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Abstract—Human settlement expansion is one of the most perva-

sive forms of land cover change in the Gauteng province of South

Africa. A method for detecting new settlement developments in

areas that are typically covered by natural vegetation using 500 m

MODIS time-series satellite data is proposed. The method is a per

pixel change alarm that uses the temporal autocorrelation to infer

a change index which yields a change or no-change decision after
thresholding. Simulated change data was generated and used to

determine a threshold during an off-line optimization phase. After

optimization themethod was evaluated on examples of known land
cover change in the study area and experimental results indicate a

92% change detection accuracy with a 15% false alarm rate. The

method shows good performance when compared to a traditional
NDVI differencing method that achieved a 75% change detection

accuracy with a 24% false alarm rate for the same study area.

Index Terms—Autocorrelation, change detection, MODIS, time-
series.

1. Introduction

Remote sensing satellite data provide researchers with

an effective way to monitor and evaluate land cover
changes [1], [2]. In most cases two spatially registered high

resolution images acquired at two different dates are compared,

and based on a change index and threshold selection method,

each pixel is classified as either belonging to the change or

no-change class [3], [4]. However, such a comparison of only

two images is not always reliable, as similar land cover types
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can appear significantly different at various stages of the nat-

ural growth seasonal cycle [5]. To mitigate this problem it was

shown in [6] and [7] that the temporal frequency of medium

resolution remote sensing data acquisitions should be high

enough to distinguish change events from natural phenological

cycles. The Moderate-resolution Imaging Spectroradiometer

(MODIS) data product used in this study utilizes daily Terra

and Aqua satellite overpasses to produce a 500 m resolution

composite image every 8 days [8], and as such offers a high

enough temporal frequency of the remote sensing data for

change detection through time-series analysis [9]. These high

temporal resolution time-series have been successfully used to

monitor vegetation disturbance over large areas [10]–[12] and

to determine tree cover percentages [13], [14].

Human operator-dependent change mapping is time con-

suming and resource intensive. When considering mapping

of new settlements, this typically requires an operator to map

all the settlement formations using two high resolution aerial

or satellite images taken at different times and comparing

these maps to determine the formation of new settlements.

Automated change detection can reduce the need for human

interpretation and can enable large datasets to be processed in

real time. Although methods do exist that are able to effectively

detect major disturbances in vegetation [10]–[12], the area

affected by typical new settlement development in our study

area relates to only a few contiguous MODIS pixels. By using

coarse spatial resolution data, such as that provided by MODIS,

areas identified as showing potential change could be further

analyzed by alerting and tasking high resolution satellites

within the envisaged autonomous Earth Observation sensor

web [15].

Automated change detection systems may require training

data (supervised methods) or may be unsupervised in the sense

of not requiring training data. One of the main disadvantages of

supervised change detection methods is the requirement of a sta-

tistically significant a-priori database of change and no-change

examples [16]. Unsupervisedmethods, on the other hand, do not

require any training data, but this generally comes at the cost of

a loss in performance.

In this paper, a semi-supervised approach is proposed. The

semi-supervised nature of the method is attributed to the fact

that the training database requirement is limited to no-change

examples which are numerous and can be obtained in large num-

bers as current land cover classification maps could easily be

utilized to obtain areas where no-change pixels could be found.
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Fig. 1. QuickBird image taken in 2002 (left image) and 2007 (right image) respectively. The polygon on the left in both images is the outline of a 500 m MODIS
pixel in an area that changed from natural vegetation to settlement while the polygon on the right in both images is the outline of a 500 m MODIS pixel in an area
that remained naturally vegetated. (courtesy of Google™ Earth).

Change, on the other hand, is a rare event at a regional scale and

obtaining change examples is consequently much more difficult

[5]. A land cover change was then simulated using no-change

examples of typical natural vegetation and settlement time-se-

ries data. Both the no-change and simulated change datasets are

then used to determine a set of parameters in an off-line opti-

mization phase after which the algorithm is run in an operational

and unsupervised manner for the entire study area.

