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Abstract. Although land cover mapping is one of the earliest applications of
remote sensing technology, routine mapping over large areas has only relatively
recently come under consideration.This change has resulted from new information
requirements as well as from new developments in remote sensing science and
technology. In the near future, new data types will become available that will
enable marked progress to be made in land cover mapping over large areas at a
range of spatial resolutions. This paper is concerned with mapping strategies
based on ‘coarse’ and ‘� ne’ resolution satellite data as well as their combinations.
The status of land cover mapping is discussed in relation to requirements, data
sources and analysis methodologies—including pixel or scene compositing,
radiometric corrections, classi� cation and accuracy assessment. The overview sets
the stage for identifying research priorities in data pre-processingand classi� cation
in relation to forthcoming improvements in data sources as well as new
requirements for land cover information.

1. Introduction and objective
Land cover, i.e. the composition and characteristics of land surface elements, is

key environmental information. It is important for many scienti� c, resource manage-
ment and policy purposes and for a range of human activities. It is an important
determinant of land use and thus of value of land to the society. Land cover varies
at a range of spatial scales from local to global, and at temporal frequencies of days
to millennia. As the need for environmental planning and management became
important, an accompanying call for land cover information emerged in parallel.

Land cover mapping is a product of the development of remote sensing, initially
through aerial photography (Colwell 1960 ). This is because ‘viewing’ large areas
repeatedly is necessary for acquiring information about land cover. For the same
reason, land cover mapping has been perhaps the most widely studied problem
employing satellite data, beginning with Landsat 1. However, most of the studies
using ‘� ne’ resolution data (i.e. 20–100 m) were methodological in nature, exploring
various information extraction techniques and applying these over limited areas.
Applications over large areas were hampered by the lack of suitable technology, an
absence of a user community with a strong need for such information, a lack of
appropriate analysis methodologies, and the cost of data. Thus, at the global level,
land cover data sets compiled from ground surveys or various national sources
(Mathews 1983, Olson et al. 1983 ) were, for a number of years, the major source of
information.
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Partly in view of the above obstacles (data volumes, cost, etc.) , since the late

1980s increased attention has been paid to the use of coarse resolution optical data,
represented primarily by NOAA (National Oceanic and Atmospheric

Administration) Advanced Very High Resolution Radiometer (AVHRR) images.

These were initially available at 8 km resolution and later, through the initiative of
the International Geosphere–Biosphere Programme (IGBP) (Townshend et al. 1994 )

and a project involving many AVHRR receiving stations (Eidenshink and Faundeen
1994 ), at the nominal resolution of 1 km for all land areas of the globe. Through

these e� orts, � rst satellite-based global land cover maps have already been produced

(DeFries and Townshend 1994, DeFries et al. 1998, Hansen et al. 2000, Loveland

et al. 2000 ).

For coarse as well as � ne resolution data, the limiting factors described above
are changing at the present time. The emergence of global environmental issues

addressed by the IGBP (1990 ), the Framework Convention for Climate Change,

the Kyoto Protocol, the Biodiversity Convention, global observing systems

(GCOS 1997 ) and other international policy instruments have brought a new, critical

requirement for land cover information at many scales, from landscape to global.

Computer speed is no longer an obstacle to processing large volumes of data by

a small team. The cost of data has gradually decreased (especially data for research
purposes), and has changed fundamentally with the launch of Landsat 7.

The launch of new satellite sensors such as Landsat 7 (http://landsat.gsfc.nasa.gov/),

SPOT 4 VEGETATION (VGT) (Saint 1992 ), Moderate Resolution

Imaging Spectroradiometer (MODIS) (Barnes et al. 1998, Salomonson et al.

1989, Running et al. 1994 ), Medium Resolution Imaging Spectro-

meter (MERIS) (http://envisat.estec.esa.nl/) and Global Imager (GLI)

http://hdsn.eoc.nasda.go.jp/guide/guide/satellite/sendata/gli Õ e.html ) with a system-
atic global acquisition strategy will inaugurate a new era in land remote sensing

during which (i) high quality data sets will be available globally for land cover

mapping applications and (ii ) the remote sensing research community will be

expected to deliver sound methodologies for generating land cover information

products (as well as the � rst series of such products).

For the above reasons, the turn of the century is a milestone in land cover

mapping, and the future will be unlike the past. It is thus appropriate to take a more

detached view of the issues involved, main problem areas and important research
directions for the next several years. This paper focuses on the methodologies for

generating land cover information products over large areas. The signi� cance of the

methodologies is self-evident and their impact on the quality of the � nal products

will be decisive. The paper considers the end-to-end process in preparing land cover

maps and the types of algorithms and information extraction procedures. The discus-

sion is limited to land cover mapping, i.e. periodic determination of land cover

distribution over the entire area of interest (as opposed to land cover change), and
to the use of multispectral optical data—the part of the electromagnetic spectrum

found most useful for land cover mapping in research to date.

2. Dimensions of the land cover mapping problem

There are several important considerations that determine the characteristics of
land cover information.

http://landsat.gsfc.nasa.gov/
http://envisat.estec.esa.nl/
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(1) Purpose. Land cover information is obtained for numerous scienti� c, policy,
planning or management purposes. Within each of these areas, a wide range
of needs exists. For example, speci� c models of vegetation–atmosphere inter-
actions require di� erent types of land cover information (Dickinson et al.
1986, Sellers et al. 1996 ). Similarly, productivity models (Liu et al. 1997 ),
hydrological models (Wigmosta et al. 1994 ), forest inventories (Magnussen
1997 ), land use inventories and planning as well as other biophysical resource
inventories (Jennings 1995 ), and many other activities require land cover
information.

