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ABSTRACT: Land cover changes (LCCs) play an important role in the climate system. Research over recent decades

highlights the impacts of these changes on atmospheric temperature, humidity, cloud cover, circulation, and precipitation.

These impacts range from the local- and regional-scale to sub-continental and global-scale. It has been found that the

impacts of regional-scale LCC in one area may also be manifested in other parts of the world as a climatic teleconnection.

In light of these findings, this article provides an overview and synthesis of some of the most notable types of LCC

and their impacts on climate. These LCC types include agriculture, deforestation and afforestation, desertification, and

urbanization. In addition, this article provides a discussion on challenges to, and future research directions in, assessing

the climatic impacts of LCC.
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1. Introduction

Land cover change (LCC) has significant impacts on the

earth’s climate, hydrology, water resources, soils, and

biota (Foley et al., 2003b; Lambin et al., 2003; DeFries

* Correspondence to: R. Mahmood, Department of Geography and

Geology and Kentucky Climate Center, Western Kentucky University,

1906 College Heights Boulevard, Bowling Green, KY, USA. E-mail:

rezaul.mahmood@wku.edu

et al., 2004; Twine et al., 2004; Scanlon et al., 2005,

2007, Zhang and Schilling, 2006; Cotton and Pielke,

2007; Pereira et al., 2010). Despite some uncertainties

in the magnitude of the impacts, it is increasingly recog-

nized as an important forcing of local (Landsberg, 1970;

Balling, 1988; Segal et al., 1989b, Rabin et al., 1990;

Balling et al., 1998; Arnfield, 2003; Campra et al., 2008;

NRC, 2012), regional (Barnston and Schickedanz, 1984;

Zheng et al., 2002; Foley et al., 2003a; Mohr et al., 2003;

 2013 Royal Meteorological Society
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Oleson et al., 2004; Voldoire and Royer, 2004; Gero

et al., 2006; Ray et al., 2006; Betts et al., 2007; Costa

et al., 2007; Abiodun et al., 2008; Klingman et al., 2008;

Lee et al., 2008; Nuñez et al., 2008; Kvalevåg et al.

2010; Hu et al., 2010), and global climate (Franchito and

Rao, 1992; Wu and Raman, 1997; DeFries et al., 2002;

Kabat et al., 2004; Avissar and Werth, 2005; Feddema

et al., 2005; NRC , 2005; Gordon et al., 2005; Cui et al.,

2006; Ramankutty et al., 2006; Takata et al., 2009; Sacks

et al., 2009; Puma and Cook, 2010; Davin and Noblet-

Ducoudré, 2010; Strengers et al., 2010; Lee et al., 2011;

Lawrence et al., 2012). As with carbon dioxide (CO2),

LCC affects the climate system on multi-decadal time

scales and longer. In a recent global-scale modelling

study, Avila et al. (2012) demonstrated that impacts of

LCC on indices of temperature extreme were equal to the

impacts of doubling of CO2. In some regions, impacts

were similar to forcing of CO2 while in others they

were opposite. Hence, LCC can dampen or enhance the

impacts of increasing CO2 and as a result, it would not be

prudent to explain future changes in temperature extremes

and other climatic metrics only by increasing CO2. LCC

is, thus, of primary concern in any assessment of climate

processes, and involves land surface conversions such as

the following: forest to agriculture, reforestation of for-

merly agricultural areas, afforestation, grassland to irri-

gated agriculture, rural to suburban, and suburban to fully

built-up. Ramankutty and Foley (1999) noted that approx-

imately 12 million km2 of forests and woodlands have

been removed globally since 1700 AD. They estimated

that about 18 million km2, or 11% of the global land area,

is currently under farming. This is approximately the size

of the entire South American continent (Ramankutty and

Foley, 1999). An example of agricultural expansion over

the last 500 years can be found in Figure 1. In 2000,

livestock grazing represented 22% or 28 million km2 of

the global land area (Ramankutty et al., 2008), which

can trigger desertification in semi-arid regions (NRC,

1992). Moreover, Hansen et al. (2008; 2010) estimated

that there has been 0.27 million km2 of humid tropical

forest loss and 1.10 million km2 global gross forest cover

loss between 2000 and 2005.

These transformations of the Earth’s surface funda-

mentally alter the fluxes of solar and thermal infrared

radiation, sensible, and latent heat, the movement of

water between the sub-surface and atmosphere, and the

exchange of momentum between the land-surface and

atmosphere. Alterations such as these occur on spa-

tial scales ranging from the patch or micro- (10−2 to

103 m) to sub-regional (104 to 2 × 105 m) scales (e.g.

Anthes, 1984; Oke, 1987) (Figure 2). They may result

in modifications of surface albedo, which also alters the

near surface energy balance (Zeng and Neelin, 1999;

Hoffman and Jackson, 2000; Berbet and Costa, 2003;

Zhang et al., 2009b) and the thermal climate (e.g. Oke,

1987; Bonan, 2001, 2008a; Juang et al., 2007). The

physical climate modifications manifest as spatial het-

erogeneities of temperature, humidity, and wind speed.

High or low albedo may result in lowered or increased

temperature, respectively, due to greater reflection of

shortwave radiation or, conversely, higher amounts of

shortwave radiation absorption (e.g. Otterman, 1974;

Otterman et al., 1984; Lofgren, 1995; Sailor, 1995,

Bonan, 2008a). Increased transpiration from a vegetated

area also means increased and decreased fluxes of latent

and sensible energy, respectively, and a resultant low-

ering of surface maximum temperatures (e.g. Barnston

and Schickedanz, 1984; Geerts, 2002; Ter Maat et al.,

2006; Kueppers et al., 2007; Biggs et al., 2008; Ozdogan

et al., 2010). In addition, modified climatic phenomena

have been observed along and near the boundaries of

land cover type transitions, with horizontal gradients of

climate variables intensifying, and an alteration of meso-

scale vertical circulations within the planetary boundary

layer (PBL) that enhance the vertical movement of air

(e.g. Segal and Arritt, 1992; Weaver and Avissar, 2001).

These greater upwards vertical motions in the PBL may

be realized through convective cloud development, and

even precipitation, given favourable larger-scale atmo-

spheric conditions. The latter include weak stability and

slow background synoptic winds or winds that blow

parallel to landscape boundaries (Carleton et al., 2001;

Pielke, 2001; Weaver and Avissar, 2001).

Given this context, the primary aim of this article is to

review the role of LCC in the climate system. We particu-

larly focus on biogeophysical impacts of LCC. Examples

of biogeophysical properties include surface roughness,

leaf area index (LAI), vegetation stomatal resistance, and

albedo. LCC leads to modifications of these properties

resulting in changes in energy, moisture and momen-

tum fluxes. Highlighted examples of impacts include both

long-term systematic changes (e.g. agricultural land use

change, deforestation, reforestation and afforestation),

and short-term abrupt changes (e.g. rapid urbanization).

The literature reviewed includes both observational and

model-based studies. Finally, we provide a synthesis of

results from these studies and discuss critical challenges

in LCC-climate research, and make a series of recom-

mendations related to better detecting LCC from observed

climatic records and improving modelling approaches for

understanding climate impacts of LCC.

2. The role of LCC within the climate system

As indicated above, changes in land cover result in

alterations to surface moisture, heat, and momentum

fluxes, as well as trace gas exchanges such as CO2. These

changes result in a different PBL structure, cloud cover

regime, and indeed all other aspects of local and regional

weather and climate (Pielke and Avissar, 1990; Rabin

et al., 1990; Pielke, 2001; Fu, 2003; Wang et al., 2009).

If sufficiently large areas are affected, then changes in

climate occur not only locally, but also in regions remote

from the original landscape modification (e.g. NRC,

2005; Cui et al., 2006; Niyogi et al., 2010; Snyder, 2010).

Given this context, the surface energy and moisture

budgets for bare and vegetated soils are critical to

 2013 Royal Meteorological Society Int. J. Climatol. 34: 929–953 (2014)
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Figure 1. LCC for various time periods. Pasture or crop lands are presented as a fraction. Source of the data is http://luh.unh.edu. Refinement of

the data has continued (e.g. much of central Australia is ungrazed or low density grazing and shown as pasture) (Source: Pielke et al., 2011).

understand the impacts of LCC, and can be written after

Pielke (2001):

RN = QG + H + L (E + T ) (1)

P = E + T + RO + I , (2)

where RN represents the net radiative fluxes

= Qs(1 − A) + Q
↓

LW − Q
↑

LW ; QG is the soil heat flux;

H is the turbulent sensible heat flux; L(E + T ) is the

turbulent latent heat flux; L is the latent heat of vapour-

ization; E is physical evaporation (conversion of liquid

water into water vapour by non-biophysical processes,

such as from the soil surface and from the surfaces

of leaves and branches); T is transpiration (the phase

conversion to water vapour, by biological processes,

through stoma of plants); P is the precipitation; RO is

runoff; I is infiltration; Qs is insolation; A is albedo;

Q
↓

LW is the downwelling longwave radiation; Q
↑

LW is

upwelling longwave radiation = (1 − ε) Q
↓

LW + εσ Ts
4;

ε is the surface emissivity; σ is the Stefan-Boltzmann

constant (5.67 × 10−8 W m−2 K−4); and Ts is the surface

temperature. The direction of the fluxes is conventionally

defined such that receipt at the surface is positive and

loss from the surface is negative. Equation (1) is a

budget equation, however, the sources and sinks need to

be of opposite sign.

