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13 Empirical evidence from four continents indicates that human food demand may be best 

14 reconciled with biodiversity conservation through sparing natural habitats by boosting 

15 agricultural yields.  This runs counter to the conservation paradigm of wildlife-friendly 

16 farming which is influential in Europe, where many species are dependent on low-yielding 

17 High Nature Value farmland threatened by both intensification and abandonment.  In the 

18 first multi-taxon population-level test of land-sparing theory in Europe, we quantified how 

19 population densities of 175 bird and sedge species varied with farm yield across 26 1-km 

20 squares in eastern Poland.  We discovered that, as in previous studies elsewhere, simple 

21 land sparing, with only natural habitats on spared land, markedly out-performed land 

22 sharing in its effect on region-wide projected population sizes.  However, a novel “three-

23 compartment” land-sparing approach, in which about one-third of spared land is assigned 

24 to very low-yield agriculture and the remainder to natural habitats, resulted in least-reduced 

25 projected future populations for more species.  Implementing the three-compartment model 

26 would require significant reorganisation of current subsidy regimes, but would mean high-

27 yield farming could release sufficient land for species dependent on both natural and High 

28 Nature Value farmland to persist.

29

30 Keywords: agriculture, biodiversity, land sharing, farm yield, High Nature Value farming, 

31 wildlife-friendly farming, sustainable intensification 

32

33 1. Introduction

34 Recent calls to set aside up to half the Earth’s surface primarily for wild nature [1] are mute 

35 on the important question of how to produce sufficient food for over 7 billion people on the 

36 remaining half [2].  Even the widely accepted Aichi Targets of the Convention on Biological 
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37 Diversity envisage protecting 17% of terrestrial ecosystems by 2020 (Target 11), while 

38 simultaneously managing areas under agriculture, aquaculture and forestry in ways that 

39 ensure biodiversity conservation (Target 7) [3].  Yet cropland and pasture already cover 

40 nearly 40% of the Earth’s ice-free land surface, and population growth and rising per capita 

41 demand mean that, by some forecasts, humanity’s total demand for food and other farmed 

42 products is likely to double between 2000 and 2050 [4,5].  So how might these two 

43 apparently conflicting imperatives of meeting human food needs and safeguarding 

44 biodiversity be reconciled?

45 The recent literature on this topic has been dominated by two contrasting alternatives.  

46 Many conservationists advocate wildlife-friendly farm practices, such as retaining or 

47 restoring hedgerows and ponds, changing the timing of sowing or harvesting and limiting 

48 the use of agrochemicals, in order to boost populations of wild species within farmed 

49 landscapes [6].  However, this land-sharing approach often lowers farm yields (production 

50 per unit area of the landscape) and hence increases the total area of farmland needed for a 

51 given level of production.  Hence, others have proposed land sparing, in which maximising 

52 agricultural yields allows land not required for food production to be used to retain or 

53 restore tracts of natural habitat away from farmland [7].

54 Quantitative evaluations of these approaches, based upon how the population densities of 

55 individual species vary in relation to farm yield, have produced remarkably consistent 

56 findings [8].  Detailed studies on four continents and involving 1599 species of birds, 

57 butterflies, dung beetles, trees, daisies and grasses indicate that most species are sufficiently 

58 sensitive to agricultural disturbance that they would have their largest total region-wide 

59 populations (on farmed and unfarmed land combined) if high-yield farming was adopted 

60 and linked to the conservation of natural habitats on spared land [9–15].  All studies that 

61 reach contrasting conclusions have not considered yields, have not examined natural 

62 habitats or high-yield landscapes, or have used only crude metrics of biodiversity such as 

63 species richness [8,16,17].

64 No study has yet explored the impacts on region-wide population sizes of land sharing, 

65 sparing and intermediate approaches for a wide range of individual species in Europe. 

66 However, a pioneering study of butterflies in England [18] assessed the potential effects of 

67 varying the areas of conventional farming, organic farming and nature reserves on the 

68 region-wide population of all species combined, whilst maintaining agricultural production 

69 constant.  The study concluded that the total butterfly population would be largest with 

70 exclusively conventional farming, when combined with nature reserves, at the currently 

71 observed lower yields of organic compared with conventional farming.  Only if the yield of 

72 organic farming was to exceed 87% of that of conventional farming would this conclusion 

73 change. This study did not assess region-wide populations of individual species, as we do 

74 here. The dearth of European studies to do this is significant, because the European biota 

75 might plausibly be expected to be relatively rich in species tolerant of farming, which would 

76 make land sparing less likely to result in the largest population size for the majority of 

77 species, because of selection pressures imposed by successive episodes of rapid vegetation 

