in which the
BiO algorithm can break down or terminate. Throughout the manuscript
we then point out under which conditions the other algorithms break down.
Although breakdowns are rare, knowing where and why they occur is im-
portant for learning how to avoid them and for gaining a full understanding
of Lanczos-type algorithms. Quality software should be able to cope with
breakdowns, or at least indicate to the user when a critical situation occurs.
Seemingly, we only indicate exact breakdowns, but, of course, to include
near-breakdowns the conditions '= o' and '= 0' just have to be replaced

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

278 M. H. GUTKNECHT

by other appropriate conditions. In practice, however, the question of what
'appropriate' means is not always so easy to answer. It is briefly touched on
in Section 19.

The derivations of the look-ahead BlO and BlOC algorithms we present
are based on the interpretation as two-sided Gram-Schmidt process. The
algorithms themselves are improved versions with reduced memory require-
ment. The look-ahead BlO algorithm makes use of a trick hidden in Freund
and Zha (1993) and pointed out in Hochbruck (1996). We establish this
simplification in a few lines, making use of a result from Gutknecht (1992).
For the look-ahead BlOC algorithm the simplification is due to Hochbruck
(1996), but also proved here in a different way.

We give many pointers to the vast literature on Krylov space solvers
based on the Lanczos process, but treating all the algorithms proposed is far
beyond our scope. In fact, this literature has grown so much in the last few
years that we have even had to limit the number of references. Moreover,
there must exist papers we are unaware of. Our intention is mainly to give
an easy introduction to the nonsymmetric Lanczos process and some of the
linear system solvers based on it. We have tried in particular to explain the
underlying ideas and to make clear the limitations and difficulties of this
family of methods. We have chosen to treat those algorithms that we think
are important for understanding, as well as those we think are among the
most effective.

There are many aspects that are not covered or only briefly referred to.
First of all, the important question of convergence and its deterioration due
to numerical effects is touched on only superficially. Also, we do not give
any numerical results, since giving a representative set would have required
considerable time and space. In fact, while straightforward implementation
of the algorithms requires little work, we believe that the production of
quality software taking into account some of the possible enhancements we
mention in Section 18 - not to speak of the look-ahead option that should be
included - requires considerable effort. Testing and evaluating such software
is not easy either, as simple examples do not show the effects of the enhance-
ments, while complicated ones make it difficult to link causes and effects. To
our knowledge, the best available software is Freund and Nachtigal's QM-
RPACK, which is freely available from NETLIB, but is restricted to various
forms of the QMR and TFQMR methods; see Freund and Nachtigal (1996).

While we are aware that in practice preconditioning can improve the con-
vergence of an iterative method dramatically and can reduce the overall
costs, we describe only briefly in Section 11 how preconditioners can be in-
tegrated into the algorithms, but not how they are found. For a survey of
preconditioning techniques we refer, for example, to Saad (1996).

Also among the things we skip are the adaptations of the Lanczos method
to systems with multiple right-hand sides. Recent work includes Aliaga,

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 279

Hernandez and Boley (1994) and Freund and Malhotra (1997), which is
an extension of Ruhe's band Lanczos algorithm (Ruhe 1979) blended with
QMR.

The Lanczos process is closely linked to other topics with the same math-
ematical background, in particular, formal orthogonal polynomials, Pade
approximation, continued fractions, the recursive solution of linear systems
with Hankel matrix, and the partial realization problem of system theory.
We discuss formal orthogonal polynomials (FOPs) briefly in Section 12, but
the other topics are not touched on. For the Pade connection, which is very
helpful for understanding breakdowns and the look-ahead approach to cure
them, we refer to Gutknecht (19946) for a simple treatment. The relation-
ship is described in much more detail and capitalized upon in Gutknecht
(1992, 1994a), where Lanczos look-ahead for both the BlO and the BlOC
process was introduced based on this connection. The relations between vari-
ous look-ahead recurrences in the Pade table and variations of look-ahead
Lanczos algorithms are also a topic of Hochbruck (1996). A fast Hankel
solver based on look-ahead Lanczos was worked out in detail in Freund and
Zha (1993). For the connection to the partial realization problem; see Boley
(1994), Boley and Golub (1991), Golub, Kagstrom and Van Dooren (1992),
and Parlett (1992).

In the wider neighbourhood of the Lanczos process we also find the Eu-
clidean algorithm, Gauss quadrature, the matrix moment problem and its
modified form, certain extrapolation methods, and the interpretation of con-
jugate direction methods as a special form of Gauss elimination. But these
subjects are not treated here.

A preliminary version of a few sections of this overview was presented as an
invited talk at the Copper Mountain Conference on Iterative Methods 1990
and was printed in the Preliminary Proceedings distributed at the conference.
The present Section 14 (plus some additional material) was made available
on separate sheets at that conference. We refer here to these two sources as
Gutknecht (1990).

Notation

Matrices and vectors are denoted by upper and lower case boldface letters.
In particular, O and o are the zero matrix and vector, respectively. The
transpose of A is AT; its conjugate transpose is A*. Blocks of block vec-
tors and matrices are sometimes printed in roman instead of boldface. For
coefficients and other scalars we normally choose lower case Greek letters.
However, for polynomials (and some function values) we use lower case ro-
man letters. Sets are denoted by calligraphic letters; for instance, Vn is the
set of polynomials of degree at most n.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

280 M. H. GUTKNECHT

We write scalars on the right-hand side of vectors, for instance xa, so
that this product becomes a special case of matrix multiplication2. The
inner product in C^ is assumed to be defined by (x,y) := x*y, so that
(xa,y/3) = a(3(x,y). The symbol := is used both for definitions and for
algorithmic assignments.

To achieve a uniform nomenclature for the methods and algorithms we
consider, we have modified some of the denominations used by other authors
(but we also refer to the original name if the identity is not apparent). We
hope that this will help readers to find their way in the maze of Lanczos-type
solvers.

2. The unsymmetric Lanczos or BiO algorithm

In this section we describe the basic nonsymmetric Lanczos process that
generates a pair of biorthogonal vector sequences. These define a pair of
nested sequences of Krylov spaces, one generated by the given matrix or
operator A, the other by its Hermitian transpose A*. The Lanczos algorithm
is based on a successive extension of these two spaces, coupled with a two-
sided Gram-Schmidt process for the construction of dual bases for them.
The recurrence coefficients are the elements of a tridiagonal matrix that is,
in theory, similar to A if the algorithm does not stop early. In the next
section we will discuss the various ways in which the process can terminate
or break down.

2.1. Derivation of the BiO algorithm

Let A € CNxN be any real or complex N x N matrix, and let B be a
nonsingular matrix that commutes with A and is used to define the formal
(i.e., not necessarily symmetric definite) inner product (y,y)B : = y*By
on C^ x C^. Orthogonality will usually be referred to with respect to
this formal inner product. For simplicity, we do not call it B-orthogonality,
except when this inaccuracy becomes misleading. However, we are mostly
interested in the case where B is the identity I and thus (y, y)B is the
ordinary Euclidean inner product of C^. The case B = A will also play a
role. Due to AB = BA we will have (y, Ay)s = (A*y, y)s • Finally, we
let yo, yo £ CN be two non-orthogonal initial vectors: (yo,yo)B ¥" 0-

The Lanczos biorthogonalization (BiO) algorithm, called method of min-
imized iterations by Lanczos (1950, 1952), but often referred to as the un-
symmetric or two-sided Lanczos algorithm, is a process for generating two
finite sequences {yn}n=o an<^ {yn}n=oi whose length v depends on A, B,

2 To see the rationale, think of the case where a turns out to be an inner product or
where we generalize to block algorithms and a becomes a block of a vector.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 281

yo, and yo, such that, for m, n = 0 , 1 , . . . , v — 1,

y n € K.n+i := span (y0, A y 0 , . . . , A"y0) ,
(2.1)

•= span (y0, A*yo,. . . , (A*)my0)

and
) if

= n. (2 '2)

Kn and JCm are Krylov (sub)spaces of A and A*, respectively. The condition
(2.2) means that the sequences are biorthogonal. Their elements yn and ym

are called right and left Lanczos vectors, respectively. In view of (2.1) y^
and yn can be expressed as

yn=Pn(A)y0 , yn=pn(A*)y0 , (2.3)

where pn and pn are polynomials of degree at most n into which A and A*
are substituted for the variable. We call pn the nth Lanczos polynomial^.
We will see in a moment that pn has exact degree n and that the sequence
{ym} can be chosen such that pn = pn, where pn is the polynomial with the
complex conjugate coefficients. In the general case, pn will be seen to be a
scalar multiple of pn.

The biorthogonal sequences of Lanczos vectors are constructed by a two-
sided version of the well-known Gram-Schmidt process, but the latter is not
applied to the bases used in the definition (2.1), since these are normally very
ill-conditioned, that is, close to linearly dependent. Instead, the vectors that
are orthogonalized are of the form Ayn and A*yn; that is, they are created
in each step from the most recently constructed pair by multiplication with
A and A*, respectively.

The length v of the sequences is determined by the impossibility of ex-
tending them such that the conditions (2.1) and (2.2) still hold with 6n ^ 0.
We will discuss the various reasons for a termination or a breakdown of the
process below.

Clearly K.n+\ I> ICn, K.n+\ 2 £n> and from (2.2) it follows that equality
cannot hold when n < v, since (y, yn)B = 0 for all y 6 K,n and (yn, Y)B = 0
for all y e Kn, or, briefly,

n, Yn J-B £n, (2.4)

but ICn+i JL-B yn, yn JLB /Cn+i. Consequently, for n = 1 , . . . , v - 1,

y n G K.n+i\K-n, yn G >Cn+i\JCn (2.5)

3 In classical analysis, depending on the normalization, the Lanczos polynomials are
called Hankel polynomials or Hadamard polynomials, the latter being monic (Henrici
1974).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

282 M. H. GUTKNECHT

(where the backslash denotes the set-theoretic difference), and thus

/Cn+i = span(y o , y i , . . . , y T l) , £«+i = span (yo ,yi , • • • ,yn)- (2.6)

Note that the relation on the left of (2.4) is equivalent to yn J_B* K-n, but

not to y n J_B K-m m general.
Prom (2.5) and (2.6) we conclude that for some complex constants Tk,n-i,

Tk,n-i {k = 0 , . . . , n; n = 1 , . . . , v - 1)

ynTn,n-i = A*yn_i — yn-iTn-i,n-i — • • • — y ^

where Tn^n-\ ^ 0 and Tn,n-\ ^ 0 can be chosen arbitrarily, for instance, for
normalizing yn and yn. The choice will of course affect the constants 6m

and the coefficients rn^m and Tn^m for m > n, but only in a transparent way.
For n = v, (2.7) can still be satisfied for any nonzero values of TVyV-\ and

Tv,v-i by some y^ ± B * £V a n d some yu J_B fcu, but these two vectors may
be orthogonal to each other, so that (2.2) does not hold. In particular, one
or even both may be the zero vector o. Nevertheless, (2.4) and (2.6)-(2.7)
also hold for n = v.

For n < v, let us introduce the N x n matrices

Y n := [y0 yi ••• y n - i], Yn := [yo yi ••• y n - i], (2.8)

the diagonal matrices

and the n x n Hessenberg matrices Tn :=

Then (2.2) and (2.7) become

= D6;i/ (2.9)

and

AY, = Y.TV + y ^ - i C , A*Y, = %fv + y ^ - i l j , (2-10)

where j n - \ := rHin_i and 7n_i := rniTl_i, and where 1^ is the last row of
the n x n identity matrix, n < u. Using (2.9) and Kv J_B yv-, yv J-B K-v we
conclude further that

Y^BAY, = T>s.iVTv, Y*B*A*Y, = T>6;vTv, (2.11)

and hence

T>S.VTV = TfD6.v. (2.12)

Here, on the left-hand side we have a lower Hessenberg matrix, while on the
right-hand side there is an upper Hessenberg matrix. Consequently, both

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 283

TV and TV must be tridiagonal. We simplify the notation by letting

Tn=:

QJO

7o

{30

71

Pi

a2

Pn-2
7n-2

and naming the elements of Tn analogously with tildes.
By comparing diagonal and off-diagonal elements on both sides of (2.12)

we obtain

an = On~ (2.13)

= 8nJn. (2.14)

and

Hence,

(2.15)

TV := TV. (2.16)

which could be satisfied by setting4

Pn •= Pn, 7n == 7 n , i-C

This would further allow us to set 7n := 1 (for all n) Another frequent choice
is

Pn-=Tn, 7n'-=K, *-e., TV := T*, (2.17)

which according to (2.14) yields 6n = 6Q for all n.

However, we want to keep the freedom to scale y n and yn, since most
algorithms that apply the Lanczos process for solving linear systems make
use of it. (As, for instance, the standard BlCG algorithm discussed in
Section 9 and the QMR approach of Section 5). Moreover, yn = 1 (for all n)

can cause overflow or underflow. In view of (2.14), we have in general

Pn = Pn = 7n<Wl/<Sn = Pnln/ln, (2.18)

in accordance with (2.15). The choice between (2.16) and (2.17), and more
generally, any choice that can be made to satisfy (2.14)-(2.15) only affects
the scaling (including the sign, or, in the complex case, the argument of all
components) of yn and yn. As we will see, it just leads to diagonal similarity
transformations of the matrices TV and TV.

4 By replacing the Euclidean inner product (y, y) = y*y by the bilinear form yTy, and
replacing A* by AT, we could avoid the complex conjugation of the coefficients of A
and of the recurrence coefficients; see, for instance, Preund et al. (1993). We prefer here
to use the standard inner product.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

284 M. H. GUTKNECHT

After shifting the index n by 1, (2.7) can now be written as

= Ayn - ynan - yn-iPn-i,

= A*yn - ynan - yn-iPn-i,

n = 0,...,v — 1, with y_i := y_i := o, (3-\ := /3_i := 0. Taking inner
products of the first formula with y n - i , yn, and yn+i we get three relations
involving Sn+i, 6n, 6n-\, and the recurrence coefficients an, /3n_i, 7n . In par-
ticular, an = (yn, Ayn)B /6n and, as is seen by inserting A*yn_i according
to (2.19),

Pn-l = (yn-1, Ay n)B /^n-1 = (A*yn-l,yn)B /*n-l = 7n-l*n/*n-l (2-20)

as in (2.18). Since (2.13) and the second relation in (2.18) determine an and
/3n_i we are left with two degrees of freedom that can be used to fix two of
the three coefficients j n , j n , and 6n+i- We just exploit here the fact that
the relations (2.9)-(2.11) can be used to determine Yj,, Yv, Tu, T^, and
lDs;v column by column. Altogether we get the following general version of
the unsymmetric Lanczos or biorthogonalization (BlO) algorithm.

ALGORITHM 1. (BiO ALGORITHM)

Choose yo, yo £ CN such that So := (yo, yo)B ^ 0, and set f3-\ := 0. For
n = 0 , 1 , . . . compute

= {yn,Ayn)B/6n, (2.21a)

= a ^ (2.21b)

= 7^T<V<Sn-i (if n > 0), (2.21c)

= 7n-l<V<Sn-l = /?n-l7n-l/7n-l (if n > 0), (2.21d)Pn-l

y t e m p := Ay n - ynan - yn_i/3n_i, (2.21e)

ytemp := A*yn - ynan - y n - i & - i , (2.21f)

(ytemp, ytemp)B; (2.21g)

if t̂emp = 0, choose 7n 7̂ 0 and 7n ^ 0, set

v := n + 1, y^ := ytemP/7n, y^ ~ Ytemp/ln, <Wi := 0, (2.21h)

and stop; otherwise, choose 7n ^ 0, j n ̂ 0, and <5n+i such that

inTntn+l = <5temP, (2.211)

set

yn+l : = ytemp/7n, yn+1 : = ytemp/7n, (2.21J)

and proceed with the next step.

The definitions in (2.21h) will guarantee that formulae we derive below
remain valid for n = v.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 285

In exact arithmetic, which we assume throughout most of the text, the
following basic result holds.

Theorem 2.1 The two sequences {yn}^=o a n d {yn}n=o generated by the
BlO algorithm satisfy (2.1) and (2.2), and hence (2.4)-(2.5). Moreover,
(2.1) and (2.2) also hold when m — v or n = is, except that 6U = 0.

Conversely, if (2.1) and (2.2) hold for m, n = 0 , . . . , u, except that 8V = 0,
and if the choice (2.16) for satisfying (2.15) is made, then the recurrence
formulae of the BlO algorithm are valid for n = 0 , . . . , v — 1, but the al-
gorithm will stop at n = v — 1 due to <5temp = 0. The conditions (2.1) and

(2.2) determine {yn}n=o a n ^ {yn}n=o uniquely up to scaling.

Proof. The second part is covered by our derivation. It remains to prove the
first part by induction. Assume that the sequences {yn}^=o an<^ {ym}m~=o
have been generated by the BlO algorithm and that (2.1) and (2.2) hold for
m, n = 0 , . . . , k (< u). (For k = 0 this is clearly the case.) Then the validity
of (2.1) for m = k + 1 or n = k + 1 is obvious from (2.21e) and (2.21f).
Moreover, by (2.21j), (2.21e), and (2.21f),

k(*k - yk-i0k-i)B/lk (2.22a)

5TOym + Pm-iym-\,yk)B

) k- (2.22b)

If m < k — 2, all terms on the right-hand side of (2.22b) vanish. For
m = k — 1, we use (2.20) and (2.2) to obtain on the right-hand side of
(2.22a) (/3fc_i«fc_i - 0 - Pk-ih-^/ik = 0. Next, using (2.21a) and (2.2)
we get for m = k in (2.22a) (a.k6k — <Xk&k)hk = 0- Analogous argu-
ments yield <y f c+i ,yn)B = 0 for n = 0 , . . . , * . Finally, by (2.21g)-(2.21j),
(yfc+iiyfc+i)B = Sk- This completes the induction. •

In summary, the Lanczos process generates a pair of biorthogonal bases of
a pair of Krylov spaces and does this with a pair of three-term recurrences
that are closely linked to each other. In each step only two pairs of ortho-
gonality conditions need to be enforced, which, due to the linkage, reduce
to just one pair and thus require only two inner products in total. All the
other orthogonality conditions are inherited: they are satisfied automatic-
ally, at least in theory. Of course, if we want normalized basis vectors, we
need to invest another two inner products per step. Clearly, we also need
two matrix-vector products per step to expand the two Krylov spaces.

2.2. Matrix relations

The matrix relations (2.9)-(2.11) can be considered as a shorthand notation
for the BlO algorithm: the relations (2.10) describe the recurrences for yn

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

286 M. H. GUTKNECHT

and y n , while (2.9) and (2.11) summarize the formulae for determining the
elements of TV, TV, and D,$;,,. These matrix relations hold as well after
n < v steps, and in fact are obtained for such an intermediate stage by
considering submatrices of the appropriate size.

Equation (2.10) can be simplified by introducing the (n + l) x n leading

principal submatrices of TV and TV, the extended tridiagonal matrices5

I T

To a i Pi

7i "2

'•• Pn-2

7n-2 «n-l

7n-l

and the analogous matrices with tildes. Then we have altogether

AY n = Y n + 1 T n , A*Yn = Y n + 1 T n (n < «/),

= D 6 ; n , Y^BAY^ = BS;nTn (n<v),

D g ; n T n = T*nT>6,n (n<u).

(2.23)

(2.24)

(2.25)

The first relation in (2.23) means that T n is the representation in the basis
{yo> • • •> Yn} of the restriction of A to the subspace K.n, which is mapped into
K-n+\. The subspace Kn is 'nearly invariant' as its image requires only one
additional space dimension. When it turns out that the component of Ayn_i
in this direction is relatively short, then we can expect that the eigenvalues
of T n are close approximations of eigenvalues of A. This is vaguely the
reasoning for applying the BlO algorithm to eigenvalue computations. There
are several reasons that make this argument dangerous. First, the basis is
not orthogonal, and thus Tn is linked to A by an oblique projection only:
while in the Hermitian case the eigenvalues of Tn are Ritz values, that is,
Galerkin or Rayleigh-Ritz approximations, they are in the non-Hermitian
case only Petrov-Galerkin approximations, which are sometimes referred to
as Petrov values. Second, since neither A nor Tn are Hermitian in the case
considered here, eigenvalues need not behave nicely under perturbation.

A notorious problem with the Lanczos process is that in finite precision
arithmetic round-off affects it strongly. In particular, since only two or-
thogonality conditions are enforced at every step, while orthogonality with
respect to earlier vectors is inherited, a loss of (bi)orthogonality is noticed

5 By underlining T n we want to indicate that we augment this matrix by an additional
row. We suggest reading T n as 'T sub n extended'. The same notation will be used on
other occasions.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 287

in practice, which means that T)s-,n is not diagonal. This is also a serious
problem in the Hermitian case; we will return to it briefly in Section 18.

2.3. Normalization; simplification due to symmetry

As discussed before, in the BlO algorithm (Algorithm 1) the coefficients an,

an, 0n-\, j3n-i, 7n, 7n, and 6n+\ are defined uniquely except that in (2.21i)
we are free to choose two of the three quantities 7n, 7n, and <5n+i. Special
versions of the algorithm are found by making a particular choice for two
of the coefficients 7n, %, and 6n+i, and capitalizing upon the particular
choice. The classical choices for theoretical work are 7n := 7n := 1 (Lanczos
1950, Lanczos 1952, Rutishauser 1953, Householder 1964) or 7n = 7n and
<5n+1 ;= 1. The latter makes the two vector sequences biorthonormal and
yields (3n-\ = 7n-i; that is, Tu = T j is real or complex symmetric, cf.

(2.18). (Consequently, (2.16) and (2.17) then coincide.) For numerical com-
putations the former choice is risky with respect to overflow, and the latter
is inappropriate for real nonsymmetric matrices since it may lead to some
complex 7n. Therefore, in the real nonsymmetric case, the two choices

In •= In '•= y |<Stemp| ' <Wl :== ^temp/(inln) = <5temp/|<Stemp|, (2.26)

In •= ||ytemp|| , In •= ||ytemp|| , <Wl := <5temp/'(7n7n), (2-27)

are normally suggested, but there may be a special reason for yet another
one. Note that (2.27) requires two additional inner products. These are often
justified anyway by the necessity of stability and round-off error control; see
Section 18.

Replacing, say, ")n = 1 (for all n) by some other choice means replacing

Yn by

9n •= yn / r n , where r n := 7071 • • • 7n_i, (2.28)

which in view of (2.23) amounts to replacing T n by

T n := DfJ.TnDrjn, where D r ; n := diag(r0, I \ , . . . , r n _ x) , (2.29)

If 7n and 7n are chosen independently of ytemp and ytemP) the formulae
(2.21e)-(2.21j) can be simplified; cf. Algorithm 2 below.

If A and B are Hermitian and B is positive definite, starting with yo = yo
and making the natural choice 7n := 7n and 6n > 0 leads to TV = Tu = Tu

(that is, Tj/ = Tj, is real) and yn = Yn (for all n). Thus, the recursion
(2.21f) for yn is redundant, the costs are reduced to roughly half, and the
Lanczos vectors are orthogonal to each other. Moreover, one can choose
7n > 0 (for all n), which then implies that (5n-\ > 0 also. Finally, choosing
6n := <50 (for all n) makes Tu real symmetric. Then the BlO algorithm
becomes the symmetric Lanczos algorithm, which is often just called the
Lanczos algorithm.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

288 M. H. GUTKNECHT

If A is complex symmetric and yo = yo, then yn = y n (for all n). Again,
the costs reduce to about half. Now, setting 6n := 1 (for all n) makes Tu

complex symmetric, but this can be achieved in general and has nothing to
do with A being complex symmetric. See Freund (1992) for further details
on this case.

In Section 6 we will discuss yet other cases where the BlO algorithm
simplifies.

3. Termination, breakdowns and convergence

The BlO algorithm stops with u := n + 1 when 6temp — 0, since atn+i would
become infinite or indefinite. We call v here the index of first breakdown
or termination. Of course, v is bounded by the maximum dimension of the
Krylov spaces, but u may be smaller for several reasons. The maximum
dimension of the subspaces Kn denned by (2.1) depends not only on A but
also on yo; it is called the grade of yo with respect to A and is here denoted
by z/(yo, A). As is easy to prove, it satisfies

y(yo, A) = min {n : dim/Cn = d i m £ n + i } ,

and it is at most equal to the degree u(A) of the minimum polynomial of A.
Clearly, the Lanczos process stops with ytemp = ytemp = o when v = u(A).

If this full termination due to ytemP = ytemp = o happens before the degree
of the minimum polynomial is reached, that is, if v < v(A), we call it an
early full termination. However, the BlO algorithm can also stop with either
ytemp = o or y t emp = o, and even with (y temp, ytemP)B = 0 when y t emp ^ o
and ytemp 7̂ o. Then we say that it breaks down, or, more exactly, that we
have a one-sided termination or a serious breakdown, respectively6.

Lanczos (1950, 1952) was already aware of these various breakdowns.
They have since been discussed by many authors; see, in particular, Fad-
deev and Faddeeva (1964), Gutknecht (1990), Householder (1964), Joubert
(1992), Parlett (1992), Parlett et al. (1985), Rutishauser (1953), Saad (1982),
and Taylor (1982).

Of course, in floating-point arithmetic, a near-breakdown passed without
taking special measures may lead to stability problems. Therefore, in prac-
tice, breakdown conditions '= o' and '= 0' have to be replaced by other
conditions that should not depend on scaling and should prevent us from
numerical instability. We will return to this question in Section 19.

6 Parlett (1992) refers to a benign breakdown when we have either an early full termination
or a one-sided termination.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 289

3.1. Full termination

In the case of full termination, that is, when the BlO algorithm terminates
with

ytemp = Ytemp = O, (3.1)

we can conclude from (2.10) that

AY,, = YVTV, ATYV = Yv%. (3.2)

This means that Ku and Kv are invariant subspaces of dimension v of A
and A*, respectively. The set of eigenvalues of TV is then a subset of the
spectrum of A.

The formula AY,, = Y^T^ points to an often cited objective of the BlO
algorithm: the similarity reduction of a given matrix A to a tridiagonal
matrix TV. For the latter the computation of the eigenvalues is much less
costly, in particular in the Hermitian case. However, unless v = N or the
Lanczos process is restarted (possibly several times) with some new pair yV,
y,, satisfying (2.4), it can never determine the geometric multiplicity of an
eigenvalue, since it can at best find the factors of the minimal polynomial of
A. In theory, to find the whole spectrum, we could continue the algorithm
after a full termination with v < N by constructing first a new pair (y,,, yV)
of nonzero vectors that are biorthogonal to the pair of vector sequences
constructed so far, i.e., satisfy (2.4); see, for instance, Householder (1964),
Lanczos (1950), Lanczos (1952), and Rutishauser (1953). Starting from a
trial pair (y,y) one would have to construct

yk(yk,y)B/6k, (3.3a)
k=0

v-l

yu ••= y - X) y f c (y f c ' y) B * / ^ ' (3-3b)
fc=0

and hope that the two resulting vectors are nonzero. Then, one can set
7^_i := /?„_! := 0, so that after the restart the relations (2.10) hold even
beyond this v. If no breakdown or one-sided termination later occurs, and
if any further early full termination is also followed by such a restart, then
in theory the algorithm must terminate with ytemP = ytemp — o and v =
N. The relations (3.2) then hold with all the matrices being square of
order N. The tridiagonal matrix TJV may have some elements 7fc = Ac =
0 duetto the restarts, and the same will then happen to TV. Since Y^
and Y;v are nonsingular, Tjv is similar to A, and TJV is similar to A*.
Unfortunately, in practice this all works only for very small N: first, as
is seen from (3.3a)-(3.3b), the restart with persisting biorthogonality (2.2)
requires all previously computed vectors of the two sequences, but these are

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

290 M. H. GUTKNECHT

normally not stored; second, completely avoiding loss of (bi)orthogonality
during the iteration would require full reorthogonalization with respect to
previous Lanczos vectors, which means giving up the greatest advantages of
the Lanczos process, the short recurrences.

For the same reasons, finding all the roots of the minimal polynomial
with the Lanczos process is in practice normally beyond reach: due to loss
of (bi)orthogonality or because i>(A) is too large and the process has to
be stopped early, only few of the eigenvalues are found with acceptable
accuracy; fortunately, these are often those that are of prime interest.

3.2. One-sided termination

When the BlO algorithm stops due to

either y t e m p = o or y t emp = o

(but not ytemp = ytemp = o), we call this a one-sided termination. In some
applications this is welcome, but in others it may still be a serious difficulty.
In view of (2.10), it means that either K,u or £„ is an invariant subspace of
dimension v of A or A*, respectively. For eigenvalue computations, this is
very useful information, although sometimes one may need to continue the
algorithm with a pair (yi,,yv) that is biorthogonal to the pairs constructed
so far, in order to find further eigenvalues. Determining the missing vector of
this pair will again require the expensive orthogonalization of a trial vector
with respect to a z^-dimensional Krylov subspace, that is, either (3.3a) or
(3.3b).

In contrast, when we have to solve a linear system, then ytemp = o is
all we aim at, as we will see in the next section. Unfortunately, when
ytemp = o but ytemp 7̂ °> we have a nasty situation where we have to find a
replacement for ytemP that is orthogonal to Kv. In practice, codes either just
use some ytemp that consists of scaled up round-off errors or restart the BlO
algorithm. In either case the convergence slows down. The best precaution
against this type of breakdown seems to be choosing as left initial vector yo
a random one.

3.3. Serious breakdowns

Let us now discuss the serious breakdowns of the BlO algorithm, which
we also call Lanczos breakdowns to distinguish them from a second type of
serious breakdown that can occur additionally in the standard form of the
biconjugate gradient method. Hence, assume that the BlO algorithm stops
due to

<5temP = 0, but neither ytemp = o nor y t emp = o.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 291

In the past, the recommendation was to restart the algorithm from scratch.
Nowadays one should implement what is called look-ahead. It is the curing
of these breakdowns and the corresponding near-breakdowns that is ad-
dressed by the look-ahead Lanczos algorithms which have attracted so much
attention recently. We will discuss the look-ahead BlO algorithm and some
of the related theory in Section 19, where we will also give detailed refer-
ences. In most cases, look-ahead is successful. Oversimplifying matters,
we can say that curing a serious breakdown with look-ahead requires that
(yv, A.kyv)-Q ^ 0 for some k, while the breakdown is incurable when

(y«,,A*y./>B = 0 (for all k > 0).

In theory, the condition (yv, Afcy^)B ^ 0 has to be replaced by a positive
lower bound for the smallest singular value of a k x k matrix, but in practice
even this condition is not safe.

The serious breakdown does not occur if A and B are Hermitian, B is
positive definite, yo = yo> 7« = 7^, and 6n > 0 (for all n), since then
Yn — yn (for all n), and (., .)B is an inner product. Also, choosing j n , 7n ,
or 6n differently will not destroy this property. On the other hand, serious
breakdowns can still occur for a real symmetric matrix A if yo 7̂ yo-

Under the standard assumption B = I it was shown by Rutishauser (1953)
(for another proof see Householder (1964)) that there exist yo and yo such
that neither a serious breakdown nor a premature termination occurs; that
is, such that the process does not end before the degree of the minimal
polynomial is attained. Unfortunately, such a pair (yo, yo) is in general not
known. Joubert (1992) even showed that, in a probabilistic sense, nearly all
pairs have this property; that is, the assumption of having neither a prema-
ture termination nor a breakdown is a generic property. This is no longer
true if the matrix is real and one restricts the initial vectors by requiring
y0 = y0 £ M.N. Joubert gives an example where serious breakdowns then
occur for almost all yo. Of course, the set of pairs (yo,yo) that lead to
a near-breakdown never has measure zero. But practice shows that near-
breakdowns that have a devastating effect on the process are fairly rare.

3.4- Convergence

Although in theory the BlO algorithm either terminates or breaks down in at
most min{z/(yo, A), i>(yo, A*)} steps, this rarely happens in practice, and the
process can be continued far beyond N. For small matrices this is sometimes
necessary when one wants to find all eigenvalues or to solve a linear system.
But the BlO algorithm is usually applied to very large matrices and stopped
at some n < N, so that only (2.10) and (2.11) hold, but not (3.2). The
n eigenvalues of T n are then considered as approximations of n eigenvalues
of A, and typically they tend to approximate eigenvalues that lie near the

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

292 M. H. GUTKNECHT

border of the spectrum. For eigenvalues of small absolute value, the absolute
error is comparable to the one for large eigenvalues; hence, the relative error
tends to be large. Therefore, the method is best at finding the dominant
eigenvalues. Lanczos (1950, p. 270) found a heuristic explanation for this
important phenomenon. Some remarks and references on the convergence
of Lanczos-type solvers will be made in the next section when we discuss
the basic properties of the BlCG method.

An additional difficulty is that due to the loss of biorthogonality, eigenval-
ues of A may reappear in T n with too high multiplicity. One refers to these
extra eigenvalues as ghost eigenvalues. We will come back to this problem
in Section 18.

4. The BIORES form of the BlCG method

Let us now turn to applying the Lanczos BlO algorithm to the problem
of solving linear systems of equations Ax = b. We first review the basic
properties of the conjugate gradient (CG) and the conjugate residual (CR)
methods and then describe a first version, B I O R E S , of the biconjugate gradi-
ent (BlCG) method. In the next section we will further cover the MINRES

algorithm for the CR method and a first version of the QMR method.
We assume that A is nonsingular and denote the solution of Ax = b by

xex, its initial approximation by xo, the nth approximation (or iterate) by
x n , and the corresponding residual by r n := b — Ax n . Additionally, we let
yo := ro, or yo := ro/| |ro| | if we aim for normalized Lanczos vectors. As in
(2.1), K,n is the nth Krylov space generated by A from yo, which now has
the direction of the initial residual. From time to time we also refer to the
nth error, xex — x n . Note that r n = A(xex — x n) .