(2) T hematic content. The information may be needed for few cover types (e.g.
forest–non-forest); for all cover types and at the same (or varying) levels of
detail; tailored to speci� c model requirements; or as continuous variables
(e.g. percentage coniferous forest). The thematic content also has a strong
e� ect on the frequency of land cover mapping.

(3) Scale. Over large areas, land cover information may be required locally (at
speci� c sites, 100–103km2 ), at regional scales (104–106 km2 ), or continental
to global scales (B 106 km2 ).

(4) Data. The quality and availability of remote sensing data limit the type and
accuracy of information that may be extracted.

(5) Processing and analysis algorithms. The characteristics of algorithms employed
at the various processing stages are of critical importance, as discussed in
more detail below.

The purpose and thematic content help de� ne the classes that must be di� erenti-
ated in the land cover product, i.e. the mapping legend. The scale, together with the
legend, determines the remote sensing data source appropriate to the mapping
problem. Data and algorithms employed constrain the information that may be
present in the � nal products. To limit the discussion that follows, it is assumed that
the purpose of the land cover mapping is to produce information at regional to
global scales (³ 105 km2 ) and for all cover types present (although not necessarily at
the same level of thematic detail, e.g. a map could have more detailed classes for
forest and less detailed for other types).

Since land cover changes over time, the temporal resolution is a critical considera-
tion in choosing the appropriate data type. Figure 1 portrays the relationships
between spatial resolution, temporal resolution and satellite data sources. The dotted
line identi� es the principal domain of interest to large-area land cover mapping
employing satellite data. Such mapping is not required for very small areas or very
frequently (i.e. the lower left part of the graph). Thus, the domain of interest spans
the range between two extremes: ‘coarse’ resolution at frequent time intervals ( lower
right part of the plot), and ‘� ne’ resolution at long intervals (upper left). It should
be noted that the labels ‘coarse’ and ‘� ne’ are relative and that each covers a range
of resolutions; for example, ‘coarse’ is appropriate for AVHRR 8 km data but not
for MODIS 250 m data. The terms are used in this paper for brevity to categorize
a sensor but the quali� cation must be kept � rmly in mind.

The range between the above extremes is a continuum accessible through satellite
remote sensing techniques. Theoretically, the entire range could be covered using
satellite data from the lower left corner of the range, i.e. data obtained very frequently
and at a high spatial resolution. However, this is a practical impossibility at the
present, and a cost-ine� ective solution at any time because land cover does not
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Figure 1. Land cover mapping requirements expressed in spatial and temporal resolutions.
The acronyms represent current or future satellite sensors at both � ne and coarse
resolutions; VHR denotes future very high resolution sensors, now being prepared for
launch by several private companies.

change rapidly enough in all places. Thus, a more realistic approach is to consider
the range as consisting of discrete components.

Region A in � gure 1 represents mapping with frequently obtained coarse reso-
lution data. With such data it is possible to prepare higher level data sets through
pixel compositing procedures (Holben 1986 ), thus allowing global land cover maps
to be produced at short intervals. In region B, � ne resolution data are obtained
relatively infrequently. Therefore, along with unavoidable cloud contamination and
seasonal phenological e� ects, data sets suitable for land cover analysis can be
compiled only over longer time periods. A coverage of large areas is thus produced
through ‘scene compositing’, i.e. by mosaicking the individual images. Region C can
utilize land cover products generated by methods in A or B. So far, the approach
has been to employ A for mapping and B for training and/or validation (e.g. Cihlar
and Beaubien 1998, DeFries et al. 1998, Hansen et al. 2000 ). Region D presents the
greatest challenge, requiring frequent coverage at � ne resolution. While this is not
now realistically possible over large areas, it should be feasible to synergistically
combine data and products from parts A and B, thus obtaining e� ectively the
same information; this is discussed in more detail in §3.3. Figure 1 also shows the
approximate positions of some important satellite sensors.

So far, satellite-based large-area mapping has been mostly performed in region
A (� gure 1) because of the availability of data and the manageable computational
demands. Land cover maps at 8 km resolution or coarser were prepared from
AVHRR Global Area Coverage (GAC) data (DeFries and Townshend 1994, DeFries
et al. 1998 ). Maps for landscape regions (e.g. Cihlar et al. 1997a,b, Steayert et al.
1997, Laporte et al. 1998 ) or larger areas (Loveland et al. 1991, 1995, Cihlar and
Beaubien 1998 ) have been produced in recent years with 1 km AVHRR data. With
the availability of the global AVHRR 1 km data set (Eidenshink and Faundeen
1994 ), intensive activities led to global products at the same resolution (Loveland
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and Belward 1997, Hansen et al. 2000, Loveland et al. 2000 ). So far, region A maps
have been produced infrequently. However, the same techniques can be used to
generate land cover maps at shorter time intervals, as short as the minimum composit-
ing period resulting in a usable data set. For region B, the work so far has been
limited mostly to studies over small areas, such as a Landsat scene or less. Among
the exceptions is the US GAP program (Jennings 1995 ), through which maps over
entire states have been produced (Driese et al. 1997, Homer et al. 1997 ), humid
tropical deforestation studies, and other experimental products prepared through
scene compositing (Guindon 1995, Homer et al. 1997, Beaubien et al. 1999,
Vogelmann et al. 1998 ). Apart from some methodological studies (e.g. Moody and
Woodcock 1996, Cihlar et al. 1998c), little work on region D has been carried out.