Equations (1) and (2) are not independent of each

other. A reduction in E and T in Equation (2), e.g.

increases QG and/or H in (1) when RN does not change.

Reduced E and T can occur, e.g. through clear-cutting

of a forest and the subsequent increase in runoff. The

precipitation rate and type also influence how water is

distributed between runoff, infiltration, and interception

by plant surfaces.

Any LCC that alters one or more of the variables

in Equations (1) and (2) has the potential to affect the

climate directly. For instance, a decrease in albedo (i.e.

a darkening of the surface) by afforestation or irrigated

agriculture, increases RN and thus makes more energy

 2013 Royal Meteorological Society Int. J. Climatol. 34: 929–953 (2014)



932 R. MAHMOOD et al.

Figure 2. Conceptual model of the impacts of LCC on local and regional climate (Source: Pielke et al., 2007).

available for QG, H , E , and T . These changes also

modify energy partitioning amount into H versus E and

T or Bowen Ratio (= H /[L(E + T )], Bowen, 1926; Oke,

1987). In other words, lower Bowen ratio refers to a moist

environment. Once the surface energy budget is altered,

fluxes of heat, moisture, and momentum within the PBL

are directly affected (Segal et al., 1989a; Douglas et al.,

2006). Local (meso-scale) and regional wind and other

weather patterns can subsequently be affected due to

horizontal variations in H and PBL depth (Segal and

Arritt, 1992; Leeper et al., 2009). In addition to albedo

and partitioning of surface fluxes, the surface biophysical

characteristics can also impact the thermal inertia/heat

capacity of the land surface. It is noted that nighttime

temperatures are more sensitive to heat capacity (see

McNider et al., 2005; Shi et al., 2005). High water

contents in soils, such as from irrigation, can increase

heat capacity as can highly vegetated areas.

Similar budget equations (comparable to Equations (1)

and (2)) can be written for carbon and nitrogen fluxes

(e.g. Parton et al., 1987; Running and Coughlan, 1988).

The carbon budget involves the assimilation of CO2 into

carbohydrates within vegetation, the respiration of CO2

from plants and animals, decay of animal and plants,

industrial and vehicular combustion processes, outgassing

from oceans and other water bodies and volcanic emis-

sions. The nitrogen budget has also been segmented into

its different components, e.g. by Galloway et al. (2004)

and Lamarque et al. (2005). Each of these budgets will be

changed if any characteristic of the land surface is altered.

These include both land management caused changes

(e.g. deforestation or alterations in the type of agricul-

ture) and phenological changes due to drought and other

environmental stresses to vegetation (e.g. increased tem-

perature, attacks by pests and disease, etc.).

The surface energy and moisture budgets and the

carbon and nitrogen budgets are closely coupled. Changes

in the energy and moisture budget alter the carbon and

nitrogen budget (and that of other trace constituents),

while alterations in carbon and nitrogen (and other

trace gases and aerosols) change the surface energy and

moisture budgets. The primary link in the coupling of

these fluxes is the transpiration of water vapour through

the stoma of plants, which influences changes in the

energy budget, and is also involved in the assimilation of

carbon into plant leaves, roots, and stems. If the amount

of actively growing plant biomass changes, this alters

the transpiration of water vapour into the atmosphere and

thus the amount of carbon that is assimilated. The amount

of nitrogen compounds and other trace nutrients affect

plant growth and vitality, as determined from parameters

such as biomass, leaf-area index, and photosynthesis. The

intimate coupling by feedback processes of the surface

budgets is a fundamental regulator of the climate system.

In short, land management practices and resulting LCCs

that alter any one of these budgets necessarily alter all of

them.

There are a number of model based studies conducted

addressing comparative biogeophysical and biogeochem-

ical impacts of LCC (e.g. Brovkin et al., 2004; Matthews

et al., 2004; Lawrence et al., 2012). Brovkin et al. (2004)

and Matthews et al. (2004) found cooling due to biogeo-

physical impacts while warming due to biogeochemical

impacts. Brovkin et al. (2004) have reported that glob-

ally averaged biogeochemical change related warming is

0.l8
◦C while biogeophysical change related cooling is

0.26 ◦C (net cooling 0.08 ◦C). However, they have also

noted that regional impacts can be significant. On the

other hand, Matthews et al. (2004) noted a net global

warming of 0.15 ◦C for the combined impact.

The following sections highlight the biogeophysical

climatic impacts of some of the most notable types of

LCC. We include discussion of the impacts of agricultural

land use, deforestation and afforestation, desertification,

and urbanization. The discussion within each subsection

flows from smaller to larger scales. In addition, modelling

 2013 Royal Meteorological Society Int. J. Climatol. 34: 929–953 (2014)
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studies are identified and the rest represent observational

data based research.

3. Meso-, regional-, sub-continental- and

global-scale impacts

3.1. Changes in fluxes and precipitation

At the meso-scale, LCC-driven urbanization impacts

energy fluxes and balance (see the review by Arnfield,

2003). In most of the cases, urbanization results in

replacement of natural vegetation with a built environ-

ment. As a result, energy flux is dominated by sensi-

ble energy flux that leads to development of the Urban

Heat Island (UHI). In urban areas the maximum sen-

sible energy flux can be several orders of magnitude

higher than latent energy flux (e.g. Grimmond and Oke,

1995; Grossman-Clarke et al., 2010; Hanna et al., 2011).

However, the relative magnitude of partitioning into sen-

sible energy flux varies with season, geographical loca-

tion of the urban area, and within urban area land use

variations. The latter can be the central business dis-

trict (nearly free of vegetation) versus residential area

(can be substantially vegetated) (e.g. Masson et al., 2002;

Lemonsu et al., 2004; Offerle et al., 2005, 2006; Kawai

et al., 2009; Grossman-Clarke et al., 2010; Hanna et al.,

2011; Loridan and Grimmond, 2012). In humid temperate

regions, the removal of the natural forest and wetlands

has resulted in a reduction of transpiration and evapo-

ration and an increase in sensible energy fluxes and the

Bowen ratio (e.g. Shepherd, 2006; Caldwell et al., 2012).

In arid and semi-arid regions, by contrast, urban areas

typically have irrigated landscapes such that the latent

energy flux is much larger than the natural desert or

steppe landscape (e.g. Segal et al., 1988).

These changes in convective fluxes associated with

urban land use also influence meso-scale atmospheric

dynamics and stability profiles in such a manner that pre-

cipitation is affected (Figure 3). A wealth of historical and

contemporary literature shows that UHI-destabilization,

canopy-related surface roughness, and/or pollution can

independently or synergistically modify, amplify, reduce,

or initiate precipitating cloud systems (e.g. Landsberg,

1970; Changnon et al., 1981; Bornstein and Lin, 2000;

Shepherd et al., 2002, 2010a, 2010b; Niyogi et al., 2006;

Shepherd, 2006; Kaufmann et al., 2007; Mote et al.,

2007; van den Heever and Cotton, 2007; Rose et al.,

2008; Stallins and Rose, 2008; Trusilova et al., 2008;

Hand and Shepherd, 2009; Shem and Shepherd, 2009;

Ashley et al., 2012; Mitra et al., 2011; Niyogi et al.,

2011). The overwhelming majority of these studies reveal

a link between urban areas, convection enhancement, and

increased precipitation.

Lei et al. (2008), Kishtawal et al. (2010) and Niyogi

et al. (2010) suggested that the heavy rainfall trend is

greater over the urban regions of India compared to non-

urban areas and this can be verified by both in situ

and satellite datasets. Mitra et al. (2011) and Niyogi

et al. (2011) noted that increased sensible heat flux,

convergence, atmospheric destabilization, and resultant

modified atmospheric flow patterns play an important

role in enhancing precipitation. However, details of

the mechanisms and pathways are not fully understood

(Shepherd et al., 2010b).

In a modelling study, Trusilova et al. (2008) found

statistically significant increases in winter rainfall in

Figure 3. Idealized diagram showing the region of maximum expected rainfall increases due to urban effects located downwind of the city centre.

Minimal impact of urban land use on precipitation is observed in the regions perpendicular to the mean wind vector (an adaptation from Shepherd

et al., 2002).
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Europe in their urban simulations as compared to the pre-

urban settlement simulations. UHI-induced enhancement

of convection was partly responsible for increased win-

ter precipitation. Three observational and model-based

studies in China examining urban effects on rainfall

found decreased cumulative rainfall (Guo et al., 2006;

Kaufmann et al., 2007; Zhang et al., 2009a). However,

these studies did not consider the effects of atmo-

spheric pollution. Smaller cloud droplet size distributions

and suppressed rainfall have been linked to increased

aerosol concentrations from anthropogenic sources over

and downwind of urban areas (Rosenfeld, 1999, 2000;

Givati and Rosenfeld, 2004; Lensky and Drori, 2007).