78 change driven by glacial cycles [19], followed by thousands of years of agriculture and forest 
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79 exploitation.  A large proportion of European species, particularly those of high 

80 conservation concern, appear to be largely or wholly dependent on areas of extensive 

81 agricultural management (e.g. [20–22]).  Often described as ‘High Nature Value farmland’ 

82 (HNVf) [23–25], these low-yielding farm systems are declining in extent across the continent 

83 as a result of abandonment and intensification [26].  In response (and echoing the Aichi 

84 Targets), many of those promoting biodiversity conservation in Europe call for both 

85 increased protection of natural habitats and more wildlife-friendly management of farmland 

86 [27,28].  Yet how can both these objectives be achieved without increasing the environmental 

87 impact elsewhere of Europe’s already substantial food imports?

88 Here we address these gaps in knowledge by quantifying how local population densities of 

89 large numbers of bird and sedge species vary with increasing farm yield across a gradient of 

90 land-use intensity in eastern Poland.  We then explore the relative benefits of land sharing 

91 and land sparing through the simple “two-compartment” model of Green et al. [7], which 

92 assigns land either to farmland, all of which is farmed at the same yield, or to zero-yielding 

93 natural habitats.  However, in a European context, a more sophisticated framework in which 

94 high-yield farming spares land both for natural habitats and low-yielding HNVf might 

95 identify scenarios that result in higher projected region-wide populations for more species 

96 than the two-compartment land sparing approach.  We therefore use the same data to assess 

97 outcomes from three-compartment land sparing, in which a third compartment comprises 

98 HNVf.  Our results suggest this latter approach offers a promising solution to 

99 simultaneously meeting food demand and the conservation needs both of wild species 

100 which depend upon natural habitats and those currently dependent on extensively-

101 managed farmland.

102

103 2. Materials and methods

104

105 (a) Study region and survey sites

106 The study was conducted in a 14,000 km2 area of the Polesian lowlands in the Lubelskie 

107 region of eastern Poland.  The expected vegetation of the region in the absence of human 

108 influence would be mixed deciduous/coniferous forest, with floodplain grassland, fen mires, 

109 peat bogs and other wetland habitats in river valleys.  Current non-urban land comprises 

110 permanent arable land (40%), mosaics of mixed arable/grassland agriculture (16%), 

111 grassland (13%, including meadows, pastures and some natural floodplains, forest (16%, 

112 both natural and managed), and wetlands (2%, marshes and peatbogs).  We chose 26 1-km 

113 square study sites to cover a gradient of agricultural use.  Nine squares in protected areas 

114 comprised only natural habitats and had no agricultural yield (four with mixed/deciduous 

115 forests, which were not old-growth, and five with floodplains and fen mires).  The 

116 remaining 17 study squares included farmed land and were chosen to span a range from 

117 low-yielding through to high-yielding agricultural land.  These farmed squares were located 

118 on both ‘forest’ soils (n = 8 sites) of the same type as for the zero-yield forest squares and on 
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119 floodplain soils (n = 9) like those of the wetland sites.  Study squares were selected to be 

120 surrounded by a 1-km buffer with similar land cover to minimise the influence of 

121 neighbouring land uses.  We did this to facilitate the simulation of region-wide population 

122 sizes of species under the assumption that land uses would be assigned to large contiguous 

123 tracts of land. See electronic supplementary material for further details.

124  

125 (b) Agricultural yields 

126 We estimated the mean annual food energy yield in GJ ha-1 yr-1 for each study square from 

127 the extents of natural vegetation and each type of cropland and pasture within it and the 

128 annual yield of agricultural produce of each land-cover type, in terms of mass per unit area.  

129 Yields were obtained from a combination of interviews with farmers, data submitted by 

130 local agricultural advisors and regional agricultural statistics published by the local 

131 government.  Product-specific edible proportions of harvested crop and energy values taken 

132 from the literature were used to convert the results to food energy.  The yield averaged over 

133 the whole study square was then obtained as the sum of products of land type-specific areas 

134 and yields.  See electronic supplementary material and [29] for further details.

135

136 (c) Species’ population densities 

137 We used data from surveys conducted in spring/summer 2013 and 2014 in each study 

138 square to estimate the population densities, averaged over the whole square, of 125 breeding 

139 bird species and 50 sedge species.  See electronic supplementary material for details of field 

140 survey methods and density estimation.

