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orthophotos were taken at an altitude of 260 m for testing in 

a natural forest-grassland ecosystem of Keyouqianqi, Inner 

Mongolia, China, and compared the results with those of 

three other network models (U-net, ResU-net and LU-net). 

The results show that both the highest kappa coefficient 

(0.86) and the highest overall accuracy (93.7%) resulted 

from LResU-net, and the value of most land covers provided 

by the producer’s and user’s accuracy generated in LResU-

net exceeded 0.85. The pixel-area ratio approach was used 

to calculate the real areas of 10 different land covers where 

grasslands were 67.3%. The analysis of the effect of RCU 

and LCU on the model training performance indicates that 

the time of each epoch was shortened from U-net (358 s) to 

LResU-net (282 s). In addition, in order to classify areas that 

are not distinguishable, unclassified areas were defined and 

their impact on classification. LResU-net generated signifi-

cantly more accurate results than the other three models and 

was regarded as the most appropriate approach to classify 

land cover in mixed forest-grassland ecosystems.

Keywords UAV images · Semantic segmentation · 

LResU-net · Land cover classification

Introduction

As one of the world’s largest renewable natural resources, 

mixed forest-grassland resources directly affect the develop-

ment of agriculture, forestry and other industries (Langley 

et al. 2001; Ma et al. 2010). According to Scurlock et al. 

(2002) and Dong et al. (2017b), mixed forest-grassland eco-

systems are approximately 3.2 billion hectares, accounting 

for 40% of the total land area. Using remote sensing to clas-

sify land cover in a mixed forest-grassland ecosystem can 

Abstract Using an unmanned aerial vehicle (UAV) paired 

with image semantic segmentation to classify land cover 

within natural vegetation can promote the development of 

forest and grassland field. Semantic segmentation normally 

excels in medical and building classification, but its use-

fulness in mixed forest-grassland ecosystems in semi-arid 

to semi-humid climates is unknown. This study proposes a 

new semantic segmentation network of LResU-net in which 

residual convolution unit (RCU) and loop convolution unit 

(LCU) are added to the U-net framework to classify images 

of different land covers generated by UAV high resolution. 

The selected model enhanced classification accuracy by 

increasing gradient mapping via RCU and modifying the 

size of convolution layers via LCU as well as reducing 

convolution kernels. To achieve this objective, a group of 
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provide detailed grassland and woodland information over 

large areas (Fang Fanget al. 2010).

In the past decade, UAV image analysis technology has 

been widely applied to the identification and classification 

in forest and grassland resource surveys (Chen 2019). It has 

increasingly become an opportunity to attach high resolution 

cameras (Huseyin et al. 2019), LiDAR (Yang et al. 2020), 

thermal infrared (Crusiol et al. 2019) and hyperspectral 

cameras (Clark et al. 2018) on UAV to better collect field 

information for land classification. Christian and Christiane 

(2014) compared forest point cloud data collected from UAV 

images and airborne LiDAR and concluded that more infor-

mation was captured through UAV image data. Zhang et al. 

(2020a) used aerial hyperspectral images to classify tree 

species on forest farms in China, and obtained an accuracy 

of 93.1%. However, hyperspectral imaging may be limited 

when used on grassland areas with low-level color contrast 

as it creates a large amount of redundant data (Grigorieva 

et al. 2020). In addition, wind has considerable influence on 

LiDAR data which leads to noise and ghost points around 

the detected targets (Yun et al. 2016; Xu et al. 2018). There-

fore, using UAV high resolution cameras is one of the most 

preferred methods to classify land cover in a mixed forest-

grassland ecosystem.

Traditional segmentation methods of remote sensing 

involve pixel-based segmentation (Bhadoria et al. 2020) 

object-based analysis (José et al. 2013), and random forest 

segmentation (Fei et al. 2015). The analysis of pixel-based 

segmentation aims only at the color information among 

pixels, ignoring the semantic information of the classified 

objects, giving a poor performance in multi-object classi-

fication (Zhang et al. 2020c). Numerous researchers have 

studied forestry classification algorithms based on a combi-

nation of object-based analysis, random forest and manual 

feature extraction. Ke et al. (2010) applied an object-based 

approach to evaluate the synergism in high spatial resolu-

tion multispectral imagery and low-posting-density LiDAR 

data for forest species classification. Random forest seg-

mentation was applied to classify tree species using satel-

lite images of temperate forests in Austria, and the overall 

accuracy was 82% (Immitzer et al. 2012). In practice, the 

above approaches require extensive manual marking which 

contributes to a waste of human resources for high accuracy 

feature extraction (Wolf and Bochum 2013; Dalponte et al. 