4-1. The conjugate gradient and conjugate residual methods

We first assume that A and B are commuting Hermitian positive definite
matrices and recall some facts about the conjugate gradient (CG) method

of Hestenes and Stiefel (1952). It is characterized by the property that the
nth iterate x n minimizes the quadratic function

x (-> ((xex - x), A(xex - x)) B

among all x £ xo + K.n. The standard case is again B = I. By differenti-
ation one readily verifies that the minimization problem is equivalent to the
Galerkin condition

(y,rn)B = 0 (for all y € Kn), i.e., Kn _LB rn . (4.1)

Note that

rn = b - Ax0 + A(x0 - xn) e r0 + AfCn C Kn+\- (4.2)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 293

In view of (4.1) and (4.2), rn spans the orthogonal complement of fCn in
/Cn+i. Hence, if we let yo := ro and generate the basis {yfc}£_0 of JCn+\ by
recursively orthogonalizing Aym with respect to /Cm+i (m = 0 , . . . , n — 1),
then yn is proportional to rn, and by suitable normalization we can achieve
y« = rn. This recursive orthogonalization procedure is none other than the
symmetric Lanczos process, that is, the BlO algorithm with yo = yo and
commuting Hermitian matrices A and B. Note also that by (4.2), rn =
pn(A)yo, where pn is a polynomial of exact degree n satisfying pn(0) = 1.
This property, which is equivalent to xn € xo + ICn, means that CG is a
Krylov space solver, as defined by (1.1). Of course, up to normalization,
the residual polynomial pn is here the Lanczos polynomial of (2.3).

The directions xn—xn_i can be seen to be conjugate to each other (i.e., A-
orthogonal with respect to the B-inner product, or, simply, AB-orthogonal),
whence CG is a special conjugate direction method. In their classical CG
method Hestenes and Stiefel (1952) chose B = I and thus minimized x i—>
((xex — x), A(xex — x)), which is the square of the A-norm of the error. (This
is a norm since A is Hermitian positive definite.) With respect to the inner
product induced by A, we then have from (4.1) and (4.2)

K,n J-A (Xex ~
 X«)> (X*x - Xn) ~ (Xex ~ X0) £ Kn.

This means that xo — xn = (xex — xn) — (xex — xo) is the A-orthogonal
projection of the initial error xex — xo into /Cn, and the error xex — xn is
the difference between the initial error and its projection. Therefore, the
CG method can also be viewed as an orthogonal projection method in the
error space endowed with the A-norm. Moreover, it can be understood as
an orthogonal projection method in the residual space endowed with the
A~1-norm.

If B = A = A* instead, we have

((x e x - x) , A (x e x - x)) B = | | A (x e x - x) | | 2 = | | b - A x | | 2 , (4-3)

which shows that the residual norm is now minimized. The B-orthogonality
of the residuals means here that they are conjugate. The method is therefore
called conjugate residual (CR) or minimum residual method. Normally, the
abbreviation MINRES stands for a particular algorithm due to Paige and
Saunders (1975) for this method. We will come back to it in Section 5.
Like some other versions of the CR method, MINRES is also applicable
to Hermitian indefinite systems; see Ashby, Manteuffel and Saylor (1990),
Fletcher (1976).

Prom (4.1) and (4.2) we can conclude here that rn is chosen so that it is
orthogonal to A/Cn and ro — rn lies in AK-n. In other words, with respect
to the standard inner product in Euclidean space, ro — rn is the orthogonal
projection of ro onto A/Cn. Therefore, the CR method is an orthogonal
projection method in the residual space.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

294 M. H. GUTKNECHT

Prom the fact that the CG-residuals are mutually orthogonal and the
CR-residuals are mutually conjugate, it follows in particular that in both
cases r,, = o for some v < N, and thus xu = xex- However, in practice
this finite termination property is fairly irrelevant, as it is severely spoiled
by round-off.

So far we only know how to construct the residuals, but we still need an-
other recurrence for the iterates x n themselves. As we will see in a moment,
such a recurrence is found by multiplying by A " 1 the one for the residuals,
that is, the one for the appropriately scaled right Lanczos vectors. This then
leads to the three-term version7, ORES, of the conjugate gradient method
(Hestenes 1951). The standard version of the CG method, OMlN, instead
uses coupled two-term recurrences also involving the direction vectors, which
are multiples of the corrections x n + i — x n . In the rest of this section and in
Section 8 we want to describe generalizations to the nonsymmetric case.

4-2. Basic properties of the BiCG method

If A is non-Hermitian, the construction of an orthogonal basis {yn} of
the Krylov space becomes expensive and memory-intensive, since the re-
currences for y n generally involve all previous vectors (as first assumed in
(2.7)). Therefore, the resulting Arnoldi or full orthogonalization method

(FOM) (Arnoldi 1951, Saad 1981) has to be either restarted periodically or
truncated, which means that some of the information that was built up is
lost. The same applies to the generalized conjugate residual (GCR) method

(Eisenstat, Elman and Schultz 1983) and its special form, the G M R E S al-
gorithm of Saad and Schultz (1986), which extends the M I N R B S algorithm
to the nonsymmetric case.

However, we know how to construct efficiently a pair of biorthogonal se-
quences {yn}, {yn}, namely by the BlO algorithm of Section 2. By requiring
that iterates x n € Xo + K.n satisfy the Petrov-Galerkin condition

(y , r n) B = 0 (for all y <E ICn), i.e., K,n _LB rn , (4.4)

we find the biconjugate gradient (BiCG) method. In contrast to the Galerkin
condition (4.1) of the CG method, this one does not belong to a minimiza-
tion problem in a fixed norm8.

7 The acronyms ORES, OMIN, and ODiR were introduced in Ashby et al. (1990) as
abbreviations for ORTHORES, ORTHOMIN, and ORTHODIR. We suggest using the short
form whenever the basic recurrences of the method are short. Note that our acronyms
BIORES, BIOMIN, and BIODIR for the various forms of the BiCG method fit into this
pattern, as these algorithms also feature short recurrences.

8 Baxth and ManteufFel (1994) showed that BiCG and QMR fit into the framework of
variable metric methods: in exact arithmetic, if the methods do not break down or
terminate with v < N, then the iterates that have been created minimize the error in a

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 295

Now rn is chosen so that it is orthogonal to JCn and so that ro — r n lies
in A/Cn. This means that ro — r n is the projection of ro onto A/Cn along a
direction that is orthogonal to another space, namely /Cn, and, hence, is in
general oblique with respect to the projection space AK.n. Therefore, the
BiCG method is said to be an oblique projection method (Saad 1982, Saad
1996).

Since both the residual r n and the right Lanczos vector y n satisfy (4.4) and
both lie in K,n+\, and since we have seen in Section 2 that yn is determined up
to a scalar factor by these conditions, we can again conclude that the residual
must be a scalar multiple of the Lanczos vector and that by appropriate
normalization of the latter we could attain rn = yn.

The most straightforward way of taking into account the two conditions
x n € xo + Kn and K,n J_B rn is the following one. Representing x n — xo in
terms of the Lanczos vectors we can write

x n = x0 + Y n k n , r n = r0 - AY n k n , (4.5)

with some coordinate vector kn . Using AY n = Y n + i T n , see (2.23), and

with §! := [1 0 0 •••] T e Kn + 1 and p0 := ||ro | | (assuming ||yo | | = 1
here), we find that

r n = Y n + i (elPo - T n k n) . (4.6)

In view of Y*BYn+i = [D,5;n | o], the Petrov-Galerkin condition (4.4),

which may be written as Y*Br n = o, finally yields the square tridiagonal

linear system

T n k n = eipo, (4.7)

where now ei € Mn. By solving it for kn and inserting the solution into (4.5)
we could compute x n . However, this approach, which is sometimes called the
Lanczos method for solving linear systems, is very memory-intensive, as one
has to store all right Lanczos vectors for evaluating (4.5). Fortunately, there
are more efficient versions of the BiCG method that generate not only the
residuals (essentially the right Lanczos vectors) but also the iterates with
short recurrences. We could try to find such recurrences from the above
relations, but we will derive them in a more general and more elegant way.

Unless one encounters a serious breakdown, the BiCG method terminates
theoretically with vv = o or yv = o for some v. Therefore, the BiCG
method also has the finite termination property, except that it is spoiled
not only by round-off but also by the possibility of a breakdown (a serious

norm that depends on the created basis, that is, on A and yo- This result also follows
easily from one of Hochbruck and Lubich (1997a)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

296 M. H. GUTKNECHT

one or a left-sided termination). We must emphasize again, however, that
it is misleading to motivate the CG method or the BiCG method (in any
of their forms) by this finite termination property, because this property
is irrelevant when large linear systems are solved. What really counts are
certain approximation properties that make the residuals (and errors) of the
iterates x n decrease rapidly. There is a simple, standard error bound that
implies at least linear convergence for the CG and CR methods (see, for
instance, Kaniel (1966), Saad (1980, 1994, 1996)), but in practice superlinear
convergence is observed; there are indeed more sophisticated estimates that
explain the superlinearity under certain assumptions on the spectrum (van
der Sluis and van der Vorst 1986, 1987, Strakos 1991, van der Sluis 1992,
Hanke 1997). These bounds are no longer valid in the nonsymmetric case,
but some of the considerations can be extended to it (van der Vorst and
Vuik 1993, Ye 1991). The true mechanism of convergence lies deeper, and
seems to remain the same in the nonsymmetric case. For the CR method
and its generalization to nonsymmetric systems it has been analysed by
Nevanlinna (1993). For the BiCG method convergence seems harder to
analyse, however. Recently, a unified approach to error bounds for BiCG,
QMR, FOM, and G M R E S , as well as comparisons among their residual
norms, have been established in Hochbruck and Lubich (1997a).

The BiCG method is based on Lanczos (1952) and Fletcher (1976), but,
as we will see, there are various algorithms that realize it.

4-3. Recurrences for the BiCG iterates; the consistency condition

The recurrence for the iterates x n is obtained from the one for the re-
siduals by following a general rule that we will use over and over again.
By definition, x n — xo € fCn for any Krylov space solver, and thus (4.2)
holds; here Kn is still the nth Krylov space generated by A from yo = To-
Since r n = pn(A)yo with a polynomial pn of exact degree n, the vectors
ro, • • •, r n_i span Kn (even when they are linearly dependent, in which case
JCn = JCn-i). Therefore, if we let

Rn := [ro ri • • • r n_i], X n := [xo xi • • • xn_i],

and define the extended (n + 1) x n Frobenius (or companion) matrix

- 1 - 1 ••• - 1
1

¥„:=

1

then we have, in view of x n — Xo £ /Cn,

i F n = - R ^ (4.8)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 297

with some upper triangular n x n matrix \Jn and an extra minus sign. Each
column sum in F n is zero, that is, [1 1 • • • 1] F n = oT, and therefore,
for an arbitrary b G C^, multiplication of F n from the left by the N x (ra+1)
matrix [b b • • • b] yields an N x n zero matrix. Therefore,

I W i F n = ([b • • • b] - AXn+1) F n = - A X n + 1 F n = A R ^ . (4.9)

Since rm and Arm_i are both represented by polynomials of exact degree
m, the diagonal elements of \Jn cannot vanish. Hence, if we let

H n := Hn\Jn ,

we can write (4.8) and (4.9) as

Rn = - X n + 1 H n) AR, = Hn+1mn, (4-10)

where Hn is an (n + 1) x n upper Hessenberg matrix that satisfies9

eTHn = oT, where eT :=[1 1 ••• 1] , (4.11)

as a consequence of e T F n = oT. This is the matrix form of the consistency
condition for Krylov space solvers. It means that in each column of H^
the elements must sum up to 0; see, for instance, Gutknecht (19896). This
property is inherited from F n . The relations in (4.10) are the matrix rep-
resentations of the recurrences for computing the iterates and the residuals:
xn is a linear combination of rn_i and xo,. . . , xn_i, and rn is a linear com-
bination of Arn_i and ro, . . . , rn_i. Note that the recurrence coefficients,
which are stored in Hn , are the same in both formulae.

Another, equivalent form of the consistency condition is the property
pn{0) = 1 of the residual polynomials.

We call a Krylov space solver consistent if it generates a basis consisting
of the residuals (and not of some multiples of them).

4-4- The BIORES algorithm

In the usual, consistent forms of the BiCG method, the Lanczos vectors yn

are equal to the residuals rn and thus the Lanczos polynomials satisfy the
consistency condition pn(0) = 1. To apply the above approach, we have to
set Hn := Tn and Rn := Yn. Therefore, the zero column sum condition
requires us to choose j n := — an — fln-\. However, this can lead to yet
another type of breakdown, namely when an + Pn-i = 0. Following Bank
and Chan (1993) we call this a pivot breakdown (for reasons we will describe
later, in Section 9), while a breakdown due to 6temp = 0 in the BlO algorithm
is referred to as a Lanczos breakdown10, as before.

9 The dimension of the vectors o and e is always defined by the context.
10 In Gutknecht (1990) we suggested calling a pivot breakdown a normalization breakdown,

which is an appropriate name in view of its analogous occurrence in other Krylov space

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

298 M. H. GUTKNECHT

Recalling that the formulae for the BiO algorithm can be simplified if j n

is independent of Stemp, and adding the appropriate recurrence for the ap-

proximants x n , we find the following BlORES version of the BlCG method.

ALGORITHM 2. (B I O R E S FORM OF THE B I C G METHOD)

For solving Ax = b, choose an initial approximation Xo, set yo := b — Axo,

and choose yo such that 60 := (yo,yo)B 7̂ 0- Then apply Algorithm 1

(BiO) with

7n := -an - /?„_! (4.12)

and some 7n 7̂ 0, so that (2.21e)-(2.21j) simplify to

yn+i := (Ayn - ynan - yn-iPn-i)/ln, (4.13a)

yn+i := (A^yn-ynan-yn-i0n-i)/%, (4.13b)

6n+i := (yn+i,yn+i)B- (4.13c)

Additionally, compute the vectors

x n + i := - (y n + xnan + xn_i/?n_i)/7n. (4.13d)

If j n = 0, the algorithm breaks down ('pivot breakdown'), and we set v :— n.

If yn+i = o, it terminates and xn+i is the solution; if yn+i ^ o, but

<5n+i = 0, the algorithm also breaks down ('Lanczos breakdown' if yn+i 7̂ o,

'left termination' if yn+i = o). In these two cases we set v := n + 1.

First we verify the relation between residuals and iterates.

Lemma 4.1 In Algorithm 2 (B IORES) the vector yn is the residual of the

nth iterate xn; that is, b — Axn = yn (n = 0 , 1 , . . . , v).

Proof. First, b —Axo = yo by definition of yo- Assuming n > 1, b—Axn =

yn, and b — Axre_! = yn_i, and using (4.13a)-(4.13d), (2.21e), (2.21j), and

(4.12), we get

b - Axn+i = b + (Ayn

= b + (Ayn - ynan - yn-iPn-i + b(an + f3n-\))hn

which is what is needed for the induction. When n = 0, the same relations

hold without the terms involving /3_i. •

solvers. Joubert (1992) calls the pivot breakdown a hard breakdown since it causes all
three standard versions of the BiCG method discussed in Jea and Young (1983) to
break down, as we will see in Section 9. In his terminology the Lanczos breakdown
is a soft breakdown. Brezinski, Redivo Zaglia and Sadok (1993) use the terms true
breakdown and ghost breakdown, respectively, while Freund and Nachtigal (1991) refer
to breakdowns of the second kind and breakdowns of the first kind. However, we will see
that in the algorithms most often used in practice, it is easier to circumvent a pivot (or
hard, or true, or second kind) breakdown than a Lanczos breakdown.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 299

The shorthand notation (2.23)-(2.24) for the BlO algorithm can easily
be extended to the B I O R E S algorithm. Due to the additional possibility
of a pivot breakdown, the index of first breakdown or termination is now
v (< v). We also have to add the matrix representation of the recurrence
for the iterates, (4.13d),

Yn = -Xn+1Tn (n<0). (4.14)

Analogously to (4.11), the column sum condition (4.12) can be expressed as

e T T n = oT (n<j>). (4.15)

4-5. The inconsistent B I O R E S algorithm

We claim that by a small modification introduced in Gutknecht (1990) it
is possible to avoid the pivot breakdown that may occur in Algorithm 2
(BIORES) .

ALGORITHM 3. (INCONSISTENT B I O R E S ALGORITHM)

Initially, let yo := (b — Axo)/7_i with some 7_i ^ 0, and redefine xo :=
xo/7-1. (For example, choose 7_i := ||b — Axo|| or 7_i := 1.) Modify
Algorithm 2 (BIORES) by always choosing j n ^ 0 (instead of setting j n :=
—an — I3n-i). Compute additionally the sequence {Kn} that is denned re-
cursively by

7T0 := l /7- l , 7Tn+i := -(an7rn + /3ri_17rn_i)/7n, n = 0 , 1 , . . . , v - 1.
(4.16)

We will see later in Theorem 12.1 that 7rn is the value at 0 of the Lanczos
polynomial pn of (2.3), which up to normalization is also the residual poly-
nomial of xn. We will also see that pn, if normalized to be monic, is the
characteristic polynomial of the n x n leading principal submatrix of Tv.
The problem with B I O R E S is that this value may become zero, and hence
there may not exist a residual polynomial normalized to be 1 at C, = 0. In
other words, inconsistent B I O R E S works with 'unnormalized residual poly-
nomials' not satisfying the consistency condition. The same idea can be
applied to other Krylov space solvers that break down for the same reason.
It follows immediately that the pivot breakdown is avoided.

Lemma 4.2 The index of first breakdown or termination u of the BlO
algorithm and the one of the inconsistent B I O R E S algorithm are identical;
the index of first breakdown or termination z> of the consistent B I O R E S

algorithm can, but need not, be smaller.

Moreover, in view of the following result, inconsistent B I O R E S delivers
the solution of Ax = b whenever it does not break down.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

300 M. H. GUTKNECHT

Lemma 4.3 In the inconsistent B I O R E S algorithm, yn and x n are related

by

y n = b7rn - Ax n . (4.17)

If Yvlu = 0, then •ku ^ 0, and xex = x^/riv is the solution of Ax = b.

Proof. For n = 0, (4.17) is correct. Assume it is correct up to the index n.

Then by (4.13a)-(4.13d) and (4.16)

(b7Tn+i -

= -b(a n7r n + /3n_i7r?1_i) + Ay n + A x n a n + Axn_i/3n_i

= Ay n - ynan - y n - i

As mentioned above, ~kn is, up to normalization, the value at 0 of the char-
acteristic polynomial pn of the n x n leading principal submatrix of Tu. In
particular, 7ru is a nonzero multiple of the value at 0 of the characteristic
polynomial pu of Tu. We know that when the algorithm terminates due to
Ytemp = yi/7i/ = o, then the eigenvalues of TV are also eigenvalues of A.
Hence, TT̂ = 0 would imply that A is singular, contrary to our assumption
in this chapter. •

Lemma 4.3 indicates that in practice termination should be based on
||yn||/|7Tn| being small. If we let

Pn '•= [Ko • • • 7Tn_i] ,

we can formulate the extra recurrence (4.16) of inconsistent B I O R E S and
its residual relation (4.17) as

p ! + i T n = o T (n < i/),

Yn = [b • • • b] diag(7r0, • • •, 7Tn_i) - A X n (n < v + 1).

From (4.17) we conclude that 7Tn and the choice of 7 m (m < n) only affect
the scaling of y n and x n . It is clear from this formula that whenever -kn / 0
for all n < u, one can rescale yn, x n (n < v) to get the corresponding vectors
of (consistent) B I O R E S . But once -kn = 0 for some n < v, this is impossible
and B I O R E S breaks down, that is, v < v. In contrast, here one can still
go on, and if yv = o one finds a solution that is not accessible through
Algorithm 2 (using the same initial data). In practice, where vanishing
of 7rn is unlikely, but near-vanishing matters, inconsistent B I O R E S must
be considered as a slightly stabilized version of B I O R E S that eliminates
the possibility of overflow or division by zero. In floating-point arithmetic,
however, there is no other stability pitfall caused by the particular scaling
of (consistent) B I O R E S or by any other scaling.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 301

5. The QMR solution of a linear system

While the BlCG method yields a Petrov-Galerkin approximation of the
solution of a linear system, the Quasi-Minimal Residual (QMR) method of
Freund and Nachtigal (Freund 1992, Freund and Nachtigal 1991, Freund
and Nachtigal 1994) produces a solution whose residual has a coordinate
vector of minimum length. However, since the basis of the space is - for
economy reasons - the one generated by the Lanczos process, and thus is
not orthonormal, in general, the residual vector itself is not of minimum
length.

Basically, the QMR method takes the right Krylov space basis generated
by the Lanczos process and solves a least squares problem in coordinate
space in the same way as the MINRES algorithm of Paige and Saunders
(1975) and the G M R E S algorithm of Saad and Schultz (1986). However,
the QMR algorithm in (Freund and Nachtigal 1991) has additional features:
its Lanczos part includes an implementation of look-ahead from Freund et
al. (1993), and its least squares part allows for weights, which, however, are
rarely used and therefore dropped in our presentation11.

In principle, the QMR philosophy has a wide scope of applications, which
goes beyond what has been treated in the literature. In particular, we can
apply it to any Krylov space generation procedure producing a relation of
the form AYn = Yn + iHn (preferably with column vectors of norm 1) or of
certain equivalent forms. We will return to this in Sections 10, 15 and 17.

Since MINRES plays an essential role in QMR, we need to look at it first.
We are going to discuss a variation of it that is suitable for QMR, since it
is easily adapted to allow for look-ahead.

5.1. The MINRES algorithm

The MINRES algorithm of Paige and Saunders (1975), as well as QMR
and GMRES, start from the representation (4.6) of the residual. MINRES

is a particular algorithm for the CR method for Hermitian systems, and
thus the aim is to minimize the residual norm. The method makes use of
the isometry induced by the coordinate mapping of an inner product space
with an orthonormal basis. This isometry is also manifested by the well-
known Parseval relation. It implies that instead of minimizing the residual
we can minimize its coordinate vector. In fact, by running the symmetric
Lanczos algorithm with B = I (despite the fact that the inner product
matrix B = A is used in the minimization problem (4.3) of the CR method)
and normalizing the resulting orthogonal basis {ym} of the Krylov space,

11 In Tong (1994) the diagonal weight matrix is replaced by a block diagonal one with
2 x 2 or 3 x 3 blocks that are chosen suitably. However, the numerical results show
little gain in efficiency, if any at all.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

302 M. H. GUTKNECHT

we have Y*+1Yn+i = In+i, and therefore from (4.6)

Ilrn|| = H îPo — Xnkn | | . (5-1)

This is a least squares problem in coordinate space: e\Po has to be approx-
imated by a linear combination of the columns of the tridiagonal (n + 1) x n
matrix Tn .

For example, this problem can be solved using the QR or the LQ decom-
position of the matrix and, due to the tridiagonality, these decompositions
only require n or n — 1 Givens rotations, respectively12. The QR decompos-
ition of an upper Hessenberg matrix of the same size still only requires n + 1
rotations, and that is why both the G M R E S and the QMR algorithms ap-
ply QR, while Paige and Saunders used an LQ decomposition. In GMRES

T_n is replaced by a Hessenberg matrix, and in the QMR algorithm Tn is
tridiagonal except for a few extra nonzero elements above the upper codi-
agonal if look-ahead is needed; hence, it is a nearly tridiagonal Hessenberg
matrix. Although we assume in our presentation of the QMR method in
this section that look-ahead does not occur, we choose to work with the QR
decomposition, and we modify the original MINRES algorithm accordingly.
Our treatment is adapted from Freund and Nachtigal (1991).

Let Tn = QnR£fR be a QR decomposition of Tn . The last row of the
upper triangular (n + 1) x n matrix RjfR is zero. If we denote its upper
square n x n submatrix by RjfR (not to be confused with the matrix R™ of
residual vectors) and let

hn

(5.2)
. Vn+l .

we see that

kn := (RjfR)~ hn (5.3)

is the solution of our least squares problem since

H l̂PO ~~ .i-n^nll = *-in—lP0~—n *n\\

(5-4)

= l^n+ll2- (5.5)

In fact, multiplying the least squares problem (5.1) by the unitary matrix
Q* turns it into one with an upper triangular matrix, see (5.4), where the
choice of kn no longer influences the defect of the last equation, and thus the
problem is solved by choosing kn such that the first n equations are fulfilled.

12 An alternative is to apply Householder transformations; see Walker (1988).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 303

Prom (5.1) and (5.5) we see in particular that the minimum residual norm
is equal to \fjn+i | and hence can be found without computing kn or the resid-
ual. The unitary matrix Q n is only determined in its factored form, as the
product of n Givens rotations that are chosen to annihilate the subdiagonal
elements of the tridiagonal (or Hessenberg) matrix

Qn-l O

1
G n with Gn :=

In-1

O T

o

c

'•"
I

o

- S n

Cn

(5.6)

where Cn > 0 and sn G Cn satisfying cn + | s n | = 1 are chosen such that

•k

•k

fJ-n

vn

•k

k

0

with

Vn

Qn-l

[o T

o

1 J
T
in

" 0

L)

. 1

which means that

fJ-n

Cn •= 0 , Sn •= 1 ,

if fXn ^ 0,

if fj,n = 0.

(5.7)

If T n is real, Cn and sn are the cosine and sine of the rotation angle.
The formula for updating h n is therefore very simple:

*in ^ n

' hn_! '

0

p *

h n - l

Vn
0

hn-l

CnVn

. Sn Vn .

(5.8)

. Vn+1 .

In particular, it follows that

||eiPo - T n k n | | = |r?n+i| = | s n ^ n | = \s\ s2 • • • sn\ ||ro | |, (5.9)

since 771 = ||ro||. Even more important is the fact that h n G Cn emerges
from h n - i G C""1 by just appending an additional component cnr\n- By
rewriting the first equation in (4.5) using (5.3) as

x n = x0 + Z n h n , where Zn := [zo . . . zn_i] := 1

contains the QMR direction vectors, we can conclude that

X n
 = Xn—1 + Zn (5.10)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

304 M. H. GUTKNECHT

Finally, since R£fR is a banded upper tridiagonal matrix with bandwidth
three, the relation

Yn = R"RZ n (5.11)

can be viewed as the matrix representation of a three-term recurrence for
generating the vectors {zfc}^. (In contrast, in GMR.ES R£fR is no longer
banded, and therefore this recurrence is not short.)

Multiplying (5.10) by A we could find an analogous recurrence for the
residuals, but since it would require an extra matrix-vector product, it is of
no interest. There is another, cheaper way of updating the residual. First,
inserting T_n = QnR_£fR and (5.3) into (4.6) and taking (5.2) into account
we get

rn = Y n + 1 (elPo - QnRj = Y n + 1 lelPo - Qn

0

= Y n + i Q A + i i + i , where ln+1 = [0 ... 0 1] T G Rn+1 (5.12)

as before. Using (5.6) we conclude further that

' Qn_i I o
fn = [Yn | y

O

Gn Vn+l

= -YnQn-ilnSnr}n+1 +ync

Finally, using (5.12) and rjn+i = —sTiVn (see (5.8)) to simplify the first term
on the right-hand side, we get the recursion

!„ 2 , .
rn — (5.13)

However, recall that updating the residual is unnecessary for MINRES since
its norm is equal to |%+i|. But (5.13) also holds for GMRES, and, since
we have not used the fact that Yn has orthogonal columns, it will become
clear that it remains true for QMR.

5.2. A first version of the QMR method: BiOQMR

The basic version of the QMR method without look-ahead is now easily
explained: the BiO algorithm with normalized Lanczos vectors (that is,
with normalization (2.27)) is applied to build up bases of the growing Krylov
spaces JCn and)Cn. As in inconsistent BlORES, the right initial vector
y0 := ro/||ro|| is the normalized initial residual, while the left one, yo> can
be chosen arbitrarily. The relations (4.5)-(4.6) remain valid, but (5.1) is no
longer true, since the basis {yfcĵ Zg is no longer orthonormal when A is not
Hermitian or yo ^ yo-

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 305

Since finding the minimum residual becomes too expensive, Freund and
Nachtigal (Freund 1992, Freund and Nachtigal 1991) instead promoted min-
imizing the coefficient vector of the residual with respect to that basis, the
so-called quasi-residual

- Tnkn, satisfying rn = Yn+iq^, (5.14)

see (4.6). Minimizing | |qn | | is accomplished exactly as described in the
previous subsection, and even the recurrences (5.10) and (5.13) for updating
the iterates and residuals, respectively, remain valid.

What differs, however, is that | |rn | | = ||qn|| no longer holds, in general.
Instead we just have

jn+i

since Yn+i has columns of length 1, and | |qn | | = \fjn+i\ as before; see (5.5).
The factor \/n + 1 normally leads to a large overestimate, so that the bound
is of limited value. However, the relationship between the residual and the
quasi-residual may suggest sparing the work for updating the residual and
computing its norm until the norm |%+i| of the quasi-residual has dropped
below a certain tolerance. In the following summary of a (simplified) version
of the QMR method we nevertheless assume that the residual is updated.
We choose to call it BlOQMR for distinction, to indicate that it is based
on the BlO algorithm without look-ahead, whose results are then piped into
the QMR least squares process.

ALGORITHM 4. (BiOQMR VERSION OF THE QMR METHOD)

For solving Ax = b, choose an initial approximation xo G C^, let ro := (b —
Axo) and yo := ro/||i"o||, choose yo of unit length, and apply Algorithm 1
(BlO) with the option (2.27) producing normalized Lanczos vectors. Within
step n — 1 of the main loop, after generating y n and yn,

(1) update the QR factorization T n = Q n E ^ R according to (5.6)-(5.7)
(2) compute the coefficient vector h n by appending the component cnr\n to

hn- i , and compute the new last component 77n+i := —^n^n of h n

(3) compute zn_i according to the three-term recurrence implied by (5.11)
(4) compute x n and r n according to (5.10) and (5.13), respectively
(5) stop if | | rn | | / | | ro | | is sufficiently small.

Note that the extra cost (in excess of those for the BlO algorithm) is
very small. On the other hand, the smoothing effect of the QMR method
is often very striking: while the Petrov-Galerkin condition imposed in the
BiCG method sometimes leads to a rather erratic residual norm plot, the
norms of the QMR residuals typically decrease nearly monotonically, though
not necessarily completely monotonically; see, for instance, the examples in
Freund and Nachtigal (1991).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

306 M. H. GUTKNECHT

5.3. The relation between (Petrov-)Galerkin and the (Quasi-)Minimal
Residual solutions

Between the BlCG iterates and residuals and those of the QMR method
exist relationships inherited from CG and CR. For the latter two methods,
most of them were found by Paige and Saunders (1975) as a byproduct
of their derivation of the MINRES algorithm from the symmetric Lanczos
process, but more transparent derivations and some new results and inter-
pretations have been found more recently. These relations between Galerkin-
based and minimal-residual-based solutions carry over in a straightforward
way to the corresponding orthogonahzation methods for nonsymmetric sys-
tems, the Arnoldi method (or FOM) and the G M R E S algorithm for the
GCR method, as was shown by Brown (1991).

The transition from CG to CR and from FOM to GCR is also possible
by applying to the CG residuals or the Arnoldi residuals, respectively, the
minimal residual smoothing process that we will discuss in Section 17. In
particular, we will see there why a peak in the FOM residual norm plot
leads to a plateau in the one of GCR.

Here we follow first the treatment of Freund and Nachtigal (1991); see
also Paige and Saunders (1975, pp. 625-626).

Recall that the Galerkin condition of CG and the Petrov-Galerkin con-
dition of BiCG yield in coordinate space the linear system (4.7),

Tnk£ = eipo, (5.15)

while MINRES and QMR require us to minimize the quasi-residual

T^r (5.16)

of (5.14). Now we have to distinguish the two coordinate vectors, and we
will likewise denote the respective iterates and residuals by x^, r^ and xJfR,
r£fR. The results we are going to derive hold for any of the three relations
CG-CR, BiCG-QMR, and F O M - G M R E S , but some minor modifications
in the derivation are needed for the last pair.

The minimization of ||qn||2 is the least squares problem that we solved
in the first subsection by QR decomposition of the (n + 1) x n tridiagonal
matrix Tn . (The latter could be replaced by the (n+1) x n upper Hessenberg
matrix produced by G M R E S or by QMR with look-ahead.) Inserting the
update formula (5.6) for Qn into Tn = QnRjfR and moving the accumulated
left factor to the left-hand side of this equation, we get

Q*n-1

O
T

— GnRn
MR

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS

Deleting the last row yields

307

"In-1

. oT

o

Cn .

RMK . TJli
n —• ± t n>

where R^ is again upper triangular and, hence, Tn = Qn_iR^ is the QR
decomposition of the square tridiagonal matrix Tn . Of course, we can solve
(5.15) using this decomposition, getting

\ - 1

ieipo

•In-1

O T

(Tl MR\-
~ K^n)

O

Cn .

"In-1

. oT

On-l

O

Cn1 -

o

Cn1 ~ Cn .

(5.17)

On the other hand, from (5.2) and (5.3) we conclude by inserting (5.6) that

KK =
o o

MR^ly, _ C-RMR^-1

In-1

OMR\-1
-Qn-1 o

1 .

\ - 1
"In-1

. oT

o

Cn .

Qn-lelP0,

which shows that the first of the two terms in (5.17) is just k^. To simplify
the other we note that by (5.2) the last component of Q*_1eipo is fjn, so
that altogether:

+
MR\-1

O

Vn- (5.18)

For the iterates, which are in both cases of the form xn =
find the relation

G _ VMR , v
-n —X-n + Yn

or, since cn
l — Cn = \sn\

2

c
n

, finally,

G _ V M R

t0 + Ynkn , we

-n1 - Cn)fjn,

^ &n-
\sn\ Vn

cn
(5.19)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

308 M. H. GUTKNECHT

This formula allows us to compute the BlCG iterates from quantities
produced by the BlOQMR algorithm. But, of course, we could also generate
these iterates recursively according to inconsistent BlOR.ES, that is, from
(4.13d), (4.16), and x^ := xn/?rn; see Lemma 4.3.