141

142 (d) Density-yield functions

143 We used regression methods to fit smooth parametric functions to the relationship, for each 

144 species, between its observed population density in a survey square and the agricultural 

145 yield of the whole square.  The family of functions used allows the relationship of density to 

146 yield to be monotonic increasing or decreasing, or sigmoid, or to be hump-shaped or U-

147 shaped with symmetrical or asymmetrical form and one peak or trough.  This set of 

148 functions has been found in previous studies [8,9] to approximate the observed form of the 

149 survey data reasonably well, whilst having a small number of fitted parameters.  The 

150 dependent variable for birds was the count of the focal species observed on transects in each 

151 site.  We conducted non-linear Poisson regression with a logarithmic link function and with 

152 the logarithm of the total effective area surveyed in the square as an offset term.  This makes 

153 the fitted regression equivalent to a model of density in relation to yield.  The dependent 

154 variable for sedges was the mean proportion of the area within quadrats surveyed in the 

155 square which was covered by a given species.  We fitted the same types of function as for 

156 birds, but used non-linear least squares regression because the data were not counts.  We 

157 allowed for possible differences between the two soil types by fitting density-yield functions 
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158 by regression in which parameters were assumed either to be the same as, or to differ 

159 between, soil types and then applying a model section procedure to choose an appropriate 

160 model for each species (see electronic supplementary material).  To simulate outcomes of a 

161 three-compartment land sparing scenario (see Methods section (f) below), we used the 

162 mean, across a set of species, of the yield at which the population density was greatest. To 

163 obtain these values, we examined each species’ fitted density-yield curves.

164

165 (e) Simulation of region-wide species’ population sizes for land-sharing and two-

166 compartment land-sparing land-use scenarios

167 We followed the approach of previous studies [7,9] by simulating the region-wide 

168 population size of each bird and sedge species, on farmed and unfarmed land combined, 

169 under simplified hypothetical land-use scenarios.  At one extreme, our land-sharing scenario 

170 assumed that the entire region was farmed at the ‘lowest permissible’ yield, which is the 

171 minimum just sufficient to meet a level of regional production, as specified in each of the 

172 range of region-wide food energy production level scenarios we considered (see below), if 

173 the entire region is farmed [7].  At the other extreme, our two-compartment land-sparing 

174 scenario assumed that part of the region, whose extent was determined by the specified level 

175 of region-wide food energy production, was farmed at the highest attainable yield and all 

176 other land not required to achieve that production was covered by natural habitats. 

177 Following previous studies [9], we took the highest attainable yield to be 1.25 times the 

178 maximum yield observed in our study squares.  This multiplier of the highest observed 

179 yield is arbitrary, but a value greater than 1 is justified because our sample of farmed 

180 squares was small and the true maximum attainable yield would therefore be 

181 underestimated by the observed maximum.  It has been shown for other datasets that 

182 changing the assumed multiplier makes little difference to the conclusions drawn, as was 

183 also found to be the case here, Appendix 4 of ref. 29]. We assumed that natural habitats 

184 would comprise forests and wetlands in the present-day proportion of forest and wetland 

185 soils (75% forest, 25% wetland).  Region-wide populations were calculated from simulated 

186 areas of land with different yields and yield-specific population densities obtained from the 

187 fitted density-yield functions.  We also simulated region-wide population sizes of every 

188 species under intermediate-yield scenarios in which land was farmed at a range of yields 

189 between the lowest permissible and the highest attainable, in intervals of 1 GJ ha-1 yr-1.  For 

190 each simulation, we assumed that all land not required to achieve a specified level of food 

191 energy production was covered by natural habitats.

192 We performed these simulations for a wide range of region-wide food energy production 

193 levels from 1 to 99 GJ ha-1 yr-1, averaged over the study region.  The highest production level 

194 we considered is that which would result from farming the whole region at the highest 

195 attainable yield.  However, we focussed on the annual regional production for 2014, based 

196 on current land use, and two illustrative production scenarios for 2050: (i) ‘Business as 

197 Usual’, which assumed that total regional food energy production continues to increase in 

198 line with 2005-2014 trends, resulting in a 72.5% increase in by 2050, and (ii) ‘Lower Bound’, 
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199 which assumed that combined demand from the agricultural sector, comprising 

200 consumption, exports and biofuel production, was capped at 2014 levels and that edible 

201 food waste was reduced by half, resulting in a 17.5% decrease in required production by 

202 2050 compared with 2014.  For each simulation, we classified every species according to 

203 whether its region-wide population was highest for land sharing, land sparing, or when 

204 land was farmed at an intermediate yield.  Further details of simulations are given in the 

205 electronic supplementary material.