2015).

With the development of deep learning and convolutional 

neural networks (CNN) (Zhang et al. 2020b; Lou et al. 2021), 

numerous semantic segmentation algorithms exist for auto-

matic classification (Fu and Qu 2018; Braga et al. 2020). 

U-Net (Ronneberger et al. 2015), is a semantic segmentation 

model based on a fully convolutional network and was ini-

tially used for biomedical image segmentation (Dong et al. 

2017a; Rad et al. 2020). In comparison to other deep learning 

networks such as fully convolutional networks(FCN) (Long 

et al. 2015) and Densenet (Huang et al. 2017), U-Net has the 

overwhelming advantage of overall accuracy using a small 

number of data sets (Liu et al. 2020). In this context, U-net 

was used to extract complex terrain features to classify hills 

and ridges of the Loess Plateau in China (Li et al. 2020a). Due 

to unsurpassed reliability and excellent segmentation quality, 

some researchers have applied U-net to train hyperspectral sat-

ellite images and obtain the distribution of trees in the Sahara 

and Sahel regions of West Africa (Brandt et al. 2020).

Numerous studies have indicated that defects occur during 

U-net’s feature extraction process (Freudenberg et al. 2019; 

Cao and Zhang 2020; Li et al. 2020b). Since U-net’s down-

sampling depends on a stack modules of Conv-BN-ReLU 

(CBR), this may cause extraction scales to vary at different 

depths, leading to more exaggerated classification errors 

(Cicek et al. 2016). In an effort to correct the defects, the fol-

lowing improvements have been made:

(1) Replace CBR modules with RCU of ResNet (He et al. 

2016). ResNet directly connects the encoder and the decoder 

in the sample and has a capability to prevent the loss of the 

encoded information within different layers (Zahangir et al. 

2017). For example, a building-extraction algorithm based on 

ResNet’s remote imaging demonstrated an outstanding perfor-

mance in an urban setting (Xu et al. 2018).

(2) Add LCU to down-sampling in feature extraction. LU-

net is a combination of U-net and LCU, where the number of 

convolution at each layer of the network was increased while 

the convolutional dimension was shorten. Alom et al. (2018) 

proposed a recurrent convolutional neural network based on 

U-net structure that exhibited superior performance on skin 

cancer segmentation tasks.

However, the above methods performed well in the form of 

binary classification for medical and urban building domains, 

but the ability to classify land cover in a complex forest and 

grassland ecosystem remains a major challenge. As such, in 

this study, applying the improved U-net model to achieve 

accurate land cover classification in a mixed forest-grassland 

ecosystem is proposed. The objectives of this study include 

the following: (1) To propose an LResU-net model applicable 

to land cover classification based on U-net framework as well 

as a combination of RCU and LCU; (2) To evaluate the clas-

sification accuracy of U-net, ResU-net, LU-net and LResU-net 

in a mixed forest-grassland ecosystem; and, (3) To calculate 

the actual areas of various land covers using the best model 

of this study.
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Materials and methods

Study area

The study area (Fig. 1) is located near the green Lv Shui Ani-

mal Breeding Farm of Horqin, Xing’an League, Inner Mon-

golia Autonomous Region at 46°42ʹ51″ N and 120°30ʹ1″ E 

with an altitude of 230–300 m. The local climate is mid-

temperate, semi-arid continental monsoon within an aver-

age annual temperature of 13 °C, rainfall of 420 mm, and 

humidity of 18%. The area consists of forests, grasslands 

and cultivated lands, and provides a variety of land covers 

such as natural grasslands, trees, roads, rivers, and buildings.

Field survey and acquisition of UAV image data

The field investigation, September 23rd to 28th, 2020 was 

near the Lv Shui Animal Breeding Farm. And involved the 

determination of land cover classes and UAV image data 

collection. The river bed has been eroded over many years 

and so some land cover is not identifiable. Aerial images 

were taken by the DJI Mavic 2 Pro drone equipped with 

Suha’s one-inch 20-megapixel CMOS sensor (Table 1). The 

flight airspace was 1210 m × 600 m at an altitude of 260 m in 

which the overlap of flight paths was 85% and a side overlap 

of 80%. A total of 798 photos was produced.

