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Abstract: The urban heat island (UHI) effect is an important topic for many cities across the globe.
Previous studies, however, have mostly focused on UHI changes along either the spatial or temporal
dimension. A simultaneous evaluation of the spatial and temporal variations is essential for under-
standing the long-term impacts of land cover on the UHI. This study presents the first evaluation
and application of a newly developed spatiotemporal weighted regression framework (STWR), the
performance of which was tested against conventional models including the ordinary least squares
(OLS) and the geographically weighted regression (GWR) models. We conducted a series of simula-
tion tests followed by an empirical study over central Phoenix, AZ. The results show that the STWR
model achieves better parameter estimation and response prediction results with significantly smaller
errors than the OLS and GWR models. This finding holds true when the regression coefficients are
constant, spatially heterogeneous, and spatiotemporally heterogeneous. The empirical study reveals
that the STWR model provides better model fit than the OLS and GWR models. The LST has a
negative relationship with GNDVI and LNDVI and a positive relationship with GNDBI for the three
years studied. Over the last 20 years, the cooling effect from green vegetation has weakened and the
warming effect from built-up features has intensified. We suggest the wide adoption of the STWR
model for spatiotemporal studies, as it uses past observations to reduce uncertainty and improve
estimation and prediction results.

Keywords: spatiotemporal variation; STWR; land cover; land surface temperature; simulation

1. Introduction

The urban heat island (UHI) effect is among the greatest short-term threats to the
biophysical environment and human health. Significant warming in densely built urban
areas compared to rural areas has caused a range of environmental, economic, and energy
impacts such as elevated emissions of greenhouse gases, impaired air quality, and increased
energy consumption [1]. Further, the UHI effect can increase both the magnitude and dura-
tion of a heat wave, causing adverse impacts on human health, particularly in vulnerable
populations [2].

The UHI effect is a global issue, and UHI studies have been conducted in many cities
around the world. Numerous studies have focused on the relationships between UHIs
and the land surface temperature (LST) with different land cover types and patterns [3–5].
Among major land cover types, green vegetation, such as trees and grass, and impervious
surfaces, such as roads, pavements, and parking lots, are key contributors to LST varia-
tions [6–8]. Apart from land composition, spatial characteristics such as shape, orientation,
and spatial arrangement can have a sizable impact on the LST as well [9,10]. Understanding
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the spatiotemporal impacts of land-use/land cover change on the UHI effect is important
for making informed decisions on urban planning and natural resource management. Fur-
ther, as increasing numbers of cities are becoming aware of the detrimental effects of urban
warming, mitigation strategies are being implemented at a global scale. A better under-
standing of the changing patterns of the UHI effect is vital for evaluating the effectiveness
of these mitigation measures.

A suite of statistical tools has been used in UHI studies. The ordinary least squares
(OLS) regression model is widely used to study linear relationships between the UHI effect
and its drivers [11,12]. More advanced statistical models such as the generalized addictive
model, random forest regression, and artificial neural networks have been increasingly
employed to address more complex relationships such as non-linear relationships [13–15].
Global models assume a static statistical relationship based on the entire geographical
region. This can be problematic, especially when the study area is quite large as there
might be multiple spatial processes occurring at different spatial scales. The geographically
weighted regression (GWR) model was developed to address spatial non-stationarity [16].
For each observation, the GWR borrows data from its neighbors as defined by the spatial
weights matrix and calibrates a separate model [17].

While local spatial variations are addressed using models such as the GWR model,
it remains a challenge to effectively incorporate variations in the temporal dimension.
There have been efforts dedicated to developing spatiotemporal models to account for both
spatial and temporal effects. Huang et al. [18] proposed a geographically and temporally
weighted regression (GTWR) model that incorporated both spatial and temporal effects
into the weighting matrices. However, Fotheringham et al. [19] pointed out that the simple
integration of spatial and temporal distances in the GTWR could be misleading as they are
measured at varying scales. Que et al. [20] proposed a novel spatiotemporal model named
the spatiotemporally weighted regression (STWR) model. The STWR model was built
based on the assumption that the rate of value change in time has an impact on the value
of its nearby locations. Building upon the GWR, the STWR model addresses both spatial
and temporal heterogeneity by borrowing data points not only from nearby locations in
space but also from nearby attribute variations over time [20]. In contrast to the GTWR
model, which considers distance over time, the STWR model focuses on the rate of nearby
data variation over time and reflects the temporal effect of observations near the regression
point.

Our study presents the first evaluation and application of the STWR method in compar-
ison to conventional models in the context of a surface UHI study. Satellite image-derived
biophysical land cover indicators and LST products were used. A series of systematically
designed simulation experiments were set up to assess the performance of the STWR in
comparison with the OLS and GWR. We further conducted an empirical study over Phoenix,
AZ, to evaluate the evolving relationships between the LST and land cover changes. Our
study aims to achieve the following objectives: (1) to compare the performance of the
STWR method with that of the OLS and GWR models in terms of parameter estimation and
response prediction and (2) to understand the way in which the LST–land cover relationship
changed over 20 years in a rapidly urbanizing desert region.