206

207 (f) Simulation of three-compartment land sparing

208 We modified the land-sparing scenarios described above by assuming that land spared from 

209 farming by producing food at the highest attainable yield was divided between natural 

210 habitat and extremely low-yielding farmland, extensively managed to benefit wild species 

211 as HNVf.  We took as the food energy yield of the HNVf compartment the mean yield of our 

212 nine farmed study sites for which site-level yield was below the lowest permissible for the 

213 Lower Bound production scenario (8 GJ ha-1 yr-1).  This choice was also guided by the yields 

214 at which many species of birds and sedges showed a peak in their population density (see 

215 Results (b)).  We then used the density-yield functions to estimate the expected density of 

216 each species on HNVf with this yield.  We conservatively assumed that HNVf makes no 

217 contribution to total region-wide food production, as this allows for management of the 

218 third compartment to be focused on conservation rather than agricultural outcomes.  We 

219 also needed to define the proportion of spared land comprising HNVf, rather than natural 

220 habitats. We did this by varying the proportion of spared land comprising HNVf iteratively 

221 to find the value which maximised the geometric mean, across all bird and sedge species, of 

222 the ratio of total region-wide population under three-compartment sparing to the estimated 

223 total regional population with land use as it was in 2014.  This was done for each production 

224 level.  For each region-wide production level, we then counted the number of species for 

225 which the total regional population was highest with farming at the lowest permissible yield 

226 (land sharing), the highest attainable yield with all spared land assigned to natural habitat 

227 (two-compartment land sparing), or the highest attainable yield where spared land is 

228 divided between natural habitat and HNVf (three-compartment land sparing).

229

230 (g) Region-wide species’ populations in 2050 relative to those in 2014

231 To assess the overall consequences of these alternative land-use scenarios we calculated the 

232 ratio of each species’ region-wide population to its regional population estimated from 2014 

233 patterns of land use for each focal 2050 production scenario.  We then took the geometric 

234 mean of these ratios across species.  We also counted the numbers of species in the following 

235 categories of projected 2014 – 2050 population change: ‘severe decline’ (>50% decline); 

236 ‘decline’ (up to 50%); ‘increase’ (up to 100% increase) and ‘major increase’ (>100% increase).

237
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238 3. Results

239 (a) Region-wide population outcomes for the land-sharing and two-compartment land-

240 sparing scenarios

241 When spared land was assumed to support only natural habitats, most species of birds had 

242 their highest projected region-wide populations (on farmed and unfarmed land combined) 

243 when farming was at the highest attainable yield (figure 1).  This result held at all levels of 

244 region-wide food energy production we considered, and the ratio of the number of species 

245 potentially benefitting from land sparing to those benefitting from land sharing increased as 

246 the assumed production level increased.  A similar pattern was seen for sedges, but the 

247 proportion of species potentially benefitting from land sparing was higher for sedges than 

248 for birds at all production levels.  For both taxa, there was a minority of species for which 

249 the total population was highest with farming at a yield intermediate between the lowest 

250 permissible and highest attainable yields, but this proportion decreased rapidly as the 

251 assumed production level increased.

252

253 (b) Yield at which maximum population density occurred

254 Species which have a ‘humped’ density-yield function, with a peak in their population 

255 density in farmed landscapes at a yield between zero and the maximum attainable yield, 

256 potentially have their highest region-wide population size in two-compartment scenarios 

257 with farming at a yield intermediate between the lowest permissible and highest attainable 

258 yields.  However, whether farming at the optimal yield is permissible depends upon the 

259 assumed region-wide production level [7].  We therefore compared the yield at which the 

260 peak population density of each species occurred with the lowest permissible yields for the 

261 2014, Lower Bound and Business as Usual production scenarios.  For 42% of bird species 

262 and 54% of sedges, the peak population density occurred in natural habitats with no 

263 agricultural yield (figure 2).  The maximum population density of only a few birds (10%) 

264 and sedges (2%) occurred at the highest attainable yield.  Hence, many species of birds (48%) 

265 and sedges (44%) had peak population densities at yields greater than zero, but less than the 

266 highest attainable yield.  These species were those with highest region-wide populations at 

267 intermediate yields when total region-wide food energy production was very low (purple 

268 shading in figure 1).  However, most of the species with these intermediate peak yields (90% 

269 for birds and 86% for sedges) had their maximum population density on land whose yield 

270 was below the minimum permissible yield, even for our lowest-demand production 

271 scenario for 2050 (Lower Bound: the dotted line on figure 2).  Hence, few of the species with 

272 humped density-yield functions can benefit from intermediate-yield farming in the two-

273 compartment scenarios, because their optimal yields are mostly well below the minimum 

274 levels required for current and projected food demand to be met.  However, some of these 

275 species might benefit from an alternative form of land sparing in which high-yield farming 

