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Land management and land-cover change
have impacts of similar magnitude on
surface temperature
Sebastiaan Luyssaert et al.†

Anthropogenic changes to land cover (LCC) remain common,
but continuing land scarcity promotes the widespread intensi-
fication of land management changes (LMC) to better satisfy
societal demand for food, fibre, fuel and shelter1. The biophys-
ical e�ects of LCC on surface climate are largely understood2–5,
particularly for the boreal6 and tropical zones7, but fewer
studies have investigated the biophysical consequences of
LMC; that is, anthropogenic modification without a change in
land cover type. Harmonized analysis of groundmeasurements
and remotesensingobservationsofbothLCCandLMCrevealed
that, in the temperate zone, potential surface cooling from
increased albedo is typically o�set bywarming fromdecreased
sensible heat fluxes, with the net e�ect being a warming of the
surface. Temperature changes from LMC and LCC were of the
same magnitude, and averaged 2K at the vegetation surface
and were estimated at 1.7 K in the planetary boundary layer.
Given the spatial extent of land management (42–58% of the
land surface) this calls for increasing the e�orts to integrate
land management in Earth System Science to better take into
account the human impact on the climate8.

Human activities have directly affected around 100Mkm2 of
the ice-free land surface leaving, as of today, less than 30% of
the land surface largely untouched (Supplementary Table 1). Of
this, between 23 and 38Mkm2 (18–29% of the land surface) has
beendeliberately converted,mainly by deforestation, for agriculture,
infrastructure and urban use. These land cover changes (LCCs)
have driven changes in regional and global climate through changes
in biogeochemical processes (for example, C and N cycling)
and biophysical processes (for example, surface albedo, surface
roughness, and evapotranspiration)1,9. A more complete assessment
of human contributions to climate change will require the climatic
influence of land-surface conditions to be factored into climate-
change mitigation strategies5.

To date, many studies have investigated the climate effects
of changes in land cover; but, with the exception of irrigation
effects10,11, have rarely looked into the climate impacts of land
management changes (LMC) that occur within the same land
cover type and do not result in a LCC (for precise definitions see
Supplementary Section 1). However, 55–75Mkm2 (42–58% of the
land surface) have not experienced LCC but are managed to satisfy
human demands (Supplementary Table 1). Within land cover types,
LMC varies in fertilization and pesticide use, harvest rate, and
cropping practices, to mention only a few. For example, 19Mkm2

of forest, representing 15% of global ice-free land, is subjected
to diverse management strategies for wood production and other
services that result in changes in albedo, surface roughness, C
sequestration, other trace gas fluxes, and sensible and latent heat
flux, without changing land cover type12,13.

Owing to the predicted increases in global population and
affluence as well as the increasing importance of bioenergy14,
demand for land-based food and fibre will surge during the coming
decades. Expansion of active management into relatively untouched
regions may satisfy part of the growing demand. However, owing to
the prohibitively high carbon costs of converting pristine forests to
cultivated land15, and the looming scarcity of unused but productive
land16, intensification will play a decisive role in forging strategies
for global sustainability17,18 and enhance the role that LMC plays in
human economies and, importantly, in the climate system.

We tested the hypothesis that LCC and LMC have biophysical
effects of similar magnitude to surface and atmospheric climate
per unit land area. To address the hypothesis, we selected from
the FLUXNET database 22 temperate and two boreal Eurasian
and American multi-year eddy covariance research sites with high-
quality data (Supplementary Fig. 1 and Tables 2 and 3). All sites
were paired and 33 out of 351 possible pairs that represented
either LCC or LMC were selected for study based on similarity
in incoming radiation and energy budget closure (Supplementary
Section 2.2.4). Nine of these pairs resulted from a formal paired
ecosystem experimental set-up.

We found that LCC and LMC had similar impacts on site-level
mean annual radiometric surface temperature (Fig. 1a,b). Mean and
upper limit temperature responses to LCC and LMC were similar
(Fig. 1b) and around 2K at the site-level, with a maximum of 6K.
Because LCCwas used as a benchmark for LMCand our findings for
LCC are in agreement with previous observations regarding LCC in
the tropics3,7, Mediterranean19 and the boreal zone6 our study lends
support to the hypothesis that LMCother than irrigation10,11 also has
substantial biophysical impacts on the land surface.

No single accepted approach exists to quantify intensities of
LCC and LMC. Although intensity is often thought of in terms of
input—for example, fertilizer, irrigation or fossil fuels—it may also
be expressed in terms of its output—for example, change in yield
or, as applied in this study, biophysical metrics such as the change
in surface albedo. Following this definition, more intense LCC or
LMC are those land uses that result in larger albedo changes, which
were observed to be significantly and positively correlated with
larger changes in radiometric surface temperature (Fig. 2a; Pearson
correlation, p<0.05).