Data preprocessing

The usual way to obtain an orthophoto map is three dimen-

sional (3D) reconstruction over the entire study area. The 

steps of 3D reconstruction are (Fig. 2). First, applying the 

structure from motion (SfM) algorithm achieved detection 

and matching of the feature points to obtain the sparse 

point clouds. Second, based on sparse point clouds, the 

dense point cloud was systematically acquired using 

Fig. 1  a and b Study area: natural grasslands near Xing’an League, Inner Mongolia Autonomous Region; c synthesis orthophoto using UAV 

image; d UAV flight path generated from satellite planning route
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multi-view stereo (MVS) algorithm. Third, a 3D imagery 

(Fig. 3) was generated in a way of surface reconstruction 

and texture mapping upon dense point cloud.

During the reconstruction process, open multiple view 

geometry (OpenMVG) library was y used for the SfM 

algorithm to get sparse point clouds. The subsequent pro-

cedures, including MVS, surface reconstruction and tex-

ture mapping, were implemented with the open multiple 

view stereo (OpenMVS) library. Finally, the 3D recon-

structed model was compressed to an orthophoto on the 

Context Capture platform. The complete orthophoto with 

a pixel resolution of 20,167 × 13,534 was used to establish 

a high resolution data set for land cover classification.

Production of data sets

To prevent data loss, the data sets were produced by 

overlapping and cutting the entire orthophoto. The ortho-

photo with resolutions of 20,167 × 13,534 pixels, was first 

reshaped into an original dataset in which the image reso-

lution was modified to 1024 × 1024 pixels. Based on the 

ratio of 6:2:2, the data sets were then divided into train-

ing, validation and test sets to ensure the mutual inde-

pendence in data and to maintain the robustness of the 

Table 1  DJI Mavic 2 Pro UAV flight parameters

Size 322 mm × 242 mm × 84 mm

Takeoff weight 907 g

Longest flight time 31-min

Hover accuracy V: ± 0.1 m H: ± 0.3 m

Maximum flight speed 72 km  h–1

Maximum cruising range 18 km

Maximum wind resistance level level 5 wind

Image sensor effective pixels 20 million

Fig. 2  3D reconstruction workflow based on OpenMVG library and 

OpenMVS library

Fig. 3  An orthophoto derived from the 3D imagery using the Con-

text Capture platform; details of roads, rivers and buildings are dis-

played in high resolution 3D imagery
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model. For expending the data sets as well as reducing 

the performance requirements to graphics processing unit 

(GPU), images of 128 × 128 pixel were obtained from the 

original data sets by cutting with step of 64. The training, 

validation and test set were assigned to13145, 4598 and 

4596 images (Table 2).

In the field investigation, some complex land covers 

were difficult to define as a category, such as the mixed 

landscape of swamps and the eroded lands around rivers. 

However, since the image grid is very large, it was diffi-

cult to label the whole image without any gaps; therefore, 

unclassified areas were defined as one of the label cat-

egories. According to visual interpretation, ten different 

categories of land cover were recognized using different 

colors as image classification objectives (Fig. 4). The 

original orthophoto and labeled image were then respec-

tively divided into samples and objectives in training set, 

verification set and test set by Photoshop software.

LResU-net network

The backbone of LResU-net (Fig. 5) is a combination of 

sampling characteristics in ResU-net and LU-net. On the one 

hand, due to encoder layer of U-net being relatively shallow, 

LCU was added to down-sampling in the feature extraction. 

In comparison to U-net, LCU increases model depth as well 

as achieve the improvement of sample details during feature 

extraction. On the other hand, advances in the closed-loop 

feedback mapping function of RCU effectively avoided the 

problem of gradient overflow and disappearance, i.e., when 

the network’s loss rate reached the lowest value, ResU-net 

ensures that the network of the next layer still works in the 

most optimal state.

At the same time, the number of convolution kernels 

was modified from 64 → 128 → 256 → 512 → 1024 to 

32 → 64 → 128 → 256 → 512 to decrease the overall kernel 

count to 50% of U-net in the whole training process. Accord-

ing to previous studies (Liang and Hu 2015; Alom et al. 