The rest of the article is organized as follows: Section 2 describes the study area and
introduces the variables, models, and parameters used in the simulation experiments. It
also describes the metrics used to evaluate the performance of the models. Section 3 reports
the results of the simulation for three case scenarios. Section 4 presents an empirical study
where the STWR models were applied to understand the spatiotemporal relationships
between LST and land cover patterns over central Phoenix. Section 5 discusses the per-
formance and advantages of the STWR and highlights the implications of the findings on
urban cooling. Section 6 summarizes the study and proposes future directions.
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2. Materials and Methods
2.1. Study Area

Our study focuses on central Phoenix, which is located in the northern part of the
Sonoran Desert (Figure 1). Phoenix is in one of the sunniest regions in the world, with an
average of 300 days of sunshine per year [21]. It has a hot desert climate with extremely
hot, dry summers and mild, short winters. Unlike other desert cities with a large day–night
temperature difference, Phoenix has a constantly high temperature due to its phenomenal
UHI effect. The UHI is steadily intensifying as the city continues to expand, resulting in
significantly elevated temperatures. The average summer temperature in Phoenix was
26.8 ◦C in 2000 but had increased to 36.1 ◦C by 2020 [22]. Heat waves have become
more frequent and intense, contributing to the further intensification of the UHI effect.
Understanding the spatiotemporal patterns of the UHI in connection with land cover
change is vital for developing effective mitigation measures for the well-being of the
residents, especially those susceptible to extreme heat.
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Figure 1. (a) Landsat image of the study area acquired on 21 June 2020. (b) Location of study area in
Phoenix.

2.2. Simulation Experiments

We conducted a series of simulation experiments to evaluate the performance of the
OLS, GWR, and STWR models in terms of parameter estimation and response prediction.
In the simulation, true coefficient surfaces were artificially generated with three case
scenario settings: (1) the coefficient surfaces are constant both spatially and temporally,
(2) the coefficient surfaces are spatially heterogeneous but temporally constant, and (3)
the coefficient surfaces have both spatial and temporal variations. Figure 2 presents the
workflow of the simulation. The rest of this section describes the simulation process in
detail.
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Figure 2. Workflow diagram of the simulation experiments.

2.2.1. Variable Setting

There were three independent variables in the model, all of which were derived from
Landsat images over Phoenix. We used all available images from June to August with a
cloud cover under 10% because daytime temperatures are highest and the relationship
between LST and land cover is strongest in the summer [23]. For each year, the Landsat
images were integrated into a summer composite. The performance of the OLS, GWR,
and STWR models was tested for the year of 2020. For the OLS and GWR models, only
the summer composite for 2020 was used, as no temporal effects were considered. For
the STWR model, in addition to the 2020 data, we used additional summer composite
images in 2000, 2005, 2010, and 2015 to account for their temporal impacts on the 2020
data. We focused on two major land cover types in the study area: vegetation and built-up
areas. We used the normalized difference vegetation index (NDVI) to represent the green
biomass (Equation (1)) and the normalized difference built-up index (NDBI) to represent
the built-up features in the region (Equation (2)).

NDVI =
NIR − RED
NIR + RED

, (1)

NDBI =
SWIR − RED
SWIR + RED

, (2)

where NIR, RED, and SWIR stand for the near-infrared band, red band, and short-wave
infrared band, respectively.
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We used spatial autocorrelation indices to characterize the landscape pattern. The
Getis-Ord G measures the local abundance of a particular land cover. Mathematically, the
Getis-Ord G for location i, G∗

i (d), is provided by

G∗
i (d) =

∑j wij(d)xj

∑j xj
, (3)

where xj denotes the attribute value at a particular location j. We used a row-standardized
binary spatial weights matrix with a radius distance of 150 m following previous stud-
ies [24,25]. We calculated the z-score, which is the standardized Getis-Ord G. A high z-score
means a spatial clustering of high values (hot spot), and a low z-score means a spatial
clustering of low values (cold spot). Both high and low z-scores are relative to the average
of the image. We calculated the Getis-Ord G for the NDVI and NDBI to measure the local
abundance of vegetation and built-up features, respectively.

The local Moran’s I was used to quantify the degree of spatial clustering, and it is
provided by

Ii(d) =
n(xi − x)

∑i(xi − x)2 ∑
j

wij(d)
(
xj − x

)
, (4)

where xi denotes the attribute value at a particular location i. We used the same spatial
weights matrix and radius distance in the calculation of the local Moran’s I. Unlike the
Getis-Ord G, a high positive z-score means a spatially clustered pattern (either high values
or low values), and a low negative z-score means a spatially dispersed pattern. Note that
the local Moran’s I focuses on the spatial arrangement rather than the absolute data values,
and it was calculated for NDVI only as the local Moran’s I of NDBI reveals a similar spatial
pattern.

Rather than using observed data, the values on the dependent variable in the sim-
ulation were generated following a data-generating process (Section 2.2.3). There were
three scenario settings, and each one was tested with three regression models (i.e., the OLS,
GWR, and STWR models).

2.2.2. Model Formulation

The classic OLS model can be formulated as

yi = β0 + ∑
k=1

βk xik + εi, (5)

where yi denotes the dependent variable at location i, βk is the regression coefficient
associated with the kth independent variable xik, and εi is a random error term.

The GWR model extends the OLS by allowing the local regression coefficients to vary
spatially, and it is formulated as

yi = β0(ui, vi) + ∑
k=1

βk(ui, vi)xik + εi, (6)

where xik is the kth independent variable at location (ui, vi) and βk(ui, vi) is the regression
coefficient associated with the kth independent variable at location (ui, vi).