Multiplication of (5.19) by A and subtraction from b yields an analogue
relation for the residuals. However, its direct usage would cost an extra
matrix-vector multiplication. Moreover, inserting zn_i according to (5.10)
and making use of (5.13) leads in a few lines to

(5-20)

This is no surprise since we know that the CG and BlCG residuals are
multiples of the Lanczos vectors. The analogue also holds for the FOM
residuals. What we learn is that, using (5.9) and (5.16), we can express the
residual norm as

Gil \Vn+l\ 1 |, I, \S\S2---S
r n \ \ = = — llqnll =

C C C

n\

11r 011 - (5.21)

As shown by Paige and Saunders (1975, p. 623), formula (5.20) is easily
obtained directly: splitting Yn+i up into its first n and its last column, we
get from (4.6)

Here, the first term vanishes, and for the second we see from (5.17) that
the last component of k^ is l T k ° = fjn/(Pn,nCn), where pn<n is the (n,n)-

element of R^R , which, in view of T n = Q n B M R and (5.6),' is linked to 7n

by 7n = ^n~Pn,n, SO that

G inQn snVn Vn+1
r Y ~yn — Yn •

C C

n Yn yn
Pn,nCn

This result also means that the quasi-residual q ° that one can associate
according to (5.14) with a Galerkin method is given by

qn =
Cn

From (5.20) we conclude further that (5.13) can be rewritten as

MR _ MR | |2 , G 2 (KOO}

and, in view of | s n | 2 + cn = 1, subtraction from b and premultiplication by
A " 1 yields

VMR _ MR
x n — x n - l

2 , G 2

Finally, once again using | s n | 2 + cn = 1 and rjn+i = ~^nVn (see (5.8)), we

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 309

see that

which allows us to find |r7n+i|2 recursively without the QR decomposition,
just from the residual norms of the Galerkin method. Then, weights in
(5.22) and (5.23) are obtained from

ln+l\

\rG\
\'-n I

|2

= 1 - 4 . (5.25)

Recall that |?7n+i| = ||rMR|| in the CR and FOM settings, while \r]n+i =
||qn|| is the norm of the quasi-residual if we apply the above to the BlCG-
QMR connection. The relations (5.22)-(5.25) open up an alternative way
to compute the QMR (or CR or GCR) iterates and residuals from the
corresponding Galerkin residuals, that is, the BlCG (or CG or FOM) re-
siduals. Zhou and Walker (1994), who introduced this approach, call it
QMR smoothing. We will return to it in Section 17.

The relation (5.22) has its root in the analogue one that holds for the
coordinate vectors,

1,MR
K n - 1

.MR _ i „ z _j_

0

which was given in Freund (1993, Lemma 4.1).

6. Variations of the Lanczos BlO algorithm

6.1. Further cases where the BlO and BIORES algorithms simplify

We have mentioned before that in the symmetric case the BlO algorithm
simplifies: the left and the right Lanczos vectors coincide, and therefore only
one matrix-vector product is needed per step. In fact, this simplification
applies in a somewhat more general situation.

For every square matrix A there exists a nonsingular matrix S such that
AT = SAS"1, but, in general, the spectral decomposition of A is needed
to construct S, and thus S is normally not available. See, for instance,
Horn and Johnson (1985, p. 134) for a proof of this result. Rutishauser
(1953) and, later, Fletcher (1976) noticed that choosing yo = Syo in the
BlO algorithm yields yn = Syn (n = 0,1,... ,v — 1). (Rutishauser's and
Fletcher's remarks are restricted to real matrices, but generalize in the way
indicated above to the complex case.) Of course, it then suffices to generate
{yn} by the three-term recurrence, which means that the BlO algorithm
becomes transpose-free and only one matrix-vector product involving A is
needed per step. Hence, storage and work are then reduced to roughly

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

310 M. H. GUTKNECHT

half, except for the additional multiplication by S for temporarily creating
yn, which appears in the inner products for an and 6teuip. Moreover, under
these assumptions one-sided termination cannot happen: yn = o if and only
if yn = o. However, serious breakdowns are in general still possible.

Fortunately, there are several interesting situations where the matrix S is
known and is simple to multiply with. A trivial case is when A = AT is
symmetric (real or complex), and thus S = I. Freund (1994) lists several
classes of S-symmetric and S-Hermitian matrices satisfying by definition
ATS = SA, S = ST and A*S = SA, S = S*, respectively. In particular,
every Toeplitz matrix is S-symmetric with S the antidiagonal unit matrix.
Real Hamiltonian matrices multiplied by i := \f—l are also S-symmetric.
However, note that the conditions S = ST or S = S* are not needed for the
simplification. Also, the class of S-Hermitian matrices is rather restricted
since any such matrix has a real spectrum.

Incidentally, the transformation S is also crucial in a paper of Jea and
Young (1983, Def. 1.1, Thm 4.1).

6.2. The one-sided Lanczos algorithm

It has been pointed out by Saad (see Algorithm 3 in (Saad 1982)), that one
can exploit additional freedom in choosing the sequence {yn} of left Lanczos
vectors without affecting the sequence {yn} of right Lanczos vectors: we
can use for the former any sequence that spans the nested Krylov spaces Kn

successively. In fact, a closer look at our derivation in Section 2 shows that
up to a scalar factor the right Lanczos vectors are fully determined by the
orthogonality condition Kn _I_B Yn- Therefore, it does not matter which set
of nested bases is used for the left Krylov spaces Kn. All we need is that

yn = ^(A*)y0

with a polynomial tn of exact degree n or, equivalently, that for yn a recur-
rence holds that is of type (2.7) with Tn<n-\ ^ 0. Since this means giving
up the mutual biorthogonality of the two vector sequences, we have to re-
derive the formulae for an and f3n-\. Again taking inner products of the
first Lanczos recurrence in (2.19) with yn_i and yn, we see that the formula
(2.20) for /3n-i does not change, but the one for an changes into one of the
following two:

n - yn-lPn~l)B /f>n

B7n-i - (yn-i,Ayn_i)B/?n-i

+ Pn-lSn-lTn-l,n-l) /{in-l^n)-

These formulae, together with the standard recurrence for the right Lanczos
vectors and a nearly arbitrary recurrence for the left Lanczos vectors leads

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 311

to Saad's variation of the BlO algorithm that we call here the one-sided

Lanczos algorithm; in contrast to Saad we prefer the first formula for an,

which is also used in Gutknecht and Ressel (1996).

ALGORITHM 5. (ONE-SIDED LANCZOS ALGORITHM)

Choose yo, yo £ C^ such that <5o := (yo, YO)B ¥" 0, and set /3_i := 0. For
n = 0 ,1 , . . . compute

A.-1 := 7n-i«n/«n-i, (if n > 0), (6.1a)

an •= (yn ,Ayn -yn-iPn-i)B/f>n, (6.1b)

ytemp := Ayn - ynan - yn-\Pn-\, (6.1c)

y t e m p := A*yn - ynfn>n yoTO,n, (6.1d)

t̂emp := (ytemp, ytemp)B ! (6.1e)

if t̂emp = 0, choose 7n ^ 0 a n d 7n 7̂ 0, s e t

V.= n+\, yu := ytemp/7n, yV '•= Ytemp/7n, <Wl == 0,

and stop; otherwise, choose 7n 7̂ 0, 7n ^ 0, and Sn+\ such that

set

y«+l : = ytemp/7n> fn+1 '•=

and proceed with the next step.

Here, the coefficients Tfci7i have been assumed to be given, but there are
situations where one might want to determine them from recently computed
right Lanczos vectors. It is easy to adapt this algorithm to the problem of
solving Ax = b and to specify the resulting one-sided consistent B I O R E S

algorithm with 7n := — an — /3n_i, or the one-sided inconsistent BlORES
algorithm, or to combine it with the QMR approach.

Theoretically, one could use for the left sequence the Krylov vectors yn :=

(A*)ny0, thus simplifying (6.Id) to ytemP := A*yn, but in practice these soon
become nearly multiples of each other (and of the eigenvector associated with
the absolutely largest eigenvalue); therefore, even for moderate n, they are
useless as a basis for Kn, and methods that rely on them do not work for most
problems. On the other hand, to use a long recurrence for the left vectors
would be a waste. Hence, only two-term or three-term recurrences are a
serious option, and in most situations, the normal left Lanczos recurrences
will be the best one.

Saad points out that this algorithm reminds us that the orthogonality
of the left vectors, that is, y J_B JCn, is not essential, and that, therefore,
in the BlO algorithm there is no reason to improve this orthogonality by
reorthogonalization.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

312 M. H. GUTKNECHT

However, there are at least two situations where the one-sided Lanczos
algorithm is valuable. First, a purely theoretical application is that it can
serve as an intermediate step in the derivation of Lanczos-type product
methods; see Section 16. Second, for the numerical stability of the Lanczos
process it is most important that the space-expanding term in the recursion
for the Lanczos vectors, that is, Ay or A*y, respectively, is not too small
compared to the two other terms. If this happens to the right sequence,
we have to switch to a look-ahead step (see Section 19). However, if only
the left sequence is affected, we can just switch to the one-sided Lanczos
algorithm instead.

In fact, for numerical stability, the optimal choice for the left sequence
would be the one generated by the Arnoldi process applied to A* with start-
ing vector yo- However, the cost of this process forbids this: recall that
the main advantage of the Lanczos process over the Arnoldi process is the
large reduction of memory and computational costs. As a cost-effective com-
promise we may choose the ORTHORES(2) process instead, which amounts
to making ytemP orthogonal to y n and y n - i (instead of yn and y n - i) :

Ytemp := A * y n - y n (y n , A * y n) B - yn- i (yn- i , A*yri)B ,

except that the last term does not exist when n = 1. However, it is better to
implement this according to the modified Gram-Schmidt process, and thus
compute

'—' A ~k'—

ytemp ' = •"- yVi)

ytemp • ytemp jn\jrn ytemp/B j

ytemp := ^temp ~ Yn-1 (YU-I , ytemp)B , (if 71 > 0).

6.3. An abstract setting for the Lanczos process

We have introduced the Lanczos process for a real or complex N x N matrix
A. Such a matrix can always be thought of as a linear operator A : M.N —>
~RN or A : C^ —> CN, respectively. For generality, let us concentrate on the
complex case: the Euclidean space C^ is a finite-dimensional inner product
space, and we have made use of its inner product (.,.) when defining the
formal inner product (y, y) s : = (y>By) = y*By, which involves a matrix
B that commutes with A and is in most applications just the identity I. The
norm that comes with (.,.) was occasionally used to normalize vectors, but,
as we have seen, the Lanczos process can work with unnormalized vectors,
and thus the norm is only needed as soon as we want to measure convergence.

It is straightforward to reformulate the Lanczos process for an infinite-
dimensional Hilbert space, and there are indeed applications for this set-
ting; see, for instance, Hayes (1954), Kreuzer, Miller and Berger (1981) and
Lanczos (1950). However, as pointed out by Parlett (1992) (and further

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 313

developed in a private discussion), one can go a big step futher with respect
to generality.

Parlett makes the point that the Lanczos algorithm can be defined in
a plain vector space. There is no need to normalize the Lanczos vectors
because they can be defined by the monic Lanczos polynomials. There is
no need for A* or AT provided that one set of Lanczos vectors consists of
row vectors and the other consists of column vectors. There is no need for
a normed space, let alone an inner product space. The point is that there
is no norm or inner product natural to the Lanczos algorithm. Different
applications might require different norms. The choice of norm or inner
product needs to be justified, not assumed.

Let V be a linear space over the field C (for simplicity), and A : V —• V
a linear operator. The linear functionals defined on V form another linear
space, the algebraic dual space Vx of V; see, for instance, Kreyszig (1978,
Section 2.8-8). A linear operator Ax : Vx —> Vx adjoint to A can be defined

by

(Axy)(y) := y(Ay) (for all y e V, y e Vx).

If V is in addition normed, one considers typically the normed dual space V'

of V consisting only of the linear functionals that are bounded. Then, if A

is bounded, the restriction of Ax to V becomes a bounded linear operator,
the adjoint A' of A on V'. It has the same (operator) norm as A; see, for
instance, Kreyszig (1978, Section 4.5-2), Rudin (1973, pp. 92-93).

For either of these two situations we can define the Lanczos process if we
replace 'y € CN is (B-)orthogonal to y G C^ ' by 'y € V is a zero of y € Vx

[or: V']':

(y,y)B = o ~» y(y) = 0

In particular, instead of (B-)biorthogonal bases satisfying (ym ,yn)B =
8m,n6n, the Lanczos process then produces dual bases satisfying

We need, however, to point out a difference between this setting and the
one in a complex Hilbert space, in particular C^. The inner product (y,y)
in C^ is sesquilinear, while y(y) is bilinear. Therefore, the above defined
adjoint operators Ax and A' are not identical with the Hermitian transpose
A* if V = C^ (or with the Hilbert space adjoint if V is a Hilbert space),
but rather with the transpose AT of A; see, for instance, Kreyszig (1978,
Section 4.5-3), Rudin (1973, pp. 297-298). For this reason, the formulae
of our algorithms require some small modifications if translated into the
abstract setting of dual spaces.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

314 M. H. GUTKNECHT

7. Coupled recurrences: the BiOC algorithm

In his second paper on the subject, Lanczos (1952) suggested under the
section heading 'The complete algorithm for minimized iterations' an al-
ternative algorithm for computing the sequences {yn}, {y^} generated by
the BlO algorithm. He also discussed in detail how to apply this algorithm
for solving linear systems of equations. While the BlO algorithm for the
nonsymmetric Lanczos process described in Section 2 is based on a three-
term recurrence we turn now to another algorithm based on a coupled pair
of two-term recurrences for the same process. The relationship between the
two types of recurrence is the same as that between a linear second-order
ordinary differential equation and an equivalent pair of coupled first-order
equations: we just introduce an auxiliary quantity. In addition to the pair
of biorthogonal (i.e., B-biorthogonal) Krylov space bases, a second pair of
biconjugate (i.e., BA-biorthogonal) bases for the same Krylov space is now
generated. That is why we introduce here the acronym BiOC for this al-
gorithm.

While the BlO algorithm supplies us with a tridiagonal matrix T that
represents a projection of A, the new algorithm produces the two bidiagonal
matrices that are the LU-factors of T. If an LU-factorization (without
pivoting) of T does not exist, the BiOC algorithm breaks down early. This
seems to be a disadvantage of the Lanczos process based on coupled two-term
recurrences (BiOC algorithm) compared to the one based on three-term
recurrences (BlO algorithm). However, practice shows that nevertheless
the BiOC algorithm is often numerically preferable, as round-off seems to
have less impact.

The usual application of the BiOC algorithm is to solve a linear system
of equations Ax = b, again either by additionally computing iterates that
satisfy the Petrov-Galerkin condition of the BiCG method, or by solving
the least squares problem in coordinate space of the QMR method. Further
investigations are necessary to find out if the BiOC algorithm is also ad-
visable for eigenvalue computations, where it has hardly ever been applied
until now. Parlett (1995) lists several advantages of the factored form. In
particular, if we assume that Tn and its LU-factors are known to a cer-
tain precision, then the factors implicitly determine the entries of Tn to
higher precision. The factors are also the input data of Rutishauser's dif-
ferential QD algorithm of 1970 (see Rutishauser (1990)), which has recently
been enhanced by Fernando and Parlett (1994). Enriched by a suitable shift
strategy, it has become the method of choice for the bidiagonal singular value
problem and the eigenvalue problem of a real symmetric positive definite tri-
diagonal matrix. By avoiding explicit shifts, it can be made competitive to
the QR algorithm even for the general real symmetric tridiagonal eigen-
value problem. Making its nonsymmetric version sufficiently stable seems

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 315

to be a long way ahead, however. It would be less expensive than the nor-
mally applied QR algorithm, as it works with bidiagonal matrices, while QR
transforms the nonsymmetric tridiagonal into an upper Hessenberg matrix.

7.1. The BlOC algorithm

We start with the formulation of the BlOC algorithm and a discussion of
its main properties.

ALGORITHM 6. (BiOC ALGORITHM)

Choose yo,yo G CN such that 60 := (yo,yo)B ¥" 0 and 6'0 := (y0, AVO)B ^
0, and set vo := yo, vo := yo. F°r n = 0,1, . . . , choose 7« 7̂ 0, 7n / 0 and
compute

Yn+1

fn+1

Vn+1

Vn+1

S'n+1

= (Avn -

= (A*vn -

(7.1a)

(7.1b)

(7.1c)

= yn + i - vn^n ,

= (v n + i ,Av n + i)B -

(7-lg)

(7-lj)

If 8n+\ = 0 or 6'n+1 = 0, set v := n + 1 and stop; otherwise proceed with the
next step.

The formulae (7.1c)-(7.1d) and (7.1h)-(7.1i) are known as coupled two-
term recurrences. We will see below that by eliminating vn and vm from
them we get back to the three-term recurrences (2.19) of the BiO algorithm.

The basic result for this BlOC algorithm is the following one.

Theorem 7.1 The sequences {yn}^=0) {y«}n=o generated by the BlOC
algorithm are biorthogonal, and the sequences {vn}^=0 and {vn}^=0 are
biconjugate (with respect to A) except that (yc, y^B = 0 or (v,>, AV^)B =
0. That is, for m, n = 0 ,1 , . . . , z>,

= \
0, m ^ n,
Sn, m = n,

(vm ,Avn)B =
0 , m 7̂ n,
6'n = 6nipn , m = n,

(7.2)

(7.3)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

316 M. H. GUTKNECHT

where 6n ^ 0 and 6'n ^ 0 for 0 < n < i> — 1, but So = 0 or So = 0. Moreover,
for n = 1 , . . . , 2/ — 1 holds in addition to (2.5)

v n € /Cn+i\/Cn , vn e £ n + i \ £ n . (7.4)

Proof. We provide an adaptation of Fletcher's proof (Fletcher 1976) to the
complex case and to our adjustable normalization. For m — n = 0, (7.2)-
(7.4) and (2.5) clearly hold. Assume that they hold for m, n = 0 , . . . , k (< v).

From (7.1c) and (7.1i) we get

(7.5)

= (ym, Avfc - ykfk)B Ilk

= ((vm , Av fc)B + ^ m - i (v m _ i , Av f c)B - (ym , yfc)B<^fc) /7fc- (7-6)

Here, for m < k — 1, all terms are zero by assumption. On the other hand,
if rn = k, (7.1a), (7.1e), and (7.1j) inserted into (7.6) yield (yfc,yfc+i)B =
((pkSk + 0-<fk^k)/lk = 0; hence, (ym,yfc+i)B = 0 for m < k. By symmetry,
(yfe+ijym)B = 0 for m < A; too, and together with (7.1e) it follows that
(7.2) holds up to k + 1.

Similarly, using (7.1h) and (7.Id) we get

(v m ,Av f c + i) B

= (vm, A(yfc+i - vfcV'fc))B

= 7m(ym+l, yfc+l)B +&m(ym, yfc+l)B - (vm

Here, too, for m < k — 1, all terms are zero by assumption. If m = k, we see
from (7.1h), (7.1d), (7.2), (7.3), and (7.1f) that (vfc, Av f c + 1)B = Tkh+i +

0 — S'kijjk — 0. Hence, (vm , Avfc+i)B = 0 for m < k, and by symmetry
(vfe+i) A v m) B = 0 too. Finally, the equation in (7.3) for m = n = k + 1
results from (7.1a).

The formulae (7.1c), (7.Id), (7.Hi), (7.1i)_, (2.5), and (7.4) show clearly
that yfc+i,Vfc+i e /Cfc+2 and yfc+1,vfc+i^G)Ck+2- As in Section 2, 6n ^ 0
implies that yfc+i 0 K,k+\ a n d yfc+i ^ 1Ck+i- By (7.1h) and (7.1i) it thus
follows that (7.4) holds for n = k + 1. This completes the induction. •

7.2. Matrix relations

The BlOC algorithm has a matrix interpretation, which quickly reveals the
relation to the BlO algorithm. In addition to Yn and Y n of (2.8) we need
the N x n matrices

V n := [v0 vi ••• vn_i], V n := [v0 vi ••• vn_i],

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 317

the n x n matrices

7o </>i

7i

7n-2 fn-1

, U n : =

which are lower and upper bidiagonal, respectively, and the extended bidi-
agonal matrices

7o
7i

7n-2 Vn-1

7n - l

and

1 V>0
1

1 V V i - 1

withjin additionaJLrow and column, respectively13. Analogously, we define
Ln> Un, Ln, and U n in the obvious way. Then, according to (7.1h), (7.1i),
(7.1c), and (7.1d),

and

After setting14

and

Yn = VnUn , Yn = VnUn (n < v)

•v T *\r "V T (ir, <

i — in+li^TH A v n — *-n+lMn \ n -

Tn := LnUn, Tn := UlnLn

Xn := LnUn, Tn := Un + iLn ,

(7.7)

(7.8)

13 Note that the additional column is indicated by a vertical line. We suggest reading this
symbol as 'U sub n extended'.

14 The prime does not mean transposition.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

318 M. H. GUTKNECHT

and likewise denning T n , T'n, T n , and T n , we conclude by eliminating V n

and V n or Y n and Y n , respectively, that

AY n = Y n + 1 T n , A*Yn = Y n + 1 T n (7.9)

and

AVn = V n + 1 T ; , A*Vn = V n + i f l . (7.10)

Note that T'n = U n L n
 a n d U n L n differ only by the rank-one matrix

iraTn-iV'Ti-ilri) w m c h just modifies the element in the lower right corner
of U n L n by adding 7n_i^n_i to it.

Since the matrix T n with the recurrence coefficients am, (3m, 7m of the
BlO algorithm, and the matrices L n and U n with the recurrence coefficients
ipn and tpn-i of the BlOC algorithm, as well as the tridiagonal matrix T^
with elements a'm, (3'm, ^'m are related by (7.7), these three sets of parameters
are easily converted into each other. After setting tp-i := 0, we obtain

(i) from TV = L,>U,> :

an = ipn + Tn-l^n-l , Pn = priori, In = In,

(ii) from % = U^U :

P'n = Vn+l^n, In = In-

These are essentially the rhombus rules of the QD algorithm (Rutishauser
1957). Of course, the same formulae also hold with tildes.

Since (7.9) is identical to (2.23), except for the possibility that i> < v, we
obtain the following result.

Theorem 7.2 If the same starting vectors yo and yo and the same scale
factors 7n and 7n are chosen in the BlO and the BlOC algorithms, then the
same biorthogonal vector sequences {yn} and {yn} are produced, except
that the BlOC algorithm may break down earlier due to 6'^ = 0. The
bidiagonal matrices L,>, L,>, UV, and U,> of the recurrence coefficients of the
BlOC algorithm can be obtained by LU decomposition of the tridiagonal
matrix Tj> with the recurrence coefficients of the first v steps of the BlO
algorithm. The possible earlier breakdown of the BlOC algorithm is due
to the possible nonexistence of the LU decomposition (without pivoting) of
TV.

This result implies in particular that from the bidiagonal matrices con-
structed in the BlOC algorithm we can still compute the eigenvalues of
Tn , the so-called Petrov values (or, Ritz values in the Hermitian case), as
approximations for eigenvalues of A. As mentioned at the beginning of
this section, there are a number of reasons why the bidiagonal matrices are
preferable; see Parlett (1995).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 319

Theorem 7.2 holds analogously for the ORTHORES and ORTHOMIN ver-
sions of the generalized CG and the GCR methods, except that T ,̂ is then
upper Hessenberg and U,> is upper triangular, while L,> is still lower bid-
iagonal; see Gutknecht (1993a). There is also a similar result that links
ORTHOMIN with ORTHODIR. We will encounter its analogue in Section 9.

7.3. Normalization; simplification due to symmetry

For the BlO algorithm (Algorithm 1) we have chosen a somewhat complic-
ated formulation to make explicit the freedom in choosing two of the three
quantities 7n, 7n, and <5n+i. The same freedom exists in our formulation
of BlOC, although we have not made that explicit. In particular, as nor-
malization we can still enforce (2.26) or (2.27). In these two cases, it is
necessary to define in a straightforward manner ytemp, Ytemp, and 6temp, as
in Algorithm 1. The second choice, (2.27), will lead to Lanczos vectors of
length 1. However, if we also wanted to have normalized direction vectors,
we would have to introduce additional scale factors in (7.1h) and (7.1i), and
to compensate for them in some of the other formulae.

What has been said in Sections 2.1 and 2.6 regarding simplification due
to symmetry also carries over to the BlOC algorithm. In particular, if A
is Hermitian, complex symmetric, S-Hermitian, or S-symmetric, then the
matrix-vector multiplication by A* can be replaced by multiplication by S.

8. The B I O M I N form of t he BiCG m e t h o d

A consistent version of the BiCG method based on the BlOC algorithm was
presented by Fletcher (1976). He referred to it as the biconjugate gradient

(BiCG) algorithm, while later, Jea and Young (1983) called it Lanczos/OR-
THOMlN. Here we use the name BlOMlN in order to stress the analogy to
the OMIN (Hestenes-Stiefel) version of the conjugate gradient (CG) method
(Hestenes and Stiefel 1952) and the differently flavoured analogy to B I O R E S

and BlODlR. The latter is discussed later. The BlOC algorithm is related
to the BIOMIN version of BiCG and to the OMIN version of CG in the
same way as the Lanczos BlO algorithm is related to the B I O R E S version
of BiCG and to the O R E S version of CG.

We will refer to BlOMlN also as the standard version of BiCG. We keep
using the abbreviation BiCG (like CG) as the generic name for the various
biconjugate gradient algorithms that are mathematically equivalent except
for possible deviations in the breakdown conditions.

8.1. The BIOMIN algorithm

When applying the BlO algorithm to solving linear systems in such a way
that the right Lanczos vectors became the residuals, we had to stick to a

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

320 M. H. GUTKNECHT

particular choice of j n , namely 7n := — an — (3n-i, in order to fulfil the
consistency condition for Krylov space solvers. Likewise, 7n is determined
here by the latter condition. In fact, since L n = T n U~ x , the bidiagonal
matrix ~Ln inherits from T_n the property of zero column sums, which, as we
recall, was inherited to T_n from F n ; that is, we need

TT _ T

or, in terms of matrix elements,

In := -<pn. (8.1)

Again, we can then define the iterates x n in such a way that yn is the nth

residual: multiplicaton of (4.14) from the right by U^ 1 yields

n — — -X-n+lldn (n S V),

or,
x n + l :— x n

if we set
1 _ 1

<Pn In

!n, but the normal choice is

(8.2)

Basically we are free to choose 7n , but the normal choice is 7n := -yn, which
implies that ipn := ipn and ipn := —6n+i/6n, see (7.1f)-(7.1g). This leads us
to the standard BlOMiN form of the BiCG method.

ALGORITHM 7. (B I O M I N FORM OF THE B I C G METHOD)

For solving Ax = b choose an initial approximation xo, set vo := yo := b —
Ax0 , and choose y0 such that 80 := (yo,yo)B ¥" 0 and 6'0 := (y0, A V O) B 7^

0. Then let v0 := yo, and apply Algorithm 6 (BiOC) with 7n := —tpn and
7n := — Vn, so that after substituting con := l/<pn the nth step consists of:

wn := Sn/6
;
n, (8.3a)

- Avnwn , (8.3b)

- A * v n c ^ , (8.3c)

+ vn<jn, (8.3d)

B , (8.3e)

(8.3f)

(8-3g)

(8.3h)

Vn+1

Vn+1

8'n+1

= yn+1 - Vn^n,

= (Vn+1, A v n + i) B .

If yn+i = 0 the process terminates and xn+i is the solution; if 6n+i = 0
(and hence ipn = 0) or 6'n+1 = 0, but y n + i ^ 0, the algorithm breaks down.
In all cases we set i> := n + 1.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 321

Assuming b — Ax n = y n and using (8.3d) and (8.3b) we in fact get

b - A x n + i = b - Ax n - AvBwn = y n - Avnwn = y n + i ,

so that by induction b — Ax n = y n for n = 0 , 1 , . . . , z>. Consequently, if
y^ = 0, then x.c is the solution of the system.

Note that by definition of v we have

6 / 0, VVi-i ^ 0, ipn ^ 0, ton 7̂ 0, n = (0), 1 , . . . ,i> — 1, (8.4a)

and one of the following three cases:

S^ = 0, % = 0 = > Vi>-i = 0, ¥>*, ^ undefined. (8.4d)

In the first case, (8.4b), a pivot breakdown occurs. The second case, (8.4c),
is a Lanczos breakdown. Here, we could still compute y^+i = yc, yWi =
yc, and Sc+i = 0; but then ipc would be indefinite, and we would have
v,>_|_i £ ICc+i, vc+i £ K-c+i for any value of ^c- In other words, the Krylov
space generation is stopped. Hence, the algorithm stalls permanently, with
no chance to recover. In the next section we will derive yet another version,
BlODlR, of the BlCG method, which under a certain assumption can re-
cover in this situation. The last case, (8.4d), is simultaneously a Lanczos
and a pivot breakdown.

Formula (8.3d) shows clearly that the approximations x n are modified by
moving along the direction vectors v n , and it allows us to express x n — xo
as a sum of corrections:

n - l

xn = x0 + ^ v j o ; j .
i=0

This formula was actually the starting point of Lanczos' application of the
BlOC algorithm to linear systems (Lanczos 1952, p. 37). When A is
Hermitian positive definite and B = I, that is, in the classical CG situ-
ation, one can say that for finding xn + i one moves along the straight line
determined by the approximation xn and the direction vn until one reaches
the minimum of the quadratic function x i—> ^x*Ax — b*x on this line, or
equivalently, the minimum of x i—> (xex — x)*A(xex — x). In fact, as we have
mentioned in Section 4, this is then also the minimum among all x £ xo+/Cn.
At xn the gradient (direction of steepest ascent) of this function happens
to be — yn. Thus the gradients (residuals) are orthogonal to each other.
This geometric interpretation leads readily to a variety of generalizations of
the conjugate gradient method to nonlinear minimization problems; see, for
instance, Murray (1972, Chapter 5) and Hestenes (1980).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

322 M. H. GUTKNECHT

8.2. The inconsistent BiOMlN algorithm

After successfully eliminating the pivot breakdown of the B IORES algorithm
by making a minor modification we may wonder whether it is possible to
eliminate this type of breakdown here too by introducing an inconsistent
version of BiOMlN. It is not difficult to define such a version, but it turns out
that the goal is missed. Nevertheless, the inconsistent BiOMlN algorithm is
of some interest due to its close relationship to the coupled two-term version
of the QMR method.

ALGORITHM 8. (INCONSISTENT B I O M I N FORM OF THE B I C G METHOD)

Let yo := (b —Axo)/7-i with some 7_i ^ 0, redefine xo := Xo/7_i, and set
7To := I/7-1 as in Algorithm 3 (inconsistent B IORES) . Modify Algorithm 6
(BlOC) by also computing, at the nth step,

Xn+l := -(-Xrifn + V

and

7Tn+i := -Kn<Pnhn- (8-5)

In this algorithm the vectors yn and xn are again related by (4.17), with
the same scale factors 7rn. The proof is once again by induction:

However, the BlOC algorithm, and thus also the inconsistent BiOMlN
algorithm, in any case break down when 6'n+1 = 0. Therefore, in exact
arithmetic, the latter algorithm does not bring any substantial advantage.
However, as we mentioned before, the BlOC algorithm seems to be less
affected by round-off than the BlO algorithm. While we do not expect a
big difference between consistent and inconsistent BiOMlN in this respect,
round-off error control measures are somewhat easier to implement when
the Lanczos vectors are normalized.

Concerning the relation to B I O R E S the following holds.

Lemma 8.1 If the same starting vectors are used, then the three al-
gorithms B I O R E S (Algorithm 2), BiOMlN (Algorithm 7), and inconsistent
B I O M I N (Algorithm 8) are mathematically equivalent, that is, they break
down at the same time and they produce the same iterates xn, except that
those of inconsistent B IOMIN are scaled by the factors 7rn.

Proof. The relation between the BlO and the BlOC algorithm was estab-
lished in Theorem 7.2. Compared to the BlO algorithm, B IORES addition-
ally requires that "yn := — an — /3n-i 7̂ 0. But since 7n is the same for the
BlO and the BlOC algorithm, and 7n := — (pn in BiOMlN, this condition is
equivalent to ipn ^ 0, which has to be observed in the BlOC algorithm any-

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 323

way, and which, conversely, is the only additional condition there compared
to the BlO algorithm. •

9. The BIODIR form of the BiCG method; comparison

9.1. The BlC algorithm

Formula (8.3d) suggests that the iterates x n can be computed by building up
the biconjugate sequences {vn} and {vn} and using the vectors y n and yn

only for the determination of the step size l/ifn, which depends on them via
6n; see (7.1a). Since the biconjugate sequences can be thought of as being
biorthogonal with respect to the formal inner product (v, V)BA := v*BAv,
we can construct them with the BlO algorithm if we substitute this inner
product there. The sequences generated in this way can differ in scaling
from those produced by BlOMlN, but we will see in a moment how to make
them identical. We call the resulting algorithm the biconjugation or BlC
algorithm, and although it is identical to the BlO algorithm except for the
change in the formal inner product, we give it here in detail, because it
will be a part of the B I O D I R form of BiCG, and because we want to fix
the notation. We distinguish the new recurrence coefficients and the inner
products by primes from those of the BlO algorithm.

ALGORITHM 9. (BiC ALGORITHM)

Choose vo, vo £ C^ such that 6'0 := (vo, AVO)B 7̂ 0, and set fi'_i •= 0. For
n = 0 , 1 , . . . compute

oL := < A * v n , A v n) B / C (9.1a)

= < , (9-lb)

= 7n-l*n/*n-l> (if n > °)> (9- l c)

*n

a n

* temp

°ttemp

= Avn - vna'n - Vn-i^.j,

, Av t emp)B ;

if 6'temp = 0, choose 7^ 7̂ 0 and 7^ 7̂ 0, set

and stop; otherwise, choose 7^ 7̂ 0, 7^ 7̂ 0, and S'n+1 such that

7n7n"n+l "temp'

set

and proceed with the next step.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

324 M. H. GUTKNECHT

It is most natural to choose 7^ := ||ytemp||, l'n '•= ||ytemP||, so that the
| |vn + i | | = | |vn + i | | = 1, in analogy to (2.27).