2018), when the loop step of the LCU was 3, the feature 

Table 2  Land cover 

classification classes and related 

data sets

Number Class Label

RGB

Number of images

Training Validation Test

1 River (255,0,0) 2352 784 753

2 Road (0,0,255) 1283 4561 4498

3 Grassland (0,255,128) 3360 1120 1120

4 Harvested grassland (128,128,128) 2688 896 896

5 Tree (0,200,0) 1686 560 555

6 Building (128,128,0) 112 64 53

7 Crop (0,255,255) 109 51 59

8 Harvested crop (70,255,200) 327 163 147

9 Background (64,0,0) 1294 402 405

10 Unclassified area (0,0,0) 321 108 100

Total – 13,145 4598 4596

Fig. 4  a Map of the drone’s orthophoto; b Map of ten different category labels
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extraction effect and training time were optimal; the entire 

LResU-net structure is shown in Fig. 6.

Comparison with U-net

There are three differences of LResU-net from U-net:

1) The original feature extraction backbone CBR has been 

abandoned and replaced with RCU of Resnet.

2) Aiming at the feature extraction structure encoding–

decoding, LCU was added to the network. Meanwhile, 

the number of convolutions at each layer can be changed 

quantitatively in accordance with the difficulty of feature 

extraction.

3) The total convolution kernels was shorten by half in the 

training progress.

Three advantages of LResU-net compared with U-Net 

as follows.

1) Using the modified network solved the problem of gradi-

ent overflow and gradient disappearance.

2) Reducing the rate of misjudgment of image segmenta-

tion with low color contrast by applying an improvement 

of accuracy in detailed feature extraction.

3) The training time was shortened in approaches of opti-

mizing network parameters and reducing redundant con-

volution kernels.

Loss function and accuracy evaluation index

Loss function estimated the inconsistency between the clas-

sification data of the model and the reference data during 

network training progress. The pixel set and the category set, 

Fig. 5  a Backbone of the U-net feature extraction structure was a 

common CBR module (conv- > BN- > ReLU); b backbone of the 

ResU-net feature extraction structure with RCU added; c backbone of 

the LU-net feature extraction structure with LCU added; d backbone 

of the LResU-net feature extraction structure with RCU and LCU 

added
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respectively, are defined as i{1,2, …,N} and c{1,2…,M}, the 

image set becomes yi
c
{c = 1, 2...M} . After feature extraction, 

the probability of different categories of pixels becomes a 

M-dimensional tensors pi
c
{c = 1, 2...M} and the extent of 

[0, 1], thereby, resulting in a multi-category, cross-entropy 

loss function:

In this study, producer’s and user’s accuracy (Story and 

Congalton 1986; Olofsson et al. 2013; Shao et al. 2019), as 

well as a kappa coefficient, were used to evaluate classifica-

tion accuracy.

Network training

To facilitate a performance comparison among different net-

works, four different models were used to train and predict, 

U-net, ResU-net, LU-net, and LResU-net. The learning rate 

was adjusted to 1 ×  e–4 and the batch size was 32. A total of 

60 epoch with 18,000 steps allowed the model accuracy to 

reach the maximum in the training process. For the software 

platform, tensorflow-gpu 1.15 and keras 2.3.1 based on a 

Linux operating system was used as the learning framework, 

and all code was written by python. For the hardware plat-

form-(Table 3), an Intel Xeon E5-2650 processor, a Nvidia 

(1)CELoss =
1

N

N
∑

i=1

M
∑

c=1

yi
c

log
(

pi
c

)

GTX-1070 GPU, a 2 T ROM and 4 of 8 GB RAM were used 

to train and test.

Large-scale remote sensing imagery prediction and real 

area calculation

Given that memory overflow may be caused if the entire 

orthophoto is directly inputted to the model to predict, 

all images were cropped into a group of 128 × 128 image 

slices. After prediction of the slices, a composite imagery 

was spliced using these images in accordance with the order 

they were cropped. However, the splice approach of clip-

ping-prediction-splicing can result in obvious segmentation 

edges. An alternate method of clipping overlapping images 

and ignoring edges (Wang et al. 2020) may mitigate this, i.e., 

apply the area ratio between the ignored edge image and the 

stitched image to calculate the overlapping area size among 

the image slices. Of real area calculation, the ratio of UAV 

real flight area and the pixel area was used to calculate the 

Fig. 6  LResU-net model structure with the number of convolution kernels halved

Table 3  Computer hardware 

attributes
Hardware Configuration

CPU E5-2650

GPU GTX1070 GPU

ROM 2 T SSD

RAM 32 GB RAM
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area of ten different land covers where the flight region was 

70.54 ha.

