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Abstract: In this study, land subsidence susceptibility was assessed for a study area in South Korea

by using four machine learning models including Bayesian Logistic Regression (BLR), Support Vector

Machine (SVM), Logistic Model Tree (LMT) and Alternate Decision Tree (ADTree). Eight conditioning

factors were distinguished as the most important affecting factors on land subsidence of Jeong-am

area, including slope angle, distance to drift, drift density, geology, distance to lineament, lineament

density, land use and rock-mass rating (RMR) were applied to modelling. About 24 previously

occurred land subsidence were surveyed and used as training dataset (70% of data) and validation

dataset (30% of data) in the modelling process. Each studied model generated a land subsidence

susceptibility map (LSSM). The maps were verified using several appropriate tools including

statistical indices, the area under the receiver operating characteristic (AUROC) and success rate (SR)

and prediction rate (PR) curves. The results of this study indicated that the BLR model produced LSSM

with higher acceptable accuracy and reliability compared to the other applied models, even though

the other models also had reasonable results.
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1. Introduction

Land subsidence is one of the land degradation features usually occur due to the diversity of

natural or anthropic effects that cause a change in the environment and have social and economic

effects [1]. Many land subsidence have occurred globally because of various reasons such as mining,

dissolution of limestone, extraction of groundwater and natural gas, earthquake [2–4]. The land

subsidence forms over a period of time due to overload above voids such as underground mining [5,6].

In South Korea, many land subsidence have occurred due to coal mining specifically in the 1960s

and 1970s since the coal mining was playing an important role in the industry. In the 1980s, the coal

mining industry was declined because the Korean government prepared an appropriate act to close

and abandon most of coal mines [7].

Not only the abandoned mines did not decrease the environmental destructions including land

subsidence and water pollution but also their risks were increased [8]. Especially, the underground

land subsidence can create damage to surface structures, including house, building, railroad and

roads, as well as human injury [5]. Since ground recovery after occurrence of a land subsidence is a

challenge and also their rehabilitation is costly [6,9], cautionary operations and proper strategies for

land subsidence are critical.

Basically, performing a successful land subsidence study is associated with considering an

integration of several environmental related factors [7]. Therefore, a geo-database in land subsidence

modelling must cover various types of thematic information such as geo-hydrological factors [10].

Remote sensing (RS) and Geographical information system (GIS) data are useful tools to integrate

the development of the land subsidence studies [11,12]. On the other hand, accurate land subsidence

inventories may still be challenging to acquire, although modern technologies such as Global

Positioning Systems (GPS), RS and GIS may assist spatial prediction and localization of visible land

subsidence features [13,14].

According to the literature overview, there are several models and methods (qualitative and

quantitative) have been successfully applied and developed in different areas of the world as land

subsidence susceptibility mapping (LSSM). The quantitative methods can deal with the disadvantages

of qualitative ones which include: logistic regression (LR) [15], frequency ratio (FR) [16], analytical

hierarchy processes (AHP) [17], weight-of-evidence (WOE) [18], evidential-belief-functions (EBF) [16],

artificial neural network (ANN) [7], support vector machine (SVM) [19], random forest (RF), grey model

(GM) [20], sensitivity analysis (SA) [6], fuzzy logic (FL) [21] and adaptive neuro-fuzzy inference system

(ANFIS) [10].

Although some methods and techniques have been developed for preparing the LSSM, it seems

that more logical and accurate results can be obtained by applying and comparing different methods.

Therefore, single-based classifiers generally have less prediction accuracy rather than the ensemble

models [22]. Basically, machine learning ensembles models have recently increased the performance

and prediction accuracy of single-based classifiers [23]. The main advantage of machine learning

algorithms (MLAs) is their ability to discover a complicated relationship in data, which is often

unpredictable. Additionally, the MLAs can deal with spatial peculiarities of data patterns at various

scales [24].

Application of data mining approaches to LSSM is very limited despite of their all advantageous.

Therefore, these methods and techniques can still be investigated and compared with conventional

methods to acquire an adequate background to reach reasonable conclusions for LSSM. Therefore,

this study aimed to predict and map land subsidence by producing LSSM of a region in the vicinity of

abandoned underground coal mines of South Korea by four commonly introduced machine learning

algorithms including Bayesian Logistic Regression (BLR), Support Vector Machine (SVM), Logistic

Model Tree (LMT) and Alternate Decision Tree (ADTree) methods. The reliability and prediction power

(accuracy) of all the models were evaluated by the area under the ROC curve (AUROC), success rate

(SR), prediction rate (PR), Freidman and Wilcoxon rank statistical tests. Data processing was conducted

using ArcGIS 10.3 and also four machine learning algorithms were produced by WEKA 3.9.2 software.
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2. Data Acquisition

2.1. Description of the Study Area

The study area, Jeong-am in South Korea is located with geographical position of 37◦12′0” and

37◦13′0” N in latitude and 128◦53′10”–128◦54′10” E in longitude (Figure 1). The study area was a

major coal mining area and has many cavities produced due to coal mining [7]. The geology of the

study area consists of Jangseong and Hambaeksan Formations. The majority of South Korean coals

(Jangseong Formation) has been accumulated in the upper Paleozoic and the lower Mesozoic eras [25].