The STWR [20] further extends the GWR by borrowing past observations to improve
model performance at a certain time t. A typical STWR model can be expressed as

yt
i = βt

0(ui, vi) + ∑
k=1

βt
k(ui, vi)xt

ik + εt
i, (7)

where xt
ik is the kth independent variable at location (ui, vi) at time t, βt

k(ui, vi) denotes the
kth regression coefficient at location (ui, vi) at time t, and εt

i is a random error term with a
Gaussian distribution.
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The model calibration is provided by

β̂t
k(ui, vi) = (XTWt(ui, vi)X)

−1
XTWt(ui, vi)yt

i , (8)

where X is the matrix form of the independent variables. Wt(ui, vi) denotes a diagonal
weighting matrix at location (ui, vi). The STWR uses a novel rate-of-change decay weight-
ing strategy to weight local temporal effects. The new weighted average form of the
spatiotemporal kernel takes the form

wt
ijST = (1 − α)Ks

(
dsij, bST

)
+ αKT

(
dtij, bT

)
, 0 ≤ α ≤ 1, (9)

where wt
ijST is the element of the matrix Wt(ui, vi) in Equation (6), which denotes the

spatiotemporal weight on the observed location j at time t; Ks and KT are the spatial and
temporal kernels, respectively, which range from 0 to 1; α is an adjustable parameter that
can be optimized in the model calibration process; bST denotes the spatial bandwidth at a
particular time T; bT is the temporal bandwidth; and dsij and dtij represent the spatial and
temporal distance between location i and j, respectively. The temporal kernel KT that can
generate the temporal weights wt

ij∆t of the STWR framework is specified as

wt
ij∆t =


 2

1+exp(−

∣∣∣(yi(t)−yj(t−q))/yj(t−q)

∣∣∣
∆t/bT

)

− 1

, i f 0 < ∆t < bT

0, otherwise

, (10)

where ∆t is the time interval and
∣∣∣(yi(t) − yj(t−q))/yj(t−q)

∣∣∣ is the absolute different rate
between the observed value for regression point i at t and the observed value for point j at
t − q. The weight is set to zero if the time interval falls out of (0, bT). The STWR allows the
spatial bandwidth to vary over time. The spatial kernel Ks takes the form of a bi-square
kernel, a Gaussian kernel, or another spatial kernel. wt

ijST is obtained by substituting Ks

and KT into Equation (7).

2.2.3. Simulation Parameter Setting

The simulation experiments were set up based on the assumption that the true coeffi-
cient surfaces were known. We tested a total of three case scenarios with different settings
of the coefficient surfaces.

For case scenario 1, the data-generating equation is provided by

y = 1 + 2 ∗ GNDBI − 2 ∗ GNDVI − 1 ∗ LNDVI + err, (11)

where GNDBI, GNDVI, and LNDVI represent the Getis-Ord G of NDBI, the Getis-Ord
G of NDVI, and the local Moran’s I of NDVI, respectively. err is an error term randomly
drawn from the Gaussian distribution N (0, 4).

In the second case scenario, the beta surfaces were set up as

β0(ui, vi) = 2, (12)

β1(ui, vi) = −2 + (ui + vi)/353 (0 < ui, vi < 353), (13)

β2(ui, vi) = 1 +
(

3 −
(

2 − ui
90

)2
)
∗

(
3 −

(
2 − vi

90
)2
)

2
(0 < ui, vi < 353), (14)

β3(ui, vi) = 0.2 ∗ sin
( π

100
∗ (ui + vi)

)
∗ 2.52 (0 < ui, vi < 353). (15)



ISPRS Int. J. Geo-Inf. 2023, 12, 151 7 of 23

Note that each beta surface was a 353 × 353 matrix. The data-generating equation is
provided by

yi = β0(ui, vi) + β1(ui, vi) ∗ GNDBI + β2(ui, vi) ∗ GNDVI + β3(ui, vi) ∗ LNDVI ± erri (0 < ui, vi < 353), (16)

where erri is a random error term drawn from the Gaussian distribution N (0, 2).
For case scenario 3, the beta coefficients were generated using the following equations:

βt
0(ui, vi) = βt−1

0 (ui, vi) + 0.1 ∗ sin
( vi

40

)
∗ ∆t (0 < ui, vi < 353), (17)

βt
1(ui, vi) = βt−1

1 (ui, vi) + 0.1 ∗ sin
( π

100
∗ ui

)
∗ ∆t (0 < ui, vi < 353), (18)

βt
2(ui, vi) = βt−1

2 (ui, vi) + 0.1 ∗ sin
[ π

60
∗ (ui + vi)

]
∗ ∆t (0 < ui, vi < 353), (19)

βt
3(ui, vi) = βt−1

3 (ui, vi) + 0.1 ∗ sin
[ π

160
∗ (ui + vi)

]
∗ ∆t (0 < ui, vi < 353). (20)

The coefficients at the initial time stage were set up as

β0
0(ui, vi) = 2 + 0.5 ∗ sin

( vi
40

)
(0 < ui, vi < 353). (21)

β0
1(ui, vi) = −2 +

ui + vi
353

+ 0.5 ∗ sin
( π

100
∗ ui

)
(0 < ui, vi < 353), (22)

β0
2(ui, vi) = 1 +

(
3 −

(
2 − ui

90

)2
)
∗

(
3 −

(
2 − vi

90
)2
)