The site-level analysis was extended by eight time series of
MODIS satellite observations (MOD11A2 from 2009 to 2011) of
2,500 km2 areas intersected by administrative borders with similar
climate but different land cover and land management types (Sup-
plementary Table 4). Remote sensing products do not distinguish
managed from unmanaged vegetation. Test-case selection thus re-
quires ground information; therefore, only a limited number of areas
were selected for study. The use of remote sensing data confirmed

†A full list of authors and a�liations appears at the end of the paper.
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Figure 1 | E�ects of land cover change and land management on surface
temperature. a, Change in radiometric surface temperature (Ts in K) for
paired eddy covariance measurement sites (Supplementary Table 3) due to
biophysical e�ects of land cover change (blue) or land management (red),
ranked by magnitude. The edge of the marker shows the initial land cover,
whereas the interior shows the final land cover, with green for forest, yellow
for grassland and blue for cropland. Formal experimental site pairs are
marked with a diamond and all other pairs are marked with a square. b,
Probability density estimates for the surface temperature e�ects of land
cover change (blue) and land management change (red). Radiometric
temperature was assumed to have a 0.75 K uncertainty, which explains the
negative values for Ts.

the relationship between albedo and temperature and established
its validity at larger spatial scales (Fig. 2b; Pearson correlation,
p<0.01). Despite its robustness across spatial scales and ecosystems,
the observation that an increase in albedo is related to an increase in
surface temperature may seem paradoxical if less energy is available
for surface heating following an increase in albedo.

A literature search (Supplementary Table 5) showed that from
more than 30 studies reporting biophysical effects of LMC all, except
one20, did not consider all of the major components of the energy
budget. We, therefore, extended an energy balance decomposition
approach12,21 and analysed the change in surface temperature due to
changes in albedo, ground heat, and sensible and latent heat while

accounting for the differences in incoming radiation and imbalances
in the energy budget. Despite the sites being well-watered, their
Bowen ratio indicates that the sensible heat flux is the dominant
mechanism for terrestrial surface cooling (for site-level data on the
Budyko index and Bowen ratio see Supplementary Table 2). Across
all paired observations, the potential for cooling the surface due to
an increase in albedo (Fig. 2a) was outweighed by the potential for
warming due to decreased fluxes of sensible heat (Fig. 3a; Pearson
correlation, p<0.01) but not latent heat (Fig. 3b; p=0.88). Lack of
correlation between the imbalance term and the major components
of the energy budget (Supplementary Fig. 3 and Section 2.2.1)
strengthens our confidence that the observed relationships are not
artefacts. For the sites under study, sensible heat and changes in
sensible heat thus seem to be key drivers of the surface temperature
and its changes following LCC or LMC.

Surface roughness information for the area encompassing the
flux footprint was missing for half of the sites. Alternatively, a proxy
for canopy structure, defined as the logarithm of vegetation height
divided by leaf area index (LAI; ref. 22), was used. A previously
reported relationship between canopy structure and albedo6 was
present at the study sites (Supplementary Fig. 4a). Furthermore,
larger andmore structured canopies transfermoremomentum from
the planetary boundary layer (PBL) to the leaf surface than smaller
canopies3. A negative correlation, but no causation, between albedo
and momentum flux is thus expected because of shared common
drivers—namely, height, LAI, and crown dimensions. The observed
decoupling between sensible (Supplementary Fig. 4b, p < 0.01)
and latent heat flux (Supplementary Fig. 4c, p= 0.16) emphasizes
the important role of stomatal conductance to surface–atmosphere
transport6. Although the sites studied here are dominated by forest
and grasslands, croplands did not seem to be outliers in any of
our analyses.

Whereas the surface temperature response to LCC has long since
been understood for boreal (that is, decreases in surface albedo
and increases in surface temperature following afforestation, due
to snow-masking23,24) and tropical ecosystems (that is, decreases
in evapotranspiration following deforestation tend to outweigh
increases in albedo on surface temperature25), our study reveals
that changes in sensible heat flux outweigh changes in albedo
and underlie surface temperature changes in the temperate zone
following both LCC and LMC. To the best of our knowledge, our
study is the first data analysis showing that the same mechanism
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Figure 2 | The relationship between changes in albedo (1α) and changes in surface temperature (1Ts) following land cover conversions (blue) and land
management change (red). a, The relationship between changes in albedo and radiometric surface temperature from paired ecosystems in the databases
of eddy covariance research sites (p<0.05). b, MODIS-derived surface temperature (Ts) and albedo (mean of visible 300–700 nm and near infrared
700–1100 nm) between both sides of an administrative border (p<0.01). White dots show changes observed at homogeneous landscapes
(Supplementary Table 4).
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Figure 3 | Biophysical e�ects of land cover change (blue) or land management (red). a, Relationship between the change in radiometric surface
temperature due to a change in albedo and the contribution of sensible heat flux (H) to the change in Ts (p<0.01). b, Relationship between the change in
radiometric surface temperature due to a change in albedo and the contribution of latent heat flux (λE) to the change in Ts (p=0.88).
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Figure 4 | E�ects of land cover change and land management on the height and equivalent temperature of the planetary boundary layer. a, Change in
equivalent temperature (TE) for paired eddy covariance measurement sites (Supplementary Table 3) due to the biophysical e�ects of changes in land cover
(blue) or land management (red), ranked by magnitude. The edge of the marker shows the initial land cover whereas the interior shows the final land cover,
with green for forest, yellow for grassland and blue for cropland. Formal experimental site pairs are marked with a diamond and all other pairs are marked
with a square. b, Probability density estimates for the equivalent temperature (TE) e�ects of land cover change (blue) and land management (red).
Equivalent temperature was assumed to have a 0.75 K uncertainty, which explains its negative values. c, Relationship between the change in albedo and the
estimated change in the height of the planetary boundary layer by applying a 1D boundary layer model (p<0.01). d, Relationship between the change in
albedo and the estimated change in equivalent temperature of the planetary boundary layer by applying a 1D boundary layer model (p=0.33).