The above results suggest that urban forcing on atmo-

spheric dynamics, thermodynamics, energy exchanges,

cloud microphysics, and composition need to be explic-

itly represented in future modelling systems from local

to global scales (Jin et al., 2007; Shepherd et al., 2010b).

Also on the meso-scale, except for vegetated surfaces,

the replacement of one land cover type (e.g. grassland,

forest) by agriculture (rainfed and irrigated) alters not

only the radiative and thermal climates noted earlier, but

also the moisture budget (Adegoke et al., 2003, 2007).

In particular, the substitution of crops that readily lose

moisture to the atmosphere, such as corn (maize) and

soybeans in the Midwest United States, may cool the

surface sufficiently during daytime hours in summer to

promote a downward flux of sensible heat, in contrast

to nearby natural vegetation areas which tend to better

conserve water (e.g. Hatfield et al., 2007). This ‘oasis

effect’ has been implicated in recent observed increases

in summertime extreme dew-point temperatures, and

reduced maximum temperatures during the 20th century,

in parts of the Midwest United States (Bonan, 2001;

Sandstrom et al., 2004). This condition may also promote

a greater incidence of severe weather (Pielke and Zeng,

1989) due to increased destabilizing impacts of water

vapour on the PBL compared to stabilizing effects of

evaporation-induced cooling.

A propensity for increased convective cloud and pre-

cipitation development in agricultural areas is not solely a

function of replacing a natural surface with one that evap-

otranspires more readily. The crop phenology, ambient

atmospheric moisture content, and background synoptic-

scale atmospheric circulation (surface winds and free-

atmosphere winds) are also critical. For example, Rabin

et al. (1990) showed, in the southern Great Plains, that

when the atmosphere was dry, convective clouds tended

to develop first over the dry wheat stubble and later over

more moist – and actively photosynthesizing – surfaces

that have higher net radiation values. Conversely, when

the atmosphere was more humid, convective clouds

tended to develop first over the moister vegetated sur-

faces, and later over drier surfaces.

A similar dependence of the land cover-convection

relationship on surface and atmospheric moisture con-

ditions has been observed in the rain-fed corn and soy-

bean areas of the Midwest United States (Carleton et al.,

2001; Allard and Carleton, 2010). Moreover, there is a

synoptic (i.e. regional-scale) circulation influence on

these local land surface-atmosphere impacts that occurs

via the advection of moisture by low-level winds, the sign

and magnitude of the free-atmosphere vertical motion of

air, and the extent to which moisture is trapped within

the PBL (e.g. Bentley and Stallins, 2008; Carleton et al.,

2008a; Carleton et al., 2008b; Allard and Carleton, 2010).

An observational study found that convective precipita-

tion was enhanced in association with the major crop-

forest boundaries in the Midwest Corn Belt (Carleton

et al., 2008a, 2008b). The findings of these studies high-

light the possible role of contrasting phenology and PBL

circulations between crop and tree areas in the vegetation

boundary–precipitation relationship.

Numerous other studies document LCC induced

changes in surface fluxes around the world. For example,

Douglas et al. (2006) compared modelled water vapour

fluxes in India from a pre-agricultural and a contem-

porary land cover and found that mean annual vapour

fluxes have increased by 17% with a 7% increase in

the wet season and a 55% increase in the dry season.

In a model sensitivity study, Sen Roy et al. (2011)

found that latent and sensible heat fluxes could be up

to about 40 and 80 Wm−2 higher due to increased and

decreased soil moisture, respectively, related to irrigated

and non-irrigated conditions in India (Figure 4).

Tuinenburg et al. (2011) concluded that large scale

irrigation in southern and eastern India may increase local

precipitation as a result of land-atmosphere feedbacks.

Many other observational and modelling studies for this

region that further document changes in precipitation due

to LCC include Lohar and Pal (1995), Saeed et al. (2009),

Niyogi et al. (2010), Kishtawal et al. (2010), Douglas

et al. (2009), Lei et al. (2008), Lee et al. (2009) and Sen

Roy et al. (2011). Other regions where these effects on

regional and sub-continental climate have been shown

including the United States (e.g. DeAngelis et al., 2010),

Australia (e.g. Nair et al., 2011) and Southeast Asia

(e.g. Takahashi et al., 2010). In a detailed observational

study, DeAngelis et al. (2010) reported that irrigation

in the Ogallala aquifer region of the United States has

resulted in a 15% increase of July precipitation several

hundred miles downwind, including, Indiana and western

Kentucky.

Land cover change in southwest Australia impacts

boundary layer cloud formation (Lyons et al., 1993;

Lyons, 2002; Ray et al., 2003), and micro- (Lyons et al.,

2008), meso- and synoptic-scale circulations (Nair et al.,

2011). Utilizing observations of surface energy fluxes,

Lyons et al. (2008) showed a higher possibility of dust

devil formation over cleared agricultural landscapes lead-

ing to decreases in cloud particle size and reduced prob-

ability of rainfall (Junkermann et al., 2009). A mod-

elling study for southeast Australia, a major agricul-

tural region, simulated mean summer rainfall decrease

by 4–12% (Figure 3(c) in McAlpine et al., 2009). The

authors attributed this change to a significant decrease

in evapotranspiration (6.8%), latent heating (7.3%), and

total cloud cover, especially low clouds and convective
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Figure 4. Latent energy flux differences (W m−2) for 03/23/2000 for relatively drier and wetter (irrigated) conditions. Soil moisture was

systematically decreased and increased by 5, 10, and 15% from the current state over irrigated areas. Differences were calculated as: (a)

current minus 5% drier, (b) current minus 10% drier, (c) current minus 15% drier, (d) current minus 5% wetter, (e) current minus 10% wetter,

and (f) current minus 15% wetter. Various shades of red, orange, and green (a–c) suggest lowering of latent energy flux with increased drying

while shades of blue and purple suggest increasing latent energy flux with increased wetting (Source: Sen Roy et al., 2011).

clouds. Analysis of daily rainfall events indicates an

increase in the number of dry and hot days, the drought

duration, and decreases in daily rainfall intensity and wet

day rainfall amounts in southeast Australia, (Figure 2(b);

see Deo et al., 2009 and McAlpine et al., 2009 for further

details) (Figure 5).

At the large-scale, a global modelling study by Puma

and Cook (2010) found increases in precipitation primar-

ily downwind of the major irrigation areas. However, this

study also reported that precipitation in parts of India

decreased due to a weaker summer monsoon. Similar

global effects were found by Guimberteau et al. (2011)

who noted that irrigation began to significantly increase

precipitation starting around 1950 over the Northern

Hemisphere mid-latitudes and in the tropics.

Studies of tropical deforestation suggest a decrease

in surface evapotranspiration, usually leading to a net

decrease in rainfall over the area of deforestation. For

example, in a modelling experiment over eastern Ama-

zonia, Sampaio et al. (2007) found up to 31 (i.e. 449 mm)

and 25% (491 mm) reductions in annual average ET

and precipitation, respectively. However, shallow clouds

occur more often over deforested areas whereas deep con-

vective clouds favour forested areas. This feature is most

evident over the Amazon basin where there is an observed

significant climatic shift in shallow cloudiness patterns

associated with deforestation during the dry season, when

the thermal lifting mechanism is the dominant factor

in convective development (Chagnon et al., 2004; Wang

et al., 2009). Recently, Spracklen et al. (2012) reported
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Figure 5. (a) Change in vegetation fraction as represented in the CSIRO Mark 3.5 climate model. (b) Change in the number of consecutive dry

days between pre-European and modern-day conditions. Symbols: red for increase, blue for decrease, closed symbols are statistically significant,

open symbols are not statistically significant at 90% confidence (Source: McAlpine et al., 2007; Deo et al., 2009).

on the important role of air passage over tropical forests

in increasing rainfall. They found that air that has passed

over extensive vegetation in the preceding few days pro-

duces at least twice as much rain as air that has passed

over little vegetation.

Additional examples of tropical deforestation and its

climatic impacts, including fluxes and precipitation, can

be found in a series of model based research by Roy

and Avissar (2002), Snyder et al. (2004), Pongratz et al.

(2006), Werth and Avissar (2002), Abiodun et al. (2008),

Da Silva et al. (2008), Hasler et al. (2009), and Davin

and Noblet-Ducoudré (2010). Note that variations in

the albedo or roughness change can affect the net

response to deforestation (Dirmeyer and Shukla, 1996;

Sud et al., 1996). Modelling studies have also found

similar results for deforestation over tropical Africa (e.g.

Kitoh et al., 1988; Xue and Shukla, 1993; Polcher and

Laval, 1994a; Sud et al., 1996) and Southeast Asia (e.g.

Henderson-Sellers et al., 1993; Polcher and Laval, 1994b;

Sen et al., 2004b).