2
+ 0.5 ∗ sin

[ π

60
∗ (ui + vi)

]
(0 < ui, vi < 353), (23)

β0
3(ui, vi) = 0.2 ∗ sin

( π

100
∗ (ui + vi)

)
∗ 2.52 + 0.5 ∗ sin

[ π

160
∗ (ui + vi)

]
(0 < ui, vi < 353). (24)

The data-generating equation is

yt
i = βt

0(ui, vi) + βt
1(ui, vi) ∗ GNDBI + βt

2(ui, vi) ∗ GNDVI + βt
3(ui, vi) ∗ LNDVI ± erri (0 < ui, vi < 353), (25)

where erri is a random error term drawn from the Gaussian distribution N (0, 2).
For each year, a total of 1000 samples were randomly selected, and the regression

models were fit for the year 2020. For the OLS and GWR models, only the samples in
2020 were utilized because no temporal effects were considered. For the STWR model, all
previous years’ samples were included in addition to the samples in 2020 to account for their
temporal effects. In addition to the coefficient surfaces, we also generated response surfaces
for comparison. For all three models, the process was replicated 100 times to obtain an
averaged estimation of the coefficients and responses. All the simulated experiments were
implemented using the Fast-STWR package in Python (https://github.com/quexiang/
Fast-STWR (accessed on 20 July 2022)).

2.2.4. Assessment Metrics

The performance of the three models was assessed as follows. First, for each fitting
method, a total of 100 beta estimation surfaces were generated for each beta coefficient.
The 100 estimation surfaces were averaged pixel by pixel to provide four mean estimation
surfaces (one for each beta coefficient). Second, we subtracted the original true beta surfaces
from the mean estimation surfaces to obtain estimation error surfaces. Third, we used the
absolute value of the estimation error surfaces to generate four absolute error surfaces.
Lastly, we calculated the mean of the absolute error over the surface (spatial average) and
obtained a mean absolute error (MAE) score for each coefficient.

https://github.com/quexiang/Fast-STWR
https://github.com/quexiang/Fast-STWR
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The response prediction was assessed in a similar manner. For each fitting method,
the 100 response surfaces were averaged pixel by pixel to provide a mean response surface.
We then subtracted the data-generated response surface from the mean response surface
to obtain estimation error surfaces. We calculated the absolute value of each estimation
error surface, yielding three absolute error response surfaces. These surfaces were spatially
averaged to obtain the MAE for each fitting method. In addition to the MAE, we also
calculated the Akaike information criterion (AIC) [26] at each replication to provide an
averaged AIC score for each fitting method.

3. Simulation Results
3.1. Simulation Case Scenario 1—Constant Coefficients

In the first simulation, the beta coefficients were both spatially and temporally constant
(Figure 3). Figure 3 shows the estimation error surfaces for the OLS, GWR, and STWR
model, respectively. Because the OLS model is a global model, the estimation error surfaces
are spatially constant. There were spatial variations in the GWR and STWR models because
these two models allow the coefficients to vary spatially. When comparing the three models,
the STWR model achieved the smallest estimation error for all four coefficients despite the
spatial variations. The OLS model ranked second, and the GWR model had the largest
estimation error.
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Table 1 shows the MAE scores for the beta coefficient surfaces obtained from the
OLS, GWR, and STWR models. These results were generated from Case Scenario 1, which
assumes that the beta coefficients are spatially and temporally constant. Consistent with
the estimation error surfaces in Figure 4, the STWR model had the lowest MAE score for all
coefficients, followed by the OLS and GWR models, respectively. As all coefficients were
set to be spatiotemporally constant, a global model would be suitable for identifying the
relationships. This largely explained the good performance of the OLS model in comparison
with the GWR model. However, even with spatially constant coefficients, the STWR model
still performed the best and achieved the smallest overall estimation error.

Table 1. Mean absolute error scores for beta estimation (Case Scenario 1).

β0 β1 β2 β3

OLS 0.225 0.018 0.014 0.102
GWR 0.323 0.028 0.027 0.12
STWR 0.084 0.013 0.008 0.035
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In addition to parameter estimation, we also obtained the response surfaces for the
year 2020 using the OLS, GWR, and STWR models. We then calculated the response esti-
mation error by subtracting the data-generated response surface from each fitted response
surface. The data-generated response surface is the response surface obtained from the
data-generating process. Figure 5 shows the response estimation error surfaces. We could
hardly pinpoint any differences in the three models by studying the error surfaces alone.
When examining the MAE scores (Table 2), the OLS model had a slightly lower MAE than
the GWR (0.035 difference) and STWR (0.033 difference) models. The AIC score did not
reveal any significant differences either, although the GWR model had a slightly larger AIC
than the other two.
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Table 2. MAE and AIC scores for response surfaces generated from the OLS, GWR, and STWR
models (Case Scenario 1).