276 spares land both for natural habitats and HNVf because their peak densities occur at yields 

277 that are, on average, similar to the 8 GJ ha-1 yr-1 we used in three-compartment simulations 

278 (arrow on figure 2).  This possibility is explored in the next sections.
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279

280 (c) Population outcomes for land-sharing, two-compartment land-sparing and three-

281 compartment land-sparing scenarios

282 Across all region-wide production levels, more bird and sedge species had their largest 

283 region-wide population under two-compartment land sparing than under three-

284 compartment land sparing or land sharing (figure 3).  However, a substantial minority of 

285 species had their highest modelled total population size under three-compartment sparing, 

286 and this proportion increased as total region-wide production level increased.  Based on the 

287 geometric mean across all species of their regional population size relative to 2014, the 

288 optimal proportion of spared land assigned to HNVf under the three-compartment scenario 

289 was 35% for the Lower Bound scenario and 33% for the Business as Usual scenario.

290

291 (d) Changes in population size from 2014 to 2050 for land-sharing, two-compartment land-

292 sparing and three-compartment land-sparing scenarios

293 Declines in region-wide population size by 2050 were projected for most species of birds and 

294 sedges under the land-sharing scenario, with the proportion of species declining being 

295 somewhat lower under the reduced-demand Lower Bound production scenario than with 

296 Business as Usual demand (figure 4).  Both two-compartment and three-compartment land 

297 sparing resulted in a smaller proportion of species with declines than land sharing.  The 

298 proportion of species simulated to decline by more than half (darkest shading on fig. 4) was 

299 lower for three-compartment than two-compartment land sparing both for birds and sedges, 

300 and for both projected 2050 production levels.  Species with peak density on low-yielding 

301 farmland were more likely than other species to undergo future population declines but, as 

302 for species in general, the proportion this subgroup of species simulated to decline by more 

303 than half was lower for three-compartment than two-compartment land sparing.

304

305 4. Discussion

306 Our analysis indicates that high-yield farming, linked to land sparing for natural habitats 

307 alone, would result in larger region-wide population size for more species of birds and 

308 sedges in eastern Poland than land sharing or farming at intermediate yields.  This is the 

309 first quantitative comparison to be conducted in Europe of the expected consequences of 

310 land sharing and land sparing for species-specific population sizes of large sets of species.  

311 Our study concerns just two of the many groups of species present in the study region and 

312 we cannot assume that our conclusions apply to its entire biota. We chose birds and sedges 

313 because they have large numbers of species that are relatively easy to identify and survey.  

314 However, our findings might be broadly representative of those for a wider range of taxa 

315 because they are similar to those for trees, grasses and dung beetles studied elsewhere and 

316 to results for birds studied in six other regions [8]. Despite the long period of ecological 

317 disturbance caused by glacial cycles in the Pleistocene, followed by millennia of extensive 

Page 9 of 21

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



318 agriculture, our findings for Poland from the two-compartment land-sparing scenario 

319 resemble those obtained in comparable studies elsewhere, in regions with different patterns 

320 of past environmental change [8].  It does not appear that a large proportion of species 

321 potentially favoured by land sparing is a result confined to regions in which tropical or 

322 subtropical forest is the predominant natural habitat [30].  Although this outcome has been 

323 observed for regions with natural vegetation comprising tropical or subtropical forest 

324 (Ghana [9], Uganda [10], India [9]), Mexico [11]), there are also similar results for the pampas 

325 grasslands of Brazil and Uruguay [12], temperate grassland/steppe in Kazakhstan [13], and 

326 now from the present study in a mixed temperate forest region of Europe.

327 A limitation of our study is that our scenarios consider only the effects on species’ projected 

328 population sizes of changes in the extent of the different types of land use we surveyed.  The 

329 configuration and size of tracts of land use will also affect densities and hence population 

330 sizes. For example, a study of birds and dung beetles in Colombia found that many species 

331 were more abundant on low-intensity pastureland close to natural forests than distant from 

332 them [31], so that  having a given total area of forest distributed in smaller patches would 

333 increase the mean densities of these species on farmland. Despite this, a land-sparing 

334 strategy, in which the area of farmland was minimised by maximising the proportion of the 

335 farmland area that was grazed, still resulted in the majority of species from both taxa 

336 achieving the highest population size.  Effects of configuration opposite to this are expected 

337 where population densities within natural habitat are lower near farmland (i.e. there are 

338 negative edge effects).   In that case, distributing natural habitat in tracts of the largest 

339 possible size would lead to the largest region-wide population size.  Empirical data on the 

340 magnitude of edge effects in natural habitat are insufficient to measure their effects in any 

341 existing study of land sparing and land sharing, but simulations using a plausible range of 

342 edge effect magnitudes indicate that the benefits of sparing over sharing would not be 

343 reversed unless edge effects were large and patches of natural habitat were small [32].