In a model with ideal topography, Dirmeyer (1994)

showed that differences in vegetation characteristics

affected drought occurrence in mid-latitudes. Restoring

vegetation in a GCM to distributions known in Europe,

Asia, and North Africa within the Roman Empire (∼2000

YBP) caused summer rainfall in the model to increase in

southern Europe and the Atlas Mountains, the lower Nile

Valley and the Levant (Reale and Dirmeyer, 2000; Reale

and Shukla, 2000). Subsequently, comparison of histor-

ical and modern-era LCC modelling studies have been

carried out for Europe (e.g. Heck et al., 2001), East Asia

(e.g. Xue, 1996; Fu et al., 2004) and Australia (e.g. Nar-

isma et al., 2003; Narisma and Pitman, 2004; McAlpine

et al., 2007). It was found that the model responses to

LCC in the mid-latitudes are complex. This is because

agriculture displaces both forest and prairie/steppes,
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with opposite effects on climate from the typical changes

in albedo and roughness, making the response highly sen-

sitive to the details of the experiment implementation

(Pitman et al., 2009).

In general, afforestation and reforestation scenarios

show precipitation increases in modelling experiments.

Beltrán-Przekurat et al. (2012) found, from a modelling

study, that in afforested areas over southern South Amer-

ica absolute mean values were higher, up to 0.5 mm day−1

in spring and 1.0 mm day−1 in summer, compared to

current conditions. Using a global circulation model,

Xue and Shukla (1996) found a 0.8 mm day−1 (or 27%)

increases in Sahel precipitation over afforested areas and

decreases south of the region.

Using a projected afforestation scenario within a

regional climate model over the United States, Jackson

et al. (2005) noted that changes in summer precipitation

were not uniform and depended on location. A general

decrease in rainfall was found in afforested areas located

in the northern states. Precipitation increased in a few

areas such as in Florida and southern Georgia and in

other areas, not directly affected by the LCC.

3.1.1. Summary

LCC leads to changes in energy fluxes and their partition-

ing. At the meso-scale urbanization produces the most

dramatic modification in energy partitioning, dominated

by sensible energy flux. It is also apparent that these

changes, along with other surface biophysical properties,

including roughness and albedo, have led to develop-

ment of convection and or precipitation. However, it is

also becoming evident that impacts of urbanization on

climate vary widely and are dependent on season, lati-

tude, relative geographical location, and ecological set-

ting. Nonetheless, impacts of urbanization on regional

precipitation still need further investigation.

Irrigated agriculture also produces notable changes in

surface energy partitioning. In contrast to the impacts of

urbanization, the energy flux is dominated by increased

latent heating (i.e. lower Bowen ratio). Research on

irrigation suggests local, regional, and continental-scale

impacts on precipitation. It is also possible that large-

scale adoption of irrigation could impact inter-annual pre-

cipitation patterns. However, the irrigation-precipitation

relationship is complex and the related science is still

emerging. Studies on large-scale afforestation also sug-

gest increases in precipitation while tropical deforestation

results in lowering of evapotranspiration and precipita-

tion.

3.2. Changes in temperature

One of the most well-known meso-scale features asso-

ciated with LCC and temperature increase is the UHI

(Eliasson and Homer, 1990; Arnfield, 2003; Souch and

Grimmond, 2006; Jansson et al., 2007; Yow, 2007;

Hidalgo et al., 2008; Trusilova et al., 2009; Georgakis

et al., 2010; McCarthy et al., 2010), recognized since

at least 1820 (Howard, 1820). Higher surface skin, air,

and canopy temperatures relative to the surrounding rural

area, typically define the UHI. It is very common that

urban development occurs at the expense of existing veg-

etated area. This type of modification from vegetated

permeable surfaces to non-permeable materials such as

brick, concrete, and asphalt results in lower latent heat

flux and increased sensible heat flux, and hence increased

air temperature. For example, Fall et al. (2010) found that

almost all areas in the continental United States have

experienced urbanization-related warming, with values

ranging from 0.103 ◦C (conversion from agriculture to

urban) to 0.066 ◦C (from forest to urban). These results

agree with findings from studies by Kukla et al. (1986),

Arnfield (2003), Kalnay and Cai (2003), Zhou and

Shepherd (2009), and Hale et al. (2006, 2008).

The UHI-related temperature changes are complex

and depend on time of day and year (seasons), lati-

tude, climate regime, circulation feedbacks, surrounding

land cover, and size (e.g. Arnfield, 2003; Yow, 2007;

Zhou and Shepherd, 2009; Stone et al., 2010). In the

mid-latitudes the UHI temperature signal is most pro-

nounced during summer (e.g. Philandras et al., 1999).

However, in high-latitude areas it is best developed in

the winter months where urban temperatures can be up

to 6
◦C higher than surrounding rural regions (Hinkel

and Nelson, 2007). With negligible to no solar radia-

tion during the winter, this high-latitude UHI is largely

due to anthropogenic heat released by maintaining inter-

nal building temperatures. In mid-latitude areas, a recent

study by Imhoff et al. (2010), noted that ecological con-

text may influence the amplitude of the summer daytime

UHI. For example, cities built in biomes dominated by

mixed forest and temperate broadleaf forest observed up

to 8
◦C urban–rural temperature difference. These authors

(Imhoff et al., 2010) found that urban–rural tempera-

ture differences were largest during mid-day in summer.

Moreover, urban areas that replaced forest, temperate

grasslands and tropical grasslands and savannah expe-

rienced 6.5-9.0, 6.3, and 5.0 ◦C urban–rural temperature

difference, respectively.

The UHI-related temperature gradients can be depen-

dent on both land use and urban parameters (e.g. built-up

ratio, green surface ratio, sky view factor, etc.) (Oke,

1987). A net surplus of surface energy over urban regions

is explained by enhanced ground heat storage and anthro-

pogenic heating, as well as reduced evapotranspirational

cooling. Smaller values of the sky view factor below roof

level result in decreased longwave radiative loss and tur-

bulent heat transfer, and add to the UHI anomaly (Unger,

2004). Additional discussion of UHI and UHI-related

aspects can be found in Satoh et al. (1996), Ohashi et al.

(2009), Fujibe (2010), Murata et al. (2012), Aoyagi et al.

(2012), and Sachiho et al. (2012).

Despite UHI’s status as a well studied climatological

feature, uncertainties related to various processes within

UHI have remained. For example, challenges are inherent

when considering the multiple-scale interactions between

broader global climate change and urban environments.

Efforts to mitigate urban biases in the climatological
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record (Karl et al., 1988; Peterson, 2003) also overlook

potential natural climate signals in urban environments.

While some alterations to the land surface, such as

UHI, have increased regional temperatures, regional cool-

ing can also occur as a consequence of LCC. In particular,

it is found that LCC related to rainfed agriculture has

reduced regional temperatures (e.g. Bonan, 1997; Bonan,

2001; Kalnay and Cai, 2003; McPherson et al., 2004;

Gameda et al., 2007; Fall et al., 2010; Ge, 2010; Beltrán-

Przekurat et al., 2012). On the basis of a large-scale mod-

elling study, Bonan (1997) reported up to 2
◦C cooling of

summer temperature over the central United States and

up to 1.5 g kg−1 increase in atmospheric moisture content

in much of the United States. He suggested that lowered

surface roughness and stomatal resistance, and increased

albedo due to replacement of forests with modern vege-

tation (largely agriculture), resulted in these changes. In

a follow-up study, Bonan (2001) found a temporal corre-

lation between expansion of agriculture and lowering of

the daily maximum temperature. Subsequently, McPher-

son et al. (2004) and Ge (2010) found low anomalies of

observed maximum temperatures for the rainfed winter

wheat growing area of Oklahoma and Kansas. McPherson

et al. (2004) also reported higher dew point temperatures

over wheat growing areas compared to the surrounding

native grasslands of Oklahoma. These findings were fur-

ther supported by Sandstrom et al. (2004) who reported

an increased frequency of days experiencing extreme

dew point temperature (≥22
◦C) in the central United

States and suggested that increased evapotranspiration

from croplands (i.e. LCC) to be the primary cause of

this increase.

In an observational study, Gameda et al. (2007)

found significant reductions in mid-June to mid-July

maximum air temperatures, diurnal temperature range,

and solar radiation of 1.7 ◦C decade−1, 1.1 ◦C decade−1

and 1.2 M J m−2 decade−1, respectively, in the Canadian

Prairies. They attributed these changes to the increased

latent heating associated with increased area under crop

cultivation that resulted in lowering of temperature.

Moreover, Campra et al. (2008) found a 0.30 ◦C cooling

in semi arid Almeira, Spain, associated with changing of

pastureland to green house farming, and resultant strong

negative radiative forcing (up to −34 W m−2). In sum-

mary, it is evident that the adoption of agriculture and

resultant LCC has modified the energy balance, albedo,

surface roughness, and radiation balance, and led to these

changes in temperature.

LCC-related temperature reductions can be further

amplified by irrigation. Over recent years, a series

of observation and model based studies have been

conducted over the key irrigated areas of the United

States (Mahmood et al., 2004, 2006; Christy et al., 2006;

Lobell et al., 2006a, 2006b; Bonfils and Lobell, 2007;

Kueppers et al., 2007, 2008; Lobell and Bonfils, 2008;

Jin and Miller, 2011; Sorooshian et al., 2011), India

(Sen Roy et al., 2007; Biggs et al., 2008), Australia

(Geerts, 2002), and globally (Guimberteau et al., 2011)

and have reported lowered growing season temperature

in these areas. For example, an observational study by

Christy et al. (2006) estimated a 0.26
◦C cooling trend

decade−1 in the daily maximum temperature in California

during the growing season while Bonfils and Lobell

(2007) reported a 3.2 ◦C lower daily average temperature.