OLS GWR STWR

MAE 3.197 3.232 3.23
AIC 933.443 937.549 931.836
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3.2. Simulation Case Scenario 2—Spatially Varying Coefficients

In the second simulation, the four coefficient surfaces were set up to show varying
degrees of spatial heterogeneity, but there was no temporal variation (Figure 6). Figure 7
shows the estimation error surfaces for the three models based on spatially varying coeffi-
cients. We determined that the spatial patterns in the error surfaces obtained from the OLS
model resemble those of the true beta coefficients. This is not surprising because, as a global
model, the OLS model generates spatially constant coefficients. On average, the OLS model
had the largest estimation error among the three models. The two local models performed
better in terms of parameter estimation, with the STWR having a smaller estimation error
than the GWR according to a visual inspection. The good performance of the STWR model
was corroborated by the MAE scores shown in Table 3. From Table 3, the STWR had the
lowest MAE scores for all coefficients. The GWR model had higher MAE scores than the
STWR model but lower MAE scores than the OLS model, with the sole exception of beta 3.

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 23 
 

 

had higher MAE scores than the STWR model but lower MAE scores than the OLS model, 

with the sole exception of beta 3. 

 

Figure 6. True beta coefficient surfaces (Case Scenario 2). 

 

Figure 7. Coefficient estimation error surfaces for the OLS, GWR, and STWR models (Case Scenario 

2). 

Table 3. Mean absolute error scores for beta estimation (Case Scenario 2). 

 β0 β1 β2 β3 
OLS 7.383 1.05 1.394 1.762 

GWR 4.574 0.589 0.488 2.619 

STWR 2.099 0.241 0.226 1.264 

Figure 8 shows the estimation error surfaces for the response. In contrast to Case 

Scenario 1 where the coefficients were constant, with spatially varying coefficients, the 

STWR model seemed to have the smallest overall response estimation error. The GWR 

model showed a small amount of overestimation, whereas the OLS model showed strong 

overestimation across the study area. The MAE score told the same story, with the STWR 

model showing the lowest MAE score followed by the GWR and OLS models, respectively 

Figure 6. True beta coefficient surfaces (Case Scenario 2).

ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 10 of 23 
 

 

had higher MAE scores than the STWR model but lower MAE scores than the OLS model, 

with the sole exception of beta 3. 

 

Figure 6. True beta coefficient surfaces (Case Scenario 2). 

 

Figure 7. Coefficient estimation error surfaces for the OLS, GWR, and STWR models (Case Scenario 

2). 

Table 3. Mean absolute error scores for beta estimation (Case Scenario 2). 

 β0 β1 β2 β3 
OLS 7.383 1.05 1.394 1.762 

GWR 4.574 0.589 0.488 2.619 

STWR 2.099 0.241 0.226 1.264 

Figure 8 shows the estimation error surfaces for the response. In contrast to Case 

Scenario 1 where the coefficients were constant, with spatially varying coefficients, the 

STWR model seemed to have the smallest overall response estimation error. The GWR 

model showed a small amount of overestimation, whereas the OLS model showed strong 

overestimation across the study area. The MAE score told the same story, with the STWR 

model showing the lowest MAE score followed by the GWR and OLS models, respectively 

Figure 7. Coefficient estimation error surfaces for the OLS, GWR, and STWR models (Case Scenario 2).



ISPRS Int. J. Geo-Inf. 2023, 12, 151 11 of 23

Table 3. Mean absolute error scores for beta estimation (Case Scenario 2).

β0 β1 β2 β3

OLS 7.383 1.05 1.394 1.762
GWR 4.574 0.589 0.488 2.619
STWR 2.099 0.241 0.226 1.264

Figure 8 shows the estimation error surfaces for the response. In contrast to Case
Scenario 1 where the coefficients were constant, with spatially varying coefficients, the
STWR model seemed to have the smallest overall response estimation error. The GWR
model showed a small amount of overestimation, whereas the OLS model showed strong
overestimation across the study area. The MAE score told the same story, with the STWR
model showing the lowest MAE score followed by the GWR and OLS models, respectively
(Table 4). The STWR also achieved the best fit with the data on average based on the AIC
score.
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Table 4. MAE and AIC scores for response surfaces generated from the OLS, GWR, and STWR
models (Case Scenario 2).

OLS GWR STWR

MAE 8.754 3.518 2.188
AIC 1290.47 1041.378 844.916

3.3. Simulation Case Scenario 3—Spatiotemporally Varying Coefficients

In the third simulation, the coefficient surfaces involved not only spatial variations
but also temporal variations (Figure 9). Figure 10 shows the estimation error surfaces for
the three models. As with Case Scenario 2, the coefficient patterns of the OLS model were
somewhat similar to the original ones given that it assumes a spatiotemporally constant
coefficient surface. While the local models showed quite a bit of spatial variations in the co-
efficient surfaces, the OLS model yielded relatively stable patterns with no abrupt changes.
Comparing the GWR and STWR surfaces, all GWR surfaces had several over/under-
estimated areas with significant spatial clustering. The GWR model also had more pixels
with large estimation errors than the STWR model. The estimation errors for the STWR
model seemed to be random and small across the study area. Table 5 confirms that the
STWR model had the lowest MAE scores for all the coefficients. The MAE scores of the
GWR model were a little higher than those of the STWR model but lower than those of the
OLS model, with the sole exception of beta 3.
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Table 5. Mean absolute error scores for beta estimation (Case Scenario 3).