Theorem 2.1 now transforms into the following statement.

Corollary 9.1 The sequences {v n }^ = 0 and {v n }^ = 0 generated by the BlC
algorithm are biconjugate (with respect to A), except that (v,/, A V , /) B = 0.
That is, for m, n = 0 , 1 , . . . , z/,

f 0, m / n, , .

^ mZnj (9-2)
where 6'n 7̂ 0 for 0 < n < v' — 1, but <5£, = 0. Moreover, for n = 1 , . . . , 1/ — 1,
(7.4) is valid for vn and v n . Conversely, the sequences {vn}^'_0 and {vn}^'=0

are uniquely determined up to scaling by the condition (9.2) with S'n ^ 0
(n = 0 , 1 , . . . , v' — 1), 8'v, = 0 , and the assumption v n e /Cn+i, vn G ^

In view of (7.10) it should be clear that the recurrence coefficients a'n, 0'n,

j ' n and a'n, 0'n, 7^ in the BlC algorithm are the elements of the matrices T^

and T n that we introduced in Section 7. In particular, (7.7)-(7.8) hold, and
the shorthand notation for recurrences is

AV — V , i T ' A*V — V , , T '

9.2. The BlODiR algorithm

For the application of the BlC algorithm to linear systems of equations an
additional recurrence for xn is needed again. We keep the freedom of scaling
the direction vectors vn and \ n arbitrarily, but then have to determine the
step length appropriately.

ALGORITHM 10. (BIODIR FORM OF THE B I C G METHOD)

For solving Ax = b choose an initial approximation xo, set vo := yo :=
b — Axo, and apply Algorithm 9 (BlC), additionally computing

u£ == <v n ,y n>B/C (9.3a)

xn + i := xn + vnu'n, (9.3b)

'n . (9.3c)

If yn+i = o, the process terminates and x n + i is the solution; if 6'n+1 = 0,
but yn+i 7̂ o, the algorithm breaks down. In both cases we set 1/ := n + 1.

Again, y n is the nth residual. In fact, by assuming that b — Ax n = yn

and using (9.3b) and (9.3c) we get

b - Ax B + i = b - Ax n - Avnuj'n = yn- Avnu'n = y n + 1 ,

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 325

as required. The formula (9.3a) for u>'n enforces (vn ,yn+i)B — 0. In The-
orem 9.2 below, we will verify that BlODlR creates the same iterates as
BlOMlN and B I O R E S , but has different breakdown conditions.

9.3. Comparison of breakdown conditions o/BiCG algorithms

The BlODlR algorithm can only break down due to ^ e r a p = 0. When
ui'n = 0, the algorithm can recover: although it stalls for one step, that is,
x n + i = x n and yn+i = yn, a new direction v n + i is created. Therefore,
in general, the method cannot be equivalent to B I O R E S or BlOMlN since
necessarily y n + i / yn in both. But if u'n ^ 0 (n = 0 , . . . , v — 1), it is indeed
equivalent to these two methods, as was noted in Jea and Young (1983,
p. 411) and is proven next. In the following theorem the various conditions
for a first breakdown, a stagnation point, or the termination are summarized
and compared.

Theorem 9.2 Assume that the same initial approximation xo and the
same initial vectors vo := yo := b — Axo and vo := yo are used in
BlODlR, consistent or inconsistent BlOMlN, and consistent and inconsist-
ent B I O R E S . Let v', v, and v be the indices of first breakdown or ter-
mination of BlODlR, inconsistent B I O R E S , and the other three algorithms,
respectively.

Then i> = iain{u,u'}, and the following five conditions for a Lanczos
breakdown are equivalent:

(i') co'm^0 (for all m < n) and (vn,yn)B = 0 in BlODlR
(ii'j 6n = 0in B I O M I N

(iii') Sn = 0 in (consistent) B I O R E S

(iv') am + pm-i ^ 0 (for all m < n) and 8n = 0 in inconsistent B I O R E S

(v') n = v = v.

Condition (i') implies that either uj'n = 0 or 8'n = 0; in the latter case, u)'n is
undefined and n = v = v = i/. In the former, we have stagnation but no
breakdown of BlODlR.

Likewise, the next four conditions for a pivot breakdown are equivalent:

(i") (vmJm)B 7̂ 0 (for all m < n) and 6'n = 0 in BlODlR
(ii") 8'n = 0 in BlOMlN

(iii") an + /?n_i = 0 in (consistent) B I O R E S

(iv") 7rn = 0 in inconsistent B I O R E S

(v") n = v = v'.

The conditions (ii')-(iv') and (i")-(iii") all cause either the termination or
a breakdown of the respective algorithm. However, (iv") does not stop
inconsistent B I O R E S .

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

326 M. H. GUTKNECHT

The three consistent algorithms produce the same approximants x i , . . . , Xj,
and hence the same residuals y i , . . . , y^. If we choose

7n == In (= -¥>„ = - I K) (9.4)

in BlODiR, then, for n = 0 , . . . , z>, the vectors v n =: vJ^IR and vn =: v° I R

produced by BlODiR are the same as the biconjugate vectors vn =: vJfIN

and \ n =: v^ I N of BlOMiN. This implies that for 0 < n < v - 1 the
parameters dn,fl'n-\,7'n of BlODiR are the elements of the matrix T_£, of
(7.8).

In general, without the particular choice (9.4), we have

MINp _ DIRTV -MINf _MINp _ DIRTV -MIN
v x v L v

where

r n :=707i"-7n- i , r ; : = 7 ^ - - - 7 ; _ 1 . (9.6)

The submatrix T'o of the tridiagonal matrix T'v, with the parameters a'n,
$i-i> 7n °f BlODiR and the bidiagonal matrices L,> and U,> of BlOMiN are
then related by

Df,^ T^ D r v = DfJ U^ L̂ Dr;^, (9.7)

where

D r ;n:=diag(l,ri,...,rn_i), Dr';n:=diag(l,r'1,...,r;_1). (9.8)

The step size u'n in BlODiR can be expressed as

u'n = unVn/Tn = -r'jTn+i, n = 0 ,1 , . . . , v - 1.

Proof. It is clear that up to a possible earlier breakdown of BlOMiN the
formulae (9.1a)-(9.1h) of the BlC algorithm produce the same biconjugate
sequences {v n }^ = 0 and { v n } ^ = 0 as B I O M I N if the (n + l,n)-element j ' n of
the matrix T'o satisfying (7.10) is chosen appropriately, namely, so that T^
and Ti, are related by (7.7). (In fact, according to Theorem 2.1, applied
with B := BA, these sequences are uniquely determined by the biconjugacy
condition and the scaling.) Since TV and T£, then have the same subdiagonal
elements, we need 7^ = j n for identical sequences. Choosing 7^ differently
just rescales the two vector sequences. Prom (7.1c), (7.1d), (7.1h), and
(7.1i), it follows easily that (9.5) and (9.6) hold, which, in view of (7.7) and
(7.10), lead readily to (9.7).

In the formulae (9.3a)-(9.3c), a scale factor for v n inherited by S'n yields
the inverse factor for u'n, which cancels when y n + i and xn+i are evaluated.
Moreover, a scale factor for v n has no effect. Hence, to prove that the latter
two vectors are the same as in consistent BlOMiN it suffices to verify this
for a fixed scaling, say for the one induced by 7^ := 7n = —<pn, when v n

and \ n are the same as in B I O M I N . For the induction proof we assume

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 327

that the pair yn , x n is the same as in B I O M I N . Comparing (9.3b) and
(9.3c) with (8.3b) and (8.3d) we see that the pair yn+i, x n + i is again the
same as in BlOMiN if and only if Jn = un. By (7.2), (7.4), and (8.3h),
(yn,yn)B = <vn,yn)B- Furthermore, if 6'n ^ 0, then by (7.2), (8.3a), and
(9.3a) we can conclude that indeed

This line also exhibits that u>'n ^ 0, n = 0 , . . . , v — 1. Since (yn, yn)B =
(vn, yn)B is still valid for n = z>, the equivalence of (i')-(iii') holds, and since
ft;, = 0 is the common breakdown condition of consistent and inconsistent
B I O R E S , (iv) and (v') are equivalent too.

In view of (8.2) and (8.3a) the condition </?,> = 0 (which by definition of
v implies 6^ ^ 0; see (8.4a)-(8.4d)) is clearly equivalent to 8'0 = 0. Fur-
thermore, since the consistent versions of BlOMiN and B I O R E S are related
by <pn = —In = Oin + (3n-i, the equivalence of (i")-(iii") and (v") follows.
The fact that, in inconsistent B I O R E S , 7rn — 0 signals a pivot breakdown
will follow in Section 12 (Theorem 12.1), where we will prove that irn is
the value at 0 of the nth Lanczos polynomial. It is also indicated by the
infinity of the nth approximant xn/-kn of the solution xex. Finally, since all
conditions except (i') for BlODiR and (iv") for inconsistent B I O R E S imply
a breakdown or the termination of the respective algorithm, and since no
other types of breakdown exist, it follows that v < v' and v < u, and that
always at least one equality sign holds. •

What more can we say about the case where u < u', that is, ui'n = 0
for some n < v'1 As we have seen, BlODiR stalls but does not break
down. The sequences {^m}m=o a n d {vm}m=o a r e s t m biconjugate (since
they are generated by the BlC algorithm), and y m is still the residual of x m .
Using the connection to Pade approximation one can easily show that in this
situation oj'n = 0 can only occur for isolated values of n. The proof was given
in Gutknecht (1990, p. 30); the facts it is based on, namely the Lanczos-
Pade connection and the block structure theorem, were also presented in
Gutknecht (19946). This has the following immediate consequence.

Theorem 9.3 If in the B I O D I R algorithm uj'n = 0 for some n, then ui'n_1 ^

0 (if n > 0) and u'n+i ^ 0 (if n < i/— 1). The sequence {yn}n=o of residuals

generated by B I O D I R satisfies

-i-B Yn+l if ^n ¥" °>

-I-B yn+1 = Yn ^ u'n = 0.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

328 M. H. GUTKNECHT

Table 1. Matrix relations that describe the recurrences of the BlO, BlOC,
and BlC algorithms. Only those for the right Lanczos and direction vectors

are shown. Additionally, on the left, the biorthogonality and biconjugacy

conditions are shown, while, on the right, the relations between the

matrices of the recurrence coefficients are listed. The lower relation,

T^ = ~Un+i~Ln, assumes that j ' k = 7^ (for all k)

Algorithm

1 BiO

6 BiOC

9 BlC

Biorthogonality

Y*BYn = D,;n

V*BAVn = DS'.,n

Recurrences

AYn = Y n + 1 T n

(n = VnUn AVn = Yn

AVn = V n + 1 T ;

Relationships

Tn = LnUn

+1Ln

T'n = Un + 1Ln

9.4- An overview of BiCG algorithms

In Table 1 we first summarize the principle matrix relations of the BlO,
BlOC, and BlC algorithms. To get an overview of the five BiCG algorithms
that we have discussed, we list in Table 2 the various vectors and the corres-
ponding polynomials that come up (except for the iterates xn, which appear
everywhere, of course). Those vectors that are listed in several algorithms
are, up to scaling, the same. The table does not give full information about
the memory requirement, however, as sometimes previously computed vec-
tors or results of matrix-vector products have to be stored. In the last two
columns of the table it is indicated if a Lanczos breakdown ('L') or a pivot
breakdown ('P') can occur in the respective algorithm.

In Table 3 we compile the names of the coefficients and the corresponding
matrices that belong to each method. However, we do not include those
with tildes, as they are closely related to those without tildes.

10. Alternative ways to apply the QMR approach to BiCG

As an alternative to the BiCG method that is based on a Petrov-Galerkin
condition, we discussed in Section 5 the QMR approach for solving a non-
Hermitian linear system of equations. Starting from the representations

xn = x0 + Ynkn, rn = r0 - AYnkn, (10.1)

for the nth approximate solution and its residual, we saw by inserting AYn =
Yn+iT_n and r0 = yopo = Yn+i^po that

rn = Yn+iq^, qn := e^o - Tnkn. (10.2)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 329

Table 2. Krylov space vectors and corresponding polynomials that appear in

our five forms of the BlCG method. Different scaling is mirrored by upper

indices in the notation for the polynomials, but not in the one for the

vectors. The complex conjugate polynomials, which are associated with left

vectors, can be multiplied by yet another scale factor, in general. In the

columns 'L' and 'P' we indicate if an algorithm is susceptible to Lanczos

breakdown or pivot breakdown, respectively

Algorithm

2 BIORES

3 BIORES

7 BIOMIN

8 BIOMIN

10 BIODIR

(consistent)
(inconsistent)
(standard BlCG)
(inconsistent)

Vectors

yn,yn

yn, Yn, Vn, Vn

V V V
t/ 715 * 71 J * 71

Polynomials

Pn, Pn~
-INC INC
Pn > Pn

Pn, Pn", Pn, Pn
-INC -INC £JNC CX
Pn , Pn > Pn i A-

Pn, Pn , Pn

L

v7

v7

V
?c v7

p

v7

v7

v7

v7

Table 3. Coefficients, inner products, and corresponding matrices that

appear in our five forms of the BlCG method

Algorithm

2

3
7
8

10

BIORES

BIORES

BIOMIN

BIOMIN

BIODIR

(consistent)
(inconsistent)
(stand. BlCG)
(inconsistent)

Coefficients

&n, Pn — 1, ^in

Qfl] /?n-l ; In, 7Tn+l

W n , 4>n

Un, V>n, In,

" n . P'n, In, W n

Inner
products

Sn+i

6n

Sn,S'n
6n,Vn

S'n+l

Matrices

Tn , D^;n

T n , T>s-n

L n , U n , T>S;n, D«';n

Ln, Un, Dfi;n, ^6';n
Tn , Ln, D^/;n

Recall that here the columns of Yn + i are expected to be normalized. The
QMR method then minimizes the quasi-residual qn (instead of the residual),
and this amounts to solving the least squares problem

HeiPo - T n k n | | 2 = min! (10.3)

with the (n + 1) x n tridiagonal matrix T n (which will have some additional
fill-in in the upper triangle if look-ahead is needed).

Instead of using the BlO algorithm, can we also apply the BlOC or even
the BiC algorithm to find the QMR iterates? Replacing (10.1) by

xn = x0 + Vnkn, rn = r0 - AVnkn,

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

330 M. H. GUTKNECHT

and now substituting AVn = Y n +iL n , we find

Since rn is again written as a linear combination of the columns of Y n + i ,
the coefficient vector qn is the same as in (10.2). The least squares problem

||eiPo - L n k n | | 2 = min!

that has now to be solved involves a lower bidiagonal matrix, but it is
equivalent to the one of (10.3): it could have been obtained from the latter
by inserting Tra = L raUn and U n k n = kn . Hence, all we have done is a
linear change of variables: while the coefficient vector kn is different from
kn , the approximate solution xn is the same as before. (Of course, exact
arithmetic is assumed here.) We suggest calling this form of the QMR
method BlOCQMR for distinction. A complete description of it and its
implementation, including a version of the BlOC algorithm with look-ahead,
was given by Preund and Nachtigal (1994, 1993).

We can also construct a BiCQMR form of the QMR approach. Writing

x n = x0 + Vnk^, rn = r0 - AV^k^,

and inserting AVn = V n + iT^ and ro = yoPo = vopo = Vn+iejpo, we
obtain

rn = V

However, the resulting least squares problem

- XXII2 = min!

is no longer equivalent to the two previous ones, since rn is here represented
in a different basis, the columns of Vn+i. One must expect that in typical
examples these columns are even further away from orthogonal than those
of Yn+i (which are orthogonal in the symmetric case), and that therefore
the norm of the true residual is larger than in BlOQMR and BlOCQMR.

11. Preconditioning

By suitable preconditioning the convergence of iterative linear equation solv-
ers is often improved dramatically. In fact, in practice large linear systems
of equations resulting from the discretization of partial differential equations
are often so hard to treat that iterative methods do not converge at all un-
less the system is preconditioned, which means that the coefficient matrix
is - implicitly or explicitly - replaced by another one with better conver-
gence properties. However, the more effective preconditioners are, the more
costly they tend to be, both regarding their one-time computation and the
additional cost of evaluation (for instance matrix multiplication) per step.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 331

In general, preconditioning can be viewed as replacing the given system,
say,

Ax = b with initial approximation xo, (H-l)

by an equivalent system,

Ax = b with initial approximation xo,

where either
A := CLAC f i, b := CLb,

x0 := C^xo, x := C^x,

or

A := CLAC«, b := C L (b - A x 0) ,
(11.o)

x0 := o, x := x0 + CRX.

The second version combines the preconditioning with a shift of the origin at
the beginning of the iteration, as suggested by Preund and Nachtigal (1991).
Note that the same shift of origin is also applied in the general concept of
iterative refinement, and in Section 18 we will suggest also applying it at
later stages.

We call CL and CR the left and the right preconditioner (as, for instance,
in Ashby et al. (1990)). Many other authors (for instance, Golub and van
Loan (1989), Saad (1996), Barrett, Berry, Chan, Demmel, Donato, Don-
garra, Eijkhout, Pozo, Romine and van der Vorst (1994)) refer to M^ :=
C^1 and Mft := C^1 as left and right preconditioners. In fact, some precon-
ditioning techniques, such as the various forms of incomplete LU factoriza-
tions (Meijerink and van der Vorst 1977), primarily generate M i and M R ,
and then evaluate y = Ay by solving the two linear systems M/jt = y and
M^y = At. Other preconditioning techniques emerge directly as proced-
ures for computing t = C#y and y = C^At. Finally, many algorithms can
be reformulated so that the left and the right preconditioner can be com-
bined into one matrix multiplication by the product CRCL or one linear
system with matrix M^M^ to solve per step; see, for instance, Saad (1996).

Often, only either a left or a right preconditioner is applied, that is, either
CR := I or CL '•= I. In the first case, x = x, so that the errors of the
preconditioned system are the same as those of the original system. In the
second case, the residuals remain unchanged. In the general situation, if we
set xex = A - 1 b and xex = A - 1 b , both (11.2) and (11.3) imply the relations

rn = C iT n , Xex — Xn = CR (x e x — Xn)

between the preconditioned residuals rn := b — Axn and the preconditioned
errors xex — xn on the one hand and the residuals rn := b — A5cn and errors
5cex — 5cn of the original system (11.1) on the other hand.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

332 M. H. GUTKNECHT

12. Lanczos and direction polynomials

Any vector y in the Krylov space ICn+i := span (y0, Ayo , . . . , A"y0) can be
written in the form y = p(A)yo, where p is a polynomial of degree at most n,
in which the matrix A is substituted for the argument. The induced mapping
is an isomorphism as long as /Cn+i ^ Kn, that is, as long as n is smaller
than the grade of yo with respect to A. The sequence {yn}n~=o °f right
Lanczos vectors generated by the BlO algorithm is in this way associated
with the sequence {pn}^=o °f Lanczos polynomials, and from the three-term
recurrence (2.19) for the former we get immediately a three-term recurrence
formula for the latter. Of course, the analogue is true for the sequence
{yn}n=o °f left Lanczos vectors, the operator A*, and the corresponding
nested sequence of Krylov spaces Kn+\ := span (yo, A*yo,.. . , (A*)"yo).
But from the recurrences (2.19) and the relations (2.21b) and (2.21d) we
see that the coefficients of this second set of polynomials, {pn}^~0 , are just
complex conjugate to those of the Lanczos polynomials if we choose 7n =
7n. (Otherwise, in view of (2.28), pn would be a scalar multiple of p^;

for simplicity, we assume j n = 7^ in this section.) Similarly, from the
BlOC formulae (7.1a)-(7.1j) it is seen that the vectors v n € lCn+i and
v n € K-n+i can then be represented by a polynomial pn of degree n and
the one with complex conjugate coefficients, pn, respectively. Since vn is
a direction vector, we call pn a direction polynomial. The coupled two-
term recurrences of the BlOC algorithm translate into coupled two-term
recurrences for the two polynomial sequences {pn} and {pn}- A three-term
recurrence for the direction polynomials alone follows by eliminating pn from
the coupled recurrences. Recall that the analogous elimination brought us
from the BlOC to the BiC algorithm. The recurrences remain valid up
to n = u, but the correspondence between Vn and Kn may no longer be
one-to-one for n = v. When taking the different indices of first breakdown
or termination of the various algorithms into account, we obtain altogether
the following result.

Theorem 12.1 Let {yn}n=0 and {yn}n=o ^°e the biorthogonal vector se-
quences generated by the BlO algorithm with 7n = 7n , and let {v n }^ = 0

and {v n }^_ 0 be the biconjugate vector sequences generated by the BiC al-
gorithm using 7^ = 7n and j ' n = 7^. Then there is a pair of sequences of
polynomials, {pn}n=o a n d {Pnk'=o> s u c h that

yn=Pn{A.)y0, yn=^T(A*)yo, n = 0, l,. . . ,i>,

and

v n = p n (A) v 0 , v n =p n (A*)v 0 , n = 0, l , . . . , iA

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 333

For n < v = min{i/, i/} these polynomial sequences satisfy the coupled
two-term recurrences

Po(0 == 1,

Po(C) := 1, (1 2 1)

Pn+l(() •= [tPn(O ~ <PnPn{t)\/in,

PrH-l(C) •= Pn+l(C) ~ ^nPn(C), n = 0, 1, . . . , Z> - 1.

They also satisfy individual three-term recurrences, namely

Po(C) •= 1,

Pi(C) : = (C - "o)Po(C)/7o,

Pn+l(C) : = [(C - " n) P n (C) ~ Pn-lPn-l(O]hn, U=1,...,U-1,
(12.2)

and

pb(C) •= 1,

Pi(C) := (C - ao)

V1 ~

(12.3)
respectively. Both pn and p^ have exact degree n, and both have the leading
coefficient F"1, where

rn :=7o7i--"7n-i- (12.4)

If 7n = —(fin (for all n) as in (8.1) or, equivalently, if 7n = — an —
(3n-i (for all n) as in (4.12), then

Pn(0) = l, n = 0,l,...,u. (12.5)

Otherwise, the values 7rn := pn(0) can be computed recursively according to
(4.16) or (8.5).

Proof. The recurrences (4.16) and (8.5) follow from (12.2) and (12.1), re-
spectively, by inserting (= 0. It remains to verify the formulae (12.4) for
the leading coefficients and (12.5) on the normalization at (= 0. Both
follow by induction from the recurrences. •

Since the Lanczos vector y n is the nth residual of the three consistent ver-
sions of the BiCG method that we discussed in Sections 4, 8 and 9, pn is for
each of these algorithms the so-called residual polynomial. Property (12.5) is
the standard consistency condition for residual polynomials of Krylov space
solvers.

For the general Krylov space solver that we briefly considered in Sec-
tion 4, the recurrence relations (4.10) for the residuals also imply recurrence
relations for the residual polynomials, namely, in shorthand notation,

C[P0 ••• P n - l] = [P0 ••• P n - l Pn] H n . (12.6)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

334 M. H. GUTKNECHT

From this formula it is easy to see that the condition Pk(0) = 1 (A; < n) is
equivalent to the zero column sum condition (4.11) for Hn and the choice of
po(C) = 1 as the constant polynomial. In analogy to (12.6) the recurrences
(12.2) and (12.3) can be written as

C[PO

C[PO

Pn-l] =

Pn-l } =

PO Pn-l

Pn-l

Pn JT n ,

Pn] T ; .

Let us now define on the linear space V of all polynomials two linear
functionals 3> and $'. They are specified by the values they take on the
monomial basis:

€ N),

where

:= (yo, Afcyo)B = yoBAfeyo.

(12.7)

(12.8)

Here /i^ is called the Arth moment associated with A, yo, and yo- In engin-
eering, the set of moments is referred to as impulse response or as the set of
Markov parameters of a system; in the older mathematical literature they
are sometimes called the Schwarz constants (Rutishauser 1957).

Note that for arbitrary polynomials s and t and corresponding Krylov
space vectors s(A)yo, £(A*)yo we have

(12.9)

(12.10)

(12.11)

(t(A*)yo,As(A)yo>B =*'(<«) =

When we represent s and t by their coefficients,

and introduce the infinite coefficient vectors (extended with zeros),

s : = [c r 0 <72 C73 •••] T , t := [- - - l T

as well as the infinite moment matrices

r2 r3

M:=

Mo M2 • • •

, M':=

Ml

M2

M3

M2

M3

M3 • • •

associated with the functionals $ and $', we see from

and from the analogous formula for $' that

= tTMs, *'(ta) = tTM's. (12.12)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 335

The matrices M and M' have Hankel structure: the (k, Z)-element only
depends on k + l. This is a consequence of the fact that the product (k+l of
Qk and (l only depends on k + I.

What can we say about the relationship between the functional # and the
original data of the problem: the matrices A and B and the initial vectors
yo and yo? (Recall that we are mainly interested in the case B = I, where
we can forget B.)

To explore this relationship, let us for a few lines assume that the matrices
A and B are diagonalizable. Then, since they commute by assumption, they
have a common complete system of eigenvectors (Wilkinson 1965, p. 52):
there is a nonsingular N x N matrix W of eigenvectors such that

AW = WDA, BW = WDK

where T)\ and DK are diagonal matrices containing the eigenvalues Ai,. . . , Ajv
of A and the eigenvalues K\, ..., KN of B, respectively. From A*W~* =
W~*D^ it is clear that the columns of W~* are a set of eigenvectors of A*.
We let

W=:[wi ,w 2 w 4 W"* [W i , W 2 , . . . , W ; v j ,

and represent yo in the basis {w*.}, yo in the basis {w^}:

N

=
 w

Vi

. VN .

N

, yo=:E^^ = w"*
L VN J

Then

•= (yo,Afcyo)B = [
m N

Therefore, //& can formally be written as the kth moment of a discrete meas-

ure d^i(X) with masses KjVjVj a* the points A :̂

Mfc
f

= Xkdfi(X), w h e r e ??J??J <5(A — Aj)dA.

(In the last formula, 6 is the Dirac function. Of course, if some of the
eigenvalues coincide, the corresponding masses have to be added.) More
generally,

$(S) = (yo,s(A)yo)B = I s(X)dfi(X).

In the symmetric case (A = A*, yo = Yo), where Xj G M. and rjj = rjj,

dfi(X) is indeed a discrete positive measure whose support consists of the
eigenvalues Xj that are represented in yo (i.e., for which r]j / 0).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

336 M. H. GUTKNECHT

By the induced mapping from the Krylov space to polynomials, the biortho-
gonality (2.2) of the Lanczos vectors and the biconjugacy (7.3) of the se-
quences {vn} and {vn} now take the form

o = 6mn6n, n = 0,l,...,v,

and

yoBpm(A)Apn(A)yo = 8mn6'n, n = 0 , 1 , . . . , v',

respectively, in view of A B = BA. With the above definitions, we can
translate these conditions into

Pn) = SmnSn, m,n = 0,1, ... ,V,

$'(PmPn) = 6mnS'n, m,n = 0,1, ... ,v'.

From the linearity of <E> and <J>' one concludes further that

and

which is another way to characterize these polynomial sequences. At this
point we need to recall the following definition; see, for instance, Gutknecht
(1992).

Definition 12.1 If the polynomial pn of exact degree n satisfies (12.13)
for some 6n ^ 0 and is uniquely determined by these conditions, it is called
a regular formal orthogonal polynomial (FOP) of the functional $.

In other words, (12.13) and (12.14) mean that {pn}n=o ^s a sequence of
regular FOPs of the functional $, and that {p n }^ = 0 is such a sequence for
$' .

If pn and pn are expressed in the monomial basis,

fc=O

and

n

fc=O

w h e r e T T ^ = Trn
n) = T'1, t h e n t h e first n e q u a t i o n s of (12.13) a n d (12.14)

become homogeneous n x (n + 1) linear systems for the coefficients nk and

vri , respectively. Since -Kn and ??„ are known, we can move them on the

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 337

right-hand side:

Mn = -

L ^ n - l

= -

[i-n

Mn+1

. M2n-1

" Mn+1

Mn+2

. M2n .

ir^ with Mn :=

9^ with M^ :=

Mo
Ml

. M n - l

" Ml

M2

Mi

M2

»n

M2

M3

Mn+1

' •• M n - l

• • • M2n-2 .

(12.15)

• • • ^n '

Mn+1

• • • M 2 n - 1 .

In the engineering literature, linear systems of this form are called Yule-
Walker equations. The matrices Mn and M^ are the nth leading principal
submatrices of the infinite moment matrices M and M'. Since (12.13) and
(12.14) are equivalent to (2.2) and (7.3), respectively, it follows from the
uniqueness statements in Theorem 2.1 and Corollary 9.1 that for prescribed
leading coefficients 7rn and 7?n the solutions of these linear systems are
uniquely determined as long as 1 < n < v in the first and 1 < n < v'
in the second system. Clearly, this existence and uniqueness statement is
equivalent to the nonsingularity of the matrices Mn and M^ in the respective
range of indices. For future use we state part of this result so that it also
applies for n > v and n > u', respectively.

Lemma 12.2 A Lanczos polynomial pn of exact degree n that is a regular
FOP of $ (that is, which satisfies the orthogonality conditions $(CmPn) = 0
(0 < m < n) and is up to a scalar multiple uniquely determined by them)
exists if and only if Mn is nonsingular.

Likewise, a direction polynomial pn of exact degree n that is a regular
FOP of $' (that is, which satisfies the orthogonality conditions $'(CmPn) = 0
(0 < m < n) and is up to a scalar multiple uniquely determined by them)
exists if and only if M^ is nonsingular.

In particular, the indices of first breakdown or termination, v and //, of
the BlO algorithm and the BlC algorithm (Algorithms 1 and 9 in Sections
2 and 9), respectively, satisfy

v = min {n : M n + i singular},

' == min {n : singular}.

Proof. It remains to show that M^+i and M'j,,^ are singular. Set n := v.

First, for given •Kn ^ 0, the linear system (12.15) uniquely determines
the coefficients of a polynomial pn that corresponds to a vector yn e /Cn+i

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

338 M. H. GUTKNECHT

satisfying K.n _LB yn- At the same time, pn is mapped into yn € /Cn+i

satisfying yn J_B ICn- We want to prove tha t , in contrast to the defini-

tion of v, the conditions (2.1)-(2.2) could be fulfilled up to v + 1 if M^+i

were nonsingular. It remains to show tha t (y«,yn)B = 0 unless M^+i is

nonsingular. In fact, if this inner product is 0, then the additional equation

Mn7To") ^ 1" M2n-i7rn"l)
1 + H2n^ = 0 holds, which extends system (12.15)

by an extra row at the bot tom. Consequently, the coefficients of pn satisfy

M,,+i[7ri • • • iTn] T = °> which implies that M^+i is singular.

Of course, the singularity of is shown the same way. •

If the consistency condition (12.5) holds, then TTQ = 1 and we can move

the first column of M n to the right-hand side of (12.15), in exchange for the

current right-hand side that is moved back to the left. In this way, M n is

replaced by M ^ , and the system becomes

(12.16)

L e m m a 12.3 A residual polynomial pn of exact degree n tha t satisfies the

consistency condition (12.5) and the orthogonality conditions $(CmPn) = 0

(0 < m < n) and is uniquely determined by the latter exists if and only if

M n and M ^ are nonsingular.

In particular, if z> denotes the index of first breakdown or termination of

the B I O R E S and the B I O M I N algorithm (Algorithms 2 and 7 in Sections 4

and 8, then

i> = min {n : M n + i or M ^ + 1 singular}.

= —

Mo
Mi

. M n - l -

Proof. Prom the previous Lemma we know tha t an essentially unique pn

satisfying the orthogonality conditions exists if and only if M n is nonsingu-

lar. In order tha t pn can be normalized by pn(0) = 1, we need TT̂ ^ 0;

then the normalized coefficients satisfy (12.16). If this system had more

than one solution, it would have infinitely many solutions with itn ' ^ 0.

Renormalizing them, we would find infinitely many solutions of (12.15) with

ftn — 1, in contrast to the nonsingularity of M n .

Conversely, if both matrices are nonsingular, then the residual polynomial

with the stated properties clearly exists and is uniquely determined. •

The above derivation of Lemma 12.2 relies on the existence and unique-

ness statements in Theorem 2.1 and Corollary 9.1, which describe the con-

struction of the Krylov space vectors y n and v n tha t are the images of

the polynomials pn and pn. There is another, more direct approach to this

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 339

lemma. Since Mn and M^ are nonsingular for 1 < n < v and 1 < n < v;,
respectively, the matrices M^ and Wv, have LDU decompositions (without
pivoting). In view of the Hankel structure, M^ and M.'u, are real or complex
symmetric, so that these LDU decompositions are symmetric ones. It turns
out that the upper triangular factors contain in their columns the coefficients
of the polynomials pm and pm, respectively. In fact, let

7T,
(0)

7Tn 7T,
(n)

'?'
7T,

(0)
7Tn 7T,

•K

0
(1) •K

(n)
0
(n)

and, as before, let Yn and Yn be the N x n matrices with columns ym and
ym, m = 0 ,1 , . . . , n — 1, respectively, so that

Yn = [y 0 Ay0 . . . A » - V o] P n ^

Yn = [y 0 A*y0 ••• (A*)""1^]P^-

(We still assume that 7n = 7n for all n.) By the definition of the moments,

Yo

~ * A n— 1

B [y0 Ay0 . . . An"1yo] = M n .