This formation contains several thick coal beds [13] consisting of alternate layers of sandstone and

shale which its shale layers have intercalations of two to three coal bed seams [22].

′ ″
′ ″ ′ ″ ′ ″

Figure 1. Study area; (a) Geographic location of the study area in the northeast of South Korea;

(b) Location of study area between Mt. Baek-Wu to the west and Mt. Ham-Beak to the southeast;

(c) and (d) the pictures at the surveyed subsidence locations that were taken from field surveys.

The coal mining in the study area occurred from 1967 until 1989. The average thickness of the coal

seams was 1.3–2.5 m with rich seams reached 4–15 m in steep slopes (60◦–70◦) areas [22]. The trend of

the abandoned drifts is to deepen from the center to the northeastern part along the direction of the

Jangseong Formation dip in the study area. Also, the drifts are range from 70 to 260 m in depth [22].

Severe land subsidence has occurred in mountainous areas. A local road (No. 38) shows shape of

typical sinkhole with deformations and cracks on the road [7]. The total area of land subsidence is

3296 m2 in the study area. The land subsidence locations are shown on topographic map (Figure 1).

2.2. Data Collection and Preparation

2.2.1. Land Subsidence Inventory

Land subsidence inventory maps were prepared using various sources: with the help of

satellite image interpretation (IKONOS), 1:5000 land subsidence map from Coal Industry Promotion

Board, a 1:5000 topographic map from the National Geographic Information Institute (NGII),

a 1:50,000 geological map from the Korea Institute of Geoscience and Mineral Resources (KIGAM),

a 1:5000 land-use map from the NGII, a 1:1200 mine-tunnel map from Coal Industry Promotion Board

and borehole data from the Coal Industry Promotion Board (1996) [22]. The maps show the locations of

land subsidence in the study area. These maps generally help the prediction of locations and conditions

of future land subsidence.



Sensors 2018, 18, 2464 4 of 20

According to Coal Industry Promotion Board (1996), a total of 24 land subsidence are occurred

with the average coal-seam thickness of 1–1.5 m which they cover an area about 3296 m2 [22]. In the

present study area, a total number of 25 land subsidence locations were recognized (March 2015),

randomly divided into 70% (17 land subsidence) as the training dataset and 30% (8 land subsidence)

as the validation dataset. A land subsidence inventory map was produced by ArcGIS software.

2.2.2. Land Subsidence Conditioning Factors

There are many important factors that contribute to land subsidence around coal mines. According

to existing literature [5–7] and analysis on the study area, eight land subsidence conditioning factors

were adopted in this study that includes slope angle, distance to drift, drift density, geology, distance

to lineament, lineament density, land use and rock-mass rating (RMR). All the factors mentioned above

were extracted from a digital elevation model (DEM), topographical and geological maps in a grid

format with spatial resolution of 2 m × 2 m cells in 179 rows and 361 columns; the entire study area

comprised 63,677 cells and ground subsidence had occurred in 824 cells. Reliable accuracy of the

spatial database is indispensable in a GIS environment. For this reason, accurate maps authorized by

national organizations such as the Coal Industry Promotion Board for ground subsidence, the National

Geographic Information Institute for topography and land use, the Mine Reclamation Cororation.

For mine tunnels and boreholes and the Korea Institute of Geoscience and Mineral Resources for

geology were assembled even though the scales of the maps differed. All of scale factors except

geology and land use were reclassified into five classes based on equal area using ESRI ArcGIS 10.3 for

the probability analysis of the area of existing ground subsidence. Thus, the range of each class is

automatically determined based on equal area.

The slope angle is an important factor in the assessment of land subsidence for current study

and was extracted from the DEM with spatial resolution of 1 × 1 m. The slope angle factor was

constructed with five categories: (1) 0–10; (2) 10–20; (3) 20–30; (4) 30–40; and (5) >40◦ (Table 1). In the

present study, the 3-D digital map of drifts provided by Coal Industry Promotion Board of South

Korea was converted to a grid file and then subtracted from the DEM for computing drift depth. Then,

the distance from each drift was calculated using a proximity analysis for extraction of distance to drift

(m) factor in five classes including (1) 0–2; (2) 2–8; (3) 8–19; (4) 19–50; and (5) >50 (Table 1). Drift density

is another important conditioning factor in the occurrence of land subsidence. It is defined as the total

length of all the drifts in a region divided by the total area of the region. Hence, an underground

drift density factor was prepared using drift depth and the horizontal area of influence [21] in five

categories (1) 0–0.002; (2) 0.002–0.0448; (3) 0.0448–0.120; (4) 0.120–0.299; and (5) 0.299–0.952 m/m2

(Table 1).