β0 β1 β2 β3

OLS 10.722 1.733 1.441 2.934
GWR 7.027 1.202 0.628 3.157
STWR 4.819 0.433 0.426 1.718

Figure 11 shows the estimation error surfaces for the response. The OLS model showed
a significant number of overestimated pixels, and the GWR model had a relatively balanced
number of overestimated and underestimated pixels. From the figure, we can see that the
STWR model achieved the smallest estimation error on average. A similar pattern can be
observed in Table 6, with the STWR model having the lowest MAE score. When coefficients
have spatiotemporal variations, the STWR also provides the best goodness of fit for the
data.
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Table 6. MAE and AIC scores for response surfaces generated from the OLS, GWR, and STWR
models (Case Scenario 3).

OLS GWR STWR

MAE 9.958 5.387 3.597
AIC 1349.7 1163.868 1004.234

4. Empirical Study

In addition to the simulation experiments, we performed an empirical study to under-
stand the impacts of land cover patterns on the LST in 2000, 2010, and 2020 over central
Phoenix, AZ. We further compared the model goodness of fit achieved by the three models.

In a similar manner to the simulation experiments, the independent variables were
the Getis of NDVI, the Getis of NDBI, and the local Moran’s I of NDVI (see Section 2.2.1
for calculation). Instead of using synthetic data as in the simulation, real-world LST data
were adopted for the dependent variable. We used the Landsat Level-2 Provisional Surface
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Temperature product from the USGS [27], which has been widely utilized in numerous
scientific studies and applications [28–30]. The LST product was generated using the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm [31].
The LEDAPS algorithm is based on radiative transfer theory and uses a combination
of empirical and physically based models to estimate the surface temperature [32]. We
obtained the LST data for 2000, 2010, and 2020 for the same dates as the Landsat images and
created a summer composite for each year. A total of 3000 random samples were selected
for each year, and they were kept the same for the three regression models. For the OLS
and GWR models, only data from one year were used—data collected in 2020 were used in
the 2020 model. For the STWR model, all historically observed data points were initially
included in the model. The final observations depend on the optimal temporal bandwidth
determined in the model fitting process. For instance, when fitting the STWR model for
2020, the historical observations from 2000 and 2010 were included in conjunction with the
2020 observations. If the optimal temporal bandwidth were two, the actual observations
used by the STWR model would include data points from both 2020 and 2010.

Table 7 shows the R2 for the three regression models for 2000, 2010, and 2020. The R2

scores were above 0.5 for the OLS models, and above 0.9 for the STWR models across all
years. For all three years, the STWR model outperformed the OLS and GWR models, as is
indicated by it having the highest R2 among the three models. The highest R2 score was
0.948 in 2020.

Table 7. Model goodness-of-fit diagnostic for the OLS, GWR, and STWR models for 2000, 2010, and
2020.

Year 2000 2010 2020

Model OLS GWR STWR OLS GWR STWR OLS GWR STWR

R2 0.609 0.877 0.909 0.735 0.917 0.935 0.59 0.937 0.948

Table 8 shows the mean coefficient estimates for the STWR model. Only significant
estimates were included in the calculation. For all three years, the GNDVI and LNDVI
had negative relationships with the LST, and the GNDBI had a positive relationship with
the LST. From 2000 to 2010, the mean coefficient of the GNDVI decreased, indicating a
weakening cooling effect from the green vegetation. The warming effect from built-up
features, on the other hand, intensified over the 20 years as is reflected by the increasing
positive coefficient of the GNDBI. The negative coefficient of the local Moran’s I suggested
that a clustered pattern of green vegetation had a positive impact on urban cooling. The
impact, however, declined from 2000 to 2020.

Table 8. Mean significant coefficient estimates from the STWR model.

GNDVI GNDBI LNDVI

2000 −0.44 0.09 −1.4
2010 −0.28 0.25 −1.2
2020 −0.13 0.43 −0.57

To understand the relationship between land cover patterns and LST for different land-
use/land cover zones, we further calculated the mean coefficient estimates by major land
cover type in the region. The land cover data were sourced from the National Land Cover
Database (NLCD) from 2001, 2011, and 2019 (Figure 12). According to Figure 12, there
are four major types of land cover in the study area, including developed high intensity,
developed medium intensity, developed low intensity, and developed open space. The
developed high intensity category includes high-intensity commercial areas, industrial
areas in downtown Phoenix, and transportation areas near the Sky Harbor Airport. The
developed medium intensity category primarily includes the medium-intensity single-
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family residential areas. Low-intensity single-family residential areas are categorized as
developed low-intensity. Recreational areas such as parks, golf courses, and other vegetated
areas are classified as developed low-intensity or developed open-space depending on the
fraction of green vegetation in the area.

Table 9 shows the mean significant estimates for GNDVI, GNDBI, and LNDVI by land
cover type for the three years. First, there was a negative relationship between the GNDVI
and LST, and the relationship weakened over time across all land cover types. The strongest
cooling effect from green vegetation was observed in developed high intensity in 2000 and
changed to developed open space in 2010 and 2020. The GNDBI had a consistently positive
relationship with the LST, and the warming effect intensified from 2000 to 2020 for nearly
all land cover types. The strongest warming effect occurred in low- and medium-intensity
developed areas in 2020, and in developed open space in 2000 and 2010. There was a
negative relationship between LNDVI and LST, and the impacts from spatial pattern of
land cover gradually declined over the 20 years. The strongest cooling effect from clustered
patterns of green vegetation was observed in developed low intensity and developed open
space where the fraction of vegetated areas was high compared to other land cover types.

Table 9. Mean significant estimates from the STWR by land cover type.