3. Analysis methods
In principle, land cover mapping from satellite data is straightforward and consists

of four steps: data acquisition, pre-processing, analysis/classi� cation and product
generation and documentation. However, details of these steps di� er fundamentally
between regions A and B of � gure 1. In A, the acquisition is frequent (every one or
very few days), and pre-processing includes image compositing by choosing individual
pixels from a period of several days, typically 5–10. Consequently, one can obtain a
nominally cloud-free product for every compositing period but at the cost of increased
image noise. In part B, images are obtained so infrequently (e.g. > 2 weeks) that
the pixel compositing approach is not viable and scene compositing must instead
be employed. These di� erences have a strong impact on the pre-processing and
classi� cation techniques.

3.1. Pre-processing
The objective of this step is to present the data in a format from which accurate

land cover information can be extracted. In principle, it entails geometric and
radiometric corrections (� gure 2). Geometric corrections will not be discussed here
as they have already been worked out for both coarse (e.g. Cracknell and
Paithoonwattanakij 1989, Emery et al. 1989, Roberston et al. 1992, Nishihama et al.
1997 ) and � ne (Friedmann 1981 ) resolution satellite data.

3.1.1. Coarse resolution data
In the past, some classi� cation projects employing coarse resolution data were

carried out with single-date, relatively cloud-free images (e.g. Pokrant 1991, Beaubien
and Simard 1993 ). However, this approach is fundamentally limited because the
probability of cloud-free scenes decreases as the area covered by one scene increases.
It is thus very di� cult to obtain useful images for land cover mapping, especially if
the eligible time interval is short. Furthermore, such images contain systematic errors
due to atmospheric e� ects (as a function of the path length) as well as monotonically
changing spatial resolution for most coarse resolution sensors. Their classi� cation is
therefore di� cult and requires interactive � ne tuning for each input scene used, as
well as post-classi� cation operations to reconcile di� erences between adjacent scenes
and thus ensure consistency across the mapped area. For these reasons, research in
recent years has emphasised the use of image composites.

In a compositing process, the image product is prepared so as to contain, as far
as possible, information about the land surface itself. Since a large fraction of the
pixels typically contain clouds, the main objective of the procedure is to select the
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Figure 2. Major steps in extracting land cover information using satellite data at � ne and
coarse resolutions. See text for discussion.

most cloud-free measurement from those available for a given pixel of the composite
image. At present, the selection is most often based on the maximum value of the
Normalized Di� erence Vegetation Index (NDVI) (Holben 1986 ). Advantages of the
NDVI criterion include high sensitivity to atmospheric contamination, ease of com-
putation and wide acceptance in previous studies, thus creating a de facto standard.
Others have shown that maximum NDVI composites contain artefacts caused by
the behaviour of the NDVI itself (e.g. Goward et al. 1991, Cihlar et al. 1994 a,b, Qi
and Kerr 1994 ). Nevertheless, the alternatives proposed so far have their own
disadvantages and, furthermore, the main drawback, i.e. a tendency to select pixels
with forward-scattering geometry, can be overcome through bidirectional re� ectance
corrections (e.g. Leroy 1994, Li et al. 1996, Ba et al. 1997, Cihlar et al. 1997b). This
is not to say that the compositing problem has been solved (see §4.1).

The pixel compositing approach yields nominally cloud-free composites every
few days, thus providing a potentially large data set for land cover classi� cation.
However, in this form the data are far from adequate for such a purpose. This is
because the composites have built-in noise from the varying satellite sensing geometry
and from residual clouds or variable atmospheric properties (water vapour, aerosols,
ozone). These e� ects are normally present between adjacent composite pixels and
can lead to large radiometric di� erences for the same land cover type, thus causing
classi� cation errors. They also have a strong impact on the consistency of satellite
data, both within and among years. For example, Cihlar et al. (1998a) found that
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depending on the measurement of interest (AVHRR channel 1, 2 or NDVI) and land
cover type, the most important correction is the removal of contaminated pixels,
atmospheric correction, or correction for bidirectional re� ectance e� ects caused by
di� erences in the source–target–sensor geometry. Thus, further pre-processing
operations are necessary.

The degree of corrections following compositing varies among investigations.
Atmospheric corrections are frequently carried out (e.g. Eidenshink and Faundeen
1994, James and Kalluri 1994, Cihlar et al. 1997b), although nominal/climatological
values of some critical parameters are typically used or their e� ect is ignored (e.g.
aerosol ). While the nominal corrections account for systematic e� ects such as
Rayleigh scattering, they are incapable of discerning pixel-speci� c atmospheric con-
tamination caused by translucent or small (subpixel ) clouds, haze, or snow patches.
These e� ects are di� cult to detect because present satellite data have insu� cient
spectral information (thus limiting cloud detection options based on spectral, pixel-
based criteria) and because the use of spatial context is even more limited due to
the inherent heterogeneity of land cover (especially with decreasing pixel size). Other
possibilities thus need to be pursued (Gutman et al. 1994 ). Use of the temporal
dimension is one option (Viovy et al. 1992, Los et al. 1994, Cihlar and Howarth
1994, Sellers et al. 1994 ). Sellers et al. (1994 ) used the NDVI temporal trajectory to
� ag contaminated pixels and Cihlar (1996 ) extended this approach in CECANT
(Cloud Elimination from Composites using Albedo and NDVI Trend). Since the
detection is NDVI-based, it can identify the above sources of noise because they
tend to decrease the measured NDVI (compared to the ‘expected value’ for that
pixel and compositing period). CECANT requires that data for the entire growing
season be available so that the NDVI curve can be modelled. However, it is also
applicable to new (current year) data provided that comparable full-season data are
available for a previous year and some degradation of performance can be traded
for timeliness (Cihlar et al. 1999 ).