Results

Accuracy of land cover classification using different 

networks

The reference data were derived from the pixel area of each 

land cover in the labeled orthophoto, and the classified data 

from the predicted pixel area of each land cover using dif-

ferent models.

Kappa coefficient and overall accuracy

The first step is to make an accurate assessment of the differ-

ent models for image classification, including U-net, ResU-

net, LU-net, and LResU-net. Table 4 and Table 5, respec-

tively, show kappa coefficient and classification accuracy 

with and without undefined areas in the whole data sets. 

The undefined area has a strong impact on accuracy assess-

ment because the unclassified area was predicted in other 

land covers.

On the basis of the separate data analysis in Table 4, the 

raise of the kappa coefficient and overall accuracy generated 

by ResU-net and LU-net indicates that both RCU and LCU 

played a positive role in modifying U-net. At the same time, 

the accuracy assessment of LResU-net was obviously higher, 

which also reflects a positive effect on the combination of 

RCU and LCU.

When not involving the unclassified areas, the variation 

tendency of Table 4 and Table 5 are consistent, i.e., the 

kappa coefficient and overall accuracy had an improvement 

to different extents on the modified model adding RCU and 

LCU. As expected, the optimum performance of accuracy 

assessment of LResU-net (kappa coefficient = 0.86, overall 

accuracy = 93.7%) was found in a test set, which is attributed 

to the advancement of ResU-net and LU-net.

Producer’s and user’s accuracy derived 

from LResU-net

The producer’s and user’s accuracy obtained from the 

LResU-net model is presented in Table 6. For most cat-

egories, both demonstrate highly favorable results. For 

example, trees occupy the highest value (producer’s = 0.98 

and user’s = 0.93), and the harvested crop second (produc-

er’s = 0.94 and user’s = 0.91). However, there are obvious 

differences between producer’s and user’s accuracy among 

some categories, including harvested grassland (produc-

er’s = 0.43 and user’s = 0.99), and river (producer’s = 0.85 

and user’s = 0.96). Such results are due to some undefined 

areas that were classified to above classes.

Land cover classification results from different 

networks

Figure 7 shows the graphs of land cover classification based 

on the four different network models. Compared with the 

results of U-net (Fig. 7a), noise and misjudgment rate of 

ResU-net (Fig. 7b) were slightly reduced, and the capacity of 

building classification significantly strengthened. Similarly, 

LU-net (Fig. 7c) was superior to U-net in overall classifica-

tion performance. Even with some noise in the harvested 

grassland, the classification capacity for road, river, and 

building was better than that of U-net. As for the results of 

LResU-net (Fig. 7d), it exceeded others in classification per-

formance, especially noise suppression from the grassland, 

harvested grassland, tree, and river.

The real area of various land covers

The outcome of various land covers is presented in Table 7. 

Regardless of unclassified area, the differences of the clas-

sification and the reference data for various land covers was 

insignificant. According to the results of the unclassified 

area, grassland (38.7%, area = 27.3 ha) is the largest propor-

tion of the area, followed by harvested grassland (28.7%, 

area = 20.3 ha). The entire grassland area accounted for 

67.4% of the study area. The smallest area was buildings 

Table 4  Classification evaluation coefficients of four models with 

unclassified areas

Model type Kappa coefficient Overall (%)

Training set Test set Training set Test set

U-net 0.48 0.46 68.48 65.60

ResU-net 0.56 0.55 73.37 71.64

LU-net 0.54 0.53 70.83 69.18

LResU-net 0.64 0.63 80.27 80.03

Table 5  Classification evaluation coefficients of four models without 

unclassified area

Model type Kappa coefficient Overall (%)

Training set Test set Training set Test set

U-net 0.66 0.60 88.25 82.33

ResU-net 0.80 0.79 91.96 91.03

LU-net 0.81 0.73 92.58 90.29

LResU-net 0.88 0.86 94.57 93.74
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(0.2%, area = 4.8 ha). The proportion of forest area was 

8.0%, which was average among all land covers.