Inserting here (12.17) and the orthogonality property Y*BYn = T>s-n (see
(2.24)) yields

P " T Ds-,n Pn1 = Mn (n < u), (12.18)

and likewise we find

These are the claimed (symmetric) LDU decompositions of the nth moment
submatrices Mn and M^ if the polynomials are monic, that is, 7n = 7n =
1 (for all n). Otherwise we get a nonstandard symmetric LDU decomposi-
tions with prescribed diagonal elements of the triangular factors. P " 1 and
P" 1 are the upper triangular matrices that contain the coefficients of the
monomials when expressed as linear combinations of the Lanczos and the
direction polynomials, respectively. Of course, if the decompositions (12.18)
and (12.19) exist for n = v and n = is', respectively, and if the diagonal
matrices D^.,, and T>s';n a r e nonsingular, then these decompositions exist
for all n in the range specified. On the other hand, the latter holds if and
only if the leading principal submatrices Mn and M^ are all nonsingular.
Moreover, we can conclude conversely that the inverses of the triangular

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

340 M. H. GUTKNECHT

factors contain the coefficients of monic FOPs pm (m = 0 , 1 , . . . , v — 1) asso-
ciated with $ and of monic FOPs pm (m = 0 , 1 , . . . , u' — 1) associated with
<£', respectively. Hence, the singularity of M^+i and M^,+ 1 as well as the
other statements of Lemma 12.2 follow.

13. The Lanczos process for polynomials: the Stieltjes

procedure

So far we have considered the Lanczos process as a tool for generating
biorthogonal bases for a pair of Krylov spaces of the linear operators A and
A* denned on CN (or, more generally, a linear space and its dual space).
In the symmetric case (that is, when A* = A and yo = yo) the two bases
coincide and are orthogonal. We can apply the same process to the multi-
plication operator M defined on the space V of all polynomials with complex
coefficients:

We aim for a setting where the dual space is also V. In the case of classical
(real) orthogonal polynomials an inner product defined on V x V is given
by some bilinear integral operator:

(t,s) := J t(Os(()dfi(() =: $(ts), (t,s) eVxV. (13.1)

Here d/i is a positive measure whose support is a subset of the real line.
Note that the integral only depends on the product ts, and therefore the
inner product is a linear functional $ of this product.

For the Lanczos process applied to polynomials we want to preserve this
property, but to relax the assumption on $. This means, however, that
in the complex case our formal inner product is still based on a bilinear
functional, and not on a sesquilinear15 one. Therefore it is better to forget
the integral and just let

(t,s):=$(ts) (13.2)

with an arbitrary complex linear functional <£ defined on V, which may, but
need not be, defined by its moments //&, the values it takes on the monomials:

This exhibits the connection to the Lanczos process for an operator A,
where the moments are given by (12.8). When we represent s and t by their
coefficient vectors, as in (12.10)—(12.11), the inner product is still given by
(12.12).

15 A sesquilinear functional (.,.} on V x V is one for which (at, /3s) = a(3(t, s).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 341

Note that as a consequence of (13.2) we have

M* = M.

However, this does not mean that M is a selfadjoint operator, unless (13.2)
is really an inner product, which is not true in general, even in the real case,
as we do not require that (s, s) = <&(s2) > 0 if s ^ 0.

It is now an easy matter to reformulate the Lanczos process, be it in the
BlO or BlOC form, as a recursive process for generating formal orthogonal

polynomials (FOPs). For the BlO form, we start with po(() = 1; in the nth
step, we apply the multiplication operator to pn-i and then 'orthogonalize'
the product CP(C) with respect to pn-\ and pn-2 to get the new member
pn of the sequence. Here 'orthogonalize' refers to the formal inner product
(13.2). Again it is seen that the orthogonality with respect to polynomials
of lower degree follows automatically. This construction leads exactly to
the three-term recurrence (12.2). A similar one that parallels the BlOC
algorithm yields the coupled two-term recurrences (12.1).

Lanczos (1952) was well aware of this form of his process, but, at least for
classical orthogonal polynomials, it was published long before by Stieltjes
(1884). This polynomial version of the Lanczos process is therefore called
the Stieltjes procedure.

It remains to give formulae for the recurrence coefficients in terms of values
of <£>. Since $', which appears in the BlOC form, is linked to $ by

$'(s) = $(Cs) (s e V)

(see (12.7)), it is easily substituted. As mentioned before, when the aim is
the construction of orthogonal polynomials for a measure supported on a
subset of the real line, $ is the integral operator (13.1). In terms of $ the
BlO recurrence coefficients can be expressed as follows:

an = $((P
2

n)/6n, (13.3a)

Ai-l = *(CPn-lPn)/«n-l = 7 n - l W * n - l (if n > 0), (13.3b)

Sn+1 = *(p£+ 1). (13.3c)

Of course, if the functional $ is not definite, and thus can assume the value
zero at p^+i, the Stieltjes procedure can also break down.

For the BlOC version of the Stieltjes procedure we just need

6n+1 = *(p*+ 1) , (13.4a)

6'n+1 = fc(Cptu), (13.4b)

since tpn and (pn+i are expressed in terms of these values.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

342 M. H. GUTKNECHT

14. The biconjugate gradient squared method

One of the disadvantages of the BlCG method is that it also requires matrix-
vector multiplications with the transpose matrix A* or AT, although the
relevant Krylov space containing the residuals is generated only by A. In
practice, A is typically large and sparse, and providing an efficient sub-
routine for both these products can be a nontrivial task. Moreover, since
two Krylov spaces are generated, two matrix-vector products are needed per
dimension of the subspaces JCn that matter.

In 1984 Sonneveld (1989) proposed a new Lanczos-type method that cir-
cumvents these two disadvantages and proved to be very successful in prac-
tice. He called it the conjugate gradient squared (CGS) algorithm, although
it is aimed at nonsymmetric problems and is not derived from a CG, but
from a BlCG algorithm, namely BlOMlN. Its nth residual polynomial is
the square p^ of the nth residual polynomial pn of BlCG.

Here Sonneveld's version will be called BIOMINS, but we refer to the
underlying approach as the biconjugate gradient squared (BiCGS) method.
As for the BlCG method, there exist several different forms of the BiCGS
method: in addition to BIOMINS there are consistent and inconsistent ver-
sions of BIORESS and two version of BIODIRS. The latter two are not
really competitive, and therefore they are not discussed here. Together with
the two BIORESS versions they were presented in a separately distributed
part (Section 7) of Gutknecht (1990).

All competitive versions of the BiCGS method require two applications
of the operator A at each step; this is comparable to the two matrix-vector
multiplications with A and A* in BlOMlN, but in many applications it
is an advantage that the multiplication with A* is replaced by one with
A. For example, this is true when certain preconditioning techniques are
applied, when ordinary differential equations are solved with the help of the
Lanczos process (see, for instance, Hochbruck and Lubich (19976)), or, quite
generally, when vector and parallel computers are used.

The BiCGS method typically converges nearly twice as fast as the BlCG
method. However, the convergence is even less smooth, and in tough prob-
lems very erratic: the norm of the residual can suddenly increase again by
several orders of magnitude and then drop to the former level after just one
or a few steps. Such peaks in the residual norm plot indicate a reduction of
the ultimate accuracy of the solution that can be attained, but in Section 18
we will describe a remedy for this loss.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 343

14.1. The B I O M I N S form of the BlCGS method

For the derivation of B I O M I N S we start from the recurrences (12.1), choos-
ing 7n := —fn and substituting ujn := l/ipn, as in BlOMlN:

Prc+1 •= Pn-Vn(pn, (14-1)

Pn+l : = Pn+l ~ 4>nPn • (14-2)

(In this section we use the sloppy notation C,pn instead of CPn(O-) Multiply-
ing (14.1) by pn and (14.2) by pn+i yields

Pn+lPn = PnPn ~ ^nCPn, (14-3)

Pn+lPn+1 = Pn+l ~ fpnPn+lPn- (14-4)

Next, squaring both sides of (14.1) and (14.2) and using (14.3) and (14.4),
respectively, leads to

Pn+l = Pn - ZUnCPnPn + ^ICtn (14.5a)

= P2n~ WnC(PnPn + Pn+lPn) (14.5b)

and

Pn+l = Pn+l - 2V>nPn+lPn + V'nPn

= Pn+lPn+1 - V'nPn+lPn + 1plpn- (14-6)

The point is that equations (14.3), (14.5b), (14.6), and (14.4) are, in this
order, a system of recurrence relations for the four polynomial sequences
{PnPn-i}, {pn}, {Pn}, and {pnPn}- From (13.4a)-(13.4b) it follows that the
recurrence coefficients can be computed from the values that the functional
$ denned by (12.7) takes at the polynomials Cpn) Pn+i> a n d Pn- Here we
need to express these values in terms of the new Krylov space vectors

rn := pn(A)r0 , r n := pn(A)r0 ,

Sn := pn(A)pn(A)r0 , s^ := p n + i (A)p n (A)r 0

and their inner products with an additional vector y0 , which is now only
used for these inner products. In his seminal paper, Sonneveld (1989) chose
y0 := ro, but today it is known that a random vector is likely to yield better
convergence; see, for instance, Joubert (1990, 1992).

Once we have written down the recurrences for the four vector sequences
of (14.7), we have managed to 'square' a special case of the BlOC algorithm.
Like B I O M I N , the B I O M I N S algorithm is then based on the fact that one
can additionally compute a vector sequence {xn} with the property that rn

is the residual at x n . In summary, we obtain the following standard BlOMlN
version of the BlCGS method.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

344 M. H. GUTKNECHT

ALGORITHM 11. (B I O M I N S FORM OF THE B I C G S METHOD)

For solving Ax = b choose an initial approximation xo 6 C^ and set
so := ro := ?o := b — A x o Choose yo G C^ such that So := (yo,ro)B ¥" 0
and 6'0 :— (y0, A?O)B 7̂ 0. Then compute for n = 0 , 1 , . . .

Sn+1

6'n+l

= sn - Arnwn ,
— f» A / c 1 i
— •"• ft ~^^*^T\j 1̂ '

- s'nipn,

= (y o ,Ar n + i) B .

(14.8a)

(14.8b)

(14.8c)

(14.8d)

(14.8e)

(14.8f)

(14.8g)

(14.8h)

If r n + i = o, the process terminates and x n + i is the solution; if rn+i 7̂ o
but Sn+i = 0 or S'n+l = 0, the algorithm breaks down. In each case we set
i> := n + 1.

The recurrences for the vectors sn, s'n, rn, and fn are direct translations
of equations (14.3)^(14.6), and the formulae for Sn+\ and S'n+1 are in view
of (12.9) and (14.7) equivalent to (13.4a)-(13.4b). Finally, the recurrence
for x n is chosen so that rn — b — Ax n (for all n): by (14.8d), (14.8c), and
by induction we indeed get rn_|_i = vn — A(xn_)_i — xn) = b — Axn+i.

From our derivation of this algorithm it is clear that the following holds.

Theorem 14.1 If BlOMiN and B I O M I N S are started with the same xo
and yo, the index of first breakdown or termination z>, the recurrence coeffi-
cients ipn, tpn-i, and the inner products Sn are for both methods the same.
The residual polynomials are pn and p^, respectively.

Although, theoretically, if convergence were denned by rn = o exactly,
the two algorithms would converge or break down at the same step, it is
evident that in practice, where convergence is denned by a condition like
| | rn|| < ell ro||, B I O M I N S converges normally faster than BlOMiN, since
\pl(()\ = \pn(()\

2 < \pn(0\ i f t h e l a t t e r i s smaller than 1.
Each step requires two applications of the operator A, that is, two multi-

plications of A with a vector, namely Ar n and A(s n + s'n).

Since the coefficients ujn = l/<pn and ipn-i are the same as in BlOMiN, the
bidiagonal matrices Ln and U n are again available, and thus the tridiagonal
matrix T n = L n U n may still be used to obtain eigenvalue estimates for A.
In fact, deleting (14.8d) from Algorithm 11, we get what one might call a
special squared BlOC algorithm, and we could easily modify it to allow for

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 345

the freedom of choosing j n independently from <pn, as in our formulation of

BiOC.

14-2. BlOS: the squared BiO algorithm

At this point one may ask whether, in analogy to the other two main forms

of the BlCG method, BlORES and BlODlR, there are also other forms of

the BlCGS method. To derive the analogue of B I O R E S , we first need a

squared BiO algorithm based on separate recurrences for the polynomials

p\ and p\. We start with those for p\: multiplying (12.2) by pn and

squaring (12.2) we obtain, respectively,

lnVnVn+l = (C ~ «n)Pn ~ Pn-lPn-lPn, (14-9)

7nPn+l = (C - an)
2

P
2n " 2(C " «n)/3n-lPn-lPn + ^ - l P n - 1

= (C - «n)(7nPnPn+l - Pn-\Pn-lPn) + (%-iPl-i , (14.10)

where (14.9) has already been used to simplify (14.10). These two relations

allow us to generate the two sequences {pn-iPn} a n d {p^} recursively. The

coefficients an, /3n-i are given by (13.3a)-(13.3c). So far, the parameters

7n can be chosen freely (^ 0), and this freedom persists if one aims at an

inconsistent version of B I O R E S S . Later, we will want to choose 7n := — an —

Pn-i in the case of consistent B I O R E S S , since this condition is equivalent

to pn(0) = 1, which implies #[(0) = 1, the consistency condition for the

residual polynomial p\. (The freedom of choosing the sign of pn(0) would

not help to avoid any type of breakdown.)

In summary, we see that a method for generating

rn := p2
n(A)r0, r'n := pn(A)pn+1(A)r0 (14.11)

can be based on (14.9), (14.10), and (13.3a)-(13.3c). This is the squared

biorthogonalization or BlOS algorithm.

ALGORITHM 12. (BiOS ALGORITHM)

Choose ro, yo £ CN such that <5o := (yo>ro)B ^ 0, and set r'_! := o € C^,

(3-1 := 0. Choosing arbitrary scale factors 7n 7̂ 0, compute, for n = 0 ,1 , . . . ,

an := (yo,Arn)B/6n, (14.12a)

0n-l := in-lSn/Sn-i (if U > 0), (14.12b)

r^ := [Arn - rnan - r ^ ^ n - i j ^ n , (14.12c)

rn+i := [A(r^7n - r ^ ^ n - i) - (r ^ - r^_ !/?„_!)«„

+ Tn.tfl_x]hl, (14.12d)

6n+i := (yo,r n + i)B (14.12e)

until 6n+i = 0, when we set v := n + 1.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

346 M. H. GUTKNECHT

Note that 7 n can be chosen to make r n of unit length.
This algorithm was proposed independently both by Chronopoulos and

Ma (1989) and by Gutknecht (1990); later it was rediscovered by Chan,
de Pillis and van der Vorst (1991).

14.3. The B I O R E S S forms of the BiCGS method

After we have 'squared' the BiO algorithm so that nested Krylov spaces of
the double dimension are generated, it remains to find a way to compute
the sequence {xn} of approximants with the property that

rn = b - A x n

in the case of consistent B I O R E S S , or, more generally,

r n = b7r£ - Ax n , (14.13)

where •kn '•= Pn{Q) as before. This approach to solving a linear system of
equations follows exactly the general scheme discussed in Section 4. Assum-
ing that it works, we conclude from (14.12d) and (4.16) that

2 (14.14)

-A(rf
n'rn-r'n_1f3n-1), (14.15)

where

that is,

r^_! = b7rn_i7rn - A X ;_ j . (14.16)

Multiplying (14.15) by A " 1 yields a recursive formula for x n + i . Similarly,
using (14.12c) and (4.16) we get

= - b(7r^an + 7rn_i7irn/3n_i) - Arn + rnan

= - Axnan - A x ^ j ^ - i - Arn.

If we set TT_I := 0, TTQ := 1, then (14.13) and (14.16) hold for ro := b — Axo,
r'_1 := x'_1 := o, and the recurrence can be started with these initial values.

ALGORITHM 13. (INCONSISTENT B I O R E S S FORM OF B I C G S)

For solving Ax = b choose an initial approximation xo G C^, set ro :=
(b — A X Q) / 7 _ I with some 7_i ^ 0 (for instance, such that ||ro|| = 1), and

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 347

redefine xo := xo/7-1. Furthermore, let r'_j := x'_ : := o £ C^, /3_i := 0,
7r_i := 0, 7ro := I / 7 -1 , and choose yo € C^ such that <*>o := (yo5

ro)B 7̂ 0.
Then apply Algorithm 12, additionally computing

7rn+i := -(aT l7rn + /3TJ_i7r7j_i)/7T1, (14.17a)

x^ := - (x n a n + x^_1/3n_i+rn)/7n , (14.17b)

xn + i := [xn_i(3l_1-x'nan'yn + -x.'n_1an/3n-i

-ton-rUiAi-i)]^- (14.17c)

If r n + i 7^ = o and 7rn+i 7̂ 0, the algorithm terminates and xex := xn+i/7ir^+1

is the solution of Ax = b; likewise, if r^7n — o, irn ^ 0, and 7rn+i 7̂ 0, the
algorithm terminates and xex := yi'n/{•kn'knjr\) is the solution; if rn+i 7̂ o
but 6n+\ = 0, the algorithm stops due to a Lanczos breakdown. In each
case we set v := n + 1.

ALGORITHM 14. (CONSISTENT B I O R E S S FORM OF B I C G S)

Modify Algorithm 13 by choosing 7_i := 1 and 7n := —an — (3n-\ (n > 0),
so that vrn = 1 (n > 0). If 7n = 0 for some n, the algorithm stops due to a
pivot breakdown, and we set v := n. Otherwise, i> := u.

In both versions of B I O R E S S each step again requires two applications of
the operator A, namely for A r n and A(r^7n — r^_1/3Tl_i). But note that
these algorithms also produce two iterates and the corresponding residuals
per step. The 'normal' BiCGS iterates are x n , but in practice the interme-
diate iterates x.'n are often better. In fact, in Fokkema, Sleijpen and van der
Vorst (1996), a shifted CGS algorithm is proposed whose residual polynomi-
als are (1 — nC)Pn-i{()Pn{C)> where fi is a preselected value. This algorithm
converges somewhat more smoothly than BiCGS. With B I O R E S S we ac-
tually get a similar kind of iterates in addition to the usual ones. However,
the three-term recurrence may spoil the accuracy more than the two-term
recurrence of shifted CGS.

According to the derivation of these two algorithms the recurrence coeffi-
cients and the breakdown conditions are the same as those of the respective
version of B I O R E S . Hence, in view of Theorem 9.2, the following result is
straightforward.

Theorem 14.2 If consistent B I O R E S and consistent B I O R E S S are started
with the same Xo and yo, then the index of first breakdown or termination
2>, the recurrence coefficients an, (in-\ (and thus 7 n := — an — (3n-i), and the
inner products 6n are the same for both algorithms. Moreover, consistent
B I O R E S S and B I O M I N S produce the same iterates x n and thus also the
same residuals r n = b — Ax n and the same residual polynomials -p\.

Likewise, if inconsistent B I O R E S and inconsistent B I O R E S S are started
with the same XQ and yo, and if the same constants 7n are used in both

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

348 M. H. GUTKNECHT

Table 4. Krylov space vectors and corresponding polynomials that appear in

our five forms of the BlCGS method. Different scaling is mirrored by

upper indices in the notation for the polynomials, but not in the one for the

vectors. In the columns 'L' and 'P' it is indicated if an algorithm is

susceptible to Lanczos breakdown or pivot breakdown, respectively

Algorithm Vectors Polynomials L P

11 BIOMINS (CGS)

13 B IORESS (cons.)

14 BIORESS (incons.)

BiODmSi

BIODIRS 2

Pn, PnPn, Pn+lPn

Pn, Pn+lPn

n+lPn
(p^N^2 ^INC^INC

PI

V V

V V

V

V V

V

algorithms, then the index of first breakdown or termination u, the recur-
rence coefficients an, /3n-i, a nd the inner products 6n are the same for both
algorithms. The iterates xn and the vectors rn are related by (4.17) and
(14.13), respectively.

It follows in particular that BIORESS yields as a by-product the same
tridiagonal submatrices Tn , and thus, optionally, the same eigenvalue es-
timates as BIORES.

14-4- An overview 0/B1CGS algorithms

For the reader's convenience we list in Table 4 the various vectors and the
corresponding polynomials that come up in the three BlCGS algorithms
that we have discussed and the two, BIODIRSI and B1OD1R.S2 from Sec-
tion 7 of Gutknecht (1990), that we only alluded to. The vectors that are
listed in several algorithms are, up to scaling, identical. However, neither
the iterates xn nor the auxiliary vectors ~x!n that appear in BIORESS and
in the two forms of BIODIRS, respectively, are contained in the list. If we
wanted to judge the memory requirements, we would also have to take into
account the storage of the results of matrix-vector products and the some-
times required storage of previously computed vectors. Also indicated in
Table 4 are the breakdown possibilities.

Let us repeat that since the coefficients computed in the squared methods
are the same as those of the respective unsquared method, one still impli-
citly generates the matrices T_n, Ln and Un, or T!n, respectively. Therefore,
theoretically, the squared methods can be used for eigenvalue computations.
However, it does not seem so easy to mimic ideas like selective reorthogonal-

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 349

ization or to find other ways to enhance the numerical stability. Therefore,
in practice, it may be difficult to obtain reliable eigenvalue information from
these methods.

15. The transpose-free QMR algorithm

In Section 14 we have seen that 'squaring' the BiCG method leads to a very
effective method, BlCGS, which, however, typically exhibits a somewhat
erratic convergence behaviour. An obvious remedy would be to 'square'
the QMR method instead, since it converges as fast as BiCG, but more
smoothly. However, it is not so obvious how this can be achieved. There
are various answers to this question, but only one turns out to be convin-
cing: Freund (1993) found a way to apply the QMR approach to bases
built up from Krylov space vectors that correspond to squares and products
of Lanczos and direction polynomials. The details are given below. This
transpose-free QMR (TFQMR) algorithm, as he called it, is roughly equally
fast but much more smoothly converging than the BlCGS method, and the
cost per step is only slightly higher. Since smoother convergence often helps
to reduce round-off, one may expect that there are examples where the al-
gorithm outperforms B I O M I N S in speed, but the examples in Freund's pa-
per do not yet confirm this. However, Freund has examples where TFQMR
clearly outperforms the B I C G S T A B algorithm of Section 16.

In Freund and Szeto (1991) an alternative strategy was followed: the
quasi-minimal residual squared (QMRS) algorithm generates residuals whose
residual polynomials are the squares of the QMR residual polynomials. Con-
sequently, the convergence is fast and smooth. However, this method re-
quires three matrix-vector products per step in contrast to two in TFQMR
and B I O M I N S , thus increasing the work per step by roughly 50%.

While for both these methods the residual lies in fan after n iterations,
this is not true for the transpose-free implementation of the QMR method

proposed by Chan et al. (1991). Here the idea is simply to run the BlOS
algorithm for determining the Lanczos coefficients an, /?n-i> and "fn, and
then to construct the QMR iterates (or alternatively, the BiCG iterates, if
a transpose-free BiCG algorithm is sought) by additionally executing the
recurrences of the QMR (or the B I O R E S) algorithm, except for those that
generate Kn. Clearly, such an approach requires considerable extra work, in
particular three matrix-vector products per step instead of two. Neverthe-
less, the convergence speed is at best equal to the one of the BiCG method,
not the one of the BlCGS method. Moreover, the Lanczos coefficients found
by the BlOS algorithm, although in theory identical to those of inconsistent
B I O R E S , turn out to be more contaminated by round-off. Therefore, con-
vergence is in practice often worse than for QMR and BiCG, respectively.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

350 M. H. GUTKNECHT

Algorithms using this approach cannot compete with other transpose-free
methods.

Let us now turn to the preferred approach, the TFQMR algorithm. Mul-
tiplying (14.1) by pn and pn~\, we get the two relations

PnPn+l •= p\ - VnCpnpn,

Pl+1 '•= PnPn+l ~ ̂ nC,Pn+\Pn-

Recalling the definitions (see (14.7) and (14.11))

rn := p2(A)r0, r'n := pn+i(A)pn(A)r0,

sn := pn(A)pn{A)r0, s'n := pn+i(A)pn(A)r0,

we can translate this into the recurrences

r'n := rn - Asnu;n, (15.1)

rn + 1 := r'n - As'nun, (15.2)

which, together with (14.8b), (14.8c), and

Afn+i := Asn+i - As'nipn + Afnipl,

allow us to build up the Krylov space. Note that (14.8h) generates Afn

recursively, so that there is no need to determine rn itself. Only the two
matrix-vector products Asn and As^ are required per step, and they boost
the dimension of the space by two.

Defining the matrices

R-2n := [r0 r'o n . . . rn_i r^_j],

S2n := [So So Sl . . . Sn_i S^_j],

each containing a basis for Kini and extending this definition to odd indices
by dropping the last component, we can write (15.1)—(15.2) as

where

ASm =

1
- 1

(15.3)

1
- 1

- 1 1
- 1

is (m + 1) x m lower bidiagonal and D^,^^ is the m x m diagonal matrix

Dw|u;;m := diag(o;0, LOO, ui, w i , u 2 , • • .)•

Note that m can either be even, m — 2n, or odd, m = 2n + 1.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 351

Once (15.3) is found, the usual QMR approach applies. We represent the
mth iterate as

TFQMR _
m —

 x
0 "t"

so that r^FQMR = ro — A S m k m holds for the residual. Inserting (15.3) yields

and the quasi-residual

with the diagonal matrix

Dr|r';m+i := diag(||

used to normalize the columns of

Qm := e l P 0 - L ^ M R k m with

This (m + 1) x m least squares problem is solved by a QR decomposition
based on Givens rotations as before. Once again, the quasi-residual norms
are found for free, and the iterates can be updated as in Section 5.

Writing t instead of Ar we can formulate the TFQMR algorithm as
follows.

ALGORITHM 15. (TFQMR ALGORITHM)

For solving Ax = b choose an initial approximation xo € C^, set So
b — Axo, to := Aro, and choose yo £ <CN such that <5o := (yo, I"O)B
S'o := (yoi A?O)B ¥" 0- Then compute for n = 0 , 1 , . . .

— tnujn,

= r' — As '

7̂ 0 and

(15.4a)

(15.4b)

(15.4c)

(15.4d)

(15.4e)

(15.4f)

sn+i := rn+i - s'nipn, (15.4g)

t n + i := A s n + i — A s ^ n + tnipn> (15.4h)

^n+i : ~ (yo,tn+i)B- (15.4i)

Within this loop, for m := 2n + 1 and 2n + 2, additionally

(1) update the QR factorization L^FQMR = QmR£F Q M R , analogous to
(5.6)-(5.7) (with T n replaced by L^FQMR)

(2) according to (5.8), compute the coefficient vector h m by appending
the component Cmrjm to h m _ i , and compute the new last component

Vm+l -= ~sm Vm °t flm

(3) compute zm_i according to the two-term recurrence implied by S m =

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

352 M. H. G U T K N E C H T

(4) compute x^ and xn + i according to

:== X + % C V x n + l : = X n

respectively,
(5) if the norm of the quasi-residual, rjm, is below a certain bound, check

the norm of the true residual; stop if it is also small enough.

Like BIORESS, the TFQMR algorithm has the benefit that it delivers
two iterates and corresponding residual norms per step. We will encounter
the same property again in the following section on Lanczos-type product
methods.

By comparison with Algorithm 11, note that by inserting the assignment

after (15.4d), we could additionally produce the BiCGS iterates x^ at al-
most no cost.

16. Lanczos-type product methods

As we mentioned, Sonneveld's BiCGS method has the disadvantage that
convergence is often interrupted by a sudden large increase of the residual
norm, followed by an equally fast decrease to the previous order of mag-
nitude. Although such spikes normally do not prevent convergence, they
may reduce the speed of convergence and, in particular, the ultimate accur-
acy of the solution. Actually, it is sometimes rather the maximum norm of
the iterates (not the residuals) that counts; see Section 18. Most users of
iterative methods prefer a smoother, if not monotone, residual norm plot.

By improving an unpublished idea of Sonneveld, van der Vorst (1992)
was the first to find a modification of the BiCGS method with smoother
convergence. In retrospect, his BICGSTAB algorithm can be understood as
the application of the BiCGS approach to a coupled two-term version of the
one-sided Lanczos process of Section 6 instead of BlOMlN. In other words,
we make use of the freedom to choose the left polynomials tn different from
the Lanczos polynomials. The residual polynomials of the resulting method
are no longer the squares p\ but the products pntn, where tn is an arbitrary
polynomial of exact degree n satisfying tn(0) = 1. We therefore call the
class of such methods Lanczos-type product methods (LTPMs).

In BICGSTAB the polynomials tn are determined indirectly by local one-
dimensional residual minimization, and in BICGSTAB2 (Gutknecht 1993c)
we have extended this approach to local two-dimensional minimization,
which is more appropriate in view of the typically complex spectrum of
non-Hermitian matrices. In the same paper we presented the formulae for
using an arbitrary set of polynomials tn satisfying a three-term recurrence,
such as, for instance, suitably shifted and scaled Chebyshev polynomials as

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 353

they are used in the Chebyshev method for solving linear systems. Other
authors have also contributed to the class of LTPMs; see in particular Brez-
inski and Redivo Zaglia (1995), Fokkema et al. (1996), Zhang (1997). There
are several algorithms that compete for being the most efficient one for a
broad variety of examples: among these are BICGSTAB2 (Gutknecht 1993c),
BICGSTAB(^) (Sleijpen and Fokkema 1993), and BlCGxMR2 (Gutknecht
1994c), which are treated as examples below.

We concentrate here on consistent LTPMs based on the coupled two-term
recurrences for the Lanczos polynomials and a three-term recurrence for
the second set of polynomials, but we will indicate modifications needed
for other classes. Consistent and inconsistent LTPMs based on three-term
recurrences for both sets are treated in Gutknecht and Ressel (1996), where
the application of look-ahead to these methods was also achieved. Eijkhout
(1994) also derived a three-term version of BICGSTAB, but his way of finding
the Lanczos recurrence coefficients is unnecessarily complicated. Brezinski
and Redivo Zaglia (1995) suggested a different way of doing look-ahead; see
Section 19 for comments.

Algorithms that combine the BlCGS method or an LTPM with smooth-
ing processes attain convergence speeds equal to the best LTPMs and an
even smoother residual norm plot. In particular, the BlCGS method and
LTPMs can be combined with quasi-residual minimization. In the former
case one finds Freund's TFQMR algorithm (Freund 1993) of Section 15.
A QMR-smoothed BiCGStab algorithm was introduced in Chan, Gallo-
poulos, Simoncini, Szeto and Tong (1994), while QMR minimization for
general LTPMs is described by Ressel and Gutknecht (1996). A very effect-
ive alternative is the minimum residual (MR) smoothing process, which can
be applied to any Krylov space solver and will be described in Section 17.

Most of the methods discussed in this section only make sense if B is
Hermitian positive definite. Since B is also required to commute with A,
there are hardly any interesting examples other than B = I. We therefore
assume here that this holds, that is, we drop B.

16.1. LTPMs based on coupled two-term recurrences

When choosing the polynomials tn of an LTPM we mainly aim at two proper-
ties: (i) fast and smooth convergence of the resulting solver; (ii) low memory
requirements, which, in particular, means short recurrences. In BICGSTAB

the recurrence is two-term, but this is a strong restriction for a basis of
polynomials of increasing degree. In contrast, three-term recurrences are
satisfied by a broad class of such bases including all sets of classical ortho-
gonal polynomials. We assume the recurrence to be of the form

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

354 M. H. GUTKNECHT

with i-i(C) : = 0, to(C) '•= 1 and £o = 1- Note that this form conserves the
consistency condition: fy(0) = 1 (for all n). The formulae for the resulting
LTPM were given in Gutknecht (1993 c), but we choose here a different
exposition that is analogous to the one in Gutknecht and Ressel (1996) and
Ressel and Gutknecht (1996) for LTPMs based on the Lanczos three-term
recurrences.

We define two doubly indexed sequences of product vectors:

w n : = */(A)yn = MA)Pn(A)y0 ,

w^ := ti(A)vn = ti(A)pn(A)y0.

Here, y n and v n are the right Lanczos and direction vectors of BlOMlN;
they will not appear in the final algorithm. Additionally, we introduce a
doubly indexed sequence of product iterates xl

n with the properties

b-Ax.ln = wl
n and x ^ e x o + /Cn+,. (16.2)

The diagonal sequences {x™} and {w™} contain the iterates and residuals
we really aim at. Some other product iterates and product vectors will
appear in the recurrences and can occasionally also be considered as useful
approximations to the solution vector xex of Ax = b and the corresponding
residual, respectively.

Let us arrange the product vectors into a w-table and a w-table. These two
tables are very helpful for explaining the underlying mechanism of LTPMs.
To fix matters, we let the n-axis point downwards and the /-axis point to the
right. Then the iteration will essentially proceed from the upper left corner
(with the initial vectors w§ := w§ := ro := b —Axo) to the lower right. The
entries that are actually needed in competitive algorithms lie on or close to
a diagonal of the tables, that is, \n — l\ is small for them. For moving down
the tables, we apply the consistent coupled two-term Lanczos recurrences
(14.1)-(14.2). Multiplying them by £;(£) and translating into Krylov space
notation we obtain

:= wl
n-Awl

nion, (16.3a)

:= w^+ 1 - w ^ n - (16.3b)

On the other hand, for moving to the right we multiply (16.1) by pn and pn,

respectively. Translating into Krylov space notation we then get

w^+1 := Awl
nVl + w ^ + wJT^l - ft), (16.3c)

w^+1 := A w ^ + w ^ + w ^ U - f t) . (16.3d)

Of course, since the Lanczos two-term recurrences are coupled, elements of
both tables appear in (16.3a) and (16.3b), while (16.3c) and (16.3d) each
affect only one table. Constructing recursively the diagonals of the two
tables requires us to apply these formulae cyclically for a certain sequence

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS

w-table w-table

0 1 2 3 4 / 0 1 2 3 4

355

0

T] 3
7 |~8~| 9

13 \u\ 15

19 [20] 21

5]

4

[6] 10

16

\U] 22

i24i [23]

4 I

o

a | c

a | a

a c
a I c

bi

[b] [b] d
[b] [b]

• " b '

Fig. 1. The w-table and the w-table of an LTPM based on coupled two-term
Lanczos recurrences and a three-term recurrence for the polynomials £;. The

numbers in the upper tables specify the order in which the elements v?l
n and w^

of the two tables are computed. The letters in the lower tables indicate which
formula among (16.3a)-(16.3d) to use for computing the corresponding entry. An
entry in a solid box indicates that its product with A also has to be computed.
For the entries in dashed boxes the product with A can be computed indirectly,

without executing a matrix-vector product

of (/, n)-pairs. The order in which the formulae are applied is indicated by
the numbers in the upper half of Figure 1, while the letters in the lower half
specify the formula applied.