Bidirectional corrections are possible but have not yet been frequently imple-
mented because of the perceived complexity of the problem. Furthermore, bidirec-
tional corrections require satellite measurements at di� erent viewing geometries with
the surface conditions remaining constant to maximize the accuracy of the inversion
procedure (e.g. Barnsley et al. 1994 ). Such measurements are generally not available
and this approach may become practically feasible only after the launch of EOS
when the bidirectional space is sampled simultaneously by MODIS (Moderate
Resolution Imaging Spectroradiometer) and MISR (Multi-Angle Imaging
Spectroradiometer) (Martonchik et al. 1998 ). Another option is to correct satellite
data to a standard viewing geometry (Gutman 1994, Sellers et al. 1994 ). This option
requires knowledge of which model to apply to each pixel to be corrected. Typically,
the models are derived for individual cover types, and land cover thus becomes a
pre-requisite to using this approach. The procedure might become somewhat circular,
except that the bidirectional dependence does not appear highly cover type-speci� c
and few types need to be di� erentiated (Wu et al. 1995 ). Furthermore, the coe� cients
for these functions need not be known a priori but may be derived from the data set
itself (Chen and Cihlar 1997, Cihlar et al. 1997b). This means that a simple land
cover classi� cation (e.g. an existing one or one based on NDVI only which is less
sensitive to bidirectional e� ects) could be used in the correction of satellite data, the
latter to be used for a more detailed di� erentiation of the various cover types or
conditions.
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3.1.2. Fine resolution data
In the past, most land cover studies employing high resolution data were carried

out with single images (hereafter called ‘scenes’), parts of scenes or an assembly of
such scenes from di� erent areas. In these cases, radiometric consistency was not an
issue because the classi� cation could be optimized individually for each scene. When
classifying a scene composite (i.e. a mosaic of scenes), the situation is more complic-
ated. In principle, two options are possible (� gure 2). First (case I), one can classify
each scene separately and subsequently reconcile the classes across the mosaic.
Another approach (case II) is to assemble a mosaic of scenes for the entire area,
establish radiometric uniformity across the mosaic, and then classify it as one entity.

In case I, each scene is treated as a separate data set to be classi� ed, using
ancillary data that are appropriate for the classi� cation procedure employed. It is
thus slow and labour-intensive. The reconciliation of classi� cation across the bound-
aries between adjacent scenes can be di� cult and may require changes in the
classi� cation(s) or labelling to be carried out within individual scenes. Even with
these measures, discontinuities between scenes are not necessarily removed if signi� c-
ant radiometric di� erences were present at the outset. Thus, even with much interven-
tion by the analyst, post-classi� cation reconciliation does not guarantee success. On
the other hand, procedure I is highly � exible and can cope with various limitations
of the input data. It has thus been used extensively in the past and good results have
been reported (Pokrant 1991, Driese et al. 1997 ).

Because of the infrequent satellite revisits, the compositing of � ne resolution data
over large areas (case II ) employs entire scenes, as opposed to individual pixels in
the coarse resolution data. Thus, although radiometric noise is still present, it takes
on di� erent forms. First, atmospheric contamination is less limiting because only
mostly cloud- and haze-free scenes (preferably < 10%) are used for this purpose.
Second, bidirectional problems are much less severe, particularly in the case of nadir-
looking sensors with a narrow � eld of view such as the Landsat Thematic Mapper
(TM) or Satellite Probatoire d’Observation de la Terre High Resolution Visible
Imaging System (SPOT HRV) in nadir mode. Solar zenith angle corrections are thus
the main ones to consider.

A substantial amount of research has been carried out in the area of radiometric
equalization across scene composites. Typically, the algorithms utilize overlaps
between adjacent scenes to establish the correction factors. These corrections have
been carried out interactively (e.g. Beaubien et al. 1999 ) or they can be automated
(Chavez 1988, 1989, Schott et al. 1988, Elvidge et al. 1995, Atzberger 1996, Yuan
and Elvidge 1996, Guindon 1997 ). However, reconciling adjacent scenes may not be
su� cient in larger scene composites. This is because the residual errors accumulate
in a di� erent manner, depending on the order of scenes to be corrected (Guindon
1997 ). Also, the sequence of corrections is not likely to achieve closure if done
unidirectionally, i.e. radiometric values for one cover type may di� er between the
� rst and the last scene included in the composite. Therefore, an overall adjustment
within the scene composite is preferable, in which the inconsistencies and radiometric
di� erences are balanced to an overall optimum. This is conceptually similar to block
adjustment employed in photogrammetry, and can be implemented for scene
compositing purposes (e.g. Guindon 1995, PCI 1998 ). With such adjustments, the
radiometric errors are minimized across the composite, based on the magnitude of
the di� erences detected in the overlapping areas. These di� erences can conveniently
be detected using overlaps with adjacent scenes or orbits. Because of the scale
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relationships between scene size and the size of atmospheric high-pressure areas,
adjacent scenes along the orbit often have similar cloud contamination.