344 Species vary markedly in their projected response to land sparing and land sharing in terms 

345 of projected region-wide population size [7–9].  The species expected to benefit most from 

346 land sparing are those restricted to natural habitats and those with monotonic convex 

347 density-yield relationships.  Species with monotonic concave density-yield relationships are 

348 favoured by land sharing [7].  However, our study in Poland highlights a proportion of 

349 species with density-yield relationships that are more complex than these simple forms.  In 

350 particular, we found a substantial proportion of species with a hump-shaped relationship 

351 between population density and yield.  Which farming strategy is associated with the 

352 greatest region-wide population size of these species depends upon the yield at which their 

353 densities peak and, for those that peak below the lowest permissible yield, the shape of their 

354 density-yield function beyond this [7].  In Poland we found that most species with hump-

355 shaped functions had peak density at yields well below the lowest permissible yield, even if 

356 future demand was assumed to be lower than the current level.  To address the conservation 

357 needs of these species we therefore developed a three-compartment land-sparing 

358 formulation in which high-yield farming spares land not just for natural habitats, but also 

359 for HNV low-yield farmland.  Three-compartment land sparing (with roughly one-third of 
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360 the spared land assigned to HNVf) avoided large population reductions, compared with 

361 2014, for more species than did two-compartment sparing.  These results were based on a 

362 simple method for selecting the yield and area of the HNVf compartment.  Further 

363 refinements of the three-compartment model might improve its performance further by 

364 optimising the HNVf yield in a more rigorous way.  Past region-wide population sizes, in 

365 the era before agricultural disturbance began, are highly uncertain for the species most likely 

366 to benefit from three-compartment land sparing.  Some of these species may have been 

367 absent, or much rarer than they are today because of lower levels of habitat disturbance.  

368 However, it is also possible that they were associated with disturbed habitats created and 

369 maintained by large wild herbivores that are now extinct or have much diminished 

370 populations [33].

371 Our results suggest that, in eastern Poland, and possibly elsewhere in Europe, species 

372 conservation objectives would be enhanced if the area required for production-focused 

373 agriculture was minimised through high-yield farming to make space both for natural 

374 habitats and for HNVf landscapes managed to benefit species which currently depend upon 

375 them.  If this was achievable, there would be a legitimate role for public policy, and private 

376 individuals and organisations who wish to promote biodiversity conservation, to support 

377 high-yielding agricultural systems for conservation reasons, even if their direct value for 

378 biodiversity is low.  However, governmental and non-governmental conservation agencies 

379 usually do not attribute any conservation advantages to high-yield farming. This is perhaps 

380 not surprising, given that the promotion of high-yield farming on its own will not contribute 

381 much to conservation unless it is combined with incentives to spare land elsewhere for 

382 conservation [34,35] – in our case both through retaining or restoring natural habitats and 

383 maintaining or recreating areas of HNVf managed largely for those species that appear 

384 dependent on low-yield farm landscapes.  In addition, the overall sustainability of high-

385 yield farming needs to be improved by identifying and promoting farming systems that 

386 have low levels of negative externalities per unit of agricultural product [36]. 

387 Encouragement of high-yield farming could involve a range of measures, including 

388 investment in research and development, support for innovation, agricultural advice, and 

389 grants or loans for capital investments including beneficial technology and upgrades to farm 

390 infrastructure [35].  Delivering effective land sparing at low environmental cost will require 

391 both restructuring of existing incentive schemes so that support for yield increases on 

392 farmland is conditional on enhancement of conservation on other land, and a strong 

393 regulatory underpinning to ensure that producers use farming methods that limit negative 

394 environmental externalities.

395 The European Union already has effective policies to protect remaining areas of intact 

396 natural habitat (e.g. the Natura 2000 network, and the Birds and Habitats Directives [37]) 

397 and there are potential mechanisms to restore natural habitat in areas where it has been 

398 damaged or lost (e.g. through EU LIFE+ funding).  Private nature conservation organisations 

399 in Europe also expend their own resources for the protection and restoration of natural 

400 habitats, as well as deploying their technical expertise to make effective use of the EU 

401 funding. The potential for land sparing to allow restoration of natural habitats is substantial.  
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402 In our study area in eastern Poland, we found that two-compartment land sparing at the 

403 current region-wide agricultural production level would approximately double the area 

404 available for natural habitats compared with 2014.  The area that would need to be restored 

405 to natural habitat under two-compartment land sparing with the Lower Bound 2050 

406 production level would be even larger (3.4 times the 2014 extent of natural habitat). 