Inserting (16.2) into formulae (16.3a) and (16.3c), subtracting b on each
side of them, and multiplying by the inverse of A we readily get correspond-
ing recurrences for the product iterates:

n+1

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

356 M. H. GUTKNECHT

Of course, we could arrange them in an x-table and display it along with
the w-table, very much like Figure 1. Note that xg := xo-

It remains to specify formulae for determining^ the coefficients u>n and
ipn. Recall that in the Lanczos process we have JCn J_ yn and Kn _L Avn .
Because {ti(A.)yo}™~Q is a basis of JCn (as long as n does not exceed the
grade of yo with respect to A*), we conclude that

(yo, w^) = 0, (y0, Aw{.) = 0 , if I < n. (16.5)

In particular, if we set I := n — 1 and then replace n by n + 1, we have

(yo, K+i) = 0, (yo, Aw£+1) - 0.

Taking this orthogonality into account in the recursions (16.3a)-(16.3b) for
I = n and defining

">, s'n •= (yo,

(yo,w^) sn

leads us to

and

For the last equation we have expressed Aw™+1 according to (16.3c) and

taken (16.5) into account to see that (yo, Aw"+ 1) = (yo, w j j }) / ^ .
Summarizing, we find the following generic consistent (3, 2x2)-type LTPM.

Its type (3, 2 x 2) indicates that we apply a three-term recurrence for the
polynomials ti and two coupled two-term recurrences for the Lanczos and
the direction polynomials. In Ressel and Gutknecht (1996) the analogous
(3,3)-type LTPM is called BiOx THREE.

ALGORITHM 16. (GENERIC CONSISTENT (3,2 x 2)-TYPE LTPM)
For solving Ax = b choose an initial approximation x§ G C^ and set
WQ := WQ := b — AXQ. Choose yo € C^ such that <$o := (yo,wo) ¥" 0 a n d
6'0 := (yo, Awg) ^ 0. Then compute for n = 0 , 1 , . . .

(16.6a)

if n > 0, (16.6b)

if n > 0, (16.6c)

(16.6d)

(16.6e)

L- f n) , (16.6f)

w
n - 1
71+1

n - 1

W,n+1

W

Si+1

n+1
n+1

= wJ-Aw>n,

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 357

<X\ •= -<+irh + <+iZn + <+{(l-Zn), (16.6g)

n+1 := (yo.wJJ+J), (16.6h)

:= 6n+il(6'n-nn), (16.6J)

:= w £ + 1 - w > n , (16.6k)

:= Aw:+ 1 - A w ^ n , (16.61)

Vn, (16.6m)

(16.6n)

If wjj+1 = o for Z = n — 1, n, or n + 1, then the algorithm terminates and
xjj+1 is the solution of Ax = b. However, if none of these residuals vanishes,
but 8n+\ = 0 or 8'n+l = 0, the algorithm breaks down.

Note that Aw™+1 is obtained without using a matrix-vector product,
hence only two of them are needed per step: Aw™+1 and Aw™+J. In the
above form, the algorithm requires considerable storage (although of course
we assume that entries on the same (co-)diagonal of any of our four tables
are stored at the same memory location). However, some of the vectors can
be spared, namely those that are used only once later and do not depend on
a quantity that is overwritten before the vector is used. An extra benefit
of the given algorithm is that we not only obtain one approximate solution
per step but three, since each of the vectors x^ can be considered as one and
its residual is available. However, checking the length of such a residual re-
quires an inner product. On the other hand, in more sophisticated versions
of the algorithm some of these inner products may get computed anyway
in order to determine if it is worth recomputing the vector by applying
reorthogonalization; see Section 18.

If the polynomials tn satisfy a two-term recurrence instead of the three-
term recurrence, that is, if £i = 1 (for all /), then we do not need the quant-
ities on the lowest codiagonal of each table. This is the most important
advantage of BICGSTAB over other LTPMs.

16.2. The BICGSTAB algorithm

In van der Vorst's BICGSTAB method (van der Vorst 1992), the polynomials
t\ are built up in factored form,

and, hence, they satisfy a two-term recurrence:

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

358 M. H. GUTKNECHT

This means that in the three-term recurrence of (16.1) we have

6 = 1, m = -Xl+i-

Note that such a two-term recurrence necessarily means that the zeros re-
main fixed, except that an additional one is added at each step.

In the nth step, the reciprocal Xn+i of the (n + l)th zero is chosen such
that Wn+\ n a s minimum length:

:= min | |w£+1 - Aw£ + l X | | . (16.7)

This one-dimensional minimization problem is solved by making w™ }̂ or-
thogonal to Aw™+1, which means that

This remains correct in the case of complex data; see Gutknecht (1993c).
Due to the two-term recurrence, there is no need to compute w™^}, w™+1,

and Aw^+ 1 , so that the corresponding lines in Algorithm 16 can be dropped.
Moreover, in order to minimize the memory requirements we insert the for-
mulae for x™+1 and w" + 1 at the points where these vectors are actually
used.

ALGORITHM 17. (B I C G S T A B ALGORITHM)

For solving Ax = b choose an initial approximation x(] € C^ and set

wg := wg := b - Axg. Choose y0 G C^ such that 60 := (y0, wg) ^ 0 and

<5Q := (yo> Aw§) ^ 0. Then compute for n = 0 , 1 , . . .

"„ == 6n/6'n, (16.9a)

w^+ 1 := w£ - A w > n , (16.9b)

Xn+i := <Aw£+ 1 ,w£+ 1)/ | |Aw£+ 1 | |2 , (16.9c)

(16.9d)

(16.9e)

6n+1 := (yo ,w^+i), (16.9f)

il>n := -6n+1/(6'nXn+i), (16.9g)

(16.9h)

S'n+1 : =

If ~Wn+l = ° or wJJ+1 = o, the algorithm terminates and, respectively,

x%X\ o r xn+i (defined by xJJ+1 := x" + w"o;n) is the solution of Ax = b.

Otherwise, if (5n+i = 0 or 6'n+1 = 0, the algorithm breaks down.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 359

Note that this algorithm, like TFQMR, provides two residuals and cor-
responding iterates per step, although, as suggested in our formulation, we
need to compute only one iterate per step and can determine the other only
once its residual satisfies the convergence criterion.

The breakdown conditions <5n+i = 0 and 6'n+1 = 0 seem to indicate a
Lanczos or pivot breakdown, respectively. However, B I C G S T A B is also sub-
ject to a somewhat hidden danger of breakdown. In fact, due to the different
leading coefficients of pn and tn, the inner products 8n+\, 6'n+1 of the Lanczos
process and <5n+i, 6'n+1 of B I C G S T A B are related by

7 r XlX2'"Xn+l 7, c, Xl X2 ' • • Xn+1
On+1 = < W l , 0n+1 = 0

Consequently, not only the Lanczos breakdown (<5n+i = 0) and the pivot
breakdown (6'n+1 = 0) take their toll, but also the minimization breakdown

Xn+i = 0. But the latter also surfaces as a vanishing of <5n+i (and 6'n+1).

It is no surprise that a vanishing Xn+i causes a disaster, since the Krylov
space is then no longer expanded by (16.9d).

Unfortunately, there are applications where \ n tends to be small, namely
if A has eigenvalues with small real part, but non-small imaginary part.
An example are matrices resulting from the discretization of convection-
dominated convection-diffusion equations.

B I C G S T A B has the additional disadvantage that, for real matrices and
right-hand sides (and real initial vectors), the zeros 1/xfc of t\ are neces-
sarily always real, and therefore they cannot efficiently help to damp error
components associated with eigenvalues of A with large imaginary part.

16.3. The B I C G S T A B 2 algorithm

Both above-mentioned disadvantages of B I C G S T A B can be removed by re-
placing the local one-dimensional minimization by a two-dimensional one
in every other step. In between, in the odd steps, we may still do a one-
dimensional minimization, but it will have no effect on what follows, at least
not in exact arithmetic, as long as we advance in the Krylov space. This
is the idea behind B I C G S T A B 2 (Gutknecht 1993c). Here, if required to be
consistent, t\ satisfies recurrences of the form

: = (1 - X m O M C) , i f / i s even,

W O := (6 + ^C)*l(0 + (l - 6) * J - i (C) , i f / i s odd.

The pair (£n,Vn) is again chosen to minimize wj^} , and in view of the
relevant recurrence (16.3c) this means that the pair is the minimizer of

I I ^ + ^ + ^ K O H (16.11)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

360 M. H. GUTKNECHT

This is a standard least squares problem for two unknowns. It could be
solved via the 2 x 2 system of normal equations, but since this system can
be ill-conditioned, it may be preferable to use a QR decomposition. In
theory, the system cannot be rank-deficient except when the Krylov space
is exhausted: rank-deficiency means here that AwJJ+1 £ £2^+3 and w"+ 1 —
Wn+l ^ K-2n+2 are linearly dependent.

In Gutknecht (1993 c) we chose \n such that in the odd steps the one-
dimensional minimization problem (16.7) is solved. At the cost of one ad-
ditional inner product16, this choice has the advantage of also producing at
odd steps a new, normally better iterate that may satisfy the convergence
criterion. On the other hand, the result of the next, even step does not
depend on \ n as long as Xn 7̂ 0, except for a possible effect on round-off.

Sleijpen and Fokkema (1993) pointed out that round-off may indeed be
a problem if |xn+i| is small, which is likely to happen for some n if A
has eigenvalues close to the imaginary axis. In contrast to B I C G S T A B ,

which will then have the same round-off problem, we can get around it here.
In this case, for example, we could just redefine Xn+i as 1 (or some other
suitably chosen value). We could even go further, forget the one-dimensional
minimization problem completely, and just let Xn+i '•= 1 for all n. This has
the additional advantage that one inner product can be saved. The choice
of 1 as value of Xn+\ (and, thus, of an additional zero at 1 of tn if n is odd)
can be justified by the fact that well preconditioned matrices often have a
cluster of eigenvalues around 1. However, numerical experiments indicate
that Xn+i : = 1 is n ° t always the best choice.

In fact, choosing Xn+i requires us to compromise between several object-
ives (see Section 18 for more details):

(i) finding small residuals, or at least, avoiding large intermediate iterates
x£ and x r J

(ii) avoiding round-off errors in the computation of the inner products 6n+\

and 6'n+1

(iii) avoiding stagnation of the Krylov space generation.

An analysis (Sleijpen and van der Vorst 1995a) shows that the last two
objectives go hand in hand and suggests choosing x«+i as minimizer of

Ixl Ixl

instead of (16.7), which optimizes the first objective. This requires us to

16 The other one is needed anyway for solving (16.11).

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 361

make Aw" + 1 — w" + 1 / x n +i orthogonal to w" + 1 , that is, to choose

N w " I I
2

Xn+l •— 1—z. 7 ~ r. (10.12J
(W n+ l> A w n+ l>

Compromising suitably between (16.8) and (16.12), taking the value of

into account, ultimately leads to our recommendation (Gutknecht and Ressel
1997) to let in B I C G S T A B 2

Xn+l•= (16.13)

11 Aw"
it b

n+i

This is a variation of a proposal of Sleijpen and van der Vorst (1995a) for
choosing Xn+i in B I C G S T A B such that the effect of rounding errors in case
of stagnation is minimized (Sleijpen and van der Vorst 1995a, Section 3.4).

In their B I C G S T A B (2) algorithm, which is mathematically equivalent to
B I C G S T A B 2 , Sleijpen and Fokkema (1993) gave up the consistency condi-
tion of ti for odd / and simply based the iteration on

tl+i(() := CMC), i f / i s even, (16.14a)

t/+i(C) := (l-XlC-Xl+lC2)<Z-i(O

= ti-i(C)-XiMC)-Xi+iC*l(C) i f / i s odd, (16.14b)

where xi an<i Xi+i a r e n o w the parameters of the two-dimensional minimiz-
ation problem for w™+}.

This saves a few operations, but has the disadvantage that the odd steps
do not produce a residual and a corresponding iterate. Therefore, only every
four matrix-vector products does one have a chance to realize that the al-
gorithm has converged. On the other hand, once the problems caused by
small values of |xn+i| a n d ill-conditioned least squares problems have been
eliminated in B I C G S T A B 2 , we can expect that it is numerically as stable as
B I C G S T A B (2) , in particular since (16.14b) seems to be more susceptible to
a growing gap between recursively computed and true residuals, a difference
barely noticed in practice, however; see Section 18 for more details. Altern-
ative versions of B I C G S T A B (2) introduced in Sleijpen, van der Vorst and
Fokkema (1994) also avoid these two drawbacks.

B I C G S T A B 2 is easy to generalize by allowing any sequence of one-, two-,
or even higher-dimensional minimizations. Let us define S^ as the set of
indices n + 1 where we perform an ^-dimensional minimization, and let SQ

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

362 M. H. GUTKNECHT

denote the set of indices where no minimization is performed. Since n + 1
starts at 1 in our algorithms, we then have, for example, Si = {1,3,5,.. .}
and S2 = {2,4,6, . . .} for standard B I C G S T A B 2 , but <S0 = {1,3,5,. . .} and
S2 = {2,4,6, . . .} for BlCGSTAB(2). In the variant of B I C G S T A B 2 obtained
by observing (16.13), which in contrast to B I C G S T A B (2) is still consistent
at each n, it is determined on the fly whether an odd index belongs to So
or Si. But even if it does not, the residual will not normally grow so much,
so that the loss of ultimate accuracy is kept within limits.

With this notation, B I C G S T A B 2 and its consistent variants can be for-
mulated as follows.

ALGORITHM 18. (GENERALIZED B I C G S T A B 2 ALGORITHM)

For solving Ax = b choose an initial approximation x§ € C^
WQ := w§ := b — Ax§. Choose yo £ C ^ such that So := (yo, w§)
S'o := (yoi AWQ) ^ 0. Then, for n = 0 , 1 , . . . , compute

w
71-1
71+1

n-1
SJ+1 := x,

n

.n-1

if n + 1 G «S2,

if n + 1 e S2,

K +i

If n + 1 ^ 52, define Xn+i, for example, by (16.13) and let

w,
,71+1

n+1

Si+1

w,
.71+1

W
71+1

n+1

= ~Sn+i/(6'nXn+l),

= AwB"+1 - if n + 2 e S2,

— w
n+l w n

.n+1V'n,

and set

^ 0 and

(16.15a)

(16.15b)

(16.15c)

(16.15d)

(16.15e)

(16.15f)

(16.15g)

(16.15h)

(16.15i)

(16.15J)

(16.15k)

(16.151)

(16.15m)

else (that is, if n + 1 e S2) determine £n and rjn as solutions of (16.11) and
proceed with

L-£ n) , (16.15n)

- £„), (16.15o)

„), (16.15p)

Xn+1 : = ~ wn+l1n

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 363

(16.15q)

:= 6n+1/(6'nVn), (16.15r)

(16.15s)

n , (16.15t)

^ . (16.15u)

Finally, set

6'n+1 := (yo,Aw:+l). (16.15v)

If AV^J = o for / = n — 1, n, o r n + 1, then the algorithm terminates and

x^+ 1 is the solution of Ax = b. However, if none of these residuals vanishes,

but 8n+i = 0 or 6'n+l — 0, the algorithm breaks down.

Note that as in B I C G S T A B storing x™+1 and x"^J could be avoided, and
that w™+1 could be stored over w™+1.

I6.4. The BlCGxMR2 and B I C G X C H E B Y methods

In the framework of Algorithm 18 we may in particular let S2 = {2, 3 ,4 , . . . } ,
which means that we do a two-dimensional minimization at every step except
the first one (where n + 1 = 1). This yields a method we call BlCGxMR2 or,
if we want to indicate that we mean the version based on coupled two-term
recurrences, the BlOCxMR2 algorithm. It was proposed in Gutknecht
(1994c) and also independently by Cao (19976) and by Zhang (1997); a
look-ahead variant based on the three-term look-ahead Lanczos recurrences
is given in Gutknecht and Ressel (1996), while the combination with the
QMR approach is explored in Ressel and Gutknecht (1996). This method
has the advantage of avoiding the sometimes doubtful one-dimensional min-
imization step and yet producing an iterate and its residual at every step.
Experiments show that it typically converges slightly faster than BlCG-
STAB2, which often converges markedly faster than B I C G S T A B . The latter
can be considered as a B lCGxMRl method.

Compared to B I C G S T A B 2 , the character of the polynomials tn changes
drastically in BlCGxMR2: while in the former method just two new zeros
are added in every other step, but all the other zeros remain fixed, here all the
zeros get modified in each step, as is the case with orthogonal polynomials,
for which the zeros interlace.

A further alternative is to look at product methods where the second
set of polynomials, {£/}, consists of the residual polynomials of some other
Krylov space solver. For example, one might choose them as suitably shifted
and scaled Chebyshev polynomials, as mentioned as a possibility in van der
Vorst (1992) and Gutknecht (1993c). This requires the construction of an

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

364 M. H. GUTKNECHT

ellipse containing the eigenvalues of A. A technique for this task was de-
vised by Manteuffel (1977). The recurrences of the resulting B I C G X C H E B Y

algorithm are the same as those for BlCGxMR2, but the coefficients r\n

and £n are known in advance; they are determined by the foci of the ellipse.

16.5. The B I C G S T A B (^) algorithm

Sleijpen and Fokkema (1993) went one step further in the generalization
of B I C G S T A B and B I C G S T A B 2 : with B I C G S T A B (^) (where £ is a positive
integer) they introduced a method that performs an ^-dimensional minim-
ization every £ steps. In other words, the polynomials tn are built up by
appending polynomial factors of degree £. The original paper suggested gen-
erating the Krylov space in between by simply multiplying w£| successively
by A as in (16.14a). We have mentioned already that this may cause a de-
parture of the recursively computed from the true residual. Therefore, two
other realizations of this method were proposed and compared in Sleijpen
et al. (1994): a 'stabilized matrix' version, which is, for £ > 4, considerably
more costly, and an 'orthogonal matrix' version, which sometimes seems to
converge more slowly; see Tables 1 and 5 in Sleijpen et al. (1994). Further
tests ultimately led to the enhanced implementation of B I C G S T A B (^) of
Fokkema (1996a, 19966).

There are examples where £ = 4 is markedly superior to £ = 2, and there
are even cases where £ = 8 works well, while neither £ < 8 nor any other
method tried converged. But in most examples the convergence rate seems
to be about the same. There are two reasons to expect better convergence:
first, the residual reduction due to ^-dimensional minimization is clearly
stronger than for £ times of one-dimensional minimization; second, it can be
seen that the Lanczos process is less affected by round-off if one works with
larger £.

16.6. Further LTPMs

As is clear from the definition of LTPMs, there exist infinitely many such
methods, even when we allow at most three terms in the recursion for tn,
and quite a few of them may seem to make sense for one reason or another.
But our interest is of course restricted to those that are competitive.

Moreover, as mentioned, LTPMs come in various versions depending on
the recursions used. We have chosen here to describe what we call the (3,2 x
2)-type LTPM, which applies a three-term recurrence for the polynomials
t\ and two coupled two-term recurrences for the Lanczos and the direction
polynomials. We could equally well use the three-term recurrence for the
Lanczos polynomials, as in Gutknecht and Ressel (1996) and Ressel and
Gutknecht (1996), thus getting (3, 3)-type LTPMs. Then there is no w-
table, but the w-table has in the generic case bandwidth 4. On the other

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 365

hand, one can also turn to coupled two-term recurrences for both polynomial
sequences, that is, (2 x 2, 2 x 2)-type LTPMs, as suggested by Fokkema et al.
(1996) as well as Zhang (1997). This has the advantage that the standard
BIOMINS version of the BiCGS method fits into the pattern, but, on the
other hand, methods like BICGSTAB2 and BlCGxMR2 are less easy to
reformulate. To display these versions in a way that is analogous to our
Figure 1, we would have to introduce four tables for four different types of
product vectors, and in each table the bandwidth would be 2.

Among the recently proposed LTPMs is the already mentioned shifted
CGS algorithm of Fokkema et al. (1996) whose residual polynomials are
(1 — LJ>()pn-i{()Pn((), where /x is a fixed chosen value, for instance the inverse
of an estimate for the largest eigenvalue for A. The authors' examples
indicate that its residual norm histories have typically less dramatic peaks
than BiCGS. The same is true for the CGS2 method introduced in the
same paper: there, both polynomials are Lanczos polynomials of the same
degree, but they correspond to two different left initial vectors. A number
of further LTPMs were suggested by Brezinski and Redivo Zaglia (1995),
but examples for demonstrating their usefulness are missing.

17. Smoothing processes

The erratic convergence behaviour of the basic Lanczos-type solvers, the
BiCG and BiCGS methods, often gives rise to criticism. Plots of the re-
sidual norm are the most often used tool when algorithms are compared
and, therefore, a method sells well if it converges quickly and smoothly.
Thus, it is not surprising that there is an interest in smoothing processes
that modify the BiCG or BiCGS iterates so that the residual norm plot
becomes smoother. However, we should say that smoothing is also dubi-
ous. In fact, what really counts in practice is that a method should find the
solution (up to a certain error) as quickly as possible and, since the error
cannot be checked, the residual is monitored instead. The smoothness of the
convergence does not matter from that point of view. Nevertheless, smooth-
ing processes are of some interest since they can speed up the convergence
slightly. On the other hand, they hide some useful information: a peak
in the residual norm plot indicates a temporary stagnation of convergence,
while in the smoothed residual plot we cannot distinguish temporary from
permanent stagnation.

A question that has been resolved concerns the relationship between the
convergence behaviour of CG and CR, as well as FOM and G M R E S . This
relationship approximately carries over to BiCG and QMR, and makes us
understand why peaks in the residual norm plot of BiCG are matched by
plateaux in the one of QMR. This result is closely related to our previous dis-

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

366 M. H. GUTKNECHT

cussion of the relationship between (Petrov-)Galerkin and (quasi-) minimal
residual methods, in Section 5.

17.1. Trivial minimal residual smoothing

If a monotone residual norm plot is all we aim at, then there is a trivial
recipe. We let17

~ _ / x n _i , ~ _ J r n _ i , if | |?n_i| | < ||rn | |,
" ' " I xn , r " - \ rn, if !!?„_!! | > ||rn||.

This clearly implies that the residuals r n of the 'smoothed' iterates satisfy

| |rn | | = m i n {||rn_i||, | | rn | |} = min {||ro||, | | r i | | , . . . , | | r n | | } .

We call this trivial minimal residual (TMR) smoothing. We do not consider
this as a serious proposal, but mention it, because it is sometimes applied
when numerical results are presented. It reflects the position mentioned
above, that all that really matters is to fulfil a prescribed bound for the
residual norm as quickly as possible. This is a legitimate reason for applying
TMR smoothing when publishing results, but the code of conduct requires
that authors declare it.

Note that TMR neither increases nor reduces round-off.

17.2. Minimal residual smoothing

Given any pair of sequences of iterates and residuals, for example those
produced by the BlCG method, Schonauer (1987) proposed to replace them
by the smoothed sequences

x n := x n _i (l — 9n) + xn#n , r n := r n _ i (l — 9n) + rn9n, (17.1)

where 9n is chosen to make the residual as small as possible, which requires
that

?„_! - rn JL rn , (17.2)

or

n "~ II? , - r ||2 ' (17>3^
Ilrn-1 rn\\

From the relations (17.1) and (17.2) we conclude by Pythagoras' theorem
that

| |? n | | 2 = HF^H 2 - | |rn_i - r n | | 2 |0 n | 2 . (17.4)

The idea was further developed and investigated by Weiss (1990, 1994),

17 Before, we used tildes for the left Lanczos vectors and the left direction vectors, but we
did not define xn and rn . These vectors are now the smoothed iterates and residuals.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 367

and then taken up by Gutknecht (1993a) as well as Zhou and Walker (1994);
see also Walker (1995). Following Zhou and Walker, we call it minimal re-

sidual (MR) smoothing. Note that we perform a local, one-dimensional
minimization, as we did in B I C G S T A B . Of course, we could generalize this
approach to a local MR(€) smoothing, that is, an ^-dimensional minimiz-
ation additionally involving r n _ 2 , . . . , ?n_^. However, numerical tests show
that this is hardly worth the extra work (Zhou and Walker 1994).

Obviously, MR smoothing is some kind of a recursive weighted mean pro-
cess, but, in general, the weights need not be positive. From the definition
it is clear, however, that the resulting residual norm plot is monotonically
decreasing. Therefore, this is a very effective smoothing process. Note that
the given sequence is piped through the process without generating any
feedback.

The main theoretical result of Weiss' thesis is that applying MR smooth-
ing to the FOM iterates yields the GCR (or, G M R E S) iterates: the or-
thogonal residuals of the former become conjugate and minimal residuals
of the latter method. For a short proof see Gutknecht (1993a, p. 49). A

fortiori, applying the MR smoothing to the CG iterates yields the CR iter-
ates. Hence, in these two cases the transformation must be identical to the
relations (5.22) and (5.23), and we conclude that

Actually, in these cases of orthogonal residual methods, where rn _L fCn,
(17.3) and (17.4) simplify since we have rn _L rn_i € K,n and thus, again by
Pythagoras, | |rn_i - rn | |2 = | | r n_i | | 2 + | |rn | |2, so that

|2
rn-i

r I I
2

Inserting this into (17.4) and taking the reciprocal yields

I IT* l|2 Mr* i l | 2 | | r * l |2 \\r i l | 2 |l*> | |2

I I 1 " ! ! l l ' n — 1 | | I |x n 11 | | x n — 1 | | l l^n l l ^ . _ Q I I * - K | |

Here, for the last equality, we applied induction in order to represent the
norm of the smoothed residual in terms of the original residual norms. Con-
versely, solving for | |rn | |2 leads to

We will comment on these formulae later, but want to remind the reader
at this point that they only hold if the given residuals rn are mutually
orthogonal.

In Gutknecht (1993a) we pointed out that there is also an algorithm to
do the inverse of MR smoothing. One motivation for using it can be that in

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

368 M. H. GUTKNECHT

Galerkin methods the errors x n — xex have a different spectral decomposition
and are often smaller than in methods that minimize the residual.

17.3. Quasi-minimal residual smoothing

When we apply MR smoothing to the BiCG iterates, the resulting smoothed
iterates differ from those of the QMR method. But in Section 5 we have seen
that nevertheless the BiCG iterates x n := x ° and their residuals rn := r °
are related to the QMR iterates x n := x£fR by the relations (5.22) and
(5.23), which are of the form (17.1) with 6n satisfying (17.5). Now 9n is no
longer determined by one-dimensional minimization in the residual space,
which leads to the choice (17.3), but given by (17.5), where, as we have seen
in (5.25), c2 and | s n | 2 can be expressed in terms of the norms of the BiCG
residual, | |r^||, and the quasi-residual, | |qn | | = |?7n+i|:

Moreover, | |qn | |2 satisfies the recursion (5.24):

1 1 1

qnir llQn-iir llr«H

Of course, in practice, a substitution vn := | |qn | |2 will be made, because we
do not compute qn .

Zhou and Walker (1994) suggest applying the smoothing process (17.1)
with this choice of weights to any kind of Krylov space solver. They call
this QMR smoothing.

Comparing (17.9) with (17.6) we see that | |qn | | here takes the place of
||rn | | . In particular, as in (17.6) and (17.7), we now have

There is an alternative to formulae (17.8) and (17.9) that leads to the
same weights: according to (5.21) we have

In view of the interpretation of sn and Cn as sine and cosine, this suggests
defining

Then we let

Cn := COSTn = ,,, ,^n~1, , ,„ , Sn == SU1 Tn =

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 369

It is easy to verify that this construction is consistent with the former one of
(17.8) and (17.9), and that, as before, ||rn|| Cn = ||qn|| = ||qn-i||sn- Note
that here sn e [0,1), while in the QMR method sn can take complex values.

17.4- An alternative smoothing algorithm using direction vectors

Zhou and Walker (1994) noticed that when MR or QMR smoothing is
applied to BlOMlN or BIOMINS, better numerical results can be obtained
with a reformulated algorithm that updates the smoothed iterates using
direction vectors. Assume that our iterates and residuals are generated by
a formula of the form

xn + i := xn + vnuJn, r n + i := rn - Avnwn. (17.11)

Here, vn and un can, but need not, be the quantities from BlOMlN. In
order to rewrite the smoothing formulae (17.1) we introduce the difference
un := xn — xn_i, so that

xn := xn_i + UnOn, rn := rn_i - Aun9n. (17.12)

Next we need update formulae for un and Aun; we do not want to spend an
extra matrix-vector product on the latter and consider it as a single vector.
Substituting the above update formulae into Urj+i = xn+i — xn yields

Un+i := vnu;n + u n (l - 0 n) , Aun + i := A\nujn + Aun(l - 0n). (17.13)

Consequently, if for a Krylov space solver (17.11) holds, then the formulae
(17.12) and (17.13) are an alternative form of the smoothing process based
on (17.1). For MR smoothing there is also a simplified formula for the
weight 9n:

17.5. The peak-plateau connection

Numerical experiments with the QMR methods and with MR smoothing
show that peaks in the residual norm plot of BiCG or BiCGS are always
matched by plateaux in the plot for the smoothed method, a plateau being
a region where the residual norm stagnates or decreases only slowly. This
phenomenon was studied in Brown (1991) and Cullum (1995), but it was
finally Cullum and Greenbaum (1996) who came up with a simple explana-
tion based on formulae we derived above, notably (17.7) and the analogue
one in (17.10); see also Walker (1995). They also proved by example that
the peaks in a FOM residual plot need not come from a near-singular Hn .

Indeed, according to (17.7), if ||rn|| S> ||?n | |, then the denominator must
be small, that is, ||rn|| « | |rn_i||, and vice versa. On the other hand, if the
norm of the smoothed residual decreases quickly, then the denominator will

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

370 M. H. GUTKNECHT

be close to 1, and thus the residual of the original method is nearly as small
as the smoothed one. Consequently, in a very vague sense, either both the
original method and the smoothed one do well, or both do badly. Equation
(17.6) also makes clear that the smoothed residual cannot be much smaller
than the original one; in fact, it follows that

1

and equality only holds if ||rfc|| = | |rn | | for k < n. However, we need to recall
that (17.6) and (17.7) assume orthogonal original residuals. Therefore, the
application of MR smoothing to BlCG residuals is not covered.

Regarding the QMR method (or the application of QMR smoothing to
the BlCG residuals), we can draw the same conclusions on the plateau
behaviour of the quasi-residuals qn, since these appear in (17.10). Moreover,
we know that the QMR residual is at most \/n + 1 times larger than the
quasi-residual, and in practice the factor is often closer to 1. Since the peaks
in the BlCG residual norm plot can be several orders of magnitude high,
this factor is rather unimportant in this discussion.

18. Accuracy considerations

Unfortunately, in finite precision arithmetic, inherent round-off problems
jeopardize the use of the BlO and BlOC processes and related algorithms.
There are at least four effects that can cause trouble:

(i) the loss of (bi) orthogonality
(ii) the low relative accuracy of certain inner products, notably 8n and 6'n

(iii) inaccurate Krylov space extension
(iv) the deviation between the recursively computed and the true residual.

There has been considerable work on analysing some of these effects, and
also on finding ways to reduce them or compensate for them. Regarding
the nonsymmetric Lanczos process, this is an area where results are very
recent and investigations are still going on: one wants to know where and
why Lanczos-type algorithms lose accuracy, and how one can avoid that
at a reasonable price. The production of quality software relies heavily on
such findings. But this also means that a good implementation of these
algorithms is much more complicated than one would expect from the basic
descriptions we have given here. We can only give a very brief and superficial
overview of this area, however.

Considerable effort has also been invested into the backwards error ana-
lysis of the symmetric Lanczos and the standard CG algorithms (Greenbaum
1989, Greenbaum 19946, Greenbaum and Strakos 1992). More recently, this
effort has been extended to BiOMlN (Tong and Ye 1995). But we cannot
discuss this work here.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 371

18.1. Loss of biorthogonality

Recall that, in the nth step of the BlO algorithm, the vectors yn+i and
y n + i are determined so that y n _LB Yn+i, Yn-i -L-B Yn+i and yn+i _LB Yn,
y n + i ± B yn-i- Nevertheless, the biorthogonality y m _LB Yn+i, Yn+i -LB Ym
theoretically holds for all m < n. But due to round-off one encounters a
loss of this inherited biorthogonality when n — m becomes large. This is
no surprise: orthogonal projection necessarily reduces the size of a vector
and thus its relative accuracy. If recursively generated projections of vectors
are the relevant data used in the process of building up dual bases, and if
one counts on inherited orthogonality, it is not surprising that working with
finite precision may have a strong effect.

Lanczos (1952, pp. 39-40) was aware of this loss and suggested, on one
hand, full reorthogonalization as a possible yet expensive remedy and, on
the other hand, for the iterative solution of linear systems, the modification
of the right-hand side by damping the components that correspond to the
large eigenvalues. This second remedy, which he called 'purification' of the
right-hand side, is similar in spirit to what we now call polynomial precondi-
tioning, but he applied it only before the Lanczos process and not at every
step. By suitable preconditioning the loss of (bi)orthogonality is reduced
and, at the same time, becomes less relevant since the residual becomes
sufficiently small long before n is comparable to TV in size.