Table 6  Population error matrix involving producer’s and user’s accuracy

Ri, Ro, Ha, Bu, Gl, Tr, Hg, Bg, Cr and Ua represent, respectively: River, Road, Building, Grassland, Tree, Harvested grassland, Background, 

Crop and Unclassified area; the measurement unit of classified and reference data is 1.000 ×  106 pixel

Classified data Reference data

Ri Ro Ha Bu Gl Tr Hg Bg Cr Ua Total User’s accuracy

Ri 4.924 0.003 0.000 0.007 0.007 0.000 0.009 0.000 0.008 0.170 5.127 0.96

Ro 0.137 20.003 0.016 0.111 0.028 0.030 0.055 0.045 0.535 2.202 23.161 0.86

Ha 0.002 0.000 1.726 0.002 0.030 0.000 0.000 0.000 0.000 0.128 1.888 0.91

Bu 0.243 0.016 0.005 13.491 0.012 0.002 0.016 0.000 0.169 1.148 15.102 0.89

Gl 0.031 0.000 0.006 0.000 0.600 0.003 0.002 0.000 0.000 0.146 0.788 0.76

Tr 0.000 0.000 0.001 0.000 0.019 2.832 0.000 0.000 0.009 0.172 3.034 0.93

Hg 0.000 0.000 0.000 0.000 0.000 0.000 7.701 0.000 0.000 0.047 7.748 0.99

Bg 0.000 0.000 0.000 0.000 0.007 0.000 0.000 0.609 0.002 0.031 0.649 0.94

Cr 0.011 0.019 0.001 0.027 0.009 0.011 0.012 0.000 16.038 1.273 17.401 0.92

Ua 0.423 0.145 0.083 0.257 0.053 0.010 10.267 0.020 0.422 8.122 19.802 0.41

Total 5.771 20.185 1.837 13.895 0.766 2.887 18.063 0.675 17.181 13.439 94.700 –

Producer’s accuracy 0.85 0.99 0.94 0.97 0.78 0.98 0.43 0.90 0.93 0.60 – –

Fig. 7  a U-net model prediction result; b ResU-net model prediction result; c LU-net model prediction result; d LResU-net model prediction 

result
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Discussion

Effect of unclassified areas on classification results

Unclassified areas will change the attribute of land cover. 

According to Fig. 8 and Table 7, about 50% of unclassified 

areas was likely to have the same reference data in label, 

which indicated that some unclassified areas are subject 

to distinctive features and attributes, for example, swamp. 

Amid other unclassified areas, the regions attached fissures 

were predicted to be correct land cover, but other areas were 

grassland, harvested grassland and forest. It is attributed to 

the same or similar features between the unclassified and 

above classes in LResU-net’s vision.

Performance of RCU and LCU on the model training 

process

In line with the Table 8, the total parameters and training 

time in ResU-net were greater than that of U-net, which 

resulted from an addition of RCU. This was consistent with 

previous studies on improvements of U-net (Alom et al. 

2018; Rad et al. 2020). In contrast, as the convolutional 

dimension decreased, LU-net significantly reduced param-

eters and time. As RCU and LCU are combined, the number 

of parameters and training time in LResU-net (25.11 million, 

282 s) were slightly lower than U-net (31.05 million, 358 s).

Curves of accuracy and loss (Fig. 9) show the overall 

error between the predicted data and the reference data 

Table 7  Areas of each land 

cover in the reference data and 

the classified data

Class Reference data Classified data without 

unclassified area

Classified data with unclas-

sified area

Area (ha) Proportion (%) Area (ha) Proportion (%) Area (ha) Proportion (%)

River 2.68 3.8 2.70 3.8 3.52 4.9

Road 0.78 1.1 0.73 1.0 0.73 1.0

Grassland 25.46 36.1 25.40 36.0 27.30 38.7

Harvested grassland 19.66 27.9 19.70 27.9 20.27 28.7

Tree 5.62 8.0 5.64 7.9 5.67 8.0

Building 0.20 0.3 0.23 0.3 0.23 0.3

Crop 0.16 0.2 0.16 0.2 0.17 0.2

Harvested crop 1.16 1.6 1.19 1.6 1.19 1.7

Background 8.11 11.5 8.16 11.5 8.16 11.5

Unclassified area 6.67 9.5 – – 3.28 4.7

Total 70.54 100 63.93 90.6 70.54 100

Fig. 8  a Orthophoto map fused with label image; b orthophoto map fused with LResU-net model prediction image