407 However, the restoration of natural forest and wetland habitats on abandoned farmland 

408 takes time and has financial costs. There can also be hydrological constraints that limit the 

409 realisable extent of wetland restoration, but spatially-explicit land-use modelling indicates 

410 that the modelled levels of restoration in our study are feasible [29]. Our estimates for 

411 region-wide species population outcomes assume that population densities in existing 

412 natural habitats have been realised on restored spared land, but in practice this will only be 

413 the case after a time lag.

414 In terms of conserving species whose density peaks under low-yielding agriculture, we 

415 suggest that existing agri-environment policies could be improved by explicitly targeting 

416 low-yielding HNVf practices.  Areas of high uptake of agri-environment funding do not 

417 currently coincide with existing areas of HNVf in Europe [22] and many HNVf systems 

418 continue to face major economic challenges, suggesting improved targeting and higher 

419 payment rates may be necessary for them to persist. Alongside low-yield farming, this 

420 support could encourage extensive, conservation-focused management to maintain species 

421 dependent on occasional habitat disturbance.  Such an approach is already used in many 

422 semi-natural protected areas within Europe, supported by agri-environment schemes, EU 

423 LIFE+ funding and resources contributed by private individuals and conservation 

424 organisations. 

425 Because these alternative uses all compete for land, it is vital that policies for the protection 

426 of natural and semi-natural habitats are coupled with the promotion of sustainable high-

427 yield farming, and with the effective implementation of demand-side measures to reduce 

428 edible food waste and meat consumption, and to limit demand for crop-based biofuels.  

429 Without such efforts to reduce the land required for food production, significant increases in 

430 the area managed primarily for nature could only be achieved by Europe displacing its 

431 environmental footprint by importing more of its food from elsewhere.

432 In broadest terms, our results indicate that if the ambitious levels of habitat protection called 

433 for in the Aichi Targets and even more so by Half Earth advocates are to be achieved they 

434 will require a parallel, linked commitment to promoting sustainable high-yield farming.  We 

435 suggest that humanity cannot afford the space that nature needs unless this is done.  In 

436 Europe, there appears to be a strong case for areas primarily focused on conservation to 

437 include extensively managed habitats aimed at benefiting species dependent on periodic 

438 habitat disturbance, now produced by human activities, and for European policies 

439 addressing agriculture and conservation to be revised to better deliver both traditional 

440 conservation and biodiversity-focused HNVf.  This will in turn require explicit policy 

441 linkages between high-yield farming and the sparing of land for conservation.  The 

442 development of effective policy mechanisms for achieving such coupling is in its infancy, 
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443 but we think this in partly because conservation efforts often fail to recognise the pivotal role 

444 which high-yield farming can play in making room for nature.
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561 LEGENDS TO FIGURES

562

563 Figure 1. Proportion of species of birds and sedges expected under the two-compartment 

564 scenario to have their highest region-wide population size when land is farmed at the 

565 highest attainable yield and remaining land is all under natural habitat (land sparing - red), 

566 when the entire region is farmed at the lowest permissible yield (land sharing - blue) and at 

567 intermediate yields in the permissible range (purple).  Results are shown for a range of 

568 values of region-wide food production, expressed as an annual yield averaged over the 

569 whole region.  The vertical lines indicate region-wide mean yield in 2014 (solid line), and 

570 under the Lower Bound (dotted line) and Business as Usual (dashed line) scenarios for 

571 agricultural production in 2050.

572

573 Figure 2. Frequency distributions of the estimated yield at which the peak population 

574 density occurred for species of birds and sedges.  Species with highest density in natural 

575 habitats (white bar) and on farmland with the highest attainable yield (black bar) are shown 

576 on the left and right respectively.  Numbers of species with maximum densities at yields 

577 between these extremes are shown by grey bars for bins of 5 GJ ha-1 yr-1.  Vertical lines 

578 indicate the minimum permissible yield under land sharing to achieve the regional 

579 production of 2014 (solid line), and under the Lower Bound (dotted line) and Business as 

580 Usual (dashed line) scenarios for agricultural production in 2050.  The arrows show the yield 

581 assumed for High Nature Value farmland for the purpose of the three-compartment 

582 scenario.