In subsequent modelling studies Kueppers et al. (2007,

2008) and Sorooshian et al. (2011) reported up to a

7.5 ◦C cooling of surface temperatures due to irrigation in

California. Kueppers et al. (2007) noted increased latent

energy flux and atmospheric humidity along with these

lowered temperatures.

In an observational data-based study, Mahmood et al.

(2006) found up to a 1.41
◦C lowering of maximum

temperatures during the post-1945 period over irrigated

locations in Nebraska (Figure 6) (Mahmood et al.,

2006). Moreover, a cooling trend in long-term extreme

maximum temperatures was observed for irrigated loca-

tions (Mahmood et al., 2004). This is further supported

by increased growing-season dew point temperatures

up to 2.17
◦C over irrigated areas (Mahmood et al.,

2008). Sen Roy et al. (2007) reported up to 0.34 ◦C

lowering of growing season maximum temperatures

over irrigated areas in India, with individual growing

season months showing up to a 0.53 ◦C decrease.

Long-term temperatures in both regions (Nebraska

and northwestern India) also showed a negative

trend.

As shown in Figure 4, irrigation allows more energy

to be partitioned into latent heat than sensible heat (i.e.

smaller Bowen ratio), because of increased evapora-

tive cooling, thereby lowering near-surface temperatures

(Mahmood and Hubbard, 2002; Mahmood et al., 2004;

Kueppers et al., 2007; Sen Roy et al., 2011). The higher

soil moisture also lowers albedo and thus increases net

radiation and evaporation rate. A recent climate mod-

elling study (Cook et al., 2011) showed that the cooling

effects from irrigation exist across the globe and the mag-

nitude of the effects may remain the same or intensify

over most irrigated regions under the higher greenhouse

gas scenario.

Deforestation and afforestation also impacts temper-

atures. The consensus parameterization of the tropical

deforestation studies was that surface albedo increases

and roughness length decreases (Kitoh et al., 1988;

Mylne and Rowntree, 1992; Sud et al., 1993). Although

these changes have opposite impacts on near-surface

air temperature, most studies suggested a net warming

(see Garratt (1993) for a review of early studies)

(Figure 7). A more robust result was a decrease in

surface evapotranspiration and significant increase in

annual mean temperature (Sampaio et al., 2007). These

authors noted up to 4.2
◦C and 25 Wm−2 increases

in temperature and sensible heat flux, respectively.

Impacts of tropical deforestation on temperature can

also be found in previously noted modelling studies by

Shukla et al. (1990), Nobre et al. (1991), Snyder et al.

(2004), Pongratz et al. (2006), Werth and Avissar (2002),

Abiodun et al. (2008), Da Silva et al. (2008), and Davin

and Noblet-Ducoudré (2010). Further overview of the

 2013 Royal Meteorological Society Int. J. Climatol. 34: 929–953 (2014)



LAND COVER CHANGES AND THEIR BIOGEOPHYSICAL EFFECTS ON CLIMATE 939

-1.5

-1

-0.5

0

0.5

1

A
ll 

- 
A

u
b

A
ll 

- 
H

a
l

A
ll 

- 
P

a
w

O
a

k
 -

 A
u

b

O
a

k
 -

 H
a

l

O
a

k
 -

 P
a

w

Y
o

rk
 -

 A
u

b

Y
o

rk
 -

 H
a

l

Y
o

rk
 -

 P
a

w

P
re

- 
m

in
u

s
 p

o
s
t-

1
9

4
5

 T
m

a
x
 D

if
fe

re
n

c
e

 (
C

)

Figure 6. Cooling at irrigated locations in Nebraska, USA during the post-1945 period. Negative values show cooling. Alliance (All), Oakland

(Oak), and York are irrigated locations while Halsey (Hal), Auburn (Aub), and Pawnee City (Paw) are non-irrigated locations (Source: Mahmood

et al., 2006).

Figure 7. Tropical forest removal and its impacts on seasonal surface temperatures. These changes can also be seen over distant regions away

from the location of deforestation (Source: Snyder, 2010).

links between global forests, LCC and climate change

can be found in Bonan (2008b).

Despite the large area of deforestation globally, there

is a recent positive trend in forest regrowth, afforestation

and reforestation (Nagendra and Southworth, 2010). Lit-

tle published literature is available about the effects of

these processes on climate, although in general, obser-

vations and modelling studies agree that afforestation

and reforestation decrease near-surface temperature due

to increases in latent heat, LAI, roughness length, and

rooting depth (Nosetto et al., 2005; Pielke et al., 2007;

Strack et al., 2008; Beltrán-Przekurat et al., 2012).

LCC can also change the global average temperature.

Various modelling studies provide ranges of estimated

changes in global-scale temperature due to LCC. For

example, Davin and Noblet-Ducoudré (2010) noted that

global-scale deforestation may result in a 1 ◦C cooling

of global mean temperature due to the resultant albedo
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change. This estimate exceeds the results of several

previous model-based global-scale studies that reported a

0.03–0.82 ◦C cooling due to LCC (Betts, 2001; Claussen

et al., 2001; Matthews et al., 2003, 2004; Brovkin et al.,

2006; Betts et al., 2007; Davin et al., 2007; Pongratz

et al., 2010). Findell et al. (2007), and Pitman et al.

(2009) noted, respectively, a small amount of cooling

in global average temperature, but disagreements among

global models are a result of their variable sensitivity to

LCC. On the other hand, Bounoua et al. (2002) found a

0.2 ◦C global surface warming if all forests and grasslands

were replaced with croplands.

3.2.1. Summary

LCC impacts on temperature depend on the type of

conversion. In particular, urbanization leads to signif-

icant warming while agriculture often leads to cool-

ing. Agriculture-related cooling is further magnified if

irrigation is introduced. On the other hand, tropical defor-

estation may lead to net warming, while in the mid-

latitudes it may lead to cooling. Globally, deforestation

may result in cooling. Also, afforestation may lead to

low-latitude cooling and high-latitude warming.

Overall, the majority of observationally-based stud-

ies on agriculturally-driven LCC provided a fairly robust

assessment of, and support to, the theoretical understand-

ing of land surface-atmosphere interactions (e.g. Bonan,

2001; Kalnay and Cai, 2003; Christy et al., 2006; Mah-

mood et al., 2006; Bonfils et al., 2008). Challenges asso-

ciated with these studies include potential uncertainty

due to shortcomings in observational data: station sit-

ing, exposure of instruments, maintenance, and lack of

detailed metadata, among others. Some of the studies

reviewed above used robust techniques to minimize these

uncertainties. However, it is unclear whether it is possible

to remove all of the biases.

A second approach to addressing LCC impacts summa-

rized in the aforementioned studies includes observational

analyses in support of hypothesized processes and mech-

anisms identified in regional models and established the-

ories of land-surface atmosphere interactions (e.g. Ade-

goke et al., 2003; Sen Roy et al., 2007). Applications

of biogeophysically based regional models provide an

improved understanding of the causes of temperature

changes and have helped refine the theories. However,

many of these sensitivity studies – particularly on irriga-

tion impacts – were based on limited atmospheric scenar-

ios due to limited computational capabilities in the past.

With improved computing resources, experiments can

now be designed to include a broad range of atmospheric

settings that investigate how LCC influences temperature.

3.3. Changes in atmospheric circulations and PBL

As has been described above, LCC alters the surface

physical processes of albedo, net radiation, Bowen ratio,

and momentum flux, and these are expressed in the cli-

mate variables of near-surface air temperature, humidity,

wind speed, and soil moisture. LCC also affects the

temperature, moisture and stability in the PBL that

becomes evident, e.g. in convective cloud development

and precipitation. In general, the top of the PBL is located

closer to the ground at night over surfaces having low

aerodynamic roughness (e.g. grasslands, crops) but is ele-

vated due to daytime solar heating over rougher surfaces

(forests and urban areas). Along and near steep horizontal

gradients in LC types, the associated strong contrasts in

albedo and convective fluxes can promote ‘non-classical

meso-scale circulations’ (NCMCs) – so called because

they resemble but are different in cause from the classical

circulations of sea and land breezes – that may produce

convective clouds and even precipitation in proximity to

the LC boundaries (Segal et al., 1988; Segal and Arritt,

1992). During daytime hours, an NCMC is characterized

by vertical motion either along the boundary or displaced

towards the surface having higher Bowen ratio values

(i.e. strong sensible heat flux), but sinking air over the

adjacent surface having lower Bowen ratio (i.e. where

evaporation is greater). Accordingly, NCMCs become

most evident between strongly contrasting LC types (e.g.

Weaver et al., 2002).

Because urban environment contains some of the

above land surface characteristics, it modifies the PBL

in particularly significant ways. Boundary layer changes

include enhanced low-level convergence of air during

the daytime (“country breeze”). The UHI is typically

strongest during the nocturnal part of the diurnal cycle,

but the UHI circulation is more evident during the

daytime because of the urban–rural pressure gradient and

vertical mixing during the daytime hours (Shreffler, 1978;

Fujibe and Asai, 1984). This process explains why urban-

forced convection and associated precipitation anomalies

are not simply a night–early morning phenomenon.