Geology effectively influences the occurrence of land subsidence especially in coal mining areas [5].

The location of the occurred subsidence in the study area is in a direct relationship with structures

of geology and mining area complex [18]. A surface geology factor was extracted using the digital

geological map with 1:50,000 scale issued by the KIGAM in two categories including (1) Gobangsan

Group; and (2) Sadong Group (Table 1).

The spatial distribution of the lineaments in coal mining area is a considerable factor in the

occurrence of land subsidence [5]. The lineaments of the study area were identified with a multispectral

IKONOS-PAN-sharpened image (with 1 m resolution, ortho-rectified) of a mine area, which was

captured in October 2010. A map showing 1-m interval distances to lineament was computed by the

Euclidean distance method in ArcGIS 10.3 in five categories including (1) 0–10; (2) 10–20; (3) 20–30;

(4) 30–60; and (5) >60 m. Also, lineament density factor was constructed with five categories: (1) 0–0.001;

(2) 0.001–0.029; (3) 0.029–0.0435; (4) 0.0435–0.052; and (5) 0.052–0.109 m/m2 (Table 1).

Land use is another factor in the evaluation of the occurred land subsidence in the study area was

obtained from a digital land characteristics map supplied in a grid format with spatial resolution of

1 m × 1 m by the NGII in the drawing exchange file (DXF) format in in nine classes including (1) mixed
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forest lands; (2) deciduous forests; (3) mixed barren lands; (4) commercial areas; (5) coniferous forests;

(6) other grasses; (7) transportation; (8) natural grasses; and (9) fields (Table 1).

RMR, as a geomechanical rock classification system which developed between 1972 and 1973 [26],

was used for the study area based on several parameters including the uniaxial compressive strength

of rock material, rock quality designation, spacing of discontinuities, condition of discontinuities and

groundwater conditions [27]. An inverse-distance weighted (IDW) interpolation was used to contour

the RMR [7]. The RMR factor was classified into five categories including (1) 0.00366–1.26; (2) 1.26–1.54;

(3) 1.54–1.93; (4) 1.93–2.79; and (5) 2.79–4 (Table 1).

Table 1. Land subsidence conditioning factors and their classes.

Land Subsidence Factors Classes GIS Data Type Scale

Slope angle (◦) (1) 0–10; (2) 10–20; (3) 20–30; (4) 30–40; (5) >40 GRID 1 m × 1 m

Distance to drift (m) (1) 0–2; (2) 2–8; (3) 8–19; (4) 19–50; (5) >50 Line 1:5000

Drift density (m/m2)
(1) 0–0.002; (2) 0.002–0.0448; (3) 0.0448–0.120;
(4) 0.120–0.299; (5) 0.299–0.952

Polygon 1:5000

Geology (1) Gobangsan Group; (2) Sadong Group Polygon 1:50,000

Distance to lineament (m) (1) 0–10; (2) 10–20; (3) 20–30; (4) 30–60; (5) >60 Line 1:5000

Lineament density (m/m2)
(1) 0–0.001; (2) 0.001–0.029; (3) 0.029–0.0435;
(4) 0.0435–0.052; (5) 0.052–0.109

Polygon 1:5000

Land use

(1) Mixed forest land; (2) Deciduous forest;
(3) Mixed barren land; (4) Commercial area;
(5) Coniferous forest; (6) Other grasses;
(7) Transportation; (8) Natural grasses; (9) Field

Polygon 1:50,000

RMR
(1) 0.00366–1.26; (2) 1.26–1.54; (3) 1.54–1.93;
(4) 1.93–2.79; (5) 2.79–4

Polygon 1:5000

3. Methodology

3.1. Background of Machine Learning Algorithms

The following steps were performed to prepare the land subsidence susceptibility maps:

(1) Collection and extraction of land subsidence conditioning factors: Using the land subsidence

areas, we produced a set of land subsidence conditioning factors using ArcGIS. (2) Preparing the

training and validation datasets: The dataset was divided into training (70%) and validation datasets

(30%). (3) Preparing land subsidence susceptibility models: in this step, we constructed land subsidence

susceptibility models using BLR, SVM, LMT and ADTree. (4) Model validation and comparison: all the

constructed land subsidence susceptibility models were validated using some statistical indexes

including sensitivity, specificity, accuracy, Kappa and RMSE. (5) Production and validation of land

subsidence susceptibility maps: the land subsidence susceptibility maps were classified into very

low, low, moderate, high and very high susceptibility and maps in ArcGIS. The validation process

of the susceptibility maps was checked using ROC, success and prediction rate curves (SR and PR

curves) and Friedman and Wilcoxon sign rank tests. Figure 2 shows the flowchart of land subsidence

modelling process in this research.
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Figure 2. The flowchart of land subsidence modelling process in the study area.