Developed,
High

Intensity

Developed,
Medium
Intensity

Developed,
Low

Intensity

Developed,
Open Space

2000 GNDVI −0.48 −0.44 −0.45 −0.37
GNDBI 0.13 0.12 0.14 0.22
LNDVI −1.37 −1.38 −1.58 −0.89

2010 GNDVI −0.1 −0.28 −0.36 −0.37
GNDBI 0.13 0.29 0.28 0.5
LNDVI −1.6 −0.98 −1.28 −0.57

2020 GNDVI −0.06 −0.1 −0.13 −0.33
GNDBI 0.35 0.53 0.5 0.39
LNDVI −0.43 −0.5 −0.69 −0.9

Figure 13 shows the spatial pattern of significant coefficient estimates for GNDVI. First,
the number of significant negative coefficient estimates far exceeded that of significant
positive ones, indicating predominant cooling effect from green vegetation. Specifically,
clusters of negative estimates were detected in parks (Figure 13b,c), mesic residential
areas (Figure 13e,f), and golf courses (Figure 13h,i) where the cooling effect was the most
remarkable.

Figure 14 shows the significant estimates for GNDBI. Consistent with the mean coeffi-
cient summary, there were more positive estimates than negative ones for three years. The
majority of the positive estimates were located in residential and some commercial areas
with medium-to-low development intensity (Figure 14e,f). This points to the warming ef-
fect of built-up features on the LST. Interestingly, a sizable portion of the negative estimates
were detected in the industrial areas with high development intensity such as downtown
Phoenix (Figure 14b,c,h,i). This might be due to the shadows cast by the high-rise buildings
in these areas, which significantly lowers the surface temperature. However, this does not
necessarily indicate a cooling effect of tall buildings. Many other factors such as building
materials, geometry, air conditioning, and wind speed should be taken into consideration
to thoroughly evaluate the impact of high-rise buildings on the local climate.
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Figure 15 shows the significant estimates for LNDVI. The LNDVI was used here to
indicate whether a dispersed or clustered spatial pattern is present. There were more
negative estimates than positive ones which is consistent with the findings in Table 8.
Specifically, positive estimates were located in commercial and industrial areas near the
airport (Figure 15b,c). This indicates that a clustered pattern of buildings can increase
the LST and that a dispersed pattern is more beneficial for lowering the LST. Negative
estimates were more prevalent, primarily found in low- and medium-intensity single-family
residential areas (Figure 15e,f,h,i). This indicates that in these areas, a clustered pattern of
green vegetation provides a greater cooling effect than a dispersed pattern. Similar findings
were reported in previous studies conducted in different cities [29,33].



ISPRS Int. J. Geo-Inf. 2023, 12, 151 17 of 23
ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 23 
 

 

 

Figure 13. Coefficient surface of GNDVI from the STWR model in 2000 (a), 2010 (d), and 2020 (g). 

Points indicate significant coefficient estimates; (b,e,h) show areas highlighted in the red rectangle; 

(c,f,i) are Landsat images of the same areas. 

Figure 14 shows the significant estimates for GNDBI. Consistent with the mean 

coefficient summary, there were more positive estimates than negative ones for three 

years. The majority of the positive estimates were located in residential and some 

commercial areas with medium-to-low development intensity (Figure 14e,f). This points 

to the warming effect of built-up features on the LST. Interestingly, a sizable portion of 

the negative estimates were detected in the industrial areas with high development 

intensity such as downtown Phoenix (Figure 14b,c,h,i). This might be due to the shadows 

cast by the high-rise buildings in these areas, which significantly lowers the surface 

Figure 13. Coefficient surface of GNDVI from the STWR model in 2000 (a), 2010 (d), and 2020 (g).
Points indicate significant coefficient estimates; (b,e,h) show areas highlighted in the red rectangle;
(c,f,i) are Landsat images of the same areas.
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5. Discussion
5.1. Performance of STWR

There is an increasing awareness and interest in modeling spatial and temporal varia-
tions in a single framework. This paper presents a systematic evaluation and application
of a spatiotemporal model in a heat island study. As an extension of the GWR model,
the STWR model considers not only the variations in space but also the temporal effect
of nearby observations on the regression point [20]. By utilizing all available data points
in making the estimation and prediction, the STWR achieves outstanding performance
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compared to conventional models (Table 7). This finding is consistent with a few previous
case studies outlined in Que et al. [20], which reported a better model goodness of fit and a
lower fitting error for the STWR model when compared with the OLS and GWR models.

The simulation experiments underpinned the following findings: (1) When the simu-
lated coefficient surfaces are constant in space and time, the OLS model outperforms the
GWR model, but the STWR model has the smallest estimation error overall. There are no
significant differences between the three models in terms of response estimation. (2) When
the simulated coefficient surfaces exhibit spatial heterogeneity, the STWR model outper-
forms the GWR and OLS models in both parameter and response estimation. (3) When
the coefficient surfaces exhibit both spatial and temporal heterogeneity, the STWR model
performs the best and has significantly smaller errors than the GWR and OLS models.