The autocorrelation function (ACF), in the temporal context,

has been used selectively in remote sensing [17], but is mostly

applied in the spatial context [18]–[21]. In this study the tem-

poral ACF of a pixel’s time-series was considered. An ACF

of a time-series that is stationary behaves differently from an

ACF of a time-series that is non-stationary due to land cover

change. By determining suitable detection parameters using

only a no-change database (as explained above), it will be

shown that real land cover change can be detected reliably in a

semi-supervised fashion.

The most pervasive form of land cover change in South

Africa is human settlement expansion. It follows that the goal

of this study was to detect new human settlement formations in

the Gauteng province of South Africa using MODIS time-series

data with minimal operator assistance.

The rest of this paper is organized as follows: A description of

the study area and data that were used is given in Section II. The

temporal ACF is introduced in Section III as well as the NDVI

differencing method that was used for comparison. Results are

given in Section IV followed by a discussion in Section V. Con-

cluding remarks are given in Section VI.

2. Data Description

A. Study Area

The Gauteng province is located in northern South Africa

and covers an area of approximately 17000 being cen-

tered around 26 07’29.62”S, 28 05’40.40”E. Because of a high

level of urbanization it has seen significant human settlement

expansion during the 2001 to 2008 period. These new human

settlements are usually erected in areas that are covered by ex-

isting natural vegetation which predominantly consist of grass-

land, savanna and shrub-land. This is illustrated in Fig. 1 where

two QuickBird images taken in 2002 and 2007 are shown to-

gether with the outline of a change MODIS pixel (left pixel)

and a no-change MODIS pixel (right pixel) example. It can be

seen that while both polygons started out in a naturally vege-

tated state, the left polygon underwent a transition to human set-

tlement while the right polygon stayed in a natural vegetation

state. This land cover conversion is expected to influence the

reflectance values in a typical MODIS pixel time-series, espe-

cially in the MODIS bands that are affected by changes in vege-

tation. The objective is thus to determine the change level asso-

ciated with each pixel in our study area using only the time-se-

ries data of that specific pixel.

B. MODIS Data

The time-series for all seven MODIS land bands, i.e., the first

seven of the 36MODIS spectral bands [22], as well as NDVI de-

rived from 8 daily composite, 500 m, MCD43 Bidirectional re-

flectance distribution function (BRDF)-corrected, MODIS data

[8] was used for the period 2001/01 to 2008/01. As an illustra-

tion, Fig. 2 shows the MODIS band 4 time-series corresponding

to the change and no-change MODIS pixels shown in Fig. 1.

1) No-Change Data: A dataset of no-change pixel time-se-

ries ( ) consisting of natural vegetation ( ) and

settlement ( ) pixels, were identified by means of visual

interpretation of high resolution Landsat and SPOT images in

2000 and 2008 respectively.

2) Simulated Change Data: A simulated change dataset

( ) was generated by linearly blending a time-series of

a pixel covered by natural vegetation with that of a settlement

pixel time-series. The resulting simulated change database had

a uniformly spread change date between 2001/01 and 2008/01.

The blending period, which in real examples were found to vary

between 6 and 24 months in the study area, was found not to

influence the method’s performance. The blending period was

consequently kept fixed at 6 months for the simulated change

dataset. Fig. 3 shows an example where a representative natural

vegetation and settlement pixel time series (on the left) was

used to generate a simulated change time series (on the right),

the transition was done by linearly blending the vegetation

time-series with the settlement time-series between 2004/01

and 2004/06 (shaded area shown in Fig. 3). This was done by

assigning a weight of 1 to the vegetation signal and 0 to the
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Fig. 2. MODIS band 4 time-series corresponding to the change and no-change pixels indicated in Fig. 1. The time-series on the left corresponds to the change
pixel whereas the time-series on the right corresponds with the no-change pixel.