Even in radiometrically corrected scene composites, some noise will remain. The
most important sources are local atmospheric e� ects such as haze, smoke or cumulus
clouds in an otherwise clear-sky scene. Small but potentially signi� cant bidirectional
re� ectance e� ects may also be present (Staenz et al. 1984 ). For example, Guindon
(1997 ) observed di� erences of 1–5 digital levels between forescatter and backscatter
directions in Landsat Multispectral Scanner (MSS) scenes; such di� erences could
lead to classi� cation discontinuities between adjacent scenes. These residual e� ects
must be dealt with in the classi� cation process.

In addition to purely radiometric noise, the uniformity is also a� ected by phenolo-
gical di� erences among scenes that are more di� cult to address. Potential solutions
include enlarging the window during which acceptable data are acquired, usually by
adding years from which data may be used; using data from other similar sensors;
or attempting a ‘phenological correction’ based on seasonal trajectories established
for similar targets. Such corrections would be required prior to scene compositing.

The use of scenes from various sensors in a composite has not yet been explored.
In principle, it requires pre-processing the data from the added sensor to resemble
the initial one, both spatially and spectrally. Spatial resolution presumes resampling

to the same pixel size—a routine operation. Spectral adjustment is conceptually
more di� cult, and its feasibility will depend on the di� erences between the two
sensors and the spectral characteristics of the targets in the imaged scene. The
solution is easiest when the added sensor has more than one spectral band where
the initial sensor has only one (e.g. Li and Leighton 1992 ). The inverse situation has
no satisfactory solution and may render the added data set unsuitable.

It should be noted that the last two options (phenological correction and
compositing scenes from various sensors) will also add radiometric noise of their
own. Some form of between-scene reconciliation is therefore likely to be required in
many cases. This, and the inevitable residual noise in the scene composite suggest
that while the case II application may be the preferred solution, in practice it may
often have to be supplemented by case I to obtain quality land cover maps.

3.2. Classi� cation
Land cover information that can be gleaned from satellite images is the spectral

and spatial attributes of individual cover types. There are some di� erences between

coarse and � ne resolution data, mainly in the relative importance of these two kinds
of attributes. Because of the reduced resolution, the spectral dimension is the most
important source of cover type information in coarse resolution images. For � ne
resolution data, the relative importance of the spatial dimension is higher, although

the spectral content still dominates in most cases. In the following discussion, no
distinction is therefore made between the two data types.

Numerical techniques for satellite image classi� cation have a long tradition,
dating back to at least the early 1970s. Two types of approaches have evolved and,

in spite of recent developments, have remained as the basic options. They di� er in
the assumptions made about the knowledge of the scene to be classi� ed. In supervised
classi� cation, a priori knowledge of all cover types to be mapped within the classi� ed
scene is assumed. This knowledge is used to de� ne signatures of the classes of interest,
to be applied to the entire scene. In unsupervised classi� cation, no prior information



J. Cihlar1102

about the land cover types or their distribution is required. Unsupervised classi� ca-
tion methods divide the scene into more or less pure spectral clusters, typically
constrained by pre-de� ned parameters characterizing the statistical properties of
these clusters and the relationships among adjacent clusters. The assignment of land
cover labels to individual spectral clusters is made subsequently on the basis of
ground information, obtained in the locations indicated by the resulting clusters. In
recent years, numerous variants of these two basic classi� cation methods have been
developed. These include decision trees (Hansen et al. 1996 ); neural networks
(Carpenter et al. 1997, Foody et al. 1997, Bischof and Leonardins 1998, Yool 1998 ),
fuzzy classi� cation (Foody 1996, 1998, Mannan et al. 1998 ) and mixture modelling
(van der Meer 1995 ) for supervised classi� cation; and classi� cation by progressive
generalization (Cihlar et al. 1998e), classi� cation through enhancement (Beaubien
et al. 1999 ), and post-processing adjustments (Lark 1995 a, b) for unsupervised
techniques.

It seems evident that when one knows what classes are desired and where they
occur (at least as a sample), supervised classi� cation strategies are preferable.
However, over large areas the distribution of classes is not known a priori. This is
compounded by the spatial trends in spectral signatures, resulting in the well known
signature extension problem. These complexities render sample selection very di� cult
and often arbitrary. Thus, where spatial distribution information is not available,
e.g. when mapping a large area previously not well known, unsupervised classi� cation
is arguably the better strategy (e.g. Achard and Estreguil 1995, Cihlar and Beaubien
1998 ), although a supervised method has also been used in such case (Hansen et al.
2000 ). Unsupervised classi� cation provides more comprehensive information on the
spectral characteristics of the area, presents spectrally pure clusters for the labelling
step, and gives the opportunity to the analyst to group similar clusters into a smaller
number of land cover classes. Perhaps the major problem with unsupervised classi-
� cation is the e� ect of controlled parameters (e.g. number of clusters, allowable
dispersion around a cluster mean) since, for the same data set, changes in these can
produce di� erent � nal clusters. A recent way of circumventing this limitation has
been to produce a large number of clusters, typically 100–400 (Kelly and White
1993, Driese et al. 1997, Homer et al. 1997, Cihlar and Beaubien 1998, Cihlar et al.
1998e, Vogelmann et al. 1998 ). The large number of clusters is then reduced by well
de� ned merging steps. The merging procedure can be based on statistical measures
(i.e. again unsupervised ), or can be carried out interactively by the analyst (e.g.
� gure 3). Given the large number of clusters in relation to the small number of
resulting land cover types, the impact of control parameters on the � nal product is
diminished in this case. Another important limitation of unsupervised classi� cation
is the potential mismatch between spectral clusters and thematic classes. The hyp-
erclustering approach also mitigates this problem, but additional steps may be
necessary (Lark 1995b). Independent ground information is required by both the
supervised and unsupervised method. The important advantage of the latter is that
concerns about the location and representativeness of the ground data are much
reduced because the clusters are homogenous by de� nition.