5.2. Implications for Urban Cooling

The empirical study offers insights into the relationships between the LST and land
cover patterns over Phoenix. Based on spatially averaged coefficient estimates, LST shows a
positive relationship with GNDBI and a negative relationship with GNDVI and LNDVI. A
similar finding was reported in a case study in Boise, ID using spatial regression models [29].
Over the 20 years, the warming effect from built-up areas has intensified, but the cooling
effect from green vegetation has weakened (Table 8). As the city continues to grow with
increased built-up areas and intensity, the warming effect is projected to outweigh the
cooling effect, causing a significant increase in the surface temperature. The continuous
coefficient surfaces are helpful for identifying hot spots and cold spots. The most significant
cooling effect from vegetation occurs in mesic residential areas, golf courses, and parks,
where large areas of trees and grass are present. The strongest warming effect from built-up
features is observed in xeric residential areas and the airport, where houses and buildings
prevail in the area with sporadic vegetation. Meanwhile, we identified a significant cooling
effect in the densely built downtown area of Phoenix. This interesting finding is consistent
with those reported by Wang et al. [6], where an urban heat sink effect was identified in
the developed areas of Las Vegas, NV. The cooling effect may stem from the high-albedo
materials of the rooftops, air cooling systems, as well as the shadows of high-rise buildings.
The LNDVI results corroborated previous findings that an aggregated pattern of buildings
may increase surface temperatures and that a clustered pattern of green vegetation helps
cool the environment [29].

The findings above provide important implications for mitigation practices of the UHI
effect. First, it is essential that the city implements action plans to increase the area of green
spaces. This can be achieved by increasing the number of street trees and planning large
patches of grass in residential and recreational areas. Second, it is advised to reduce the
surface area of built-up features such as building multi-story parking structures instead of a
large parking lot. Additionally, buildings can be designed to minimize the heat absorption
by using green roofs or high-albedo roofs. The use of solar panels can greatly reduce the
heat absorbed by the buildings during the day while lowering greenhouse gas emissions.
Lastly, buildings can be oriented and spaced to allow for better air circulation and less solar
exposure.

5.3. Advantages of STWR

To study spatiotemporal trends, researchers tend to fit the GWR model at each time
stage and analyze coefficient changes over time. It is important to note that the heterogene-
ity of spatiotemporal processes is complicated, and the regression point is locally affected
by the compound spatiotemporal effects of its surrounding neighbors. For example, the
numerical rate of change in the response variable may also be spatially heterogeneous. The
heterogeneity of these situations cannot be evaluated by simply fitting the GWR model at
each time stage.

Similar to the GWR model, the STWR model generates continuous coefficient and
response surfaces as part of its output maps. However, these output maps achieved higher
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estimation accuracy than the GWR model and thus were more reliable than the GWR
maps based on the simulation experiments. This holds true for cases where the true
coefficients were constant, spatially heterogenous, and spatiotemporally heterogenous. We
consider this feature particularly attractive when modeling processes with spatially discrete
observations such as air temperature, humidity, and air pollution. With the STWR, users
can obtain continuous estimation and response prediction surfaces with decent accuracy.

Compared with other existing spatiotemporal models, the STWR model has unique
advantages. For instance, some models, such as the GTWR model [18,19], consider time
intervals as distances in time. As a consequence, these models treat each time interval
equally and overlook the different changing rates within a time interval and their spatial
heterogeneity. The idea of achieving an overall goodness of fit over the entire study period
is also problematic. A good fit of data points observed over the entire timespan does
not necessarily mean that it has a good fit at a particular time. The main purpose of
the STWR model is to “borrow past observations” to improve the estimation of spatially
varying coefficients and out-of-sample observations at the current stage. Further, most
spatiotemporal models lack the functionality to generate spatially continuous coefficient
and response surfaces. This limits their application in comparative analysis and makes
their interpretation more challenging. Some recent spatiotemporal models, such as the
geographically and temporally neural network weighted regression (GTNNWR) model [34],
use neural networks to address coefficient estimation and prediction in a nonlinear setting.
However, the bandwidth is not explicitly determined in these models, making it difficult to
identify the specific spatial scale at which each local process operates.

6. Conclusions

As an increasing number of satellite-based, aircraft-based, ground-based, and water-
based environmental monitoring sensors is being deployed, the amount and acquisition
rate of spatiotemporal data have skyrocketed. There is a pressing need for effective tools
to study the internal mechanisms and evolutionary patterns of the monitored data. Het-
erogeneous geospatial processes are inherently dynamic. However, many existing tools
fail to consider the variations in the temporal dimension. The STWR model was proposed
as an open-source statistical tool that takes full advantage of historical observations. The
most prominent advantage of the STWR model is that it can “borrow past observations” to
reduce the uncertainty of the current estimation. We suggest the use of the STWR model
instead of the GWR model when analyzing the heterogeneity of spatiotemporal processes
with historical observation records. This is because the STWR model has been proven to
generate more accurate parameter estimations and out-of-sample predictions.

Looking to the future, we are confident that the STWR model can be applied to
studying spatiotemporal trends in a wide range of fields. These include, but are not limited
to, environmental factors such as temperature, air quality, and precipitation, as well as
socioeconomic indicators such as real estate prices, population, income, and infectious
disease. To support its application and adaptation, our development group has made the
software program of the STWR model publicly accessible. Currently, all the Python code
of the STWR model and the data used in the experiments can be accessed on Github. To
support high-performance computation, a parallel-computing framework for the STWR
model is also publicly available. For the convenience of ArcGIS users, we are working to
make the STWR model a spatiotemporal tool that can be included in the ArcToolbox of
ArcGIS Desktop and ArcGIS Pro.
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