Fig. 3. A sample of a natural vegetation and settlement MODIS band 4 time series (left) that is linearly blended to form a new simulated time-series (right). The
shaded area represents a 6-month change transition period.

settlement time-series at the start of the change window and lin-

early reducing the weight to 0 for the vegetation time-series and

1 to the settlement time series at the end of the change window.

The simulated change data were used together with a subset

of the no-change dataset ( ) in an off-line optimization

phase to determine the detection parameters (Section III).

3) Real Change Data: Examples of confirmed settlement

developments during the study period were also obtained by

means of visual interpretation of high resolution Landsat and

SPOT images in 2000 and 2008 respectively. All settlements

identified in 2008 were referenced back to 2000 and all the

new settlement polygons were mapped and the corresponding

MODIS pixels ( ) were so identified. At least 70% of

the pixel had to have changed for inclusion into the real change

dataset. The real change pixels and remaining pixels of the

no-change dataset ( ) were used in an unsupervised

operational mode to test the change detection capability of the

method.

3. Methodology

A. Temporal ACF Method

The temporal ACFmethod uses a two stage approach. Firstly,

the simulated change dataset together with the no-change

dataset (Section II-B) are used in an off-line optimization

phase to determine the appropriate parameters (band, lag and

threshold selection). Second, the method is run in an unsu-

pervised manner using the parameter-set that was determined

during the aforementioned off-line optimization phase. These

two stages will be discussed in further detail in the following

sections.

1) Off-Line Optimization Phase: Assume that the time-series

for any given band of MODIS is expressed as

(1)

where is the observation from spectral band at time

and is the number of time-series observations available. It

should be noted that band 8 in (1) refers to computed NDVI.

It is assumed that is equal for all seven bands. The ACF for

time-series can then be expressed as

(2)

where is the time-lag and denotes the expectation. Themean

of is given as and the variance, which is used for normal-

ization, is given as . Fig. 4 shows the typical ACF of

the change and no-change pixel’s time-series that was shown in

Fig. 2. It is clear that the no-change pixel has a symmetrical form

relative to the axis, whereas the change pixel shows

strong asymmetry. The reason for this is the stationarity require-

ment of the ACF in (2). The mean and variance of the time-se-

ries of in (2) are required to remain constant through time

3
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Fig. 4. Autocorrelation of the change and no change time-series examples shown in Fig. 2.

to determine the true ACF of the time-series. The inconsistency

of the mean and variance typically associated with a change

pixel’s non-stationary time-series thus becomes apparent when

analyzing the ACF of the time-series. The key here is that even

though reflectance time series in nature are more often than not

non-stationary because of, for example, inter annual variability,

the time-series of a pixel undergoing land cover change will typ-

ically have a higher degree of non-stationarity than a time-series

that does not experience a land cover change. This property is

thus exploited by considering the temporal correlation of a spe-

cific band ( ) at a specific lag ( ) as a change index.

(3)

By making use of a dataset of change and no-change ACF ex-

amples, such as shown in Fig. 4, the distribution of could be

determined for the change ( ) and no-change ( )

case respectively for different values of and . The aim is thus

to determine the value of and in that will result in the most

separable distributions between for the change ( ) and

no-change ( ) case respectively. The value of the optimal

threshold ( ) also needs to be determined. The selection pro-

cedure for these parameters will be discussed in more detail in

Section IV-A.

2) Operational Phase: After the off-line optimization phase

is complete, the resulting parameters are used to run the algo-

rithm in an unsupervisedmanner for the entire area of interest. A

pixel is labeled as having changed by evaluating the following:

if

if

where is the ACF of band evaluated at lag and is

the decision threshold. The value of , and , was provided in

the aforementioned off-line optimization phase. The results ob-

tained for both the off-line optimization phase and operational

phase are presented in Section IV.