While most classi� cation strategies have focused on the use of the spectral
dimension, the spatial domain also contains important information, especially in � ne
resolution data. Although numerous algorithms have been developed to quantify
spatial relations within images such as texture (Gong et al. 1992 ), segment homogen-
eity (Kartikeyan et al. 1998 and references therein) and various others, the spatial
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Figure 3. Flowchart for Classi� cation by Progressive Generalization (CPG, Cihlar et al.
1998e). In this unsupervised classi� cation, steps 1–8 can be carried out in an automated
mode but steps 9–10 require analyst’s input. CPG assumes that any of the initial
spectral values might represent a signi� cant land cover class; the task is therefore to
optimally group these values into a small number of � nal clusters. Steps 1–3 reduce
the number of spectral combinations, without visually degrading the input image;
steps 4–5 identify important clusters; and steps 7–9 allow merging of increasingly
dissimilar clusters using spectral and spatial similarity measures.

dimension has not been used e� ectively in image classi� cation so far. Spatial measures
can be employed in supervised or unsupervised classi� cation as additional channels,
in unsupervised classi� cation for cluster merging, as a pre-classifying step resulting
in homogenous patches (per-� eld classi� ers), and in other ways. Given the contribu-
tion that spatial attributes can make to land cover classi� cation, their increased use
is most desirable. Recent interest in an e� ective use of spatial and spectral information
(Shimabukuro et al. 1997, Kartikeyan et al. 1998 ) is therefore encouraging.

An important consideration in land cover classi� cation is consistency and repro-
ducibility. That is, the same result should be obtained by various analysts given the
same input data or ideally, even di� erent input data over the same area. In practice,
this means that as much as possible of the analysis should be done with objective,
analyst-independent procedures. On the other hand, the analyst cannot be entirely
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excluded from the process because any classi� cation is a human construct, imposing
an arti� cial scheme on the natural world. One way of dealing with this dichotomy
is to separate the tasks into distinct phases. For example, Cihlar et al. (1998e)
described ‘classi� cation by progressive generalization’, a non-iterative unsupervised
classi� cation procedure in which the selection of training samples, classi� cation and
initial merging of clusters are automated and thus fully reproducible (� gure 3). In
the last stage preceding labelling, the analyst is presented with suggestions for
merging the remaining clusters but the decision is his/hers. The suggested merging
is based on both spectral and spatial relations between the remaining cluster pairs.
In this way, the number of clusters can be reduced to a few dozen (typically 70–120
in boreal ecosystems) without the need for ground information.

3.3. Map frequently and at high spatial resolution?
Region D in � gure 1 represents land cover mapping applications at high spatial

resolution and for short time intervals. Over large areas, such applications are rare
if any, at the present time. High resolution satellite data are routinely employed over
large areas, e.g. for annual crop assessment (de Boissezon et al. 1993 ), but in a
sampling mode. The minimum required temporal frequency for land cover mapping
at present appears to be about 5 years (Ahern et al. 1998, GCOS 1997 ). Nevertheless,
it is desirable to know about the changes in land cover composition, though not the
location of these changes for policy purposes, to satisfy reporting requirements, to
assess the impact of management measures, or for other reasons. Thus, the question
arises: can requirements in region D be met by a combination of full coarse resolution
coverage and a sample of high resolution data? Importantly, such an approach could
also meet some of the high resolution coverage (region B in � gure 1) but at a
considerably lower cost.

Numerous studies have demonstrated the e� ectiveness of combining coarse and
� ne resolution images in estimating the area of one class, e.g. forests (Mayaux and
Lambin 1995, 1997, DeFries et al. 1997, Mayaux et al. 1998 ). When dealing with
many classes, the methodological considerations are more complex (Walsh and Burk
1993, Moody and Woodcock 1996 ). Given a coarse resolution land cover map for
an area (domain), it may be used to stratify the domain into units with a similar
composition, then sample these with high resolution data. The challenge is in � nding
appropriate strati� cation and sampling framework that uses the domain coverage
e� ectively. Cihlar et al. (1998b) proposed a methodology based on a domain coverage
by coarse resolution data and a potential sample of high resolution images (full
frame), as speci� ed by the path/row grid for high resolution sensors such as Landsat
TM (NASA 1982 ). With these two inputs, one can determine land cover composition
for both the domain and each potential image/sample unit, and thus quantify the
similarity between the two. Cihlar et al. (1998b) chose Euclidean distance for composi-
tion and contagion index (O’Neill et al. 1988 ) for fragmentation, but various other
measures are possible. They then postulated that the optimum sample is that which
most closely approximates the composition of the domain land cover. In this scheme,
the high resolution sample images are selected, one at a time, on the basis of their
ability to bring the composition of the sample close to that of the domain. In testing
the e� ectiveness of this scheme to assess the proportions of land cover types over
an 136 432 km2 area, Cihlar et al. (1998c) found that this selection method converges
rapidly on the actual area of individual land classes. The selected sample was 1.5 to
2.1 times more e� ective in reducing the relative error than a random sample of the
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same size, allowing one to obtain a comparable (higher) precision at a lower (the

same) cost. It should be noted that once the composition of the coarse resolution
land cover classes is determined in this manner, the approximate spatial distribution of

individual classes at � ne resolution is also known since it can be expressed as fraction

of each coarse resolution pixel; thus, a map for region D (� gure 1) can also be
produced, although it will not have the pixel-speci� c accuracy at the � ne spatial

resolution.