3.1.1. Bayesian Logistic Regression (BLR)

BLR is a combination of logistic regression model and Bayesian method. Compared with classic

logistic regression model, BLR can analyze the uncertainties in models by introducing prior distribution

and utilizing likelihood function to solve posterior distribution, while over-fit of data may occur in

traditional logistic regression model [28]. This BLR consists of three components: (i) determining the

prior probability for parameters; (ii) specifying the likelihood function of data; and (iii) estimating the

posterior distribution for parameters [29,30]. A Bayesian framework was then comprised to compute

the prior probability using land subsidence conditioning factors [31]. Taking Gaussian prior for

example, its form is shown as below:
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l( β j

∣

∣σj) = 1/(
√

2πσj) exp(−β2
j /(2σ2

j )) (1)

where, σj is the standard deviation of Gaussian distribution; and β j is the coefficient.

The value of prior variance σ2
j determines the prior belief of whether β j will be near zero (an

extremely small value of σ2
j means β j is close to zero). Gaussian prior is related to the L2 penalized

logistic regression. The Equation (2) needs to be minimized to be subjected to a constraint on the

L2 norm.

L = −l(β) + (λ/2)
p

∑
j=1

β2
j (2)

where, l is log likelihood of data; λ is smoothing parameter that is connected to the standard deviation

of Gaussian distribution.

Moreover, for Laplace prior (demonstrated as Equation (3)), we should minimize Equation (4)

with L1 penalty in accordance to the similar principle of algorithm.

l( β j

∣

∣τj) = τj/2 exp(−τj

∣

∣β j

∣

∣) (3)

L = −l(β) + (λ/2)
p

∑
j=1

∣

∣β j

∣

∣ (4)

where, τj is the prior parameter.

3.1.2. Support Vector Machine (SVM)

SVM as a statistical learning algorithm find an optimal separating hyper plane for classification of

class labels [32,33]. SVM was proposed by Vapnik in 1995, which is useful for solving problems around

small samples and nonlinearity [34]. For linearly separable samples, all the data can be separated

by the optimal separating hyper plane that was searched out using SVM. However, for linearly

inseparable samples, in SVM model, all the data should be mapped into a high dimension eigenvector

space and then the optimal separating hyper plane can be obtained in the high dimension space.

Ultimately, the optimal separating hyper plane can be mapped into original space within a certain error

limit. In addition, the selection of kernel functions of SVM model will have a significant impact on

results [35,36]. The kernel functions used universally contain several functions: linear (LN), polynomial

(PL), radial basis function (RBF) and sigmoid (SIG).

Linear:

K(xi, xj) = xT
i · xj (5)

Polynomial:

K(xi, xj) = (γ · xT
i · xj + r)

d
, γ > 0 (6)

Radial basis function:

K(xi, xj) = (−γ‖xi − xj‖), γ > 0 (7)

Sigmoid:

K(xi, xj) = tanh(γ · xT
i · xj + r) (8)

where γ, r and d are parameters of the kernel functions.

3.1.3. Logistic Model Tree (LMT)

LMT is regarded as one of the most stat-of-the-art classifiers in the world [37,38]. LMT is made up

of a standard decision tree with logistic regression functions that are built by a logitboost algorithm at

the leaves and the process of pruning is implemented by the CART algorithm [39]. The principle of

logistic regression function generation was introduced briefly by Karabulut and Ibrikci in 2014 [40].



Sensors 2018, 18, 2464 8 of 20

Initially, a weak classifier is constructed based on the existing sample dataset. Then, some misjudged

samples are obtained through repeated application of the weak classifier. In order to emphasize on

those misjudged samples, they are given bigger weights. Eventually, several weak classifiers can be

compounded into a strong classifier by weighted average method after manifold cycles. In addition,

maximum likelihood is employed to find out the specific expressions that linear logistic regression

functions need to fit (shown in Equation (9)).

Fc(x) = a0 + ∑
i

aixi (9)

where, Fc(x) is the linear logistic regression functions to be fit; a0 is the constant term; and ai is the

corresponding coefficient of xi.

3.1.4. Alternate Decision Tree (ADTree)

ADTree, as one of the most representative data mining methods, is an advanced technique taking

root in decision trees and its prediction results are highly accurate [41–43]. For this reason, ADTree and

other Decision Tree methods have been adopted in the studies on susceptibility assessment [44,45].

In ADTree model, numeric or categorical variables are input generally as the values of a root node.

In addition, according to the information gain ratio, the most optimal grouping variables and cut points

are figured out. Then, with ADtree growing and pruning, the aim of classifying or predicting the data

can be realized. Moreover, ADTree is more appropriate to deal with complex and enormous database

due to the boosting technique [46]. Figure 2 shows the flowchart of land subsidence modelling process

in the study area.

3.2. Factor Selection Using Least Square Support Vector Machine (LSSVM)

The role of each conditioning factor on land subsidence occurrence from one area to another is

different due to differences in topography, climate, geology, geomorphology and soil characteristic.