Vukovich and Dunn (1978) used a 3-D model to show

that UHI intensity and PBL stability play dominant roles

in UHI circulation. Huff and Vogel (1978) associated the

urban circulation with increased sensible heat fluxes and

surface roughness of the urban area.

Baik et al. (2007) and Han and Baik (2008) employed

analytical and numerical models to show that PBL desta-

bilization over the UHI leads to a region of enhanced

vertical motion. They also argued that during the daytime,

stability conditions were more conducive to stronger

UHI-related circulations. In a model based assessment,

Rozoff et al. (2003) found that non-linear interactions

associated with friction, momentum drag, and heat-

ing could cause downwind convergence. Subsequently,

Niyogi et al. (2006) showed that urban morphology

affects both temperature and wind flow. Shem and Shep-

herd (2009) revealed that urban-induced convergence

associated with urban circulation on the periphery of

Atlanta’s impervious land surface and increased sensible

heat flux led to enhanced convection downwind of the

city. Observational study by Shepherd et al. (2010a) and

modelling experiments by, Carter et al. (2012), Lo et al.

(2007), Yoshikado (1994), and Ohashi and Kida (2002)

found similar results for Houston, Hong Kong, and cities

in Japan.
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In southwest Australia, analysis of radiosonde obser-

vations (the 2005–2007 Bunny Fence Experiment –

BuFex) showed increased vigour of PBL development

over native vegetation, leading to higher PBL heights

during both winter and summer seasons, compared to

agricultural areas. On average, the noontime PBL height

was higher by ∼260 m over the native vegetation during

summertime, while during winter it was ∼189 m (Nair

et al., 2011) (please see introductory sections for further

explanation). Energy fluxes determined from aircraft

show that the enhanced PBL development was driven by

heat fluxes and were consistently higher over the native

vegetation areas, with peak differences of ∼200 W m−2

and ∼100 W m−2 observed during the summer and

winter seasons, respectively. Based on modelling

studies, McPherson et al. (2004) and Mahmood et al.

(2011) showed changes in meso-scale wind circulation,

particularly, along the LC transitions, and PBL heights

due to LCC in Oklahoma and Kentucky.

A number of modelling studies found expected changes

in large-scale atmospheric circulations due to LCC

(e.g. Zheng and Eltahir, 1998; Chase et al., 2000;

Sen et al., 2004b; Sen et al., 2004a; Feddema et al.,

2005; D’Almeida et al., 2007; Abiodun et al., 2008;

Jonko et al., 2010; Snyder, 2010; Lee et al., 2011). For

example, in a global modelling study, Chase et al. (2000)

demonstrated that the modifications in tropical vegeta-

tion resulted in a northward-displaced westerly jet and

reduction in its maximum intensity. Similarly, over the

tropical Pacific basin, the strength of the low-level east-

erlies was also reduced. Feddema et al. (2005) found that

LCC could lead to weakening of the Hadley circulations

and large-scale changes in the strength and timing of

Asian monsoon circulations. Recently, Lee et al. (2011)

reported changes in the large-scale Asian monsoonal cir-

culation due to irrigation. They noted that the cooling

led to significant lowering of the tropospheric geopoten-

tial height over the irrigated regions, and also modified

the upper level atmospheric circulation. These changes

eventually led to weakening of the upper level Asian

mid-latitude jet, through a series of feedback loops.

3.3.1. Summary

On meso- and regional-scales, different land cover types

(e.g. trees versus crops, rainfed versus irrigated agricul-

ture) and land cover conversions through time (e.g. defor-

estation, urbanization) alter the surface and near-surface

climate variables of albedo, net radiation, the Bowen

ratio of convective fluxes of sensible to latent heat, and

aerodynamic roughness and momentum flux. These alter-

ations are expressed as increased spatial variability of

near-surface air temperature, atmospheric humidity, and

PBL characteristics of depth and stability. Accordingly,

sea breeze-like meso-scale circulations within the PBL

(i.e. NCMCs) can develop along and near the boundaries

or transition zones of LC types (urban–rural interface,

dryland-irrigated agriculture), and potentially promoting

preferred areas of convective cloud formation and pre-

cipitation. Despite the progress in our understanding of

these processes, the role of urbanization on meso-, and

potentially regional-scale atmospheric circulation needs

significant additional research over the coming years.

This assertion also applies to other LCC-driven land-

surface boundaries.

3.4. Teleconnections

The above assessment shows that biogeophysical impacts

of LCC on local and regional-scale are significant,

undeniable and discernible. Scientific research has also

indicated possible teleconnections between regional LCC

and climate over remote areas (e.g. Hasler et al., 2009;

Snyder, 2010). However, impacts of LCC on global

climate and its variations are still under investigation and

not fully understood (Pielke et al., 2011). In addition,

the question of whether LCC global impacts could be as

prominent as El Niño or La Niña, or greenhouse gases,

remain to be fully explored using adequate land surface

representations in global models. It should be emphasized

that El Niño and La Niña are large-scale coupled ocean-

atmospheric oscillations, and are dynamic and cyclical

over inter-annual and multi-decadal time-scales, while

LCC becomes relatively ‘static’ after completion of the

change process. LCC impacts behave more like a trend

similar to greenhouse gas effects, but with great regional

variability.

The lack of a persistent global climate response to

LCC is partly because of the opposing and offsetting

signals of local and regional impacts, and the fact that

global averaging cancels and minimizes these climatic

responses (e.g. Feddema et al., 2005; Kvalevåg et al.

2010; Lawrence and Chase, 2010). For example, the

modelling study of Claussen et al. (2001) found that

low-latitude deforestation leads to regional warming and

extratropical cooling via its effects on the energy and

water cycles, as well as global average warming due to

impacts on the carbon cycle. On the other hand, high-

latitude deforestation showed a cooling effect, dominated

by impacts on the surface energy balance. Modelling

studies by Snyder et al. (2004) and Davin and Noblet-

Ducoudré (2010) corroborate these results, finding cool-

ing for both boreal and temperate deforestation, and

warming as a result of tropical deforestation. However,

afforestation appears to produce low-latitude cooling and

high-latitude warming (Claussen et al., 2001; Bala et al.,

2007). Despite strong regional effects, the global response

to large-scale deforestation has been shown to be a slight

net cooling in model simulations (Claussen et al., 2001;

Bala et al., 2007).

Similarly, Sacks et al. (2009) suggested that the

impacts of irrigation were significant on the regional-

scales but global-scale averaged impacts were not notice-

able. However, the modelling study by Puma and Cook

(2010) found that regional cooling effects were already

significant over southern and eastern Asia early in the

20th century, but became significant across the middle-

latitude croplands after the mid-20th century. They noted

that Asia and parts of North America experienced winter
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season warming during the last part of the 20th cen-

tury due to increased irrigation. Puma and Cook (2010)

also found a weakening of the Indian monsoon. Their

results suggest a significant lowering of temperature,

negative temperature trends, and increased precipitation

in the tropics and the Northern Hemisphere middle-

latitudes starting around the 1950s and thus, irrigation

is an important component of LCC and the future global

climate.

A number of modelling studies have found teleconnec-

tions between regional-scale LCC and climates of distant

regions (Chase et al., 2000, 2001; Gedney and Valdes,

2000; Zhao et al., 2001; Werth and Avissar, 2002). Sny-

der et al. (2004) conducted a detailed global modelling

study to investigate the impacts of removal of each of

the six biomes. They found significant changes, not only

in global average temperature and precipitation, but also

in responses of these variables in regions away from

the LCC. For example, it was found that tropical defor-

estation may result in up to a 2.5 mm d−1 reduction in

precipitation over both oceanic and land areas distant

from regions of LCC. Air temperature in remote regions

also showed similar changes (Snyder et al., 2004; Snyder,

2010) (Figure 7). In several subsequent modelling exper-

iments Cui et al. (2006) and Hasler et al. (2009) found

similar teleconnections between LCC and the climate of

remote areas. Cui et al. (2006) noted that LCC in Tibet

impacts East Asian atmospheric circulation and monsoon

precipitation while Takata et al. (2009) also found sig-

nificant alterations in the Asian monsoon from landscape

change. The pattern and intensity of the Asian mon-

soon circulation impact circulations elsewhere in both

the northern and southern hemispheres. Recently, Sny-

der (2010) further investigated impacts of LCC, report-

ing strong relationships between tropical deforestation

and the Northern Hemisphere atmospheric circulation

changes. This model based study indicates, e.g. that

removal of tropical forest weakens deep convective activ-

ity and eventually impacts the northern extratropics by

modifying the strength of the westerlies. Moreover, LCC

in the tropics may change European storm tracks and

shift the Ferrel cell northward. Amazon deforestation

may modulate remote tropical ocean and climate vari-

ability (Voldoire and Royer, 2005; Schneider et al., 2006;

Nobre et al., 2009), while the deforestation signal on

weather patterns may vary in strength with the phase

of El Niño (Da Silva et al., 2008). Nobre et al. (2009),

in a modelling study, found that the replacement of

Amazonian tropical forest with grassland produces an

ENSO-like response over the tropical Pacific Ocean,

which further reduces rainfall over Amazonia. Sen et al.