3.4. Accuracy assessment

No land cover classi� cation project would be complete without an accuracy
assessment. It may well be that concern about the accuracy of land cover maps did

not exist before the advent of satellite-based methods and photo interpretation-based

maps were assumed 100% accurate (this is still often the case, e.g. in forest inventor-

ies). The need for accuracy assessment initially arose as part of algorithm develop-

ment, and it was extended into an important tool for users of land cover products.

Many papers have been written on the methods of accuracy assessment, and various

accuracy measures have been de� ned (e.g. Hord and Brooner 1976, Thomas and
Allcock 1984, Rosen� eld and Fitzpatrick-Lins 1986, Congalton 1991, Hammond and

Verbyla 1996, Edwards et al. 1998 ). At this point, the principles of accuracy assess-

ment are well known. The ideal requirements are based on sampling theory, but

practical considerations regarding access, resources, etc. constrain the ‘desirable’.

There are also methodological di� culties with respect to spatial resolution, mixed

pixels in coarse resolution satellite data being of special relevance. At the coarse

resolution, many pixels contain a mixture of cover types even in a fairly general

classi� cation scheme such as land versus water, thus creating a di� culty in deciding
on the correctness of the assigned label. An obvious approach is to assign the pixel

to the single largest cover type within the pixel (e.g. Cihlar et al. 1996, Hansen et al.

2000 ). This can be accomplished with the aid of � ne resolution maps where these

are available. However, it is questionable when the dominant land cover type covers

much less than 50% of the pixel. Furthermore, since the high resolution maps have

errors (as do maps obtained through airborne techniques such as aerial photographs,

airborne video, etc.), a de� nitive accuracy assessment needs to contain ‘ground truth’
as part of the sampling design (e.g. Magnussen 1997 ).

In addition to purely methodological considerations, accuracy assessment tends

to be strongly constrained by the resources available. The acquisition of veri� cation

data can be expensive, especially if a statistical design is rigorously followed, access

is di� cult, etc. Within these constraints, however, creative solutions are possible.

For example, Kalkhan et al. (1998 ) described the combined use of air photo inter-

pretation and a sample of ground data to assess the accuracy of Landsat-derived
proportions of land cover types, with 200 samples at the � rst stage and only 25

among these described in the � eld. To complicate matters further, ground truth may

not necessarily be correct either; its errors can be due to incorrectly speci� ed location,

very small land cover patches being used, the inability of the surveyor to see a larger

area of the surface, inconsistencies in labelling, etc. Thus, in practice, accuracy

assessment is likely to remain a matter of compromise between the ideal and the

a� ordable, or ‘A balance between what is statistically sound and what is practically
attainable must be found...’ (Congalton 1996, p. 124).
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4. Research needs and opportunities
In general, research needs and opportunities are related to present and upcoming

information requirements over large areas, and the expected evolution in the relevant
data and technological tools. In all these areas, land cover mapping applications will
receive a strong boost due to: increased demand for information because of concerns
about climate change and sustainable development; several new sensors designed
with land cover mapping as an important application; and the continuing rapid
growth in computing technology.

4.1. Pre-processing
Assuming that the range of land cover mapping requirements is represented by

all four areas A–D (� gure 1), the focus needs to be maintained on improving the
methods for optimally using data from new coarse and � ne resolution sensors. For
coarse resolution sensors, this means improved methods for image corrections,
especially atmospheric, sensing geometry and pixel contamination. The objective
should be to produce a cloud-free composite image which has radiometric properties
of a single-date, � xed geometry image obtained during the same period. The availabil-
ity of high quality, calibrated data from MODIS, MERIS, VGT and GLI will make
major improvements possible. This goal cannot be fully achieved for most sensors
because of the changing spatial resolution with the viewing angle, although in some
cases (e.g. SPOT VGT, Saint 1992 ) the resolution is view angle-independent.
Innovative ways must be found to de� ne and implement robust, accurate and
automated algorithms for the generation of superior composite products. Newly
available tools are calibrated data, improved spectral coverage (new as well as
sharpened bands), and the considerable progress made in recent years in de� ning
algorithms for atmospheric parameters extraction, bidirectional corrections, etc.
Although the ultimate solution is an accurate detection of contaminated pixels and
retention of all remaining ones with the associated angular information, compositing
will be a necessary pre-processing step for land cover classi� cation in the foreseeable
future. Further work on compositing algorithms thus appears warranted, with the
currently ubiquitous maximum NDVI criterion used as the basis for comparison.

In the case of � ne resolution sensors, the main pre-processing need is for accurate
and robust scene compositing. This implies accurate sensor calibration and atmo-
spheric corrections, although these measures alone are not su� cient. Local atmo-
spheric e� ects (thin clouds, haze, smoke), subtle bidirectional e� ects, or small
phenological changes may yield to algorithmic solutions but they pose a signi� cant
challenge. Much more research is needed on the preparation of large-area scene
composites, to work out the theoretical and practical problems of dealing with
residual atmospheric, phenological and other types of noise. Research is also required
on compositing images from di� erent sensors, with the objective of producing mosaics
of the same consistency as from one sensor. Once these techniques are developed
su� ciently well to be automated, it should be possible to produce ‘virtual scene
composites’, on the basis of which the user could routinely order data set(s) covering
the geographic area of interest over the speci� ed compositing period(s). Of course,
if any of the above radiometric di� erences within the composite are not resolved at
the pre-processing stage, they must be dealt with during classi� cation.