B. Annual NDVI Differencing Method

The temporal ACF method was compared to a method

that also utilizes the high temporal resolution time-series data

provided by MODIS. This computationally simple change

detection method was proposed by Lunetta et al. [5]. Using

this method, the NDVI time series is firstly filtered by means

of Fourier transformation filtering. The cumulative annual

NDVI values for each of the pixels in the study area are then

calculated and differenced for consecutive years. Using all the

pixels in the study area, a normal distribution is estimated for

the difference values of each year. Based on the parameters of

the estimated normal distribution of the difference values, the

pixels exhibiting the largest reduction (i.e., falling in the region

of the distribution that is greater than a pre-determined value)

are labeled as changed pixels [5]. The value that is chosen is

usually based on an a-priori estimate of the change probability

in the given area [5].

IV. RESULTS

A. Optimal Band and Lag Selection Using a Simulated

Change Dataset

The right sided ACF for band can be expressed as

. The task at hand is to determine

the separation between the ACF of the change and no-change

dataset for each band at each lag. The Bayesian decision error

in the form of a confusion matrix was calculated based on the

distribution of the inferred change index for the

change and no-change dataset:

(4)

(5)

(6)

(7)

is the probability that a change was detected given that

a change was present (percentage change correctly detected),

is the probability that a change was detected given that

no change was present (percentage false alarms), is the

probability that no change was detected given that a change was

introduced and is the probability that no change was

detected given that no change was introduced. The value of

is the optimal decision threshold value that yields the minimum

Bayesian decision error. To relate the confusion matrix into a

4
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Fig. 5. Overall change detection accuracy for each band and time-lag combination for a maximum time-lag of up to 360 days using the simulated change dataset.

TABLE I
CONFUSION MATRIX, OVERALL ACCURACY ( ) AND OPTIMAL THRESHOLD

( ) SHOWING THE BEST LAND COVER CHANGE DETECTION PERFORMANCE

DURING THE OFF-LINE OPTIMIZATION PHASE USING MODIS BAND 4
(550 NM) WITH A LAG OF 96 DAYS

single measure of accuracy, the overall accuracy was calculated

as

(8)

The overall accuracy of the ACF change detection method, as

calculated in (8), for each band and lag is presented in Fig. 5. It is

evident that Band 4 (550 nm) shows the best separation between

the no-change and simulated change datasets for the study area.

The lag that shows the highest separability is 96 days. Table I

shows performance of the temporal ACF method in the case of

simulated change using the aforementioned parameters.

B. Real Change Detection

After the band, lag and optimal threshold selection was

completed, the performance of the proposed method was

validated using the test dataset described in Section II-B.3.

Table II summarizes the performance of the method using the

parameters obtained during the off-line optimization phase. For

comparison, the performance of the NDVI differencing method

TABLE II
CONFUSION MATRIX, OVERALL ACCURACY ( ) AND THRESHOLD ( ) FOR

THE CASE OF REAL CHANGE DETECTION USING THE MODIS BAND 4 (550

NM) WITH A LAG OF 96 DAYS AS DETERMINED DURING THE OFF-LINE

OPTIMIZATION PHASE

TABLE III
CONFUSION MATRIX, OVERALL ACCURACY ( ) AND OPTIMAL THRESHOLD

( ) FOR THE CASE OF REAL CHANGE DETECTION USING THE NDVI
DIFFERENCING METHOD [5]

(Section III-B) using an optimal threshold ( value) for the

same dataset is shown in Table III.

V. DISCUSSION

The performance of the false alarm rate for both the off-line

optimization (14.73%) and operational phase (15.35%) is very

similar with a difference of less than one percent. The change

detection accuracy on the other hand for the off-line optimiza-

tion (75.17%) and operational phase (92.27%) differs consider-

ably (Tables I and II). It might seem counter intuitive that the

5

5



TABLE IV
DIFFERENCINGMETHOD APPLIED TO ALL SEVENMODIS REFLECTION BANDS

TABLE V

PERFORMANCE FOR DIFFERENT START OF CHANGE DATES

simulated change is more difficult to detect than real change ex-

amples, but this does make sense when considering the timing

of the change. The mean start of change date of the real change

dataset is 2004 with a standard deviation of two years. The sim-

ulated change date on the other hand, was distributed uniformly

over the entire date range of the time-series. Therefore, when the

change occurs in the center of the time-series, the non-station-

arity of the time-series will be at a maximum and will decrease

as the change date moves towards the beginning or end of the

time-series. The performance of the simulated change detection

is shown for different start years (Table V). It is clear that the

ACF change detection method is slightly compromised when

change occurs in the first or last year with no significant de-

crease in the performance for the others years.