On the other hand, for the eigenvalue problem, where only few precon-
ditioning techniques apply and the accuracy of the tridiagonal matrix is
crucial, the loss of orthogonality is a serious problem even in the symmetric
case, for which this numerical phenomenon was analysed by Paige (1971,
1976, 1980). His theory is also discussed in Cullum and Willoughby (1985)
and Parlett (1980). It allows us to recognize when a critical step occurs that
will induce loss of orthogonality. This loss is coupled with the occurrence
of extra, so-called spurious copies of eigenvalues and eigenvectors. This
is nicely demonstrated by the numerical experiments displayed in Parlett
(1994). For Hermitian A, Parlett and his coworkers (Parlett 1980, Parlett
and Nour-Omid 1989, Parlett and Reid 1981, Parlett and Scott 1979, Parlett
et al. 1985, Simon 1984a, Simon 19846) as well as Cullum and Willough-
by (Cullum and Willoughby 1985, Cullum 1994), and others have explored
various ways to get around this problem in practice. While Cullum and Wil-
loughby developed a method to distinguish spurious eigenvalues from true
ones, Parlett's group chose to avoid the spurious ones from the beginning
by partial or selective reorthogonalization, that is, by orthogonalizing ytemp
additionally with respect to those basis vectors that were constructed earlier
in certain critical steps. All this earlier work is on the symmetric Lanczos
process based on three-term recurrences.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

372 M. H. GUTKNECHT

Recently, Bai (1994) generalized Paige's theory to the nonsymmetric case
and Parlett's student Day (Day, III 1993, Day 1997) adopted the partial
reorthogonalization technique; he refers to it in this case as maintaining

duality. Again, certain earlier computed Lanczos vectors are included in the
now two-sided Gram-Schmidt process. This is quite an effective remedy for
the loss of biorthogonality, but of course, it causes considerable overhead
in memory requirement, computational cost, and program complexity. For
eigenvalue computations this extra effort may well be worthwhile, but for
linear solvers it seems too costly. Moreover, it is impossible to extend this
technique to squared and product methods.

Day also aims at reducing the local error as much as possible. First, since
the BlO algorithm involves two-sided Gram-Schmidt orthogonalization, we
can implement it in the modified form, that is, replace (2.21e) and (2.21f)
by

Ytemp := Ay n -y n _i /?„_! , y t emp := A*yn - Yn-lPn-l,

OCn •= (YTI, Ytemp)B/<*>«, " n : = Ckn,

ytemp • ytemp Jn^-n^ ytemp • ytemp jn^Ti1

Then we can make a tiny correction in order to reinforce the orthogonality
that we just took into account:

dan := (yn> ytemp)B/^, dan := (yn,ytemP)B /6n,

an := an + dan, an := an + dan,
ytemp : = ytemp ~~ YnOOini ytemp : = ytemp ~~ ynO&n-

While Day proposes to apply this local reorthogonalization at every step, one
can choose to include it only when ||ytemP|| or ||ytemP|| is much shorter than
| |Ayn | | or ||A*yn||, respectively. We can also implement this enhancement
in LTPMs like B I C G S T A B 2 .

18.2. Low relative accuracy of certain inner products

The inner products 8n := (yn,yn}B and 6'n := (vn, Avn)B are crucial for
determining the recurrence coefficients of the BlO and BlOMlN algorithms:

._ (yn ,Ay n) B „ _ 7n<$n ._ Sn _ (Sn-|-l

On °n-l O'n 0n

Most of the algorithms we discussed break down if one of these inner products
is used but vanishes. Then one has to resort to look-ahead, which is dis-
cussed in the next section. However, typically, the look-ahead tolerance is
chosen to be rather small. It is therefore quite normal to proceed without
look-ahead, although

< 1 or „_ . . " < 1,
| |y n | | | |By n | | | | v n | | | |BAv n |

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 373

and this means that 6n and 6'n suffer from low relative accuracy. It does not
help to compute them in double precision.

Note that this is a difficulty that occurs only in the nonsymmetric case
and, regarding 6'n, the symmetric indefinite case. A possible remedy consists
of switching to a suitable one-sided Lanczos process (see Section 6), but so
far tests have not been so successful.

The same issue comes up in LTPMs, but there the inner products for
6n and 8'n are different. Taking appropriate measures leads to improved
versions of algorithms from the BICGSTAB family; see Sleijpen and van der
Vorst (1995a, 1995&) and Gutknecht and Ressel (1997).

18.3. Inaccurate Krylov space extension

The generation of well-conditioned Krylov space bases is the prime aim of
the Lanczos process. In this regard it is important that in the recursions the
term that increases the dimension is not small compared to those that lie in
the current subspace. For example, in the BlO algorithm it is dangerous if
||Ayn|| is considerably smaller than | |ynan | | or ||yn_i/3n_i||; in the BiOC
algorithm it is dangerous if ||Avn | | is much smaller than ||yn<£n||; and in the
BICGSTAB algorithm HAw^^H should not be small compared to ||w"||,
nor should ||Aw"+1Xn+i|| be small compared to ||w"+1 | |. While one has a
choice to modify Xn+i m

 BICGSTAB2, the other cases call for the application
of look-ahead; see Section 19.

18.4- Deviation between recursive and true residual

Krylov space solvers normally update the residuals recursively, since the
computation of the true residual b — Axn costs an extra matrix-vector mul-
tiplication and, according to folklore, convergence is slower if the true re-
siduals are used for further computation; see, for instance, van der Vorst
(1992) and Greenbaum (1997). However, while the size of the true resid-
uals is bounded below by the round-off errors that occur in its evaluation,
recursively computed residuals keep getting smaller and smaller if a method
converges. This is easy to understand for most Krylov space solvers: they
are scale-invariant with respect to the size of the residuals, as long as we
neglect the iterates. Therefore, at some point the recursively computed and
the true residuals necessarily start to deviate from each other completely.
Normally, from then on the true residual remains on roughly the same level,
while the recursive one continues to decrease.

Numerical experiments readily show that this branch point is not just
determined by the round-off in the evaluation of the true residual, but that
it may be reached much earlier. In particular, examples with BlCG or
BlCGS with peaks in the residual norm plot that are much higher than ||ro||
seem to indicate that the tallest peak, max||rn | |, determines the ultimate

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

374 M. H. GUTKNECHT

level of the true residual. Sleijpen et al. (1994) provide a theory to support
this observation. However, a more careful analysis of Greenbaum (1994a,
1997) shows that under the assumption that the Krylov space solver uses
direction vectors, as in (17.11), it is the maximum norm of the iterates (or
the corrections) that matters. Of course, very high peaks in the residual
norm plot normally go along with iterates whose norm exceeds by far the
one of xex- Therefore such peaks normally imply a loss of accuracy.

By estimating the round-off in the evaluation of x n + i and r n + i according
to (17.11), Greenbaum (1997) finds the following result.

Theorem 18.1 If iterates and residuals are updated according to (17.11),
the difference between the true residual b — Ax n and the recursively com-
puted residual rn satisfies

| |
r"11 < (6 + O(e2)) [n + 2 + (1 + 7 + (n + l)(10 + 2 7))6 n] ,

where e denotes the machine-epsilon, 7 is a constant that is needed to es-
timate the round-off in the matrix-vector product according to

||Avn-fl(Avn)||<7€||A||||vn||,

and

k<n | |x e x | |

This estimate is only based on (17.11), and it does not matter where the
direction vectors v n and the step sizes uJn come from. Therefore, errors in
these quantities do not influence the gap between true and recursive resid-
uals. Clearly, the theorem not only applies to BlOMiN, but, for instance,
also to the smoothing process (17.12) and to B I C G S T A B if we force (16.9e)
to be executed in the given order. It does not directly apply to our gen-
eral (3,2 x 2)-type LTPM algorithm (Algorithm 16), since the latter also
involves three-term recurrences. For these the maximum residual plays an
essential role too. Applying these considerations to the B I C G S T A B (2) re-
cursions (16.14a)-(16.14b), we conclude that if the Krylov space vectors
associated with C^-i(C) a n d C2^/-i(C) a r e close to being linearly dependent,
the corresponding terms in

could be large compared to w™+J and w£+|, thus causing a large deviation

between x™+} and its recursively computed residual w"^ | .
It is often possible to overcome the loss of accuracy discussed above by

a modification that was first proposed for B I O M I N S by Neumaier (1994),
but is equally applicable to other methods, although for some it will cost an
additional matrix-vector multiplication per step; see Sleijpen and van der

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 375

Vorst (1996). One can think of it as a repeated shift of the origin or an
implicit iterative refinement. First, we let

b ' := b - Axo, x' := x0, xo := o,

so that b — Ax = b ' — Ah, where h := x — x'. We then apply our algorithm
of choice to Ah = b ' . At step n, if the update condition

| |rn | | < | |b ' | | V (where 7' G (0,1] is given) (18.1)

is satisfied, we include the reassignments

b ' := b ' - Ax n , x' := x' + x n , x n := o. (18.2)

Note that at every step, we then have

rn = W - Ax n = b - A(x'

Neumaier actually computed the true residual at every step and chose 7' = 1,
which means that the update is performed at every step where the residual
decreases, hence, nearly always. Sleijpen and van der Vorst (1996) followed
up on this idea, provided an analysis, and suggested several alternatives
to the update condition (18.1). According to our numerical tests, the best
strategy depends on the particular example.

In general, each update (18.2) requires an extra matrix-vector product.
However, Neumaier found a way to use it in B I O M I N S for replacing one of
the two other such products, and Sleijpen and van der Vorst achieved the
same for B I C G S T A B .

19. Look-ahead Lanczos algorithms

Look-ahead Lanczos algorithms are extensions of Lanczos-type algorithms,
in particular the BlO and BlOC algorithms, that circumvent the break-
downs one might encounter, or at least most of them. The look-ahead BlO
algorithm was first thought of by Gragg (1974) in a paper on matrix inter-
pretations of recursions for continued fractions and Pade fractions; however,
he only followed up on his idea in the context of the partial realization prob-
lem of system theory (Gragg and Lindquist 1983). Years later it materialized
in Taylor's thesis (Taylor 1982) and the paper by Parlett et al. (1985), who,
however, concentrated on steps of length two only and used a very different
approach, namely by thinking of the BlO algorithm as a two-sided Gram-
Schmidt process. Look-ahead was then rediscovered by Gutknecht (1992,
1994a) in connection with work on continued fractions associated with ra-
tional interpolation (Gutknecht 1989a) and joint work with Gene Golub on
the modified Chebyshev algorithm (Golub and Gutknecht 1990). At the

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

376 M. H. GUTKNECHT

same time18, the subject was also taken up by Joubert (1990) and Par-
lett (1992), and latterly also by Boley, Elhay, Golub and Gutknecht (1991),
Preund et al. (1993), Nachtigal (1991), Brezinski, Redivo Zaglia and Sadok
(19926), Hochbruck (1992), and others. Much of the earlier work (including
Gragg's note) was on exact breakdowns, and the idea was to treat near-
breakdowns as if they were exact ones. But Gutknecht (1994a, Sections 9
and 10), Freund et al. (1993), Hochbruck (1992), Nachtigal (1991), and Par-
lett (1992) addressed explicitly the general near-breakdown case. Moreover,
in contrast to the continued fraction approach, the two-sided Gram-Schmidt
approach requires no modification for near-breakdowns.

We first derive a look-ahead BlO algorithm, or LABiO for short, and then
treat an analogue look-ahead BlOC algorithm with mixed recurrences. In
both cases we first describe the standard versions as given in Gutknecht
(1994a), Freund et al. (1993), and Freund and Nachtigal (1994) and then
describe recently found simplifications. We do not state recursions for the it-
erates, because these two look-ahead algorithms are normally coupled either
with QMR or with 'inconsistent' update formulae for the Galerkin iterates,
as in our inconsistent B I O R E S and BiOMlN algorithms. Finally we refer
to some other look-ahead algorithms, including the composite-step BiCG
algorithm of Bank and Chan (1993) and Bank and Chan (1994) and the
GMRZ and other algorithms of Brezinski, Redivo Zaglia and Sadok (1991).

In retrospect, the LABiO algorithm can be understood as follows: if a
breakdown or near-breakdown of the BlO algorithm occurs, we avoid it by
temporarily reducing the number of orthogonality conditions that have to
be fulfilled, in fact dropping the biorthogonality to the most recent basis
vectors. It turns out that in all but certain very exceptional situations
(which are referred to as incurable breakdowns) one can return to the full set
of conditions after just one or a few steps. The resulting pairs of Lanczos
vectors are then in a certain way block biorthogonal.

One could also consider making use of the freedom capitalized upon in the
one-sided Lanczos algorithm and apply look-ahead only to the right Lanczos
vectors.

As before, we could allow for a formal inner product matrix B that com-
mutes with A, but for simplicity we assume B = I.

19.1. LABiO: the look-ahead BlO algorithm

We know from Lemma 12.2 that a regular Lanczos polynomial, and, thus,
a pair of regular Lanczos vectors yn , yn [^ o) satisfying (2.4), exists if
and only if the nth leading principal submatrix M n of the moment matrix

18 The publication dates are misleading; one has to look at the dates where the papers
were submitted or preprints were made available.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 377

is nonsingular. In finite precision arithmetic we also need to avoid near-
singular sections; hence, we want to compute a pair of regular Lanczos
vectors only if M n is in a certain sense well-conditioned. However, we cannot
enforce this requirement directly: first, M n itself is not available and even if
it were, we would not want to have to compute its condition number; second,
leading principal submatrices of a Hankel matrix are notorious for their bad
condition; and third, the formulae below will show that, primarily, certain
other matrices need to be well-conditioned.

We let 0 = no < ni < 7X2 < . . . be a set of indices, where we can and want
to enforce all orthogonality conditions, that is, where

ICnj ±ynj, ynj-L>Cny (19.1)

We will call these indices well-conditioned, and likewise the correspond-
ing Lanczos polynomial and vectors will be referred to as well-conditioned.
Clearly, if a Lanczos polynomial is well-conditioned, then it is also regular.
A step for constructing well-conditioned Lanczos vectors is therefore some-
times called a regular step. When n is not a well-conditioned index, we refer
to yn and yn as inner vectors; and we call a step for computing these vectors
an inner step. Of course, the well-conditioned indices will be chosen such
that the problem of finding the Lanczos polynomial and the Lanczos vectors
is well-conditioned in the usual sense. We aim at generating sequences of
Lanczos vectors that satisfy (2.5) and (2.6) as before, but where (2.4) is
relaxed to

K.n[±yn, yn±K,ni tfni<n<ni+i. (19.2)

This implies that these sequences are block-biorthogonal: if we define matrix
blocks containing groups of Lanczos vectors,

Yi '•= [yn, yn,+i ••• yn,+i-i], Yi •= [yn, yn,+i ••• yn,+i-i],
(19.3)

and matrix blocks containing the inner products of these vectors,

^ , (19.4)

then we have

Dl l f J' = *' (19 5)
o if j ^ i . l i y -D J

For the derivation of the recurrences we assume that every n is associated
with the I for which (19.2) holds. We let

hi := ni+i -m,

and denote the possibly incompleted last blocks by

Yi-n •= [y n , y n , + i ••• y n] , Y i - n : = [y n i y n i + 1 ••• y n] , (1 9 . 6)

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

378 M. H. GUTKNECHT

and

Then we have, in consistency with our earlier notation,

Y n + 1 : = [y 0 ••• y,-! y,;n], Y n + 1 : = [r 0 ..

and (19.5) leads to

(19.7)

l-1 Yl;n

Y*+1Yn+i = D n + 1 := block diag (Do,..., A - i , Dl;n).

(19.8)

(19.9)

We still have to show that such sequences of Lanczos vectors exist, and
how they can be constructed. Let us for the moment assume that they exist.
Clearly, like any Krylov space basis, they could be constructed according to
(2.7), or, in shorthand notation, by

AYn = Y n + iT n) = Yn + 1 T n . (19.10)

Assuming that the last block is completed, we conclude from (19.1) or (19.5)
that Y*Yn+i = [Dn | o] and Y*+1Yn = [D j | o]T , so that, as in (2.12),

D n T n = Y* AYn = T*nBn if n = nl+1 - 1.

Here, the product on the left is a block upper Hessenberg matrix, while the
one on the right is a block lower Hessenberg matrix. Consequently, it must be
block tridiagonal, and thus Tn and Tn are themselves block tridiagonal, in
addition to being Hessenberg matrices. When all this is formulated in terms
of the Lanczos polynomials instead of the Lanczos vectors, as in Gutknecht
(1994 a), it is obvious that we can still choose Tn = Tn. If we want to
allow for independent scale factors j n and 7n for the left and right Lanczos
vectors, we can achieve this by diagonal scaling as in (2.29). Therefore, in
the following we only derive the formulae for the elements of Tn; we know
that those for Tn look analogous and do not require computing additional
inner products.

So, when the Zth block is just completed, that is, when n = n/+i - 1, then
Tn is of the form

T n = :

Ao Bo
Co Ai

where

i-i =: [6,"•I

is a block of size /i/_i x hi that is in general full, C\-\ is a /i/_i x hi block

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 379

that is zero except for the element 7n,-i in the upper right corner, and
is a hi x hi block of Hessenberg form that we write as

Ai=:
an-\ a%

7n- l

oThe extended matrix T_n has at the bottom the additional row

In this notation the recurrences for the Lanczos vectors can be written as

yn+l := (Ayn - Yi-nan - Yt_il

yn +i := (A*yn - Yi-nan - Yt_i
if ni < n + 1 < ni+x. (19.11)

Here, j n and 7n are again used to normalize the Lanczos vectors.
By now we know that if there exist Lanczos vectors that fulfil (19.2), then

they satisfy the above recurrence. It is straightforward to see by induction
that, conversely, these recurrences produce such vectors if

(i) we choose the well-conditioned indices such that the diagonal blocks
Di are well-conditioned

(ii) we determine bn such that the biorthogonality to the previous block is
enforced

(iii) we determine an in a regular step (that is, when n + 1 = ni+\) such
that the biorthogonality to the just completed block is enforced.

In the inner steps, an can be chosen arbitrarily. In particular, to reduce the
computational work, we can let it be the zero vector, although for stability
we might want to choose differently. For example, one can use these para-
meters to make the right Lanczos vectors within a block orthogonal to each
other, as proposed in Boley et al. (1991).

Enforcing the mentioned conditions readily yields

bn := Df^Y^Ayn, bn := D*zlY*_lA*yn, if n\ < n + 1 < raz+i,

an := D^~ YJ*Ayn, an := D^~ Y*A^yn, if n + 1 = ni^.\.
(19.12)

Formulae (19.11) and (19.12) are the standard ones for a look-ahead step,
as given in Gutknecht (1994a, §9) and Freund et al. (1993). In the latter
paper it is pointed out that by making use of recursions among the inner
products the large number of inner products that seem to be needed for
evaluating (19.4) and (19.12) can be reduced to just 2/ij, the same number
as for hi normal steps. Normalizing the Lanczos vectors costs another 2hi
inner products. Moreover, one has to store the current and the previous
pair of blocks of Lanczos vectors.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

380 M. H. GUTKNECHT

However, there is a way to simplify recurrence (19.11). In the formula

for bn in (19.12), we note that due to (19.2) only the last column of Y _̂i

contributes to Yl
ii1Ayn. Thus, we can replace Yf_x by ly* _ l5 where 1 :=

l f t ; i : = [0 • • • 0 1] T G mhl-\ Consequently, if we let

y[_x := Yt^Df_\l, y ^ := Y^D^l,

and

Pn-l := ylt-l
Ayn, P'n-l •= Yn;-lA*yn (nj < 71 < 7l/+i),

then

and likewise y/_i6n = y'i_lj3'n_l. Moreover, using the same argument again,

(yf_i)*Ayn = r^ - i^ - iAyn = (lT Df_\l)rni^Ayn = (lTDf_\l)l?n-i.

Thus we can redefine (3'n_i in terms of the new vector y'1-1 instead of y r a i-i;

and the analogue holds for /3^_1:

r (ni < n +1 < ni+i). (19.13)

The parenthesis contains only the bottom right element of Df\. Putting
the pieces together we see that the recursions (19.11) simplify to

y n + 1 := (Ayn - Yhnan - yt
l_1P'n_l)hn 1

~ ~ ~ ~ ~ ; ~ ; _ > i r r i (< r z + l

yn + i := (A*yn - Yl;nan - y i_ / B _ 1) /7 n J
(19.14)

In other words, the previous blocks are replaced by single vectors y/'_1 and
y[_i, respectively. It can be shown (Hochbruck 1996) that

JCni-i ± y;_1? y'i-i -L /Cn,-!. (19.15)

At the root of this simplification is the fact that the blocks

are of rank one, as was pointed out in Gutknecht (1992). Using a similar
argument Preund and Zha (1993) implicitly capitalized upon this in their
Hankel solver, but only recently it was pointed out by Hochbruck (1996),
who used yet another approach, that this leads to the above simplification of
the look-ahead Lanczos process. In the polynomial formulation the vectors
y[_i and yni correspond to polynomials that are the denominators of a
regular (or, well-conditioned) pair of Pade approximants; see Gutknecht
(19936), Gutknecht and Gragg (1994). In the case of an exact breakdown,
the above simplification is irrelevant since the block 5/_i then has only a

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 381

single nonzero element, the one in the upper right corner, and y;_x is then
a multiple of y ^ ^ ; see Gutknecht (1992).

A look-ahead algorithm always requires a look-ahead strategy, a recipe as
to when to start a look-ahead step and when to terminate it. The above for-
mulae clearly indicate that we need to avoid singular or near-singular blocks
Dj, and this suggests requiring that the smallest singular value, am[n(Dj),

be larger than a certain tolerance. Indeed, Parlett (1992) showed that the
following quantitative result holds: if the Lanczos vectors are normalized,
then

min {crmin(Yn), a m i n (Y n)} > min crmin(D i),
1 ' \Jni + 1 o<j<l

However, numerical examples reported in Preund et al. (1993) showed that,
in finite precision arithmetic, we should not rely on this result and not
monitor cmin(Z);.n) alone. Instead, it is suggested that the 1-norms of the
coefficient vectors in (19.11) be kept below a certain bound when n + 1 =

that is, when the new index n + 1 is declared as well-conditioned:

< T , | | 5 n | | i < T , | | 6 n | | i < T , | | 6 n | | i < T =*• n / + 1 : = n + l.

Here, the bound T depends on A and is typically of the order of ||A||. For
example, one can start with T := max {||Ayo||, ||A*yo||} and then adjust
this bound dynamically during the algorithm. See Freund et al. (1993) for
more details. If the simplified formulae (19.14) are used, the bound for
bn and bn can be replaced by one for y[_if3'n_1 and y{_1 f3'n_1. There is,
unfortunately, the possibility that Di-n remains singular or ill-conditioned
for all n > ni. This is what is called an incurable breakdown. Then there
is no way to escape a restart of the algorithm, but when solving a linear
system one can of course restart from the most recent approximation.

Clearly, the same approach can be used to specify an LABlC algorithm.
The look-ahead approach for Lanczos-type product methods (LTPMs) intro-
duced in Gutknecht and Ressel (1996) is based on the standard look-ahead
procedure, but can also accommodate the above simplification.

19.2. LABlOC: the look-ahead BlOC algorithm

The BlOC algorithm is susceptible to both Lanczos and pivot breakdowns,
and thus a look-ahead generalization of it should be able to cope with both.
In addition to the sequence of regular indices ni for the Lanczos vectors,
we therefore have a second sequence of regular indices m^ for the direction
vectors. From Lemma 12.2 we know that de tM n , ^ 0 and d e t M ^ / 0
but, as in the last subsection, we only consider here those regular indices
that are in some sense well-conditioned. In addition to (19.2) we now want

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

382 M. H. GUTKNECHT

to enforce

£m f c_LAvn , A*vn_L/Cmfe, i£ mk<n<mk+i. (19.16)

In the following, we associate with every n a pair (A;, I) such that

mk < n < mk+\ and ni <n < ni+\ (19.17)

hold, and we let h'k := rrik+i — mk. Denning, in analogy to (19.3)-(19.4)

and (19.6)-(19.8), blocks Vk, Vk, D'k, Vk;n, Vk;n, and D'k.n, we then have, as

in (19.9),

A V n + 1 = D ; + 1 := block diag (D'o,..., D'^, D'k.n). (19.18)

Since we want each of the sets {y^}, {yj}, {Vi}, {VJ} to be a nested basis of
the respective Krylov space, it is clear that there should exist recurrences
with a matrix representation

Y n = V n U n , AVn = Y n + 1 Ln ,

Y n = V n U n , A*Vn = Y n + 1 L n ,

where Ln and L n are of upper Hessenberg form and U n and U n are unit
upper triangular. From the polynomial formulation of the BlO algorithm we
could again readily conclude that we can assume L n and U n are diagonally
scaled versions of L n and U n , respectively. Moreover, as in Section 7, we
can return to (19.10) by eliminating V n and V n from (19.19), while by
eliminating Y n and Y n we find a block version of (7.10), if we assume the
definitions T n := L n U n and T^ := U n +iL n from (7.8). But we cannot
conclude that these are block LU and block UL factorizations of the block
triangular matrices T n and T^, respectively. The block triangularity of T^
can be verified as above for T n , but we must keep in mind that the blocks
can be of different sizes to those of T n .

If only exact breakdowns are considered, it has been shown that we in-
deed have block factorizations and that the block sizes are linked to each
other in a well-defined way; see Gutknecht (1994a). The link between the
block sizes follows directly from the block structure theorem for the Pade
table. If near-breakdowns are included, there are still arguments to have
the breakdowns linked, but not in the same rigid way: typically, for every
ni there is an mk such that n/ = mk or n/ = mk + 1. In the first case,
(pn(_i,pn() is a row-regular (or a row-well-conditioned) pair; in the second
case, (pn ,_i,pn i_i) is a column-regular (or a column-well-conditioned) pair;
see Hochbruck (1996). The notions of row-regularity and column-regularity,
which play a crucial role here, were introduced in Gutknecht (19936). They
mean that the respective polynomials (which are FOPS for the two closely
related functionals $ and $ ' of Section 12) are not scalar multiples of each

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 383

other; and they imply that these polynomials are even relatively prime; see
also Gutknecht and Hochbruck (1995), Gutknecht and Gragg (1994).

But let us first consider the general case: after replacing n by n + 1 in
the first line of (19.19), we can always write the last column of these matrix
equations as

Avn = Yn[fn + Yi-nfn.i +yn+i7n-

The conditions (19.2) and (19.16) that led to (19.9) and (19.18), respectively,
yield under assumption (19.17)

gn := D £ V ^ A y n , /„ := D " 1 ^ A v n . (19.21)

These formulae suggest that the recurrences (19.20) are long. However, in
(19.21) only few blocks of the block diagonal matrices are multiplied by
nonzero blocks of the vectors that follow. Recall that we have

v*Ayn = 0 if i < nj - 1, y*Avn = 0 if i < mk. (19.22)

Therefore, if we define

k* := max {j : j < k, rrij < max{n/ — 1,0}},

I* := max {j : j <l, rij < mk} ,

then in (19.21) only the blocks D'kir,..., D^._1 of D'mk and Dt*,..., £>/-i of
D n ; matter. Therefore, (19.20) becomes

Vn := y« Ej=fc j9n;j fc;nl5n;fc,
(19.23)

y n + i := [AY!^YfYfJ^

where

gn-j := Dj lVfAyn (j = k*,..., k - 1 if n <
j = k , . . . , k it n = 77J.fc_|_i), ^ Q _ .^

/n;j- := D~lYfA\n (j = I*,..., I - 1 if n < n^+i - 1,

j = I*,... ,1 if n = n/+i — 1),

while gn-k and fn-i are arbitrary if n < nik+i or n < nj+i — 1, respectively.
This means that if we compute inner vectors, then these two coefficients can
be chosen as zero vectors, so that the corresponding terms in (19.23) can be
dropped. The recurrences (19.23)-(19.24) are due to Preund and Nachtigal
(1994); see also Preund and Nachtigal (1993). Of course, analogous formulae
exist for the left-hand side vectors. This look-ahead version of the BlOC
algorithm is more general than the one sketched in §10 of Gutknecht (1994 a),
because the two sequences of well-conditioned indices, {n{\ and {m^} are
not assumed to be linked in a certain way.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

384 M. H. GUTKNECHT

As mentioned above, typically either n\ = mk or n\ = mk + 1, and then
we can draw further conclusions:

ni=mk = ^ k* = k-l, gn]k-i = D'^}1\\^lk_1Ayn,

l* = l (t.e.,/n = o),

ni = mk + l => k* = k (i.e., gn = o),

I* = 1-1, fnt-i = Df^ly^Avn,

Here, we have already taken into account that, in view of (19.22), in these
situations only the last columns of Vk-\ and VJ-i, respectively, yield a
nonzero contribution to V^ljAyn and Y*_i_A.xn. This gives rise to a sim-
plification analogous to the one that led from (19.12) to (19.13)—(19.14).
Letting

:= (lTI?j;i1
1l)-1(v'fc_1)*AyB, & := (lTi?'fc-

1
1l)-

1(Vfc_1)*A*y»,

(19.26)
we finally obtain the following simplified recurrences for the right-hand side
vectors: if ni = mk, then

vn = yn - v'k-i^'n \i mk<n< mk+i,

vn = yn ~ Vk-n-ign-k - v'k_iil)'n if ra = mfc+i,

yn + i = Avn /7n if n/ < n < n/+i - 1,

yn + i = (Avn - Y\;nfn;i)hn if n = n ; + i - 1,

while if n/ = m/- + 1, then

v n = y n if mk < n < mk+i,

v n = yn - Vk-tn-i9n;k if n = m f c + i ,

y n + i = (Avn - y[_i<p'n) hn if m <n< nt+i - 1,

y n + i = (Avn - Yi-nfn.i - yl
l_ly'n)hn if n = n m - 1.

(19.28)
Again, analogous recurrences exist for the left-hand side vectors. The above
formulae appear in polynomial formulation based on a different derivation
in Hochbruck (1996). Again, the previous blocks are replaced by a single
vector, and, actually, only one of the Lanczos vectors or one of the direction
vectors is needed. Now, these two auxiliary vectors satisfy, respectively,
(19.15) and

ICmk^ ± A v ^ ! , A*v;_! ± Kmk-i. (19.29)

If we also know that m^+i = n/+i or mk+\ + 1 = n/+i holds at the end of

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 385

the look-ahead step, then we can further capitalize upon this: only one of
the two recurrences for the regular step in (19.27) or (19.28), respectively,
is needed, but which of the two recurrences can be dropped depends on the
situation at the end of the step; see Hochbruck (1996).

19.3. Other look-ahead Lanczos algorithms

A simple, but also limited, look-ahead approach is the composite step BiCG
algorithm of Bank and Chan (1993, 1994): it is the poor man's look-ahead
Lanczos solver. It requires that no Lanczos breakdowns occur, which implies
that |mfc+i — mfc| < 2, as one can show by arguments involving the moment
matrices or the block structure theorem of the Pade table; see, for instance,
Gutknecht (1990, Theorem 3.6). The algorithm is a variation of BIOMIN

in which such pivot breakdowns are cured by a special double step: an
undefined Galerkin iterate xn+i is skipped, and xn+2 and its residual are
then constructed according to

Xn+2 := Xn + \nJn + -Ln+X^n, Tn+2 := Tn - A\nu'n - Azn+iLO^

where 2,n+\ is an auxiliary vector that is itself a linear combination of rn

and Avn. As we know, there are other algorithms that are not susceptible
to pivot breakdowns, in particular, BiOQMR and inconsistent BIORES.

The composite step BiCG algorithm has the merit that it uses the standard
two-term BlOMlN version of the BiCG method as default.

The composite step approach has been extended to both BIOMINS (Chan
and Szeto 1994) and to LTPMs based on the coupled two-term Lanczos
recurrences (Chan and Szeto 1996). Incidentally, the idea can be traced
back to Luenberger (1979) and Fletcher (1976), who designed for symmetric
indefinite systems CG algorithms that, in case of a breakdown, make use of
such double steps by exploiting the concept of hyperbolic pairs.

We mentioned earlier that by choosing the inner vectors appropriately in
a look-ahead algorithm we can further improve its numerical stability. For
the algorithm of Parlett et al. (1985), which was also restricted to steps of
length at most two, Khelifi (1991) investigated this freedom and specified
an optimal choice.

Recurrences for formal orthogonal polynomials (FOPs) and the closely re-
lated Pade approximants, which are so-called convergents ('partial sums') of
certain continued fractions, can serve as the basis for look-ahead algorithms
restricted to exact breakdowns; see Gutknecht (1992) and (1994a), where
these algorithms are called nongeneric. The relevant continued fractions,
the so-called q-fractions, can be traced back at least to Chebyshev; see
Gutknecht and Gragg (1994) for some historical remarks. Brezinski, Redivo
Zaglia, and Sadok have taken up this approach in a series of papers. In the
first one, Brezinski et al. (19926), they introduce the MRZ algorithm, which

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

386 M. H. GUTKNECHT

is basically the same as the nongeneric BlODlR algorithm of Gutknecht
(1994a). (One difference is that Brezinski et al. (19926) suggest using
(A*)zyo as the left vectors, which does not work in finite precision arith-
metic due to the extremely bad condition of this basis.) In Brezinski and
Sadok (1991) the same recurrences are used to define a nongeneric version
of the B1OD1R.S2 algorithm from Section 7 of Gutknecht (1990), and in Cao
(1997a) they are applied to the B I C G S T A B family.