At first, we selected all these factors with the assumption that all of them are effective on land

subsidence incidence. Then, we selected the ones based on the feature selection techniques such as

LSSVM. There are several techniques has been used to quantifying the predictive ability of factors such

as Fuzzy-Rough sets [47], Relief [48], Information Gain Ratio [49] and the LSSVM. The LSSVM unlike

the IGR which is an entropy-based method that considers only important factors on land subsidence

occurrence, assign the weights for all conditioning factors and it does not remove any factors from the

modelling process.

In the present study, the least square support vector machine (LSSVM) has been adopted to

calculate the importance of each conditioning factor on land subsidence occurrence. LSSVM was

proposed by Suykens et al. in (2002) [50]. LSSVM, which is a modified version of SVM, is a kind of

statistical kernel based supervised learning methods and benefits from least squares linear as a loss

function [51]. These methods analyze data and identify patterns, which are used for classification and

regression analysis. LSSVM is completely related to standardization networks [52]. With the quadratic

cost function, the optimization problem is reduced to find the solution of a set of linear equations.

Given a training set of N data points {xk, yk} N k = 1, with input data xk ∈ RN and output yk ∈ r, where

RN and r are the N-dimensional and the one-dimensional vector space respectively. As the output of

the LSSVM method is FS, in this study x = [d, c, β, φ, ru, H] and y = FS. An LSSVM equation model is:

y(x) = wTφ(x) + b (10)

where, φ (.) is a feature map and prepared the input data into a higher dimensional feature space;

w ∈ RN; b ∈ r; w is an adjustable weight; and b is the scalar threshold. For function estimation,

optimization problem is formulated as follows:
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minimize = 0.5 ∗ wTw + γ

n

∑
k=1

ek
2

2
(11)

where, N is considered as number of data and γ is the regularized parameter that determining the

trade-off between the training error minimization and smoothness.

3.3. Evaluation and Comparison of Algorithms

According to Chung and Fabbri (2003) [53], the obtained maps will not be applicable without

validation, thus 30% of the data was selected for evaluation as a testing dataset and 70% of the

remaining data as a training dataset was applied to model building. In a recent paper, Pham et al. (2016)

have stated that the efficiency of performed models should be evaluated and compared for both

modeling and testing phases [54]. As the training dataset was used for model building, it only shows

the degree of fit; therefore, they cannot be used as model validation criteria. The testing dataset

which was not used in the modeling have been applied to model validation. In the current study,

three approaches were applied to the evaluation and comparison of the performed model.

3.3.1. Statistical Index Based Evaluation

Several statistical index–based methods, namely sensitivity, specificity, accuracy, Kappa and

RMSE were selected to statistically evaluate the performance of the land subsidence models in both

training and testing phases. Sensitivity is defined as proportion of land subsidence pixels that correctly

classified as land subsidence [54]; specificity is depicted as proportion of non-land subsidence pixels

that correctly classified as non-land subsidence; accuracy is the proportion of land subsidence and

non-land subsidence pixels that performed models correctly classified, Kappa coefficient was used to

evaluate the reliability of the land subsidence models and, RMSE in geosciences is a standard metric

for model [30,55].

3.3.2. Receiver Operating Characteristic Curve

Receiver operating characteristic (ROC) curve was used to land subsidence model validation. ROC

curve is a standard method and most popular technique to evaluate the quality of the probabilistic

models and the area under the curve (AUC) was used to quantitatively validate the models [56].

The ROC curve is prepared using sensitivity and 100-specificity on the Y and X axes of the diagram.

The AUC varies between 0.5–1 as the more the AUC, the higher the prediction capability of the

performed model and the higher accurate of the obtained maps [57]. In the current research,

both success rate and prediction rate were applied to validate the models.

3.3.3. Statistical Tests of Models

In order to assess whether the performed models are statistically different from each other or not,

two inferential statistical models namely the Freidman and Wilcoxon signed rank tests were applied.

The Freidman test is a non-parametric test and is used when the data are normally distributed [58].

The null hypothesis to run the Freidman test is that the performances of land subsidence models

at significant level of 5% (α = 5%) are not different. The null hypothesis is rejected when the

p-value is higher than 0.05. The main weakness of the Freidman test is that it only shows whether

there is statistically a difference between all performed models or not. To overcome this weakness,

the Wilcoxon signed-rank test was performed for pairwise comparison between performances of the

land subsidence models. The null hypothesis is similar to the Freidman test but two criteria of p-value

and z-value were applied to evaluate the significance of differences among land subsidence models.