It was found that band 4 showed the best separation between

the no-change and change datasets. The sensitivity of the

method to band 4 (green band) could be expected as the conse-

quent removal of vegetation would typically reduce reflectance

in the green band resulting in a non-stationary effect on the

band 4 time-series. The authors showed in previous work [23]

that for settlement expansion detection based on Artificial

Neural Networks, utilizing all 7 bands yielded only slightly

better results than what can be achieved using only band 4

with the new method proposed in this paper. It appears that the

combination of the new method and the information contained

in the band 4 time series ACF is very effective at detecting

this specific type of change, at least in the Gauteng province.

Whether this trend will hold in general is an open question, and

is currently being researched by the authors.

The proposed temporal ACF method was also compared to

the NDVI differencing method (Section III-B). The optimal

threshold ( value) for this method was used for a fair com-

parison of the two methods and was determined iteratively by

evaluating a range of possible realizations of . The NDVI

differencing method was found not to be very successful,

having a change detection accuracy of 75.14% and false alarm

rate of 23.19% for the study area. A possible explanation for

this is that because the NDVI differencing method assumes that

the annual NDVI difference is distributed normally, the method

could have difficulty in detecting land cover change when

the study area is inhomogeneous (for example due to rainfall

variations etc.). The NDVI differencing method also reduces

the eight day composited time series over the seven year period

to an effective seven observations by only considering the total

annual NDVI value for each year. For the sake of completeness,

the overall accuracy of the differencing method is also shown

for all seven MODIS bands (Table IV). It can be seen that the

best performance was also achieved for band four, as was found

to be the case with the ACF method.

4. Conclusion

In this paper, a simple but effective method was proposed

as a land cover change detection alarm. The simplicity of the

algorithm is achieved by using a two step approach. Firstly, in

an off-line optimization phase, the time-series ACF of all seven

MODIS land bands of a no-change and simulated change dataset

is used to determine the band ( ), lag ( ) and threshold ( ) value

that shows the highest separability between the two datasets.

Second, in the operational phase, the time-series ACF of band

at lag is computed per pixel and compared to the threshold ( )

to yield a change or no-change decision. This approach requires

no significant pre-filtering [24], iterative annual differencing [5]

or spatial analysis [24].

The method was effectively used to determine the location of

new settlement developments in the Gauteng province of South

Africa. A change detection accuracy of 92% with a 15% false

alarm rate was achieved and performs well when compared to

a traditional NDVI differencing method which achieved a 75%

change detection accuracy with a 24% false alarm rate for the

same study area. The proposed method is based on the prin-

ciple that time-series stationarity is used as a measure of land

cover change. The type of land cover change considered in this

study dealt with the transformation of natural vegetation to set-

tlement which was accompanied by a shift in the mean and/or

amplitude of the change time-series which in turn impacted on

the time-series stationarity. This method could thus equally be

applied to any land cover change where the reflectance time-se-

ries start and end class shows a significant change in the mean

and/or amplitude. It should however be noted that when dealing

with complex landscapes, the time-series in itself could have a

high level of non-stationarity (such as agriculture with changing

crop rotation) and will thus be flagged as change when in fact

the land cover class itself did not change. The results presented

in this article provide a relative accuracy comparison between

autocorrelation to NDVI differencing. The accuracies presented

apply to a simple two class land cover situation over a small ge-

ographic area with little to no biophysical variation. Notwith-

standing, the proposed change detection method shows poten-

tial to be extended to detect other forms of land cover change

over larger areas and is currently under investigation.
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