583

584 Figure 3. Proportion of species of birds and sedges projected to have their highest total 

585 population size when all land is farmed at the lowest permissible yield (land sharing - blue), 

586 when land is farmed at the highest attainable yield and spared land is used only for natural 

587 habitat (2C-Sparing - red), and under a three-compartment model in which some spared 

588 land has natural habitat and some supports HNVf (3C-Sparing, orange).  Vertical lines 

589 indicate the minimum permissible yield under Land Sharing to achieve the regional 

590 production of 2014 (solid line), and under the Lower Bound (dotted line) and Business as 

591 Usual (dashed line) scenarios for agricultural production in 2050. 

592

593 Figure 4. Proportions of bird and sedge species projected to undergo decreases or increases 

594 in region-wide population size of various magnitudes between 2014 and 2050 under 

595 contrasting land-use strategies.  Shaded segments within each horizontal bar represent the 

596 proportion of species undergoing a severe decline (>50% decline: black); a decline’ (up to 

597 50% decline: grey); an increase (up to 100% increase: grey hatching) and a major increase 

598 (>100% increase: black hatching).  The horizontal extent of each set of shaded bars sums to 

599 100% of species, with the division between decreasing and increasing species placed at the 
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600 vertical thick line.  Vertical lines show divisions representing 25% of species. Results are 

601 presented for farming at the lowest permissible yield (Sh = land sharing), farming at the 

602 highest attainable yield with only natural habitats on spared land (2C Sp = two-

603 compartment land sparing) and farming at the highest attainable yield with both natural 

604 habitat and HNVf on spared land (3C Sp = three-compartment land sparing).  Two region-

605 wide agricultural production levels for 2050 are compared: Business as Usual and Lower 

606 Bound.  Results are shown separately for all species and for those species with peak 

607 population density at a yield greater than zero but less than the lowest permissible yield 

608 under the Lower Bound 2050 production scenario. 
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Figure 1. Proportion of species of birds and sedges expected under the two-compartment scenario to have 

their highest region-wide population size when land is farmed at the highest attainable yield and remaining 

land is all under natural habitat (land sparing - red), when the entire region is farmed at the lowest 

permissible yield (land sharing - blue) and at intermediate yields in the permissible range (purple).  Results 

are shown for a range of values of region-wide food production, expressed as an annual yield averaged over 

the whole region.  The vertical lines indicate region-wide mean yield in 2014 (solid line), and under the 

Lower Bound (dotted line) and Business as Usual (dashed line) scenarios for agricultural production in 2050. 
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Figure 2. Frequency distributions of the estimated yield at which the peak population density occurred for 

species of birds and sedges.  Species with highest density in natural habitats (white bar) and on farmland 

with the highest attainable yield (black bar) are shown on the left and right respectively.  Numbers of 

species with maximum densities at yields between these extremes are shown by grey bars for bins of 5 GJ 

ha-1 yr-1.  Vertical lines indicate the minimum permissible yield under land sharing to achieve the regional 

production of 2014 (solid line), and under the Lower Bound (dotted line) and Business as Usual (dashed 

line) scenarios for agricultural production in 2050.  The arrows show the yield assumed for High Nature 

Value farmland for the purpose of the three-compartment scenario. 
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Figure 3. Proportion of species of birds and sedges projected to have their highest total population size when 

all land is farmed at the lowest permissible yield (land sharing - blue), when land is farmed at the highest 

attainable yield and spared land is used only for natural habitat (2C-Sparing - red), and under a three-

compartment model in which some spared land has natural habitat and some supports HNVf (3C-Sparing, 

orange).  Vertical lines indicate the minimum permissible yield under Land Sharing to achieve the regional 

production of 2014 (solid line), and under the Lower Bound (dotted line) and Business as Usual (dashed 

line) scenarios for agricultural production in 2050. 
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Figure 4. Proportions of bird and sedge species projected to undergo decreases or increases in region-wide 

population size of various magnitudes between 2014 and 2050 under contrasting land-use strategies. 

 Shaded segments within each horizontal bar represent the proportion of species undergoing a severe 

decline (>50% decline: black); a decline’ (up to 50% decline: grey); an increase (up to 100% increase: 

grey hatching) and a major increase (>100% increase: black hatching).  The horizontal extent of each set of 

shaded bars sums to 100% of species, with the division between decreasing and increasing species placed at 

the vertical thick line.  Vertical lines show divisions representing 25% of species. Results are presented for 

farming at the lowest permissible yield (Sh = land sharing), farming at the highest attainable yield with only 

natural habitats on spared land (2C Sp = two-compartment land sparing) and farming at the highest 

attainable yield with both natural habitat and HNVf on spared land (3C Sp = three-compartment land 

sparing).  Two region-wide agricultural production levels for 2050 are compared: Business as Usual and 

Lower Bound.  Results are shown separately for all species and for those species with peak population 

density at a yield greater than zero but less than the lowest permissible yield under the Lower Bound 2050 

production scenario. 
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