If the p-value was less than 0.05 and the z-value exceeded either −1.96 or +1.96, then the null hypothesis

was rejected and this showed that there is a statistically significant difference between the models.
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4. Results and Discussion

4.1. Selection Process of Effective Conditioning Factors on Land Subsidence

Ineffective conditioning factors creates noise and decreases the prediction capability of modelling

using training dataset [59]. The results of selecting the most significant conditioning factors affecting

land subsidence occurrence are shown in Figure 3. All eight conditioning factors showed significant

contribution to the modelling process due to obtaining positive average merit (AM) based on the least

square support vector machine (LSSVM) method. The AM is used to prioritize the most important

conditioning factors influencing land subsidence modelling. The AM is the average of the LSSVM

(Section 2.3) with 10-fold cross-validation. The results revealed that distance to lineament had the

highest predictive capability (AM = 8) for land subsidence modelling. It is followed by land use (6.9),

lithology (5.5), lineament density (4.1), RMR (3.4), slope angle (3.2), distance to drift (2.5) and drift

density (2.4). The results of this study indicated that the distance to lineament is the most important

factor for land subsidence occurrence which is in agreement with the finding of Oh et al. (2011) [6].

They reported that the distance to lineament and the distance to drift greatly affected the occurrence

of ground subsidence in Jeongahm in Kangwon-do, Korea. Additionally, Saro et al. (2012) [7],

after preparing the susceptibility of ground subsidence of Jeongahm in Kangwon-do, Korea, declared

that the distance to lineament (faults) was the most significant factor causing land subsidence. On the

other word, the faults lead to collapse of the underground coal mine resulting in land subsidence in

the study area.
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Figure 3. Prediction capability of the most important land subsidence conditioning factors for land

subsidence modelling.

4.2. Model Results, Validation and Comparison

The results of model training and validation processes are shown in Table 2. These results have

been obtained based on the most effective factors using training dataset (goodness of fit) and validation

dataset (performance of models). The results of training and validation processes indicated that all

applied machine-learning algorithms have acceptable goodness of fit and predictive capability for

spatial prediction of land subsidence in the study area.

Results depicted that the BLR algorithm had the highest sensitivity using training (0.941) and

validation (0.714) dataset illustrating that 94.1% and 71.4% of the land subsidence pixels are correctly
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classified in the land subsidence class. Likewise, the lowest sensitivity was acquired by the ADTree

algorithm (training = 0.824; validation, 0.714). In addition, the results of specificity indicated that the

BLR algorithm had the highest specificity value (0.882) based on the training phase; while, the BLR and

SVM algorithms had the highest value of specificity (0.857) based on the validation dataset. It implies

that in the modelling and validation processes, 88.2% and 85.7% of the non-land subsidence pixels

were correctly classified with respect to non-land subsidence class. Additionally, the LMT algorithm

had the lowest specificity (training = 0.824; validation, 0.714). In terms of accuracy, the BLR algorithm

showed the highest value in the modelling (0.912) and validation (0.786) processes. The kappa index

for all models varied from 0.764 to 0.822 and 0.428 to 0.571 using training and validation datasets

demonstrating a substantial agreement between the models and the reality. The lower the RMSE in the

modelling is, the better the performance of results of algorithms will be.

Table 2. Model results and analysis using training and validation datasets. TP: true positive,

TN: true negative, FP: false positive, FN: false negative, SST: sensitivity, SPC: specificity, ACC: accuracy,

T: training; V: validation.

BLR SVM LMT ADTree

T V T V T V T V

TP 16 5 16 4 15 5 14 4
TN 15 6 14 6 14 5 15 5
FP 2 1 2 1 3 2 2 2
FN 1 2 3 3 2 2 3 3
SST 0.941 0.714 0.842 0.571 0.882 0.714 0.824 0.571
SPC 0.882 0.857 0.875 0.857 0.824 0.714 0.882 0.714
ACC 0.912 0.786 0.857 0.714 0.853 0.714 0.853 0.643
Kappa 0.822 0.571 0.764 0.571 0.764 0.428 0.764 0.428
RMSE 0.297 0.426 0.323 0.430 0.335 0.432 0.363 0.462

Spatial prediction of land subsidence has rarely been studied using machine learning algorithms.

For example, Saro and Park (2013) [5] concluded that the decision tree algorithm had outperformed the

frequency ratio approach while Saro et al. (2012) confirmed the obtained results using artificial neural

network algorithm [7]. In this study, we compared the results from land subsidence modelling of the

BLR as a Bayes-classifier with the SVM as a functional classifier and LMT and ADTree as decision

tree classifiers. Results indicated that the ADTree has the lowest power prediction in comparison

to other algorithms in the study area. This result is also in agreement with Chen et al. (2017) [60],

who demonstrated that the ADTee has the lowest performance in comparison to the kernel logistic

regression (KLR) and Naïve Bayes tree (NBTree) for the spatial prediction of landslides. The LMT

could better performance and power prediction than the SVM algorithm and less than the BLR

algorithm. Wei Chen et al. (2017) [38] concluded that although the LMT had less performance of

random forest (RF) algorithm, it had a higher performance than the classification and regression tree

(CART) algorithm. Dieu et al. (2014) [59], however, found that the SVM has a high power prediction in

comparison to the LMT algorithm. Although SVM is a very universal learner algorithm and ability

to learn the dimension ability of the feature space, it is a useful technique for data classification [61].