4.2. Classi� cation
Cihlar et al. (1998e) proposed that classi� cation algorithms should ideally satisfy

the following requirements: accuracy; reproducibility by others given the same input
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data; robustness (not sensitive to small changes in the input data); ability to fully
exploit the information content of the data; applicability uniformly over the whole
domain of interest; and objectiveness (not dependent on the analyst’s decisions).
Many present digital image classi� cation methods do not meet these criteria, and
none meets them completely. Yet, such criteria are fundamental to a scienti� cally
based methodology. Some of the implications are brie� y discussed below.

The interest and innovation in image classi� cation methods has continued in
recent years, as has the ‘creative tension’ between supervised and unsupervised
approaches and their variants. This will undoubtedly continue, and it is a healthy
and bene� cial process which should lead to better algorithms. Work is needed
especially in mitigating the limitations of the two basic approaches, supervised and
unsupervised, stemming from the fundamental assumptions (Chuvieco and
Congalton, 1988, Bauer et al. 1994, Lillesand 1996 ).

Although initially digital spectral values were the main input for classi� cation,
various types of data have been considered more recently, either during classi� cation
(DeFries et al. 1995 ) or at the labelling stage (Brown et al. 1993 ). This will be a
continuing requirement, especially as the number of spectral bands increases and
new bands may prove to carry unique information content (e.g. Eva et al. 1998 ).

There is a strong need to make better use of spatial information. After all, useful
land cover maps were produced from this attribute alone before the advent of colour
photography and digital classi� cation. In addition to texture (which is easily com-
puted but not necessarily an informative attribute), more attention needs to be given
to other measures such as pattern, shape and context (Rabben 1960 ). Another
problem is in optimally and synergistically combining spectral and spatial elements,
using one to improve the quantity and quality of land cover information obtained
from the other.

A special challenge in image classi� cation is to isolate, and minimize if possible,
the role of the analyst in the classi� cation. This is important because reproducibility
is a fundamental requirement for any method or product. When the analyst’s input
is distributed throughout the classi� cation procedure, the result is not reproducible.
On the other hand, as long as discrete (thus arti� cial to some degree) classi� cation
legends continue to be used, the analyst’s role cannot be eliminated because the class
distinctions do not necessarily correspond to equivalent distinctions in reality.
However, it is possible to assign a more precise role to the analyst, and to limit his
input to speci� c portions of the classi� cation procedure. This will improve the
reproducibility of the entire process, and will highlight the impact of the analyst’s
decisions. A range of options are possible here. For example, in fuzzy classi� cation
approaches, the analyst’s role can be reduced to de� ning the acceptable fractional
composition of each class in terms of individual components.

A further step in reducing the subjective component in classi� cations is to � rst
prepare speci� c biophysical products with continuous variables. For example,
Running et al. (1995 ) proposed that three variables (permanence of above ground
live biomass, leaf area index, leaf longevity) characterize vegetated land cover. If such
separate products can be derived from satellite data, individual users can construct
an optimized classi� cation legend for all the land cover types or conditions present
in the area to meet their speci� c objective. This does not eliminate need for classi� ca-
tions but renders the whole process more useful because of a better � t of the
classi� cation with speci� c user needs. The challenges here stem from the fact that
‘land cover’ can imply various characteristics, not all easily translated into biophysical
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variables that can be derived from satellite data (e.g. the hydrological regime).
Nevertheless, this area needs to be pursued because of the potential gains in the
utility of satellite-derived information products. The work done so far on two or a
few classes (e.g. Iverson et al. 1994, Zhu and Evans 1994, DeFries et al. 1997 ) needs
to be extended to multiple cover types. Data from other sensors, such as satellite
radars or lidars (Dubayah et al. 1997 ) should be useful in developing the � elds of
continuous variables.

Although for scene composites (Region B, � gure 1) the desirable approach is
classifying the entire mosaic as one entity, it is very likely that data limitations will
make this impossible in many cases. Local adjustments will thus be needed to achieve
optimum results. The locations of these should be evident based on input image
quality, but algorithms will be required to make this process reproducible and
consistent.

Further research is needed on the synergistic use of data from coarse and � ne
resolution sensors to span the entire range of requirements represented in � gure 1.
Region D is the most demanding, with high spatial and temporal resolutions. It is
also an area where large progress can be expected, given the resolution of new
sensors around 300 m.

5. Concluding remarks
In the last 5–10 years, land cover mapping from satellites has come of age.

Although research on various issues regarding data pre-processing, classi� cation and
accuracy assessment has continued, new and unique data land cover products have
been generated which could not be produced by earlier techniques. This is only a
start, however. Many of the technical limitations hampering further improvements
in land cover mapping will be removed in the next few years, especially in the quality
of satellite data (improved calibration, spatial and spectral resolution, spectral cover-
age, geolocation accuracy) and the computing capability, founded on the accumulated
knowledge and experience in the use of digital analysis methods. Thus, Earth observa-
tions have the potential to respond to the growing and urgent demand for timely
and accurate land cover information over large areas. The ful� lment of the promise
will require strong, ongoing research activities as well as new initiatives in the
production of land cover maps. The research agenda needs to address the best ways
of taking advantage of the new capabilities and, importantly, the ways of resolving
problems identi� ed during the production of the land cover maps over large areas.
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