(2004b) also reported distant responses of deforestation

over Indochina, including weakening of the monsoon

flow over the Tibetan Plateau and eastern China.

As Findell et al. (2006) noted, that, it would be

difficult to differentiate the extratropical response to

LCC from natural climate variability. Voldoire and Royer

(2005) also reported weak remote impacts of tropical

deforestation. Based on a detailed model intercomparison

study, Pitman et al. (2009) found no common remote

responses to LCC. However, they noted, that this could be

a function of the various model parameterizations, the use

of prescribed fixed sea surface temperature and inclusion

of a relatively small tropical LCC signal. It has been

demonstrated that tropical LCC would produce the most

significant global teleconnection response (e.g. Snyder,

2010). In addition, we note that Pitman et al. (2009) have

used more muted global LCC (1870 vs current) than the

other sensitivity studies (e.g. Snyder et al., 2004; Snyder,

2010).

A key question is whether these drastic LCCs will

occur in the future. On the basis of the past history of

human modification of the land, these cannot be ruled-

out. Current estimates of land cover change in the coming

decades indicate a continuation from the last century, par-

ticularly in developing countries with large population

growth, but also in developed countries as different land

uses are implemented (e.g. production of biofuels). More-

over, such drastic changes demonstrate teleconnections

between LCC of one region and the climate of distant

regions. Therefore, it cannot be concluded that the cli-

mate of the distant regions will not respond to LCC of

another region.

4. Incompletely understood issues

Despite progress over the recent decades, currently there

remains a lack of comprehensive understanding of irri-

gation impacts on the regional-scale atmosphere and

climate (e.g. via precipitation recycling). Bagley et al.

(2012) show the potential impact on regional atmospheric

water budgets of evaporated water from major croplands,

hinting at the potential impacts of LCC and irrigation.

A modelling study by Lobell et al. (2009) demonstrates

varying regional response of temperature due to irriga-

tion. These could be linked, in addition of model uncer-

tainty and experimental design, to any or all of the fol-

lowing factors: varying levels of irrigation adoption and

application, regional extent of irrigation, regional atmo-

spheric feedback loops, and interactions between regional

and large-scale circulations. In the broader sense, Keys

et al. (2012) show the potential vulnerability of different

regions to local and remote disruptions to evapotranspi-

ration via processes like LCC or irrigation that may alter

the atmospheric water supply to an area using the concept

of ‘precipitation-sheds’.

4.1. Deforestation

Deforestation rates vary by country and fluctuate over

time in reaction to economic and political pressures. For

example, the rate has increased within Latin American

countries from 1.8% per year during the 1990s to over

3.2% per year in the most recent decade (FAO, 2011).

These changes are dynamic, involving multiple land

use pathways often leading to some form of forest re-

growth, which is an important trend in Latin America

(Grau and Aide, 2008). However, re-burning is often
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practiced to maintain cleared lands, especially for grazing

(Fisch et al., 1994). Precise knowledge of transition types

of LCCs is critical in areas with dynamic agricultural

frontier expansion.

Sampaio et al. (2007) suggested a tipping point of

around 40% deforestation for the Amazon, after which

climate impacts accelerate and a new equilibrium of

reduced forest is reached. These effects are stronger

for the transition to crops (soybean) than to pasture

(Costa et al., 2007). In their early modelling studies,

Nobre et al. (1991) first hinted at the possibility of

multiple equilibria in the Amazon Basin. Other factors

may reinforce the forest retreat, including climate change

(Salazar et al., 2007) and the effect of natural fires from

lightning (Hirota et al., 2010). Tropical forests provide

a number of biogeophysical feedbacks to the global

climate system, and tropical deforestation works against

mitigation of global climate change (Bonan, 2008b).

However, the CO2 fertilization effect could encourage

tropical forest growth (Lapola et al., 2009; Salazar and

Nobre, 2010).

4.2. Benefits of reforestation?

Another important unknown issue is the capacity of refor-

estation to mitigate the biogeophysical climate impacts

of LCC at a regional scale and which spatial configura-

tions of vegetation might help enhance recycling of water

vapour to the atmosphere through the regulation of energy

fluxes, wind and surface water availability. Latitude-

specific deforestation modelling experiments conducted

by Bala et al. (2007) indicate clearly that reforestation

projects in tropical regions would be beneficial in miti-

gating global-scale warming. However, it would be coun-

terproductive if implemented at high latitudes and would

offer only marginal benefits in temperate regions. The

evidence assembled in Bala et al. (2007) demonstrates

that deforestation in tropical and sub-tropical regions can

have a significant warming and drying effect on regional

climate, with teleconnections to regions remote from

where the deforestation occurs. Large-scale reforestation

has the potential to ameliorate regional climate changes

associated with deforestation while providing other eco-

logical services such as biodiversity, clean air and water.

However, we currently do not know the extent to which

such actions will modify temperature and rainfall patterns

directly (McAlpine et al., 2009). A related question thus

is: How much vegetation is required and where should

it be located? Should vegetation be configured in large

blocks or in linear strips/vegetation bands, which are

more amenable to integrating the production functions

of landscapes (Ryan et al., 2010)?

4.3. Coupling ecosystem dynamics with climate

feedbacks

Most research to date on the climate impacts of LCC

has focused on anthropogenic modification. However, ter-

restrial ecosystems and the climate system are closely

coupled, with multiple interactions and feedbacks occur-

ring across a range of scales (e.g. Chapin et al., 2008).

Extreme climatic events such as heatwaves, droughts,

and floods can have disproportionate effects on ecosys-

tems relative to the scale at which they occur. The

timing of these events has a critical influence on their

impact. For example, synergisms between heatwave and

drought aggravate the negative effect on plant growth

and function (De Boeck et al., 2011). There is growing

evidence of committed ecosystem changes due to cli-

mate change, with predicted northern expansion of boreal

forests with lower net primary productivity and increased

risk of forest die-off in the Amazon (Jones et al., 2009).

A recent example is the widespread dieback of Ama-

zon forest due to severe drought in 2005 (Phillips et al.,

2009). Drought-induced forest die-off in the region may

increase the biogeophysical climate impacts of defor-

estation, and constitutes a large uncertainty in regional

climate–ecosystem interactions, and also carbon-cycle

feedbacks within global climate (McAlpine et al., 2010).

A recent special report on extreme events by Working

Groups I and II of the Intergovernmental Panel on Cli-

mate Change (IPCC) predicts that droughts will intensify

in some regions such as the Mediterranean, central North

America, South Africa and Australia (IPCC, 2012). This

possibility highlights the importance of coupling dynamic

vegetation models with regional and global climate mod-

els when investigating the biogeophysical feedbacks of

LCC on the climate system.

In the context of the above discussion and the emer-

gence of a clearer picture of regional-scale climatic

response to LCC and a complex global-scale response,

we propose a series of tasks. These are presented in the

following subsections.

5. Recommendations

5.1. Broadening the scope of IPCC

An important lesson to be drawn from this article is

the need to broaden the current global climate change

agenda to recognize that climate change results from

multiple forcings, and that LCC must be included in

global and regional strategies to effectively mitigate

climate change (Feddema et al., 2005; NRC, 2005). The

forthcoming IPCC’s Fifth Assessment currently lacks

a comprehensive evaluation of the relative impact of

biogeophysical feedbacks of LCC on regional climate.

Mahmood et al. (2010) argues that the development of

suitable regional policies to adapt to the impacts of

climate change, including LCC effects, must be assessed

in detail as part of the IPCC Fifth Assessment, in

order for them to be scientifically complete. Current

risk assessments such as the special report on extreme

events (IPCC, 2012) fail to account for these feedbacks.

A coordinated research effort is required to address this

problem, as the biogeophysical LCC forcing of climate

may, in some regions, be of similar magnitude or larger

than that of greenhouse gas-induced climate change

(Bonan, 2008b; Avila et al., 2012).
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5.2. Detection of climatic impacts of LCC with in situ

measurements

A number of observational platforms should be used for
better detection of climate impacts of LCC. These include

in situ observing networks and satellites. High quality in

situ measurements can play an important role in detect-

ing the signals of LCC impacts. Note that the improved
observational data are also necessary to fully drive the

models at the resolution necessary for more accurate
simulations of LCC-driven atmospheric processes. Urban

micronets, such as the one in Oklahoma City (Basara
et al., 2009), need to be established. This type of network
could be further expanded to study the role of urban mor-

phology, shape, and form on precipitation (particularly
winter precipitation), urban cloud climatologies, syner-

gistic mechanisms and on when they are most dominant
(e.g. diurnally, seasonally, and or as function of meteo-

rological regime). High quality mesonets such as those
in Oklahoma, Kentucky, Nebraska, and Delaware should

also be used and expanded to other regions. Some of
these mesonets could be located in regions experiencing

significant LCC or where climate response could be sig-
nificant (e.g. the Amazon, African tropical forests, and

Boreal forests). Analysis of long-term data collected by
the mesonets, and the knowledge of LCC in the vicinity,
allow for linking LCC to its impacts on climate. The US

Regional Climate Reference Network (USRCRN) could
be used along with these mesonets to detect regional

LCC-forced climate signals. The US Climate Reference
Network (USCRN) can also be a useful observation plat-

form to help in this detection.
In addition to its well-known effect on air temper-

ature, LCC also adversely affects the measurement of
precipitation. When averaged across the entire globe and

for all seasons, the underestimation bias associated with
precipitation measurement results in a decrease of about
8% due to the wind, 2% to wetting losses on the inter-

nal walls of the gauge and on the collector during its
emptying, and 1% resulting from evaporation losses of

storage gauges (Legates, 1987; Legates and Willmott,
1990). LCC can affect these biases, thereby introducing

artificial trends or masking real trends in the precipita-
tion time-series (Legates, 1995). In particular, the growth

of trees and urban sprawl near a precipitation gauge can
alter the wind speed and/or temperature (thereby affect-

ing the distribution of solid versus liquid precipitation)
across the gauge orifice, which systematically decreases

the bias in precipitation gauge measurement. This bias
decrease results in an artificial increase in precipitation
that may be indistinguishable from the true precipitation

amounts. In particular, checks for discontinuities in the
data are not likely to identify such changes in the mean

bias as they are slow, gradual and indistinguishable from
true precipitation signals. As a result, when attempting to

detect LCC impacts on observed precipitation, the data
should be carefully evaluated for such biases.