Some researchers have used SVM as a soft computing benchmark model to assess the power prediction

of the new model [57,62]. However, the result of the modelling process encounters some uncertainties

including data inputs and the model which used for modelling process. Hence, SVM in some studies

has high ability for classification due to less sensitivity and having the higher ability in decreasing

over-prediction of susceptible areas which has been observed by other studies [63,64] and while in

some other studies has a low prediction in comparison to other algorithms [36,65,66]. On the other

hand, BLR which is a combination of logistic regression and Bayes-based theory is a powerful and

robust algorithm which has rarely been used in the classification process of landslides [31,67]. In this

case, [67] stated some of advantage of the BLR including; (1) BLR parameter estimates are probabilistic
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estimates or probably distribution rather than the logistic regression, (2) with combining a Bayesian

methods with a logistic regression model an alternative to generally used frequent methods and also

uncertainty estimation procedures will be better provided resulting in a higher accuracy of parameters

estimates. In the current study, the BLR is more powerful and robustness algorithm which could

further decreases the noise and over-fitting problems in the modelling process. Therefore, it could

well-known as the strong and prominent algorithm in the study area for landslide and non-landslide

classifications. Overall, BLR was successfully trained and validated in the modelling and evaluation

processes. They were conducted to compute the land subsidence susceptibility indexes for all the

pixels in the study area.

4.3. Development of Land Subsidence Susceptibility Mapping, Verification and Comparison

Constructing the land subsidence susceptibility mapping (LSSM) with high prediction accuracy

depends on the selecting the best parameters of algorithms used for modelling. These parameters

are including the number of folds (to reduce error pruning), the number of iterations (to obtain a

model with high training and validation accuracy) and the number of seeds (to split the data), C and γ

indexes shown in Table 3 for this study. Land subsidence susceptibility indexes (LSSIs) for each pixel

of the study area were obtained using the probability distribution function (PDF) of each algorithm

individually. It should be noted that the LSSI is the probability of a land subsidence of each pixel over

the study area, which ranges between 0 and 1.

Table 3. Parameters of machine learning algorithms applied in this study.

Algorithm Parameters

BLR
Hyper parameter value range, R: 0.01–3.16; Specific hyper parameter value, 0.27;
The maximum number of iterations to perform, 1000; The number of folds in the internal
cross-validation or pruning, 2; The random number seed, 1; the threshold for classification, 0.5.

LMT
The minimum number of instances at which a node is considered for splitting, 15; a fixed
number of iterations for LogitBoost, −1.

SVM
Build logistic model, False; C, 0.1; epsilon, 1.0 × 10−12; filter type, normalized training data;
kernel function, polykernel; number of folds, −1; random seed, 1; tolerance parameter, 0.001.

ADT Number of boosting iteration, 10; random seed, 0; search path, expand all paths

Although there are some techniques for susceptibility map classification in Arc GIS 10.3 software

such as natural break, equal interval, geometrical interval, quantile, standard deviations and manual,

they should be evaluated and tested to produce a susceptibility map with high conformity with the

actual environmental condition [68]. For example, Akgun (2012) has reported that the equal interval

or standard deviation classification methods are more proper techniques when the data are close to

normal distribution [69]; while the quantile or natural breaks are applicable for the positive or negative

skewness of data. Accordingly, in this study, the LSSIs were reclassified using the quantile classification

method into five classes including very low susceptibility (VLS), low susceptibility (LS), moderate

susceptibility, high susceptibility (HS) and very high susceptibility (VHS) which are shown in Figure 4.

The goodness-of-fit (reliability) and prediction accuracy of all machine-learning algorithms have

been evaluated using the area under the ROC curve (AUROC) based on the training and validation

datasets, respectively. Figure 5 shows the comparison of AUROC for all machine learning algorithms

using training (a) and validation (b) datasets. Results of reliability of algorithms concluded that the BLR

had the highest value of AUROC in comparison to the SVM (AUROC = 0.969), ADT (AUROC = 0.967)

and LMT (AUROC = 0.965) models. Also, results using validation dataset depict that the BLR

algorithm had the highest value of the AUROC (0.959), followed by LMT (AUROC = 0.938), SVM

(AUROC = 0.918) and ADT (AUROC = 0.898). It pinpoints that BLR had the highest capability in

prediction accuracy for modelling of land subsidence compared to the other studied algorithms.
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Figure 4. Land subsidence susceptibility maps using: (a) the Bayesian logistic regression (BLR),

(b) the support vector machine (SVM), (c) the logistic model tree (LMT) and (d) the alternating decision

tree (ADTree).