controlling surface temperature changes following LCCmay control
surface temperature changes following LMC in the temperate zone,
but improved observations of surface roughness at the site-level
and additional controlled experiments are required to confirm our
field observations.

Despite surface temperature being a meaningful measure for
the temperature experienced by the vegetation cover and all living
organisms within26, it fails to capture the effects of LCC and
LMC on the climate system. Quantifying the full climate effects
of LMC and LCC is out of reach for site-level and remote sensing
observations and requires coupled surface–atmosphere models to
account for boundary layer dynamics, planetary albedo from clouds

and aerosols, precipitation, and radiative forcing from changes in
atmospheric composition through C and N cycling.

However, as a first-order estimate of the climate effect, a 1D-PBL
model can be used to calculate the equivalent temperature of the
PBL (refs 19,27,28). This approach accounts for the growth of the
boundary layer, the differential effect of sensible and latent heat
fluxes and the entrainment of colder air from above the PBL,
but assumes convective clear sky conditions. Both LCC and LMC
were found to increase the equivalent temperature of the PBL
by on average 1.7 K (Fig. 4a,b). Although the mean temperature
changes suggests a smaller effect on the PBL (Fig. 4a,b) compared
to the vegetation surface (Fig. 1a,b), the feedback of the PBL
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Figure 5 | Spatial extent of land cover change, land management, wilderness and non-productive areas (Supplementary Section 2.3). Wilderness and
non-productive areas are shown in green and represent land largely unaltered by humans. The remaining land is used for producing food, fibre and fuels,
and for hosting infrastructure. The colour scale represents the fraction of each grid cell for which the original plant cover was converted. Dark colours
indicate regions where most of the original plant cover was converted; these regions are the subject of typical land cover change studies. The light colours
show areas for which land cover change is low, but which are nevertheless under anthropogenic land management.

model increases the temperature range, both positive and negative.
Across site pairs, increases in albedo were found to correlate with
decreases in sensible heat flux (Fig. 3a) and thus a decrease in
PBL height (Fig. 4b; Pearson correlation, p< 0.01). However, the
relationship between land use intensity (based on the change in
albedo) and change in equivalent temperature in the PBL did
not hold (Fig. 4c, p= 0.33). Larger ranges and loss of correlation
illustrate the complexity of the effects of land use change on
atmospheric temperature19, or the plausibility of the current PBL
model, which does not capture any cloud or advective processes28.

Our results demonstrate, however, that the human influence
on climate will not be represented adequately over vast areas of
the land surface when LMC remains unaccounted for in models
(Fig. 5). Similar to recent reconstructions of LCC that enabled
historical and contemporary climate effects of LCC to bemodelled29,
accounting for LMC requires the development of spatially explicit
global reconstructions describing the type and intensity of LMC.
In conjunction with global reconstructions, the structure of global
land surface models needs to be adjusted to incorporate key species
and cultivars rather than relying on plant functional types; 3D
or effective canopy structure rather than big leaf approximations;
and possibly using within-canopy momentum models rather than
applying coarse assumptions on the zero plane displacement height.
Furthermore, the effects of fertilization, irrigation and grazing
on canopy structure, and vegetation and background reflective
properties should be accounted for.

The similarity between LCC and LMC sheds new light on the
attribution of responsibilities in climate change. Historical LCCs
such as in Europe and the USA are penalized less in political
negotiations than recent cover changes in Latin America and
Southeast Asia. The rationale is given by physical laws, which result
in earlier emissions being largely transferred from the atmosphere
to the ocean and land carbon pools30. Our results suggest that for
a comprehensive assessment of human influences on climate, the
effects of LMC have to be taken into account—that is, the climatic
effects of recent intensification of LMC without cover change, such
as the Green Revolution in Europe, US, China and India. The

large biophysical effects of both LCC and LMC found in this study
call for further extending the attribution of climate change from
the prevailing greenhouse gas perspective to include biophysical
effects8. Better understanding the balance between biogeochemical
and biophysical effects of LMC on radiative and non-radiative
forcing would avoid promoting landmanagement strategies with no
guarantee of mitigating climate change.

Received 2 September 2013; accepted 11 March 2014;
published online 13 April 2014
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