Data from global networks such as FluxNet should
also be used to detect responses of regional climate to

LCC. These networks provide rich data sets that include,

in addition to standard meteorological measurements,

energy, water and carbon flux observations. Currently,

the length of the time series for some stations within

these networks is nearly two decades. As a result, they

provide an excellent opportunity to assess the potential

response of the regional atmosphere linked to LCC.

The large-scale adoption of irrigation in many parts

of the world and its reported impacts on weather and

climate, means that extensive field experiments should

be undertaken to better understand the role of irrigation

in the structure, evolution and modulation of the PBL

at meso- and regional scales. These efforts may also be

carried out in the context of severe weather impacts,

and should include modelling activities to complement

field campaigns and better identify the associated physical

processes.

5.3. Detection of LCC Using Satellite Data

LC data collected by satellites have been explicitly used

over the last several decades to monitor changes (Town-

shend et al., 1991; DeFries and Townshend, 1994) and

to establish links between LCC and the climate response

(Rabin et al., 1990; Carleton et al., 1994; McPherson

et al., 2004; Jin et al., 2007). Normalized Difference

Vegetation Index (NDVI) and similar indices derived

from optical remote sensing data have been widely

used in LCC detection and are expected to continue

to be used for the foreseeable future. In addition, pas-

sive microwave sensors, such as Scanning Multichan-

nel Microwave Radiometer (SMMR) and Special Sensor

Microwave Imager (SSM/I) offer valuable land cover

information over the relatively long term, based on the

Microwave Polarization Difference Temperature (MPDT)

by which the leaf water content can be derived (e.g. Jus-

tice et al., 1989). In addition to leaf water content, the

MPDT is also related to soil moisture, surface roughness,

and canopy structure. SMMR and SSM/I also allow for

the characterization of land cover categories (Townshend

et al., 1989; Neale et al., 1990). Advanced Microwave

Scanning Radiometer-Earth Observing System (AMSR-

E), a successor in technology to SMMR and SSM/I,

provides vegetation water content and surface soil mois-

ture in addition to surface temperature (Njoku, 1999; Du,

2012). AMSR-E also provides derived indices such as

a microwave vegetation index (MVI) and global vegeta-

tion/roughness maps (Shi et al., 2008). Vegetation con-

ditions and soil moisture can also be estimated from the

European Space Agency (ESA) L-band Soil Moisture and

Ocean Salinity (SMOS) mission (Kerr et al., 2010), and

NASA’s planned Soil Moisture Active Passive (SMAP)

mission (Entekhabi et al., 2010). Active microwave sen-

sors, such as the European Remote-Sensing Satellite

(ERS) scatterometer, provide land cover classification

in addition to meso-scale surface geophysical parame-

ters such as vegetation cover, surface roughness, and

surface soil-moisture content. Polarimetric and interfer-

ometric (PolInSAR), multi-angle optical remote sensing,

and Light Detection And Ranging (LiDAR) should also
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continue to be used for measurements of the vertical

structure of vegetation (e.g. Lefsky et al., 2002; Harding

and Carabajal, 2005; Lefsky et al., 2005; Lefsky et al.,

2007).

Indirectly, satellites have detected the hydrologic fin-

gerprint of changing land use practices. Rodell et al.

(2009) used a decade’s worth of data from the Gravity

Recovery And Climate Experiment (GRACE) to detect

a significant depletion of groundwater over northwest-

ern India related to greatly expanded irrigation-fed agri-

culture in the region. Similar GRACE assessments of

groundwater depletion by agriculture have been per-

formed for the Sacramento and San Joaquin valleys of

California (Famiglietti et al., 2011).

5.4. Modelling

The previously described modelling studies provide

important clues as to how LCC impacts climate. They

lend further support for additional research and improve-

ment in modelling, including more realistic representa-

tions of the land surface, as highlighted in the model

inter-comparison study by Pitman et al. (2009). These

authors have noted that the sources of some limitations

and uncertainties in their experiments originated from

‘lack of consistency in: 1) the implementation of LCC

despite agreed maps of agricultural land , 2) the repre-

sentation of crop phenology , 3) the parameterization of

albedo, and 4) the representation of evapotranspiration

for different land cover types’ (p. 1). Future modelling

work should consider addressing these challenges for

improved assessment of the climatic impacts of LCC.

Both Puma and Cook (2010) and Gordon et al. (2005)

demonstrated the importance of irrigation as LCC and

its impacts on global climate. Thus, in addition to the

regional-scale, the role of irrigation in global climate

should be further investigated. Large-scale global climate

model-based studies should be conducted to improve

understanding of physical processes and to quantify the

climatic impacts of irrigation.

More accurate vegetation and management data are

also needed if the goal is to continually improve the

simulations focusing on climatic impacts of LCC. In the

recent decades, a number of global and regional data

sets for LCC (Ramankutty and Foley, 1999; Goldewijk,

2001; Waisenan and Bliss, 2002; Brown et al., 2005;

Pongratz et al., 2008; Ramankutty et al., 2008; Steyaert

and Knox, 2008), fertilizer application (Potter et al.,

2010) and irrigation (Siebert et al., 2005; Wisser et al.,

2010; http://www.iwmigiam.org/, accessed in July 2012)

have been produced. Despite considerable progress, there

is still significant room for improving the accuracy of

these data sets.

Interactions among scales need to be assessed within

the current modelling framework. Steyaert and Knox

(2008) introduced a new analysis of LC in the eastern

United States for several periods since 1650. Their data

set is unique in that they present values of surface proper-

ties in the parameter format used by the modelling com-

munity, and at a reasonably fine-scale spatial resolution.

They have found, when examining the large temporal

changes in LC (on a fine spatial scale) for this region, that

LCCs played a major role in local and regional climates

and in attributing observed temperature trends. The other

examples could be how meso- and regional-scale climate,

modified by the LCC, interacts with large-scale climate.

The scientific community needs a more complete and

coordinated investigation addressing LCC and telecon-

nections. In our opinion, we should build upon previous

studies (e.g. Voldoire and Royer, 2004, 2005; Pitman

et al., 2009; Snyder, 2010) and conduct more robust and

realistic multi-model global-scale simulations and anal-

yses. This line of research should include the forcing

of LCCs on global climate, in addition to their inter-

actions with the large-scale coupled ocean–atmosphere

oscillations.

Model applications are needed to examine LCC

impacts on more extreme weather and climate conditions

(e.g. severe thunderstorms, flash floods, floods, drought,

and seasonal wetness and dryness). Detailed studies of

meso- and synoptic-scale interactions of urbanization

with climate are also needed. This is because urbanization

represents one of the most intense and multifaceted alter-

ations of landscape for its comparable spatial scale. Some

of the challenges for these studies have been the absence

of land use data to properly characterize urban physical

properties and their representation in models. Recently,

Oleson et al. (2008a, 2008b, 2010) and Jackson et al.

(2010) have made some important progress to this end.

However, additional research needs to be conducted to

overcome challenges related to improved characterization

and parameterization of urban surfaces so that the urban

meso- and synoptic-scale interactions can be modelled

realistically.

The review and synthesis comprising this article have

demonstrated that LCC plays an important and spatio-

temporally varied role in modifying climate. We conclude

that climate change metrics of LCC should become part

of any climate assessment. In addition, there are other

metrics to be considered such as the magnitude of moist

enthalpy changes, magnitude of the spatial redistribution

of land surface latent and sensible heating (i.e. Bowen

ratio), the magnitude of the spatial redistribution of pre-

cipitation and moisture convergence, and the normalized

gradient of regional radiative heating changes (Mahmood

et al., 2010). In summary, humans are changing the face

of the planet at an accelerated rate and the findings from

LCC studies for all spatial scales should be incorporated

into developing climate change and variability metrics

that address impacts on atmospheric circulations, hydro-

logic cycles, and water resources.
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