Table 8  Four different model parameters and training time in each 

epoch

Type Model parameters (million) Time in 

each epoch 

 s–1

U-net 31.05 358

ResU-net 73.38 512

LU-net 10.91 177

LResU-net 25.11 282
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during the training process. When training is near the 55th 

epoch, accuracy and loss tend to be steady and hardly need 

the supplement of more epochs. Thus, all training stopped 

at the 60th epoch. In addition, it can be seen that ResU-net 

provided the fastest convergence rate in comparison with 

the other networks, which is attributed to the decline of the 

encoded loss in different layers.

Comparison of user’s accuracy on train and test sets 

using different network models

Figure 10a, b shows that the user’s accuracy of ResU-net and 

LU-net had a similar improvement in grasslands, crops, and 

buildings, which did not include unclassified areas. How-

ever, it is not as precise as the classification of harvested 

crops and river, indicating that the modification based sepa-

rately on RCU or LCU still had some defects on classifica-

tion in mixed forest-grassland ecosystems. At the same time, 

LRes-Unet produced the highest user’s accuracy, proving 

the positive effect of the combination of RCU and LCU on 

classification of land cover. Figure 10, d, proves that the 

above statement was still valid for unclassified areas and 

also recognizes the influence of unclassified area on each 

classification based on the four models.

Effect of background area on overall accuracy

Because of a few areas, the background effects had been 

ignored in previous studies (Cao and Zhang 2020; Zhang 

et al. 2020c). In this study, the impacts of background on 

classification can be analyzed by the producer’s and user’s 

accuracy (Table  6). The accuracy (producer’s = 0.90, 

user’s = 0.94) of background area was higher than that of 

other classes, which led to a false improvement of overall 

accuracy. However, the results in Fig. 10 exhibit drastically 

different user’s accuracy of background area based on U-net 

and ResU-net model. This difference was linked to the effect 

of LCU which can deepen the depth of image feature points 

and further improve classification accuracy.

Failure classification

Figure 11 illustrates the error of classifying trees under 

shadows which is the most common classification failure in 

data sets. Environment problems from sampling and image 

mosaics were the main factors deteriorating the classifica-

tion performance. Under low light or shadow conditions, 

the image features of some land cover change and further 

weaken similarities with other land covers in color level. In 

addition, the orthophoto obtained from the 3D reconstructed 

model may produce a blurry edge for images (Skabek et al. 

2020), which is likely to destroy classification.

Conclusions

Classifying land cover in a mixed forest-grassland eco-

system is a significant use of remote sensing technol-

ogy, particularly from unmanned aerial vehicles (UAV) 

to manage forests and grasslands. This study presents a 

new method, LResU-net, to do land cover classification 

based on U-net, residual convolution and loop convolu-

tion network. On the basis of U-net, it adds RCU and 

LCU on U-net approach to improve the model and reduces 

the number of parameters and training time. Compared 

with other networks (U-net, ResU-net, LU-net), LResU-

net has higher Kappa coefficients and greater accuracy in 

the entire data sets. The analysis of producer’s and user’s 

Fig. 9  a Training accuracy curves of four different models; b training loss curves of four different models
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accuracy indicates that LResU-net had the favorable per-

formance in various land covers. The result of classifica-

tion was affected by unclassified areas, and a solution to 

some unclassified lands was found. The area of various 

land covers, which can be used for statistics and analysis 

of landform was calculated. However, this study does not 

include height data and future research should use the 3D 

reconstructed model to study height data of land cover 

classification.

Open Access This article is licensed under a Creative Commons 

Attribution 4.0 International License, which permits use, sharing, 

Fig. 10  a User’s accuracy without unclassified area on training set 

using four network models; b user’s accuracy without unclassified 

area on test set using four network models; c user’s accuracy with 

unclassified area on training set using four network models; d user’s 

accuracy with unclassified area on test set using four network models
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