In addition to the AUROC, we used success rate (SR) and prediction rate (PR) curves to check the

reliability and prediction power (accuracy) of all machine-learning algorithms. The difference between

the AUROC and SR and PR curves is that in the AUROC, all land subsidence and non-land subsidences
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locations are applied for training and validation datasets; whereas, only land subsidence locations

are used for designing the SR and PR curves. Hence, this difference practically leads to change the

values of AUCs. Bui et al. (2016) have reported that because of the lack of corresponding between

the AUROC and prediction accuracy of the susceptibility models, the SR and PR curves should be

evaluated as well [70]. The results of SR and PR curves are shown in Figure 6. The SR curves of the

studied algorithms concluded that the reliability of BLR is higher (AUROC = 0.895), followed by SVM

(AUROC = 0.885), LMT (AUROC = 0.871) and ADT (AUROC = 0.838). While, the power prediction of

all susceptibility algorithms using the PR curves showed the highest value for BLR (AUROC = 0.891),

followed by LMT (AUROC = 0.837), SVM (AUROC = 0.824) and ADT (AUROC = 0.811). It can be

noticed that the AUCs calculated by ROC have been slightly lower than those obtained by AUCs of

the SR and PR curves. Bui et al. (2016) indicated that these differences are because the ROC curve was

plotted based on the entire presence and absent locations, whereas for designing the SR and PR curves

used only presence locations for the estimation of area under the curves for all susceptibility maps [70].

They also implied that there is no strict correlation between the AUC of ROC and SR and PR curves.

Therefore, the SR and PR should also be considered to check the validity of the susceptibility maps.

  

Figure 5. Model validation and comparison using AUROC based on the (a) training and

(b) validation datasets.

  

χ

−

−
−
−
−
−
−

Figure 6. Model validation and comparison using (a) success rate curve and (b) prediction rate curve.
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Besides AUROC and the SR and PR curves, to further check the applicability of the four machine

learning algorithms, the Freidman and Wilcoxon rank tests were used. The aim of these statistical

tests is to assess the significant differences between the two or more models. Results of Friedman test

illustrated that the values of mean rank for the BLR, the SVM, the LMT and the ADTree algorithms

were 1.21, 2.35, 3.56 and 2.88, respectively. Additionally, the chi-square (χ2) and statistical significance

(Sig.) at 5% confidence interval for all algorithms were obtained as 60.817 and 0.000, respectively.

The results implied that due to having Sig. equals to zero (<0.05), the null hypothesis (no

significant difference between the models at the 5% significance level) is rejected and therefor there

are statistical differences among all algorithms for land subsidence susceptibility mapping (accepting

the zero hypothesis). The Friedman test does not provide any information on statistical differences

between two or more algorithms. To compare pairwise algorithms, the Wilcoxon sign ranked test has

been used. This test is judged based on the p-value and z-value criterion so that when the p-value < 0.05

and z-value > (−1.96 and +1.96), the null hypothesis is rejected and it indicates that the performance of

the algorithms to prepare the land subsidence susceptibility maps are significantly different. The result

of this test is shown in Table 4. The results clearly concluded that the performances of the all machine

learning susceptibility algorithms have statistically significant differences as pairwise. It implies that

each algorithm has different results in which in terms of statistically differences there is no evidence of

similarity of the results of all algorithms. Therefore, the obtained results from the modelling process

based on the statistical assessments can be more reliable and reasonable.

Table 4. Performance comparison of the machine learning models in land subsidence using Wilcoxon

signed-rank test (two-tailed). The standard p-value is 0.05.

No.
Pair Wise

Comparison
Number of Positive

Differences
Number of Negative

Differences
z-Value p-Value Significance

1 BLR vs. SVM 27 7 −4.078 0.000 Yes
2 BLR vs. LMT 24 10 −2.522 0.012 Yes
3 BLR vs. ADTree 28 4 −4.469 0.000 Yes
4 SVM vs. LMT 27 7 −4.043 0.000 Yes
5 SVM vs. ADTree 33 1 −5.069 0.000 Yes
6 LMT vs. ADTree 33 1 −5.003 0.000 Yes

5. Conclusions

Land degradation occurs through various surficial features within an area. Land subsidence has

been always considered as a degradation process resulting in environmental disasters. Therefore,

its identification, assessment, mapping, modelling and management are of crucial importance in any

area. The selection of appropriate techniques and models that can provide a clear picture of the system

under investigation has been always a challenge while dealing with true world because of its high

complexity and big spatial scale. Machine learning algorithms belonging to Data mining approaches

have been recently found as appropriate algorithms that are able to assess, model and map different

land degradation features around the world with high accuracy. In this study, the land subsidence

of Jeong-am area in South Korea were assessed, modelled and mapped using four machine learning

algorithms including BLR, SVM, LMT and ADTree through eight conditioning factors. We concluded

that if one selects appropriate affecting factors for modelling process, like what happened in this study,

machine-learning models can show very high potentials for preparing Land Subsidence Susceptibility

Map (LSSM) with highly acceptable accuracy and reliability such that the map can be used as a trusted

management tool for degraded areas. The BLR model was distinguished such a model that can assist

land managers, conservation authorities, watershed decision-makers and other officials to have a very

close look at land subsidence in order to find its best ways of control.
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