Brezinski et al. (1991) first suggest two methods (SMRZ and BMRZ) that
apply mixed recurrences, but can handle only exact pivot breakdowns, in
contrast to other nongeneric algorithms that can cure exact breakdowns
of both types, such as, for instance, nongeneric BlOMlN from (Gutknecht
1994a). The authors then turn to the treatment of near-breakdowns in
the BlODlR algorithm. Their GMRZ algorithm is based on polynomial
recurrences of the form

Pmk+1(0 •= Ck(OPmk(C)+d'k(OPmk-AO^

Pmk+2(0 •= cJKC)Pmfc(C)+<(C)Anfc-i(C),

for the direction polynomials, where it is assumed that p m ^ , and pmk as
well as Pmk+1 and Pmk+2

 a r e pairs of successive regular FOPs (with no ill-
conditioned, but in exact arithmetic regular FOPs between them). If, for
simplicity, we exclude the possibility of exact breakdowns, this means that
we require that

mk = rrik-i + 1 and mk+2 = mk+i + 1- (19.31)

In (19.30), c'k, d'k, c'k', and dk are polynomials of the appropriate degrees,
namely h'k, h'k — 1, h'k + 1, and h'k, respectively, whose coefficients are de-
termined by enforcing the biconjugacy conditions. Translation into Krylov
space notation yields recurrences for the direction vectors. Note that even
when these are only applied to the right-hand side vectors, this costs 2hk +1
matrix-vector multiplications with A (not including those that might be
needed for inner products), as opposed to the hk + 1 required by LABlC.
Of course, the left Krylov space needs to be generated too, and the authors
again suggest using {(A*)"vo} as basis.

Additional recurrences are needed to update the iterates and the residuals
of BlODlR. They are based on the following recursion for the residual
polynomials:

Pmk+1(0 •= ck(()pmk(O + (1 + Ce*(C)WO, (19-32)

where ck and ek have degrees h'k — 1 and h'k — 2 at most. Since the residual
polynomials are normalized at Q = 0 and need not have full degree, one can
easily verify that they are regular (in a suitably adapted sense) for the same
indices mk as the direction polynomials. However, if pmk is a multiple of
pmk (and mk > 0), the above formula cannot be true since it would imply

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 387

that Pmk+l is also a multiple of pmk, while successive regular polynomials
are known to be relatively prime.

The authors indeed realized later that an extra condition has to be ob-
served; see Brezinski et al. (1993), a paper that gives an overview of the
methods proposed by this group. Incidentally, the missing condition is
equivalent to (pmk,Pmk) being a column-regular pair. As mentioned, this
means that the two polynomials are not scalar multiples of each other; even
more, they are then automatically relatively prime. Likewise, the restric-
tion mjt = mk-\ + 1 of (19.31) means that pmfc_i and pmk are a regular

pair, which also implies that they are relatively prime; see Gutknecht and
Gragg (1994). Fortunately, column-regularity implies regularity. Hence, if
we do not consider the possibility of exact breakdowns, then the GMRZ
algorithm requires us to treat successive look-ahead blocks as a single large
one, until we find a pair (Pmk-,Pmk) of well-conditioned column-regular {i.e.,

column-well-conditioned) polynomials. This means more overhead and less
numerical stability than when blocks of minimum length can be used.

In Brezinski et al. (1991) (see also Brezinski, Redivo Zaglia and Sadok
(1992a)), a BSMRZ algorithm is introduced additionally. It is supposed to
cure near-breakdowns of B I O M I N and is based on (19.32) and an analogue
recurrence for generatingPmk+1 • Hence, it proceeds from the pair (pmk,Pmk)

to the pair (pmk+1, pmk+1), and thus these pairs are again required to be
column-regular. Consequently, in this algorithm too, the steps are in general
longer than in our LABlOC algorithm, discussed above, even if we only
allowed steps that start and end with a column-regular or row-regular pair
and thus always applied either (19.27) or (19.28). Moreover, the overhead
is again higher, since two matrix-vector products are needed to expand the
right Krylov space.

We emphasize that this approach, which was later also applied to the
BiCGS method (Brezinski and Redivo Zaglia 1994) and LTPMs (Brezinski
and Redivo Zaglia 1995), differs considerably from ours, described in detail
above, not only because of the preference for B I O D I R and BlOMlN, but
because of the different type of recurrence. The connection between the
two types has been clarified by Hochbruck (1996). The recursions (19.30)
with the restriction (19.31) represent a special case of those of Cabay and
Meleshko (1993); see also Gutknecht and Gragg (1994). To attain the gen-
erality of the Cabay-Meleshko recurrences we would have to replace p m f c l

and Pmk+i by differently defined polynomials of maximum degree m^^i and
mjfc+i, respectively.

As look-ahead strategy, Brezinski et al. suggest choosing the step size h'k
such that, for a suitably chosen e\ > 0,

,A '+ 1v \ / - £l if ° -

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

388 M. H. GUTKNECHT

Note that this condition does not guarantee the nonsingularity of the block
D'k that one would use in LABiC, and thus it cannot guarantee that vmjfc+1 is
regular, let alone well-conditioned. (As an example, consider the situation
where all the off-diagonal inner products in (19.33) are e\ and those on
the diagonal are slightly larger.) The authors did not in fact prove that
the resulting linear system for the coefficients is nonsingular, but suggest
prescribing in addition to (19.33) a threshold for the size of the pivots in the
Gaussian elimination; see Brezinski et al.(1992a, 1993).

Yet another proposal for curing Lanczos breakdowns has been made by
Ye (1994). However, it requires storing all the Lanczos vectors so that when
a breakdown occurs, yn+i can be replaced by a 'newstart vector' that is
orthogonal to all previously computed right Lanczos vectors, as in (3.3b). A
corresponding linear solver with QMR smoothing is described in Tong and
Ye (1996).

20. Outlook

We hope to have convinced the reader that despite some obvious difficulties
(such as breakdowns and loss of biorthogonality due to round-off) the un-
symmetric Lanczos process is the basis of a series of very effective and reliable
algorithms. We do not expect that yet another new algorithm of this type
will markedly surpass all those that we know already, but nevertheless there
is still research to be done in this area: convergence is not yet well under-
stood, further investigations on how to improve the accuracy and stability
of these algorithms are worthwhile, and there is still a shortage of quality
software both for conventional and parallel computer architectures.

Acknowledgments
The author is first of all indebted to Klaus Ressel for carefully reading several
versions of this paper and for performing some of the recent research that
is described. The section on look-ahead profited crucially from hints and
comments provided by Marlis Hochbruck. Further important input came
from Bill Gragg, Anne Greenbaum, Beresford Parlett, Gerard Sleijpen and
Eric de Sturler. Finally, I have to thank Arieh Iserles for his patience and
flexibility.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 389

REFERENCES
J. I. Aliaga, V. Hernandez and D. L. Boley (1994), Using the block clustered nonsym-

metric Lanczos algorithm to solve control problems for MIMO linear systems,
in Proceedings of the Cornelius Lanczos International Centenary Conference
(J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons, eds), SIAM,
Philadelphia, pp. 387-389.

W. E. Arnoldi (1951), 'The principle of minimized iterations in the solution of the
matrix eigenvalue problem', Quart. Appl. Math. 9, 17-29.

S. F. Ashby, T. A. Manteuffel and P. E. Saylor (1990), 'A taxonomy for conjugate
gradient methods', SIAM J. Numer. Anal. 27, 1542-1568.

Z. Bai (1994), 'Error analysis of the Lanczos algorithm for the nonsymmetric eigen-
value problem', Math. Comp. 62, 209-226.

R. E. Bank and T. F. Chan (1993), 'An analysis of the composite step biconjugate
gradient method', Numer. Math. 66, 295-319.

R. E. Bank and T. F. Chan (1994), 'A composite step bi-conjugate gradient algorithm
for nonsymmetric linear systems', Numerical Algorithms 7, 1-16.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine and H. van der Vorst (1994), Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia.

T. Barth and T. Manteuffel (1994), Variable metric conjugate gradient methods,
in Advances in Numerical Methods for Large Sparse Sets of Linear Systems
(M. Natori and T. Nodera, eds), number 10 in 'Parallel Processing for Sci-
entific Computing', Keio University, Yokahama, Japan, pp. 165-188.

D. Boley and G. H. Golub (1991), 'The nonsymmetric Lanczos algorithm and con-
trollability', Systems Control Lett. 16, 97-105.

D. L. Boley (1994), Krylov space methods in linear control and model reduction:
A survey, in Proceedings of the Cornelius Lanczos International Centenary
Conference (J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons,
eds), SIAM, Philadelphia, PA, pp. 377-379.

D. L. Boley, S. Elhay, G. H. Golub and M. H. Gutknecht (1991), 'Nonsymmet-
ric Lanczos and finding orthogonal polynomials associated with indefinite
weights', Numerical Algorithms 1, 21-43.

C. Brezinski and M. Redivo Zaglia (1994), 'Treatment of near-breakdown in the CGS
algorithms', Numerical Algorithms 7, 33-73.

C. Brezinski and M. Redivo Zaglia (1995), 'Look-ahead in Bi-CGSTAB and other
product methods for linear systems', BIT 35, 169-201.

C. Brezinski and H. Sadok (1991), 'Avoiding breakdown in the CGS algorithm',
Numerical Algorithms 1, 199-206.

C. Brezinski, M. Redivo Zaglia and H. Sadok (1991), 'Avoiding breakdown and near-
breakdown in Lanczos type algorithms', Numerical Algorithms 1, 261-284.

C. Brezinski, M. Redivo Zaglia and H. Sadok (1992a), 'Addendum to "Avoiding
breakdown and near-breakdown in Lanczos type algorithms'", Numerical Al-
gorithms 2, 133-136.

C. Brezinski, M. Redivo Zaglia and H. Sadok (19926), 'A breakdown-free Lanczos'
type algorithm for solving linear systems', Numer. Math. 63, 29-38.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

390 M. H. GUTKNECHT

C. Brezinski, M. Redivo Zaglia and H. Sadok (1993), Breakdowns in the implement-
ation of the Lanczos method for solving linear systems, Technical Report
ANO-320, Universite Lille Flandres Artois.

P. N. Brown (1991), 'A theoretical comparison of the Arnoldi and GMRES al-
gorithms', SIAM J. Sci. Statist. Comput. 12, 58-78.

S. Cabay and R. Meleshko (1993), 'A weakly stable algorithm for Pade approximants
and the inversion of Hankel matrices', SIAM J. Matrix Anal. Appl. 14, 735-
765.

Z.-H. Cao (1997a), 'Avoiding breakdown in variants of the BI-CGSTAB algorithm',
Linear Algebra Appl. To appear.

Z.-H. Cao (19976), 'On the QMR approach for iterative methods including coupled
three-term recurrences for solving nonsymmetric linear systems', Int. J. Num.
Math. Engin. To appear.

T. F. Chan and T. Szeto (1994), 'A composite step conjugate gradient squared
algorithm for solving nonsymmetric linear systems', Numerical Algorithms
7, 17-32.

T. F. Chan and T. Szeto (1996), 'Composite step product methods for solving non-
symmetric linear systems', SIAM J. Sci. Comput. 17, 1491-1508.

T. F. Chan, L. de Pillis and H. van der Vorst (1991), A transpose-free squared
Lanczos algorithm and application to solving nonsymmetric linear systems,
Technical Report CAM 91-17, Dept. of Mathematics, University of California,
Los Angeles.

T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto and C. H. Tong (1994), 'A
quasi-minimal residual variant of the Bi-CGSTAB algorithm for nonsymmet-
ric systems', SIAM J. Sci. Comput. 15, 338-347.

A. T. Chronopoulos and S. Ma (1989), On squaring Krylov subspace iterative meth-
ods for nonsymmetric linear systems, Technical Report 89-67, Computer Sci-
ence Department, University of Minnesota.

J. Cullum (1995), 'Peaks, plateaus, numerical instabilities in a Galerkin/minimal
residual pair of methods for solving Ax = b\ Appl. Numer. Math. 19, 255-
278.

J. Cullum and A. Greenbaum (1996), 'Relations between Galerkin and norm-
minimizing iterative methods for solving linear systems', SIAM J. Matrix
Anal. Appl. 17, 223-247.

J. K. Cullum (1994), Lanczos algorithms for large scale symmetric and nonsym-
metric matrix eigenvalue problems, in Proceedings of the Cornelius Lanczos
International Centenary Conference (J. D. Brown, M. T. Chu, D. C. Ellison
and R. J. Plemmons, eds), SIAM, Philadelphia, PA, pp. 11-31.

J. K. Cullum and R. A. Willoughby (1985), Lanczos Algorithms for Large Symmetric
Eigenvalue Computations (2 Vols.), Birkhauser, Boston-Basel-Stuttgart.

D. Day (1997), 'An efficient implementation of the non-symmetric Lanczos al-
gorithm', SIAM J. Matrix Anal. Appl. To appear.

D. M. Day, III (1993), Semi-duality in the two-sided Lanczos algorithm, PhD thesis,
University of California at Berkeley.

V. Eijkhout (1994), LAPACK Working Note 78: Computational variants of the CGS
and BiCGstab methods, Technical Report UT-CS-94-241, Computer Science
Department, University of Tennessee.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 391

S. C. Eisenstat, H. C. Elman and M. H. Schultz (1983), 'Variational iterative meth-
ods for nonsymmetric systems of linear equations', SIAM J. Numer. Anal.
20, 345-357.

D. K. Faddeev and V. N. Faddeeva (1964), Numerische Verfahren der linearen Al-
gebra, Oldenbourg, Munchen. This is not the same book as Computational
Methods of Linear Algebra.

K. V. Fernando and B. N. Parlett (1994), 'Accurate singular values and differential
qd algorithms', Numer. Math. 67, 191-229.

R. Fletcher (1976), Conjugate gradient methods for indefinite systems, in Numerical
Analysis, Dundee, 1975 (G. A. Watson, ed.), Vol. 506 of Lecture Notes in
Mathematics, Springer, Berlin, pp. 73-89.

D. R. Fokkema (1996a), Enhanced implementation of BiCGstab(^) for solving lin-
ear systems of equations, Preprint 976, Department of Mathematics, Utrecht
University.

D. R. Fokkema (19966), Subspace Methods for Linear, Nonlinear, and Eigen Prob-
lems, PhD thesis, Utrecht University.

D. R. Fokkema, G. L. G. Sleijpen and H. A. van der Vorst (1996), 'Generalized
conjugate gradient squared', J. Comput. Appl. Math. 71, 125-146.

R. W. Freund (1992), 'Conjugate gradient-type methods for linear systems with com-
plex symmetric coefficient matrices', SIAM J. Sci. Statist. Comput. 13, 425-
448.

R. W. Freund (1993), 'A transpose-free quasi-minimal residual algorithm for non-
Hermitian linear systems', SIAM J. Sci. Comput. 14, 470-482.

R. W. Freund (1994), Lanczos-type algorithms for structured non-Hermitian eigen-
value problems, in Proceedings of the Cornelius Lanczos International Centen-
ary Conference (J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons,
eds), SIAM, Philadelphia, PA, pp. 243-245.

R. W. Freund and M. Malhotra (1997), 'A block-QMR algorithm for non-Hermitian
linear systems with multiple right-hand sides', Linear Algebra Appl. To ap-
pear.

R. W. Freund and N. M. Nachtigal (1991), 'QMR: a quasi-minimal residual method
for non-Hermitian linear systems', Numer. Math. 60, 315-339.

R. W. Freund and N. M. Nachtigal (1993), Implementation details of the coupled
QMR algorithm, in Numerical Linear Algebra (L. Reichel, A. Ruttan and
R. S. Varga, eds), W. de Gruyter, pp. 123-140.

R. W. Freund and N. M. Nachtigal (1994), 'An implementation of the QMR method
based on coupled two-term recurrences', SIAM J. Sci. Comput. 15, 313-337.

R. W. Freund and N. M. Nachtigal (1996), 'QMRPACK: a package of QMR al-
gorithms', A CM Trans. Math. Software 22, 46-77.

R. W. Freund and T. Szeto (1991), A quasi-minimal residual squared algorithm for
non-Hermitian linear systems, Technical Report 91.26, RIACS, NASA Ames
Research Center, Moffett Field, CA.

R. W. Freund and H. Zha (1993), 'A look-ahead algorithm for the solution of general
Hankel systems', Numer. Math. 64, 295-321.

R. W. Freund, M. H. Gutknecht and N. M. Nachtigal (1993), 'An implementation of
the look-ahead Lanczos algorithm for non-Hermitian matrices', SIAM J. Sci.
Comput. 14, 137-158.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

392 M. H. GUTKNECHT

G. Golub and C. van Loan (1989), Matrix Computations, 2nd edn, Johns Hopkins
University Press, Baltimore, MD.

G. H. Golub and M. H. Gutknecht (1990), 'Modified moments for indefinite weight
functions', Numer. Math. 57, 607-624.

G. H. Golub and D. P. O'Leary (1989), 'Some history of the conjugate gradient and
Lanczos algorithms: 1949-1976', SIAM Rev. 31, 50-102.

G. Golub, B. Kagstrom and P. Van Dooren (1992), 'Direct block tridiagonalization
of single-input single-output systems', Systems Control Lett. 18, 109-120.

W. B. Gragg (1974), 'Matrix interpretations and applications of the continued frac-
tion algorithm', Rocky Mountain J. Math. 4, 213-225.

W. B. Gragg and A. Lindquist (1983), 'On the partial realization problem', Linear
Algebra Appl. 50, 277-319.

A. Greenbaum (1989), 'Predicting the behavior of finite precision Lanczos and con-
jugate gradient computations', Linear Algebra Appl. 113, 7-63.

A. Greenbaum (1994a), Accuracy of computed solutions from conjugate-gradient-like
methods, in Advances in Numerical Methods for Large Sparse Sets of Linear
Systems (M. Natori and T. Nodera, eds), number 10 in 'Parallel Processing
for Scientific Computing', Keio University, Yokahama, Japan, pp. 126-138.

A. Greenbaum (19946), The Lanczos and conjugate gradient algorithms in finite
precision arithmetic, in Proceedings of the Cornelius Lanczos International
Centenary Conference (J. D. Brown, M. T. Chu, D. C. Ellison and R. J.
Plemmons, eds), SIAM, Philadelphia, PA, pp. 49-60.

A. Greenbaum (1997), 'Estimating the attainable accuracy of recursively computed
residual methods', SIAM J. Matrix Anal. Appl. To appear.

A. Greenbaum and Z. Strakos (1992), 'Predicting the behavior of finite precision
Lanczos and conjugate gradient computations', SIAM J. Matrix Anal. Appl.
13, 121-137.

M. H. Gutknecht (1989a), 'Continued fractions associated with the Newton-Pade
table', Numer. Math. 56, 547-589.

M. H. Gutknecht (19896), 'Stationary and almost stationary iterative (k,l)-step
methods for linear and nonlinear systems of equations', Numer. Math.
56, 179-213.

M. H. Gutknecht (1990), 'The unsymmetric Lanczos algorithms and their relations
to Pade approximation, continued fractions, and the qd algorithm', in Prelim-
inary Proceedings of the Copper Mountain Conference on Iterative Methods,
April 1-5, 1990, http://www.scsc.ethz.en/~mgh/pub/CopperMtn90.ps.Z
and CopperMtn90-7.ps.Z.

M. H. Gutknecht (1992), 'A completed theory of the unsymmetric Lanczos process
and related algorithms, Part F, SIAM J. Matrix Anal. Appl. 13, 594-639.

M. H. Gutknecht (1993a), 'Changing the norm in conjugate gradient type al-
gorithms', SIAM J. Numer. Anal. 30, 40-56.

M. H. Gutknecht (19936), 'Stable row recurrences in the Pade table and generic-
ally superfast lookahead solvers for non-Hermitian Toeplitz systems', Linear
Algebra Appl. 188/189, 351-421.

M. H. Gutknecht (1993c), 'Variants of BiCGStab for matrices with complex spec-
trum', SIAM J. Sci. Comput. 14, 1020-1033.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 393

M. H. Gutknecht (1994a), 'A completed theory of the unsymmetric Lanczos process
and related algorithms, Part IF, SIAM J. Matrix Anal. Appl. 15, 15-58.

M. H. Gutknecht (19946), The Lanczos process and Pade approximation, in Pro-
ceedings of the Cornelius Lanczos International Centenary Conference (J. D.
Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons, eds), SIAM, Phil-
adelphia, PA, pp. 61-75.

M. H. Gutknecht (1994c), 'Local minimum residual smoothing', Talk at Oberwolfach,
Germany.

M. H. Gutknecht and W. B. Gragg (1994), Stable look-ahead versions of the Eu-
clidean and Chebyshev algorithms, IPS Research Report 94-04, IPS, ETH
Zurich.

M. H. Gutknecht and M. Hochbruck (1995), 'Look-ahead Levinson and Schur al-
gorithms for non-Hermitian Toeplitz systems', Numer. Math. 70, 181-227.

M. H. Gutknecht and K. J. Ressel (1996), Look-ahead procedures for Lanczos-type
product methods based on three-term recurrences, Tech. Report TR-96-19,
Swiss Center for Scientific Computing.

M. H. Gutknecht and K. J. Ressel (1997), Attempts to enhance the BiCGStab family,
Technical report, Swiss Center for Scientific Computing. In preparation.

M. Hanke (1997), 'Superlinear convergence rates for the Lanczos method applied to
elliptic operators', Numer. Math. To appear.

R. M. Hayes (1954), Iterative methods of solving linear problems on Hilbert space, in
Contributions to the Solution of Simultaneous Linear Equations and the De-
termination of Eigenvalues (O. Taussky, ed.), Vol. 49 of Applied Mathematics
Series, National Bureau of Standards, pp. 71-103.

P. Henrici (1974), Applied and Computational Complex Analysis, Vol. 1, Wiley, New
York.

M. R. Hestenes (1951), Iterative methods for solving linear equations, NAML Report
52-9, National Bureau of Standards, Los Angeles, CA. Reprinted in J. Optim.
Theory Appl. 11, 323-334 (1973).

M. R. Hestenes (1980), Conjugate Direction Methods in Optimization, Springer, Ber-
lin.

M. R. Hestenes and E. Stiefel (1952), 'Methods of conjugate gradients for solving
linear systems', J. Res. Nat. Bur. Standards 49, 409-435.

M. Hochbruck (1992), Lanczos- und Krylov-Verfahren fur nicht-Hermitesche lineare
Systeme, PhD thesis, Fakultat fur Mathematik, Universitat Karlsruhe.

M. Hochbruck (1996), 'The Pade table and its relation to certain numerical al-
gorithms', Habilitationsschrift, Universitat Tubingen, Germany.

M. Hochbruck and C. Lubich (1997a), 'Error analysis of Krylov methods in a nut-
shell', SIAM J. Sci. Comput. To appear.

M. Hochbruck and C. Lubich (19976), 'On Krylov subspace approximations to the
matrix exponential operator', SIAM J. Numer. Anal. To appear.

R. A. Horn and C. R. Johnson (1985), Matrix Analysis, Cambridge University Press.
A. S. Householder (1964), The Theory of Matrices in Numerical Analysis, Dover,

New York.
K. C. Jea and D. M. Young (1983), 'On the simplification of generalized conjugate-

gradient methods for nonsymmetrizable linear systems', Linear Algebra Appl.
52, 399-417.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

394 M. H. GUTKNECHT

W. D. Joubert (1990), Generalized conjugate gradient and Lanczos methods for the
solution of nonsymmetric systems of linear equations, PhD thesis, Center for
Numerical Analysis, University of Texas at Austin. Tech. Rep. CNA-238.

W. D. Joubert (1992), 'Lanczos methods for the solution of nonsymmetric systems
of linear equations', SIAM J. Matrix Anal. Appl. 13, 926-943.

S. Kaniel (1966), 'Estimates for some computational techniques in linear algebra',
Math. Comp. 20, 369-378.

M. Khelifi (1991), 'Lanczos maximal algorithm for unsymmetric eigenvalue prob-
lems', Appl. Numer. Math. 7, 179-193.

K. Kreuzer, H. Miller and W. Berger (1981), 'The Lanczos algorithm for self-adjoint
operators', Physics Letters 81A, 429-432.

E. Kreyszig (1978), Introductory Functional Analysis with Applications, Wiley.
C. Lanczos (1950), 'An iteration method for the solution of the eigenvalue prob-

lem of linear differential and integral operators', J. Res. Nat. Bur. Standards
45, 255-281.

C. Lanczos (1952), 'Solution of systems of linear equations by minimized iterations',
J. Res. Nat. Bur. Standards 49, 33-53.

D. G. Luenberger (1979), 'Hyperbolic pairs in the method of conjugate gradients',
SIAM J. Appl. Math. 17, 1263-1267.

T. A. Manteuffel (1977), 'The Tchebyshev iteration for nonsymmetric linear systems',
Numer. Math. 28, 307-327.

J. A. Meijerink and H. A. van der Vorst (1977), 'An iterative solution method for
linear equations systems of which the coefficient matrix is a symmetric M-
matrix', Math. Comp. 31, 148-162.

J. A. Meijerink and H. A. van der Vorst (1981), 'Guidelines for the usage of in-
complete decompositions in solving sets of linear equations as they occur in
practical problems', J. Comput. Phys. 44, 134-155.

W. Murray, ed. (1972), Numerical Methods for Unconstrained Optimization, Aca-
demic, London.

N. M. Nachtigal (1991), A look-ahead variant of the Lanczos algorithm and its
application to the quasi-minimal residual method for non-Hermitian linear
systems, PhD thesis, Department of Mathematics, MIT.

A. Neumaier (1994), 'Iterative regularization for large-scale ill-conditioned linear
systems', Talk at Oberwolfach.

O. Nevanlinna (1993), Convergence of Iterations for Linear Equations, Birkhauser,
Basel.

C. C. Paige (1971), The computations of eigenvalues and eigenvectors of very large
sparse matrices, PhD thesis, University of London.

C. C. Paige (1976), 'Error analysis of the Lanczos algorithms for tridiagonalizing a
symmetric matrix', J. Inst. Math. Appl. 18, 341-349.

C. C. Paige (1980), 'Accuracy and effectiveness of the Lanczos algorithm for the
symmetric eigenproblem', Linear Algebra Appl. 34, 235-258.

C. C. Paige and M. A. Saunders (1975), 'Solution of sparse indefinite systems of
linear equations', SIAM J. Numer. Anal. 12, 617-629.

B. N. Parlett (1980), The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood
Cliffs, NJ.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 395

B. N. Parlett (1992), 'Reduction to tridiagonal form and minimal realizations', SIAM
J. Matrix Anal. Appl. 13, 567-593.

B. N. Parlett (1994), Do we fully understand the symmetric Lanczos algorithm yet?,
in Proceedings of the Cornelius Lanczos International Centenary Conference
(J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons, eds), SIAM,
Philadelphia, PA, pp. 93-107.

B. N. Parlett (1995), 'The new qd algorithms', in Ada Numerica, Vol. 4, Cambridge
University Press, pp. 459-491.

B. N. Parlett and B. Nour-Omid (1989), 'Towards a black box Lanczos program',
Computer Physics Comm. 53, 169-179.

B. N. Parlett and J. K. Reid (1981), 'Tracking the progress of the Lanczos algorithm
for large symmetric matrices', IMA J. Numer. Anal. 1, 135-155.

B. N. Parlett and D. S. Scott (1979), 'The Lanczos algorithm with selective reortho-
gonalization', Math. Comp. 33, 217-238.

B. N. Parlett, D. R. Taylor and Z. A. Liu (1985), 'A look-ahead Lanczos algorithm
for unsymmetric matrices', Math. Comp. 44, 105-124.

K. J. Ressel and M. H. Gutknecht (1996), QMR-smoothing for Lanczos-type product
methods based on three-term recurrences, Tech. Report TR-96-18, Swiss Cen-
ter for Scientific Computing.

W. Rudin (1973), Functional Analysis, McGraw-Hill, New York.
A. Ruhe (1979), 'Implementation aspects of band Lanczos algorithms for computa-

tion of eigenvalues of large sparse symmetric matrices', Math. Comp. 33, 680-
687.

H. Rutishauser (1953), 'Beitrage zur Kenntnis des Biorthogonalisierungs-Algorith-
mus von Lanczos', Z. Angew. Math. Phys. 4, 35-56.

H. Rutishauser (1957), Der Quotienten-Differenzen-Algorithmus, Mitt. Inst. angew.
Math. ETH, Nr. 7, Birkhauser, Basel.

H. Rutishauser (1990), Lectures on Numerical Mathematics, Birkhauser, Boston.
Y. Saad (1980), 'Variations on Arnoldi's method for computing eigenelements of

large unsymmetric systems', Linear Algebra Appl. 34, 269-295.
Y. Saad (1981), 'Krylov subspace methods for solving large unsymmetric systems',

Math. Comp. 37, 105-126.
Y. Saad (1982), 'The Lanczos biorthogonalization algorithm and other oblique pro-

jection methods for solving large unsymmetric systems', SIAM J. Numer.
Anal. 2, 485-506.

Y. Saad (1994), Theoretical error bounds and general analysis of a few Lanczos-type
algorithms, in Proceedings of the Cornelius Lanczos International Centenary
Conference (J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons, eds),
SIAM, Philadelphia, PA, pp. 123-134.

Y. Saad (1996), Iterative Methods for Sparse Linear Systems, PWS Publishing, Bo-
ston.

Y. Saad and M. H. Schultz (1986), 'GMRES: a generalized minimal residual al-
gorithm for solving nonsymmetric linear systems', SIAM J. Sci. Statist. Corn-
put. 7, 856-869.

W. Schonauer (1987), Scientific Computing on Vector Computers, Elsevier, Amster-
dam.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

396 M. H. GUTKNECHT

H. D. Simon (1984a), 'Analysis of the symmetric Lanczos algorithm with reortho-
gonalization methods', Linear Algebra Appl. 61, 101-131.

H. D. Simon (19846), 'The Lanczos algorithm with partial reorthogonalization',
Math. Comp. 42, 115-142.

G. L. G. Sleijpen and D. R. Fokkema (1993), 'BiCGstab(Z) for linear equations
involving unsymmetric matrices with complex spectrum', Electronic Trans.
Numer. Anal. 1, 11-32.

G. L. G. Sleijpen and H. A. van der Vorst (1995a), 'Maintaining convergence proper-
ties of bicgstab methods in finite precision arithmetic', Numerical Algorithms
10, 203-223.

G. L. G. Sleijpen and H. A. van der Vorst (19956), 'An overview of approaches
for the stable computation of hybrid BiCG methods', Appl. Numer. Math.
19, 235-254.

G. L. G. Sleijpen and H. A. van der Vorst (1996), 'Reliable updated residuals in
hybrid Bi-CG methods', Computing 56, 141-163.

G. L. G. Sleijpen, H. A. van der Vorst and D. R. Fokkema (1994), 'BiCGstab(Z) and
other hybrid Bi-CG methods', Numerical Algorithms 7, 75-109.

P. Sonneveld (1989), 'CGS, a fast Lanczos-type solver for nonsymmetric linear sys-
tems', SIAM J. Sci. Statist. Comput. 10, 36-52.

G. W. Stewart (1994), Lanczos and linear systems, in Proceedings of the Cornelius
Lanczos International Centenary Conference (J. D. Brown, M. T. Chu, D. C.
Ellison and R. J. Plemmons, eds), SIAM, Philadelphia, PA, pp. 135-139.

T. J. Stieltjes (1884), 'Quelques recherches sur la theorie des quadratures dites
mecaniques', Ann. Sci. Ecole Norm. Paris Ser. 3 1, 409-426. [Oeuvres, vol.
1, pp. 377-396].

Z. Strakos (1991), 'On the real convergence rate of the conjugate gradient method',
Linear Algebra Appl. 154-156, 535-549.

D. R. Taylor (1982), Analysis of the Look Ahead Lanczos Algorithm, PhD thesis,
Dept. of Mathematics, University of California, Berkeley.

C. H. Tong (1994), 'A family of quasi-minimal residual methods for nonsymmetric
linear systems', SIAM J. Sci. Comput. 15, 89-105.

C. H. Tong and Q. Ye (1995), 'Analysis of the finite precision bi-conjugate gradient
algorithm for nonsymmetric linear systems'. Preprint.

C. H. Tong and Q. Ye (1996), 'A linear system solver based on a modified Krylov
subspace method for breakdown recovery', Numerical Algorithms 12, 233-251.

A. van der Sluis (1992), The convergence behaviour of conjugate gradients and
Ritz values in various circumstances, in Iterative Methods in Linear Algebra
(R. Beauwens and P. de Groen, eds), Elsevier (North-Holland), Proceedings
IMACS Symposium, Brussels, 1991, pp. 49-66.

A. van der Sluis and H. A. van der Vorst (1986), 'The rate of convergence of conjugate
gradients', Numer. Math. 48, 543-560.

A. van der Sluis and H. A. van der Vorst (1987), 'The convergence behavior of Ritz
values in the presence of close eigenvalues', Linear Algebra Appl. 88/89, 651-
694.

H. A. van der Vorst (1992), 'Bi-CGSTAB: a fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems', SIAM J. Sci. Statist.
Comput. 13, 631-644.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

LANCZOS-TYPE SOLVERS 397

H. A. van der Vorst and C. Vuik (1993), 'The superlinear convergence behaviour of
GMRES', J. Comput. Appl. Math. 48, 327-341.

H. F. Walker (1988), 'Implementation of the GMRES method using Householder
transformations', SIAM J. Sci. Statist. Comput. 9, 152-16--"

H. F. Walker (1995), 'Residual smoothing and peak/plateau behavior in Krylov
subspace methods', Appl. Numer. Math. 19, 279-286.

R. Weiss (1990), Convergence behavior of generalized conjugate gradient methods,
PhD thesis, University of Karlsruhe.

R. Weiss (1994), 'Properties of generalized conjugate gradient methods', J. Numer.
Linear Algebra Appl. 1, 45-63.

J. H. Wilkinson (1965), The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.
Q. Ye (1991), 'A convergence analysis for nonsymmetric Lanczos algorithms', Math.

Comp. 56, 677-691.
Q. Ye (1994), 'A breakdown-free variation of the nonsymmetric Lanczos algorithms',

Math. Comp. 62, 179-207.
S.-L. Zhang (1997), 'GPBI-CG: generalized product-type methods based on Bi-CG

for solving nonsymmetric linear systems', SIAM J. Sci. Comput. 18, 537-551.
L. Zhou and H. F. Walker (1994), 'Residual smoothing techniques for iterative meth-

ods', SIAM J. Sci. Comput. 15, 297-312.

use, available at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S0962492900002737
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 11 Jul 2017 at 14:56:38, subject to the Cambridge Core terms of

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S0962492900002737
https:/www.cambridge.org/core

